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ABSTRACT
Reliable operation of mobile devices, such as smartphones and
tablets, has become essential for a great many users around the
globe. Mobile devices, however, have been reported to suffer from
frequent, unexpected shutoffs — e.g., shutting off even when their
batteries were shown to have up to 60% remaining state-of-charge
(SoC) — especially in cold environments. Their main cause is found
to be the inability of commodity mobile devices to account for
the strong dependency between battery SoC and the environment
temperature. To remedy this problem, we design, implement, and
evaluate EA-SoC, a real-time Environment-Aware battery SoC es-
timation service for mobile devices. EA-SoC estimates the battery
SoC with a cyber-physical approach, based on (1) a thermal circuit
model in the cyber space capturing the physical interactions among
the battery discharge current, temperature, and the environment,
and (2) an empirically validated data-driven (i.e., cyber) model for
the physical relations between battery temperature and battery
resistance. We have conducted 35 experimental case-studies with
two Nexus 5X smartphones to evaluate EA-SoC. EA-SoC is shown
to report an average of 3% SoC when the phones shut off even in
a −15oC environment, while that reported by the phones’ built-in
fuel-gauge chips could be over 90%.
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• Computer systems organization → Embedded systems.
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1 INTRODUCTION
Mobile devices have become essential to a great many people, and
their reliable operation depends strongly on the timely and accurate
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Figure 1: Unexpected shutoff of Xperia Z smartphone in a
cold environment: the phone operates in a −15oC environ-
ment and shuts off even when it was shown to still has 30%
SoC, which is then turned back on and operated for about 2
more hours after warming up to room temperature.

estimation of their battery state-of-charge (SoC). Mobile users, how-
ever, have frequently complained about the unexpected shutoffs of
their devices due to inaccurate/untimely SoC estimation [4, 6, 7] —
i.e., the devices were shut off even when their remaining power was
shown to be up to 60% of full power [9], especially in a cold environ-
ment [8]. Such an unreliable SoC estimation and the thus-triggered
unexpected device shutoffs are also one of the reasons to exclude
commodity mobile devices as “safety equipment" for fieldwork in
the Arctic [2], a crucial component for many Arctic-related cyber-
physical research projects. Fig. 1 illustrates such an unexpected
shutoff of Xperia Z smartphone:1 (i) video streaming in a −15oC
environment, the phone shut off prematurely when it was shown
to have 30% state-of-charge (SoC); (ii) the phone, after shutting off,
was moved to and kept in a room-temperature environment for

1We conducted similar experiments with Nexus 5X and Nexus 6P smartphones and
made similar observations.
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Figure 2: Overview of EA-SoC: estimation of temperature-
aware SoC with a cyber-physical approach.

2 hours; (iii) the phone, without charging it, was turned back on
again and operated for about 2 more hours.

These premature shutoffs of mobile devices are due to the failure
of their fuel-gauge chips to capture the environment-dependent
battery performance, thus leading to erroneous estimation of their
real-time SoCs. Cold temperature increases the internal resistance
of batteries, thus degrading batteries’ ability to deliver both the
stored energy (i.e., the energy that can be delivered to operate the
devices) and power (i.e., the maximum discharge power the battery
can supply) [14, 16, 26, 31, 33]. When moving a mobile device from
a warm to a cold environment, the fuel-gauge chip of the device
cannot sense the change of the environment and thus cannot ac-
curately predict the battery’s end-of-discharge condition. This, in
turn, leads to the over-estimation of battery’s remaining power
supply, i.e., SoC, and thus unexpected shutoffs. Note that unex-
pected shutoffs also risk deep-discharging and accelerate battery
degradation [23, 32].

To address this problem, we design and implement EA-SoC, an
environment-aware battery SoC estimation service for mobile de-
vices that achieves accurate SoC estimation even in a cold environ-
ment. EA-SoC compensates the environment’s impact on battery
SoC with a cyber-physical approach by (i) predicting, in real time,
the battery’s end-of-discharge temperature by capturing the phys-
ical interactions among battery temperature, discharge current,
and the environment, and then (ii) estimating the end-of-discharge
battery resistance according to an empirically abstracted resistance–
temperature relationship of device batteries.

The end-of-discharge battery temperature, however, is affected
by both device operation and ambient temperature. To meet this
challenge, we analyze the thermal behavior of device batteries
with a thermal circuit model, capturing the interactions among the
battery’s discharge current, steady-state temperature, and ambient
temperature. Specifically, the steady-state analysis of the thermal
model facilitates prediction of battery temperature based on its
discharge current and ambient temperature, and its transient-state
analysis allows for estimation of ambient temperature based on
battery’s recent discharge history. Combining these results, EA-SoC
learns and updates the thermal characteristics of device battery,
and then estimates, in real time, the battery SoC with environment-
awareness. Fig. 2 gives an overview of EA-SoC.

We evaluate EA-SoC with two Nexus 5X smartphones and via
35 experimental case-studies, with [-15, 25]oC ambient tempera-
ture. The results show that EA-SoC reliably captures temperature
effect on the remaining usable capacity of batteries, thus achieving
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Figure 3: Circuit model of mobile devices: battery provides
voltage Vbat = OCV − I · rbat to device chips, which has to
be higher than a pre-defined level required by the voltage
regulator; otherwise, the device will shut off.

accurate SoC estimation even in an environment as cold as −15oC
— phones shut off when EA-SoC concludes they have only ≈3%
remaining SoC. On the other hand, such end-of-discharge SoCs
provided by the fuel-gauge chips of the phones are averaged at
≈50% for all of the 35 case-studies, indicating a ≈17x improvement
by EA-SoC in accurately predicting phones’ shutoffs.

This paper makes the following main contributions.
• Empirically capturing the battery’s resistance–temperature
relationship.

• Characterization of interactions among battery temperature,
current, and environment.

• Design of EA-SoC, an environment-aware battery SoC esti-
mation service for mobile devices.

• Evaluation of EA-SoC with 2 Nexus 5X smartphones, show-
ing EA-SoC reports ≈3% end-of-discharge battery SoC even
in a −15oC environment, while that reported by the phones’
built-in fuel-gauge chips could be over 90%.

The paper is organized as follows. The background and moti-
vation are presented in Secs. 2 and 3, respectively. Secs. 4–6 detail
the design, implementation, and evaluation of EA-SoC. The related
literature is discussed in Sec. 7, and the paper concludes in Sec. 8.

2 BATTERY STATE-OF-CHARGE
Here we introduce the necessary background on the estimation of
battery SoC.

2.1 Circuit Model of Mobile Devices
Fig. 3 illustrates the power architecture of mobile devices with a
circuit model, consisting of the battery, the individual hardware
components of the device, and a voltage regulator connecting them.
The device battery is represented as a series connection of an ideal
voltage source and its internal resistance r [1, 37]. The ideal volt-
age source provides a voltage that is commonly referred to as the
battery’s open circuit voltage (OCV), defined as the voltage between
its terminals when no loads/charger is connected. This way, the
battery supplies a voltage of

Vbat = OCV − I · r −VP (I , t) ≃ OCV − I · r (1)
to the voltage regulator, where I is the discharge current, t is time,
and VP is a polarization voltage which represents voltage transient
over time (t ) when it supplies current (I ). