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The ability to sense ambient temperature pervasively, albeit crucial for many applications, is not yet available, causing problems
such as degraded indoor thermal comfort and unexpected/premature shutoffs of mobile devices. To enable pervasive sensing
of ambient temperature, we propose use of mobile device batteries as thermometers based on (i) the fact that people always
carry their battery-powered smart phones, and (ii) our empirical finding that the temperature of mobile devices’ batteries is
highly correlated with that of their operating environment. Specifically, we design and implement Batteries-as-Thermometers
(BaT), a temperature sensing service based on the information of mobile device batteries, expanding the ability to sense
the device’s ambient temperature without requiring additional sensors or taking up the limited on-device space. We have
evaluated BaT on 6 Android smartphones using 19 laboratory experiments and 36 real-life field-tests, showing an average of
1.25°C error in sensing the ambient temperature.
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1 INTRODUCTION

Sensing the ambient temperature pervasively is key to many applications, such as smart homes/buildings/cities [26,
43, 47, 50]. The ability of pervasive temperature sensing, however, is still deficient. In this paper, we propose a
novel temperature sensing service, called Batteries-as-Thermometers (BaT), by exploiting mobile devices’ batteries
(and their management chips) without requiring additional sensors or taking up the limited on-device space. BaT
enables mobile devices to become thermometers, thus pervasively sensing their operating ambient temperature
all the time wherever we go with them. The thus-sensed temperature information can be made available to both
devices and their users, enabling/improving important applications including but not limited to:

o Indoor Thermal Map Construction. People spend >80% of their lives inside buildings, and thus the indoor

thermal comfort is crucial to their wellness/productivity [29, 35, 37, 40, 48, 54], especially in view of its spatial
non-uniformity as revealed by our empirical measurements (see Fig. 1). For example, about 8% of human
mortality was shown to be due to non-optimum ambient temperature according to the data collected from 384
locations during 1985-2012 [32]. The West Midlands Public Health Observatory in UK also acknowledged an
increased mortality rate with ambient temperature below 20°C. Such temperature-related mortality is expected
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(a) Building floor map and 13 measurement sites (b) Ambient temperature at each site differs by up to 5.1°C

Fig. 1. Non-uniform indoor temperature renders its sensing crucial to achieve occupants’ indoor thermal comfort.
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Fig. 2. Lack of ambient temperature information prevents mobile devices from predicting the end-of-discharge conditions of
their batteries accurately, causing unexpected device shutoffs in a cold environment.

to rise with the rapid aging of populations [52]. BaT, by providing pervasive temperature sensing with mobile
devices’ batteries, not only allows occupants to acquire the temperature of their surrounding environment
— e.g., by placing BaT-enabled devices in an open space like ordinary thermometers — but also facilitates (i)
the construction of a building’s thermal map when integrated with crowdsourcing, thus helping improve
occupants’ indoor thermal comfort, and (ii) detecting the malfunction of a building’s heating, ventilation, and
air conditioning (HVAC) system [22].

o Environment-Aware Battery Management. The ambient temperature of mobile devices is crucial to their opera-
tion. A cold environment reduces the temperature of device battery, causing unexpected device shutoffs, as
frequently reported by mobile users on both iOS and Android platform [11, 13-15, 21]. Fig. 2(a) shows such an
unexpected shutoff using an Xperia Z phone: during video streaming in a —15°C environment, the phone shut
off even when it was shown to have 30% State-of-Charge (SoC). Such unexpected phone shutoffs are due to
its inability to sense the environment temperature correctly, thus preventing the accurate prediction of the
end-of-discharge battery conditions [7, 38] and displaying erroneous remaining SoC values, as illustrated in
Fig. 2(b). On the other hand, a hot environment aggravates the heating of device battery due to impeded heat
transfer from the battery to the environment, accelerating battery degradation and risking device safety. For
example, we have observed overheated batteries when operating the three phones shown in Fig. 3 in a 35°C
environment, where (i) Galaxy S5 and S6 Edge phones didn’t shut off, but most of their services were disabled,
and (ii) the Pixel XL phone completely shut off. BaT senses the devices’ ambient temperature, which allows
the prediction of future battery temperature in that environment, thus facilitating devices in precautiously
adapting their operation to the environment to avoid/minimize the degradation of user-perceived experience.
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Fig. 4. The temperature of a mobile device’s battery is strongly
Fig. 3. Disabled phone service in a hot environment. correlated with that of its ambient environment.

BaT is grounded on our empirical discovery and analytical interpretation thereof: the temperature of a commodity
mobile device battery is highly correlated with that of its ambient environment. Fig. 4 visualizes this correlation of a
Nexus 5X smartphone,! which we will empirically quantify further in Sec. 3. BaT captures such a correlation
to estimate the device’s ambient temperature, thus “sensing”the physical world without requiring additional
thermometers or taking up the limited space on mobile devices, i.e., sensing the temperature for free.?

There are two key challenges in designing BaT.

(1) Battery temperature is affected by its current, the ambient temperature, and the heating by other phone
components, such as chips or screen. Such thermal interplays have traditionally been captured analytically
in electrochemical and heat transfer models [36, 51, 56, 59], which may need up to 22 describing parameters,
depending on complexity/accuracy, e.g., [36]. Not all these parameters, however, are available on smart
phones. To facilitate its deployability, BaT captures the battery’s thermal behavior via integration of physical
& data-driven modeling: (i) abstracting the electrochemical models into generalized and empirically-
validated observations, and (ii) estimating the ambient temperature with such observations steered in a
data-driven way.

(2) Battery could be in either transient or stable thermal state [42], according to which its correlation with
devices’ ambient temperature needs to be decoded differently. This is particularly critical because mobile
devices’ dynamic current [39], together with mobile users’ frequent movements and thus change of ambients,
cause device battery to make frequent state transitions. BaT identifies the battery’s thermal states based on
its recent temperature/current, and applies different (but closely-coupled via a control loop) techniques to
estimate the ambient temperature.

We have evaluated BaT with 6 Android phones via 19 laboratory experiments and 36 real-life field-tests, and
compared it with 13 off-the-shelf apps from Google Play, showing an average error of 1.25°C in sensing the
ambient temperature, which is comparable to the +2°F (or £1.1°C) accuracy of the off-the-shelf Acurite Weather
Station [1]. Such an accuracy of BaT is good enough to steer many HVAC systems to provide the indoor thermal
comfort, e.g., TE-6700 Series Johnson Controls thermostat [12] keeps the indoor temperature within a +2°F
bound [22].

2 STATE OF THE ART
Below we briefly compare BaT with the state-of-the-art.

IThe device battery’s temperature was collected from its fuel-gauge chip and the ambient temperature was collected with an external Elitech
RC-5 temperature logger [8].
2 As opposed to the $3.4 cost of the temperature sensor used in, e.g., Galaxy Note 3 [6].
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static s32 bmp085_get_temperature(struct bmp085_data *data, int
*temperature)
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Fig. 5. Galaxy Note 3 estimates ambient temperature by cal- Fig. 6. Only 13 of the 48 apps could be used for ambient
ibrating sensor reading linearly with fixed coefficients [16]. temperature estimation but with coarse accuracy.

e Traditional Approaches of Temperature Sensing. The traditional approach to deploying static thermome-
ters for temperature sensing/monitoring [27, 34] does not work for the pervasive sensing of ambient temperature
for two reasons.

(1) Ambient temperature is spatially non-uniform in both outdoor and indoor environments [44, 46]: (i)
statistics show a temperature difference of up to 12°C between urban and rural outdoor areas, caused by
the urban heat island effect [41] resulting from urbanization; (ii) the non-uniformity of indoor ambient
temperature can be seen from Fig. 1, which summarizes the air temperature collected from 13 sites in our
air-conditioned Department building — the temperature differs by up to 5.1°C. A temperature difference of
5.25°C in an indoor environment was also reported in [44].

(2) Humans’ activities cover a large spatial area due to their frequent movements: Gonzalez et al. [33] reported
the fact that most people travel for tens of kilometers daily, while some could regularly travel up to hundreds
of kilometers, based on the trajectories of 100, 000 mobile phone users over 6 months; similar observations
on human’s large activity area were also reported in [57].

These two facts imply the high deployment/maintenance cost when traditional static thermometer deployment
is used to monitor ambient temperature pervasively, thus rendering it ineffective.

e BaT vs. Hardware Thermometers. The ideal way of sensing temperature pervasively is to have everyone
carry a thermometer all the time, as s/he carries a mobile phone. Inspired by this, Android provides the function
of acquiring the device’s ambient temperature, but such a function is applicable only when device manufactures
have built hardware-based thermometers into their devices [9], as with Samsung’s Galaxy S4 and Note 3
smartphones [20]. Clearly, such built-in thermometers increase the device cost (e.g., the sensor chip of Note
3 costs $3.48 apiece [6]) and take up the limited device space. Moreover, our examination of Galaxy Note 3’s
ambient thermometer driver [16] revealed that it just calibrates the raw thermo readings linearly with fixed
coeflicients (see Fig. 5), making the thus-estimated ambient temperature unreliable and suffer from up to 10°C
errors [19].> Hardware thermometers that can be installed to mobile devices as add-on components are also
available in the market, costing over $20 apiece [18].

3Samsung has removed these hardware thermometers in its later models.
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Table 1. Classification of the 48 apps from Google Play.

[ Type [[ Description [ #of apps |
1 estimates body temperature based on heartbeats 6
I returns the outdoor temperature of users’ current location 11
111 requires additional hardwares/gears 9
v returns the reading of phone’s certain thermometer 9
\4 estimates based on phone’s certain thermometer 13

Table 2. Error (in absolute value) of the 13 Type-V apps in estimating phones’ ambient temperature.

[ Experiment Settings 1 Error of Apps (°C)

| Phone | Ambient Temp. [ DChgCurrent [| #1 | #2 [ #3 [ #4 | #5 | #6 [ #7 [ #8—#13 |
Nexus 5X 22°C ~ 256mA 1.1 5.6 6.1 2.1 4.1 5.1 7.4 2.6
Nexus 5X 23°C ~ 836mA 10.7 9.5 9.7 7.7 5.7 10.7 | 11.7 6.7
Nexus 5X 24°C ~ 1,220mA 15.1 11.0 | 14.1 12.1 4.1 15.1 | 154 10.9
Nexus 6P 22°C ~ 329mA 1.0 1.8 3.0 1.0 3.0 2.0 3.0 1.6
Nexus 6P 23°C ~ 600mA 9.7 7.7 8.7 6.7 2.7 9.7 10.2 5.4
Nexus 6P 24°C ~ 1,550mA 12.8 8.7 11.8 8.8 108 | 11.8 | 12.4 7.5

Instead of requiring additional hardware thermometers, BaT, as a (semi-)software-defined thermometer, enables
mobile devices to sense, when needed, their ambient temperature using the thermometers built in their batteries,
which are pervasively available on all commodity mobile devices.

e BaT vs. Software-Defined Thermometers. To the best of our knowledge, little has been done to explore
the software-defined thermometers, i.e., extracting/estimating ambient temperature from device batteries, and
the closest to BaT are [28, 42, 49]. Crowdsourcing is used in [49] to estimate the air temperature in highly
populated areas. The design therein, however, only estimates daily average air temperature with coarse spatial
granularity (e.g., of city level) and accuracy (e.g., up to 20% error [44]), thus making it inaccurate and also untimely.
Chau has developed a method to estimate air temperature using smartphone batteries [28], which is however,
applicable only to batteries that are in a stable thermal state. The temperature of mobile device battery is used to
estimate/predict devices’ surface temperature in [42], achieving <2°C error. BaT extends further the exploration
to estimate the temperature of devices’ ambient.

e BaT vs. Commercial Apps. There exist many apps called “thermometer” or similar in Google Play/Apple
Store. To study these apps, we installed the first 48 apps found by searching Google Play with the key word
“thermometer” (see Fig. 6), and summarized their functionalities in Table 1 — only 13 of them (i.e., Type-V) can
potentially be exploited to estimate devices’ ambient temperature. To further examine the accuracy of these 13
apps (indexed as #1-#13), we ran them with varying settings as listed in Table 2. Specifically, we use an app
BatteryDrainer [4] to regulate phones’ operation (and hence control their discharge rate), and use a Benchmark
thermal chamber [5] to control the phones’ ambient temperature. The phones are placed in the chamber for 30-60
minutes, and then the estimated ambient temperature with these apps are recorded. These measurements show
(i) 6 of these apps (i.e., #8—#13) always return the same estimations, and thus they are of the same estimation
algorithm; (ii) these apps suffer from up to 15°C error in estimating the devices’ ambient temperature, especially
when the discharge current is large. We will compare these apps with BaT in Sec. 6.

3  OPPORTUNITY OF USING MOBILE DEVICE BATTERIES AS THERMOMETERS
We have chosen mobile device batteries as thermometers for the following three reasons.

e Readily-Available Battery Temperature. The batteries of mobile devices are always equipped with at least
one high-precision (e.g., 0.1°C for Galaxy S6 Edge) thermometer to monitor their temperature in real time, to
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Fig. 7. Battery temperature experiences less disturbance, thus being more stable perature and device’s ambient tempera-
than the readings of other thermometers on mobile devices. ture have correlation coefficients >0.8.

ensure both energy-efficiency [55] and safety [31]. Also, the thus-collected battery temperature can be accessed
on commodity platforms (i.e., Android and iOS) without requiring any privilege from users. For example, battery
temperature can be accessed by reading /sys/class/power_supply/battery/temp on Android, and via IOKit on iOS.

¢ Reliable Battery Temperature. Mobile devices use multiple built-in thermometers to monitor their tem-
perature at different components/zones, e.g., batteries and chips. Of these readings, the temperature of device
battery suffers less disturbance from the dynamic power usage of mobile devices and is thus more reliable (or
less bursty) than others, thanks to batteries’ (relatively) large thermal capacitance [59] — rendering the battery
temperature a promising way to estimate the device’s ambient temperature. This has been corroborated with
the readings of 15 thermometers of a Nexus 5X phone (including the one for its battery) over ~6 hours,* as
shown in Fig. 7(a). The battery discharge current varies within [209, 1415]mA during this logging. These battery
temperature measurements have a Fano factor — a metric widely used to quantify signal reliability — of 0.43 and
a standard deviation of 3.6°C, both of which are much smaller than those of other thermo readings (i.e., 0.78-1.02
Fano factor and 5.7-6.7°C standard deviation), and are thus more reliable. We have also empirically verified the
reliability of battery temperature with other devices, as summarized in Fig. 7(b) where the circles denote the Fano
factor of battery temperature and the boxes denote the max/minimum Fano factor of other thermo readings. Note
that Galaxy S6 Edge has only one more thermal reading besides the battery temperature.

e Correlated Temperature. The temperature of mobile device battery is strongly correlated with that of the
device’s ambient environment — an empirical finding from our extensive measurements. Specifically, we collected
44 traces of real-life device battery temperatures, including Nexus 6P, Nexus 5X, Galaxy S6 Edge, Galaxy S5, and
Xperia Z, each lasting 1-40 hours and covering the temperature range of [14, 55]°C, over which the batteries are
discharged with the current of 15-2491mA. We logged the corresponding ambient temperature at 0.1Hz for each
of these measurements, ranging from 7-34°C. We calculate the cross-correlation of the thus-collected 44 pairs of
battery and ambient temperatures, and observe strong correlations (with >0.8 correlation coefficients) in 35 of
them, as summarized in Fig. 8.

These three facts together demonstrate the opportunity/feasibility of estimating mobile devices’ ambient
temperature using their battery temperatures.

4 MODEL-AIDED DESIGN PRINCIPLE

The empirically-observed correlation between battery temperature and the device’s ambient temperature can be
modeled analytically, which also steers BaT to estimate the ambient temperature.

4These readings can be accessed under /sys/class/thermal/.
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Fig. 9. Thermal model of a device battery.

e Thermal Analysis of Device Battery. Mobile device battery operates in a context defined by the device’s
ambient and other components such as processors, GPS, etc. As a result, the temperature of mobile device battery
is jointly determined by its internal heating and the heat transfer from/to other device components and the
ambient environment, as illustrated with a heat transfer model in Fig. 9(a), where P}, is the battery’s internal heat
generation, Qj, is the heat stored in the battery (i.e., as increased temperature), Q,, is the heat transfer between
battery and device’s ambient environment, and Q,-(i =1,2,---) denotes the heat transfer between battery and
other device components.5 As heat conserves, we have

Pb=ZQi+Qb+Q‘a(i=1,z,--~). (1)

This heat-transfer model can be transformed further to an electric resistance-capacitance model [25], as shown
in Fig. 9(b), where the temperature difference and heat transfer rate are analogues of the electric potential and
current in circuit theory, i.e., R = AT/Q [17]. Specifically, for Fig. 9, we know

Qa = %&_Ta, (2)
Qi = W(lzl’&)a (3)

where T,, Ty, and T; are the temperatures of ambient environment, device battery, and other device components;
R, and R; are the thermal resistance between (i) battery and device’s ambient environment and (ii) battery and
other device components, capturing the heat conductivity jointly determined by the conduction coefficient and
contacting surface area [25, 42].

Also, by definition, the heat stored in the battery Qj, can be captured by the battery’s thermal capacitance Cy, as

Qp = Gy - dTi(t)/dt. (4)

3The heat transfer could be either negative or positive.
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Last but not the least, the internal heating of battery is dominated by its Ohmic heating due to its resistance ry:
Py(t) = I(t)* - o, ()

where I(t) is the (dis)charge current.
Combining Egs. (1)-(5) can capture the interplay between T, and T, (and hence their correlation explained) by

L) - T; dTy(t) Ty(t)-Ta
ISOREDY R e ©6)

1
Moreover, Eq. (6) inspires the following three components in estimating T, in a data-driven way.

e Heating from Other Components ),(T;(t) — T;)/R;. Description of the heat transfer between battery and
individual device components requires identification of R;s which, in turn, requires a significant effort. As an
alternative, we have conducted sensitivity tests on T;, and empirically find that T;’s impact on T;, is dominated by
that of I(t). Specifically, we analyze T;,’s sensitivity to individual components’ operation and the aggregated I
— ie., how large does the individual components’ operation and the aggregated I attribute to T, — based on a
5-hour trace collected with a Nexus 5X phone while using BatteryDrainer to control the operation of the phone’s
major power-consuming components. Fig. 10 plots the thus-obtained results, showing I(¢) has a dominating
impact on T}, when compared to the other components. We have also conducted sensitivity tests on devices such
as Xperia Z and Nexus 6P, and made similar observations. This is consistent with our intuition as I(¢) is the
cumulative result of device components’ operation, and thus representative to their heating effects on device
batteries. More importantly, this allows BaT to estimate T, based on only T, and I(t), i.e., shielding T,(i = 1,2, - -)
from consideration and thus simplifying the estimation significantly. We will further experimentally validate this
simplification in Sec. 6 by operating mobile devices with different loads/intensities.

e Battery’s Internal Heating I?(t) - n,. The battery current is needed to capture the battery’s internal heating.
Current information — albeit available on most recent mobile devices, e.g., at /sys/class/power_supply/battery/ —
is not always available on older or low-end devices as their fuel-gauge chips may not support current sensing,
e.g., the MAX17043 chip used in 2011 Galaxy W [45]. More information on the availability/reliability of current

information on different phone models can be found in [3]. For devices without current sensing capability, BaT
estimates battery current based on the physical principle of AC = ftHAt I(t)dt, where C is capacity and I is current.

This is feasible because all battery-powered devices support SoC estimation, rendering C available pervasively.
Let us consider the case where the phone battery’s SoC has changed from SoC(t) at time ¢ to SoC(t + At) at time
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t + At. Let Cy denote the device battery’s full charge capacity, e.g., 1, 500mAh for Galaxy W, then the (average)
battery current during time (¢, ¢ + At] can be estimated as

I=Cy - (SoC(t + At) — SoC(t))/(100 - At), @)

where I<0 for discharging, and otherwise charging. Fig. 11 compares the thus-estimated battery current with that
provided by the fuel-gauge chip of a Nexus 5X phone, showing good accuracy except for a few large errors caused
due to significant current pikes. We will further evaluate BaT’s sensitivity on the error of current information in
Sec. 6.

The internal heating of device battery is also affected by its resistance r. Resistance is traditionally measured
based on Ohm’s law (i.e., r = dV/dI) [53, 58, 60, 61]. Application of this principle on mobile devices, however,
is non-trivial due to devices’ dynamic usage patterns — the dynamic current of device battery renders it hard
to quantify dV and dI reliably in practice. BaT collects reliable dV and dI by exploiting the fact that users often
charge their devices over-night — the charging duration is so long that the charger is kept connected even after
the device is fully charged [23, 30, 57]. This is because device chargers use separate power paths to charge the
battery and power the device [24], allowing a fully charged battery to rest (i.e., with a 0OmA current) if the charger
is kept connected, thus making the dV/dI reliable:

_ v _ Veutoff — Vrested Veutoft — Vrested

= ; ®

B dl - Leutoff — 0 Leutoft

where Voot and Iyio are the battery voltage and charging current when stopping charging the battery, and
Viested 1S the voltage of a fully-rested battery afterwards, as illustrated in Fig. 12.
e Battery’s Thermal State dT;,(¢t)/dt. Eq. (6) also indicates two cases of battery’s thermal behavior — the stable
or transient thermal state depending on whether dT;,(t)/dt = 0 or not. We have experimentally validated this
two-state thermal behavior of device battery with a Nexus 5X phone: (i) Fig. 13(a) plots the temperature of the
phone battery when its battery current increased from ~280mA to ~480mA with fixed ambient temperature (e.g.,
when the user uses the phone with a higher intensity): battery temperature rises quickly and then slowly (i.e.,
|dTy(t)/dt|>0 and thus being in the transient state) until it converges (i.e., |[dT,(t)/dt|=0 and thus entering the
stable state); (ii) similar two-state behaviors in battery temperature can be observed when the ambient temperature
changes (e.g., when the user moves to a different environment) while keeping the battery current constant, as
shown in Fig. 13(b) where the ambient temperature changes from 27°C to 40°C. Such a state-dependent thermal
behavior of battery implies that the battery’s real-time thermal state, besides its temperature, is also needed to
estimate device’s ambient temperature.

The above three observations show that: (i) it is possible to use battery current, together with its internal
resistance, to (approximately) capture battery’s thermal behavior; (ii) the thermal state of device batteries must

r
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Fig. 15. BaT estimates mobile device’s ambient temperature

using the discharge current and temperature of its battery. Fig. 16. Pre-processing of discharge current.

be accounted for in their thermal analysis. Steered by these, BaT estimates the ambient temperature of a mobile
device using the battery current and temperature of device battery, by applying different but closely coupled data-
driven approaches when the battery is in stable and transient thermal state, respectively. Note these data-driven
approaches of BaT are approximation in essence, whose accuracy will be extensively validated in Sec. 6.

5 DESIGN OF BAT

Fig. 14 provides an overview of BaT with the core components shaded: collecting and processing the real-time
battery information, and then identifying the thermal states of mobile device batteries to estimate the ambient
temperature, such as SVM for stable-state batteries and a guided search for transient-state batteries, and connecting
the two methods with a control loop.

5.1

BaT takes as input the recent behavior (i.e., discharge current and temperature) of mobile device battery via a
moving window, as shown in Fig. 15 with a Nexus 5X phone. The pulsed battery discharge current introduces
two types of noises—i.e., those with high-frequency but low-magnitude and those with low-frequency but high-
magnitude—and thus needs pre-processing. BaT first interpolates the current samples linearly and then applies
a 10th-order low-pass filter with 0.2Hz cutoff frequency, to remove their high-frequency but low-magnitude

Data Pre-Processing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 12. Publication date: March 2020.



Mobile Device Batteries as Thermometers « 12:11

battery temperature o .
Transient State converges °
5
© 40
Stable g
State £ 50
K]
S
5] 1
% 8 0o 1000 500
8 35.30 25 0,20 15 1000 L (mA
battery temperature changes Amient Temperature (°C) urrent (mA)

A: battery temperature  B: battery temperature . . ,
equilibrates gradually changes not as in-equilibrating Fig. 18. The interplays among the battery’s stable-state tem-

perature Tgt, ambient temperature T,, and discharge current
Fig. 17. Transition diagram of battery’s thermal states. I fit as Tlft =a-I’+b-T,.

dynamics contributed probably by the device’s background activities [62], which do not affect battery temperature
much, as observed in Fig. 15. Also, BaT removes the top 10% of current samples in the time window to filter their
spikes, possibly due to the user’s brief checking of his phone which does not affect battery temperature much
either due to the short duration (see Fig. 15). Finally, BaT smoothes the thus-obtained current samples with a
moving average. Fig. 16 depicts these data pre-processing using the raw trace in Fig. 15.

5.2 ldentifying Battery’s Thermal States

BaT identifies battery’s thermal state based on the collected temperature samples, as illustrated in Fig. 17:
a stable-to-transient transition occurs if battery temperature deviates from its previously equilibrated level,
ie, Tp(t + A) — Tp(¢) > n where 7 is an empirical threshold (e.g., =0.1°C in our implementation of BaT on
Nexus 5X, which is also the phone’s precision in sensing its battery temperature), and a transient-to-stable
transition is triggered when battery temperature converged (i.e., T (¢t + A) — Tp(¢) = 0) for a set of consecutive
temperature samples. BaT then estimates the ambient temperature based on whether the device battery is stable
or transient. Note that a transient battery will reset its equilibrating process if either its discharge current or
ambient temperature changes again, causing its temperature to deviate from the equilibrating process, as shown
with the sub-states for transient batteries in Fig. 17. We will elaborate this further in Sec. 5.4.

5.3 BaT with Stable-State Batteries

BaT, upon concluding a stable-state battery, estimates the ambient temperature with an offline-constructed SVM
model describing the battery’s stable-state thermal behavior. Let us consider the model construction for Nexus
5X phones as an example. We collected the stable-state battery temperature of a Nexus 5X phone, with different
but constant discharge current (with BatteryDrainer) and ambient temperature (with the thermal chamber).
We conducted 62 such experiments with [10,40]°C ambient temperature, each lasting at least 1 hour to allow
battery temperature to converge and thus become stable. The battery temperature and current are logged at
1Hz during these experiments. Fig. 18 summarizes the converged stable-state battery temperature TbSt, together
with the corresponding ambient temperature T, and discharge current I during the experiments, from which the
following observation is made.

OBSERVATION 1. The interplays among <T*, T,, I> can be captured by
T'=a-IP+b-T, 9)
where a and b are regression coefficients.

Fig. 18 also plots the fitting of the collected samples according to Eq. (9), achieving a high goodness-of-fit of 0.8
RMSE and 0.9 Adjusted R-Squared. This observation can also be explained using Eq. (6) by letting dT;,(t)/dt = 0,
i.e., when the battery is stable.
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Fig. 19. BaT, upon concluding a stable-state battery, estimates the ambient temperature with a Quadratic SVM model.

Inspired by Observation-1, BaT filters and smoothes the offline-collected samples using Eq. (9), and then trains
a regression model with T, as the dependent variable and <T*, I> as predictors. We tried different regression
techniques as shown in Fig. 19, and found Quadratic SVM achieving the best accuracy (94%) under 5-fold
cross-validation, which is not surprising because of the quadratic form of Eq. (9).

Also, the thermal behavior of device battery changes gradually over usage due to battery aging, observed as
the increased internal resistance r, and thus visible Ohmic heating, leading to an increased TbSt even under the
same conditions as when the training set was collected. To mitigate this, BaT, inspired by the linear effect of r,
on battery heating (i.e., P = I - r,), calibrates the trained model according to

T =T ny/r, (10)

where Tlft/ and r; are the originally collected battery temperature and resistance, respectively, and ry, is the battery
resistance estimated using Eq. (8). Such calibration allows BaT to collect the training set offline, and only once for
a given device model. The regression model is thus agnostic of the user. To use BaT, the user need not perform any
initial training. Also, it is critical to note that such training data set is readily available to device manufacturers as
they have already been collecting the thermal behaviors of device batteries during their product testing (e.g., in
Samsung’s 8-point battery check), making BaT ideally an OEM-provided service.

Algorithm 1 BaT with transient batteries: Trans(Tmin, Tmax)-
: Ta = (Tmin + Tmax)/Z;_
: predict Tgr based on Ty;
: if the predicted Tgr matches the collected value then

1

2

3

4 calibrate T, based on the previous estimations with stable batteries;
5: return Ty;

6: else if the predicted Tgr is larger than the collected value then

7 Trans(Tinins (Tmin + Tmax)/2);

8: else if the predicted Tgr is smaller than the collected value then

9 Trans((Tmin + Tmax)/2, Tmax);
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battery temperature to a decaying process.

5.4 BaT with Transient Batteries

In practice, the battery of a mobile device switches between stable and transient state frequently, because of
its dynamic usage pattern (and thus dynamic current) and the user’s frequent movement (i.e., the ambient
temperature is likely to change). So, BaT must also capture the thermal behavior of transient-state batteries to
ensure reliable temperature sensing. The deficiency of describing transient-state batteries is also the reason why
existing solutions achieve only limited accuracy, as seen from (i) Samsung’s fixed linear model when estimating
Note 3’s ambient temperature using its built-in ambient thermometer (Fig. 5), (ii) Eq. (1) of [49], and (iii) many
of the Type-V apps in Table 1 recommend to keep the phone idle for some time before using it again to ensure
accuracy.

For transient batteries, BaT is steered by an empirically-learned model capturing how the battery temperature
equilibrates. Specifically, BaT estimates T, as the one matching the prediction with empirically collected battery
temperature (as in the binary search of Alg. 1), which is calibrated further based on the previous estimations with
stable batteries (line 4 of Alg. 1). The binary search of Alg. 1 is enabled by the monotonic relationship between
T, and T, (see Eq. (9)). The prediction of transient battery temperature T," with assumed T, (line 2 of Alg. 1) is
enabled by the following observation.

OBSERVATION 2. Battery temperature is equilibrated according to an exponential decay process:
TE(t) = |TY = T - e AU T8 (1 > 1), (11)

where ty and Tlf are the starting time of the equilibrating process and the battery temperature thereon, and TbSt’1 is
the eventually converged stable-state battery temperature (estimated based on the assumed T,, as we explain below).

Again, we corroborate this observation empirically. The equilibrating process of battery temperature — tem-
perature rising or falling — can be transformed to a decaying process by designing the corresponding coordinate
systems, as shown in Fig. 20. Fig. 21(a) plots such a decaying process of a Nexus 5X phone battery with a good
exponential fit. We have collected 62 such temperature equilibrating processes and fitted them exponentially, as
summarized in Fig. 21(b): the close-to-1 Adjusted R-Squared indicates high fitting accuracy. Observation-2 can
also be explained analytically with Eq. (6), as elaborated in Appendix.

Observation-2 allows for estimation of Tl;“(t), if we know (i) the to-be-reached stable temperature T;t’l, (ii) the
decaying rate A, and (iii) the time since equilibrating t — .

e Estimating Tlft’l. BaT determines T;t’l based on Observation-1, by assuming a known and fixed T,.

e Estimating A. BaT learns A based on the equilibrating process it observed: estimating A every time it sees
a (sub)-equilibrating process conforming to the exponential decaying with a high goodness-of-fit. Fig. 22
plots the thus-estimated As based on the temperature trace shown in Fig. 15, with a 30s time window: (i)
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the estimation of A is triggered frequently, ensuring its availability to BaT, and (ii) the estimated As are
close and thus reliable.

o Estimating t — ty. BaT estimates t — ¢, by identifying the sub-state transitions for transient batteries in
Fig. 17: t = t + At if transition-A is triggered (i.e., if the battery temperature follows the exponential model
learned since t, and thus changes as in the equilibration) and ¢, = ¢ if transition-B is triggered.

This way, BaT searches through the range of T, via binary search, predicts T;" based on each assumed T;,, and
concludes the T, that matches the predicted with empirically collected Tgr as the ambient temperature.

BaT calibrates the estimated T, further based on the previous estimations with stable batteries, to mitigate
the variance caused by the high dynamics of transient-state batteries. Specifically, BaT: (i) applies the SVM- and
search-based methods upon concluding a stable battery, yielding T5VM and TR, respectively, (ii) estimates the
ambient temperature to be TSYM, and then (iii) uses § = TSYM — Ts¢arch to compensate the estimation when the
battery switches to transient state later, thus connecting the two cases with a control loop. BaT updates § when
the battery becomes stable again.

5.5 Adaptive Sampling

BaT alleviates its energy overhead by sampling the device battery temperature at a reduced frequency: (i) with
the device’s default and low frequency (e.g., 1/30Hz for Nexus 5X) for stable batteries, and (ii) with adaptive
sampling of transient battery temperature based on how fast their temperature changes — a battery only needs
to be sampled when its temperature has changed by at least 0, i.e., the device’s precision in sensing battery
temperature. Specifically, for transient batteries, BaT predicts the cumulative change of 6 in battery temperature
using Eq. (11) (as illustrated in Fig. 23), and samples the battery temperature at that time. Let Tg—z and Tg_l be the
battery temperature at time t;_, and t;_; when the (i — 2)-th and (i — 1)-th samples are collected. BaT takes the
i-th sample at time

0 ) Mt _ 9

-2 _ piel iz _ il
I I T I

1
to= -5 -Inf(1+ e Mtmemh)] gy (12)

6 EVALUATION

We have evaluated BaT using both laboratory experiments and field-tests with 6 smartphones: 2 Nexus 5X, 1
Nexus 6P, 1 Galaxy S6 Edge, 1 Xperia Z, and 1 Pixel XL. The current information of Nexus 6P, Nexus 5X, Galaxy
S6 Edge, and Xperia Z is collected by reading /sys/class/power_supply/battery/current_now, and that of Pixel XL is
estimated according to Eq. (7).
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Table 3. Experimental comparison of BaT with the 13 Type-V apps in Table 1.

Settings ” Error of Apps (°C)

[ TestID [ Amb.T. [ Curr. [[ BaTl [ #1 | #2 [ #3 [ #4 [ #5 [ #6 #7 #8-#13 |
#1 16°C 471mA 0.5 6.0 6.8 5.0 3.0 -3.0 6.0 7.5 3.0
#2 16°C 763mA 0.2 13.0 16.2 12.0 11.0 13.0 14.0 15.0 10.2
#3 20°C 803mA 1.4 10.0 10.4 9.0 7.0 14.0 10.0 11.2 6.4
#4 21°C 279mA 0.1 -2.0 -0.1 -3.0 -3.0 -1.0 3.0 4.3 -0.3
#5 21°C 542mA 0.7 0 -0.5 2.0 -1.0 1.0 3.0 4.8 0.1
#6 22°C 819mA 1.0 10.0 3.8 9.0 7.0 9.0 10.0 10.8 6.0
#7 22°C 836mA -0.5 10.7 9.5 9.7 7.7 5.7 10.7 11.7 6.7
#8 23°C 256mA 0.6 1.1 5.6 6.1 2.1 4.1 5.1 7.4 2.6
#9 24°C 1220mA 1.1 15.0 10.9 14.0 12.0 4.0 15.0 15.3 10.8
#10 25°C 283mA -0.9 1.0 2.2 2.0 -2.0 0 1.0 2.1 -2.6
#11 25°C 575mA 0.6 5.0 4.3 4.0 2.0 4.0 5.0 6.6 1.8
#12 25°C 678mA 0.3 10.0 7.8 9.0 7.0 9.0 10.0 11.0 4.7
#13 30°C 346mA -0.7 -1.0 -3.0 -2.0 -4.0 1.0 0 0.7 -4.1
#14 30°C 442mA 0.3 3.0 0 3.0 0 1.0 4.0 4.2 -0.7
#15 30°C 615mA 1.1 7.0 3.3 6.0 4.0 6.0 7.0 7.5 2.0
#16 35°C 680mA -0.8 6.0 2.7 5.0 3.0 5.0 6.0 55 0.5
#17 35°C 704mA 0.5 9.0 8.3 8.0 6.0 5.0 8.0 7.4 2.5
#18 40°C 343mA -0.5 1.0 -2.3 1.0 -2.0 1.0 1.0 1.6 -4.3
#19 40°C 639mA 0.3 6.0 4.6 5.0 3.0 0 6.0 4.0 -0.9

Overall Range [0.9, 1.4] | [-2,15] | [-3,16.2] | [-3,14] | [-4 12] | [-3,14] | [0,15] | [0.7, 15.3] | [-4.3, 10.8]
Mean of Absolute Error 0.63 6.15 5.38 6.04 4.57 4.57 6.57 7.29 3.69
Standard Deviation 0.68 4.96 4.99 4.46 4.63 4.60 4.24 4.26 4.31

Table 4. Summary of tests in common usage scenarios.

[ Scenario [[ Current [ Battery Temp. | Duration |
Idling 28-602mA 22-32°C 2.5-15 hours
Listening-to-Music 324-991mA 22-33°C 1.1-2 hours
Youtubing 214-1,317mA 24-38°C 0.9-2.8 hours
Gaming 438-1,091mA 25-45°C 0.8-1.2 hours

6.1 Comparison with Off-the-Shelf Apps

We first compared BaT with the 13 Type-V apps in Table 1 via 19 laboratory experiments. Again, we use
BatteryDrainer to regulate the discharge rate of a Nexus 5X phone at a (relatively) fixed level, and use the thermal
chamber to control the ambient temperature. The ambient temperature is estimated after putting the phone in the
chamber for 30-60 minutes to allow the equilibration of battery temperature. Table 3 summarizes the estimation
errors obtained with BaT and the 13 apps, together with the corresponding ground truth of ambient temperature
and the phone’s discharge current during the experiments. BaT senses the ambient temperature with errors in
[-0.9,1.4]°C across all the 19 cases and an average of 0.64°C, which is much more accurate than these apps and
is comparable to the +2°F (or £1.1°C) accuracy of the off-the-shelf Acurite Weather Station [1].

6.2 BaT in Common Usage Scenarios

We have evaluated BaT when the phones operate in scenarios commonly seen by phone users, i.e., idling, listening-
to-music, Youtubing, and gaming. The app of Amazon Music [2] is used when listening to music online with screen
off and an earphone, and Fishdom [10], a game requiring intensive human-phone interactions with over 10 million
downloads on Google Play, is used for the gaming scenario. The phones operate with different components
& intensities in these scenarios, facilitating validation of BaT’s simplification of excluding T;s in Eq. (6) from
its temperature sensing. The phones are placed on a desk during these experiments. The Elitech RC-5 thermal
loggers are placed near (but not in contacting with) the phones to collect the true ambient temperature. Table 4
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summarizes the phones’ discharge current and battery temperature during these experiments and the durations
thereof. The maximum currents of 602/991mA with idle/listening-to-music phones are incurred when the screen
is turned on to start/terminate the experiments. Fig. 24 plots the accuracy of BaT in estimating the phones’
ambient temperature obtained in these experiments, in terms of the 10-th, mean, and 90-th percentiles of the
absolute estimation errors. BaT achieves 0.25-0.7°C mean estimation errors with idle phones, and even the 90-th
percentile of the error is below 1.3°C. The estimation error increases in scenarios of listening-to-music, Youtubing,
and gaming, because of the larger and more dynamic currents, especially for the gaming scenario with frequent
user—device interactions, but the error is still below 2.1/3.3°C for the 50/90-th percentiles.

6.3 BaT with Common Device Placements

The phones are kept on a desk in the above experiments. We have further evaluated BaT’s accuracy when the
devices are placed at other common places, i.e., in backpack, in handbag, in pant/jacket pocket, and in hand.
Fig. 25 plots the results collected with a Nexus 5X phone, where each experiment lasts 50-140 minutes. The
temperature inside the backpack/handbag/pockets, collected with a thermal logger, is taken as the ground truth
in the corresponding experiments, in which cases BaT achieves an average error of less than 0.85°C. The case of
holding the phone in hand, however, is tricky because of the lack of clear definition of the phone’s operating
ambient environment — it will be a combination of the holding hand and the surrounding air. We have used (i) the
temperature of the holding hand, and (ii) the air temperature of the room in which the experiment is conducted,
as the upper and lower bounds of the ground truth, respectively. As expected, BaT under/over-estimates the
ambient temperature, when it is (approximately) defined as the temperature of hand/room, respectively.

6.4 BaT in Real-Life Usage

After validating BaT’s performance in specific scenarios/ambient, we next evaluate BaT with 36 real-life field-tests,
i.e., using BaT to estimate, in real time, the phones’ ambient temperature during their daily usage. These field-tests
cover different phone usage patterns and ambient changes, e.g, when the user moves from an air-conditioned
office to an outdoor park in summer afternoons. Each of these field-tests lasts 4-22 hours, during which the
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Fig. 27. We have evaluated BaT with 36 real life field-tests, showing (i) BaT senses the ambient temperature with average
errors of 0.46-2.07°C, and (ii) BaT achieves much better accuracy when the batteries of mobile devices are stable.

discharge current, battery temperature, and ambient temperature vary from 152-2,491mA, 12-55°C, and 6-41°C,
respectively.

We attached the Elitech RC-5 thermal loggers to the phones to collect the ground truth of phones’ ambient
temperature at 0.1Hz, with a 2.5”” X 1.1” X 0.6” heat separator in between to reduce the disturbance caused by
the phone’s heating, as shown in Fig. 26(a). We have validated the effectiveness of the heat separator with the
Nexus 5X and 6P phones, as plotted in Figs. 26(b) and (c): the logger’s readings are insensitive to the dramatically
increased discharge current (and hence battery temperature), validating the reliability of the thus-collected
ground truth. The attachment of logger/separator to the phones, albeit increasing the physical size, is acceptable
for the field-tests as the phones may still be held in hand easily. Also note that the logger/separator are only for
the collection of ground truth and are not needed when deploying BaT in the real-world.

Fig. 27(a) plots one such field-test with a Nexus 5X phone, including (i) the battery information collected during
the ~7.5-hour test, and (ii) the thus-estimated ambient temperature which is further smoothed with moving
average, together with the collected ground truth of ambient temperature for comparison. The phone was kept at
different places such as in pocket, in bag, in hand, and on desk during this test, and the user’s activities include
working in office, driving, running in a park, and at home. Note this field-test covers many transition scenarios in
which the phone’s ambient temperature changes because of the user’s activities, e.g., returning to home after
running in a park. BaT estimates the ambient temperature with a mean error of 1.07°C and with 10-th and 90-th
percentiles of 0.29°C and 2.06°C, respectively. Also, BaT achieves a smaller estimation error when the battery
temperature is relatively stable, as compared to transient state batteries. Fig. 27(a) also shows that estimating
the ambient temperature simply to be that of the device battery — like some of the Type-IV apps in Table 1 — is
not accurate. Moreover, even estimating the ambient temperature by shifting the battery temperature with a
posteriori-identified optimal offset leads to an averaged estimation error of 2.25°C and a 90-th percentile of 5.02°C,
which are much larger than BaT. Fig. 27(b) summarizes the estimation errors for each of these 36 field-tests,
ranging from 0.46-2.07°C. An overall mean error of 1.25°C is achieved across all the tests, with an average 90-th
percentile of 2.44°C.

To further examine BaT’s accuracy with stable and transient batteries, we categorize its estimations of ambient
temperature based on the battery’s thermal state. Fig. 27(c) plots the CDFs of the estimation errors in these two
cases, showing BaT achieves an average estimation error of 1.76°C when the phone battery is in transient-state,
which reduces further to 0.54°C for stable batteries. This also implies that ensuring a stable device battery is an
effective direction to improve BaT’s accuracy further.
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e Fig. 29. BaT’s accuracy with Fig. 30. BaT incurs only about

current (i) reported by fuel- 15mA energy overhead even
Fig. 28. Adaptive sampling reduces sampling overhead with- gauge chips and (ii) estimated without the adaptive sam-
out degrading accuracy of ambient temperature estimation. based on battery SoC. pling.

6.5 Effectiveness of Adaptive Sampling

BaT adaptively samples the battery information to reduce its energy overhead, by focusing only on crucial battery
thermal behaviors. Fig. 28 compares BaT’s performance with and without adaptive sampling using 18 tests,
in terms of sampling overhead and estimation accuracy, respectively. The battery information is sampled at
0.2Hz in case of non-adaptive sampling. Adaptive sampling reduces the number of samples by about 75-97%,
when compared with the case of a fixed sampling rate, significantly reduces BaT’s overhead. Moreover, adaptive
sampling causes no clear accuracy degradation in estimating the ambient temperature — it leads to estimation
errors of about 0.6-1.6x of that when sampling constantly, with an average of 0.99x across all tests.

6.6 Accuracy with Estimated Current

To further check BaT’s deployability on phones without current sensing capability, we implement BaT based
on the discharge current (i) reported by phones’ fuel-gauge chips and (ii) estimated based on battery SoC (i.e.,
Eq. (7)), with a Nexus 5X and a Nexus 6P phone. Fig. 29 plots the thus-obtained results: the estimated current
only slightly degrades BaT’s accuracy when compared to the current measured by the chip, demonstrating BaT’s
pervasive deployability.

6.7 Overhead Analysis

To quantify BaT’s energy overhead, we logged the battery current of an idle Xperia Z phone for about 50 minutes
with all other services/apps disabled, and then start BaT and log the discharge current for another 70 minutes.
This way, the difference between the discharge currents in the two cases will be the energy overhead of BaT.
Note that to reduce the randomness of the thus-measured energy consumption, the adaptive sampling of BaT is
disabled and a fixed sampling rate of 1/30Hz — which is much higher than that with the adaptive sampling —
is used in this experiment. Fig. 30 plots the thus-collected current trace, where the high spikes are caused by
human interactions when starting/switching/terminating the experiment: BaT causes only a 15mA increase in
discharge current even without adaptive sampling.

7 CONCLUSIONS

In this paper, we have designed and implemented BaT to sense mobile devices’ operating ambient temperature
using their batteries, expanding the ability to sense the physical world pervasively without requiring additional
thermometers. BaT is inspired by (i) the fact that people always carry their mobile devices, and (ii) our empirical
finding that the temperature of device battery correlates highly with that of devices” ambient temperature. We
have evaluated BaT using both laboratory experiments and field-tests on multiple Android devices, showing an
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average of 1.25°C error in sensing ambient temperature. Such an accuracy of BaT is sufficient to steer many
applications such as facilitating the environment-aware battery management for mobile devices or helping users
find their comfort areas in a building.
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APPENDIX: ANALYSIS OF OBSERVATION 2
From Eq. (6), we get

(1) Tg dTp(t)
I(t) - = 22,40, , 13
() -1 R RO T (13)
Rl
where R_l,, = i + > RL,» and T, = m Multiplying R, to both sides, we have:
dT,(¢
Ry -1y -Iz(t)+T; =T,(t)+Rp - Gy - ;f ), (14)
meaning that the battery temperature will converge at
T =Ry -1y - (1) + T (15)
Combining Egs. (14) and (15) leads to
dTy(t)
T = Ty(t) + Ry - Gy - : 16
iy b(t) + Rp - Cp o (16)
t—tg
Multiplying Rb¥cb - e®v°C to both sides and taking their integration, we get:
/ 1wt _ /eR;i;gb( Ty(t) dTb(t))
Ry - Cyp b Ry - Cy dt
t—ty t—ty
eRvCp TbSt’1 +C = /(eRb'Cb - Tp(2))
__t-p
TP+ Coe % = Ty(b). (17)

where C is the integration constant. Letting the initial condition be Ty (ty) = T;t’o, we have C = T;t’o - T;t’l, and
the transient solution is

t—ty
t,0 t,1 RO t,1
T(t) =(T,"° = T,"") - e R + T;0" (18)

Thus, the battery temperature equilibrates as an exponential decay process and Observation 2 follows.
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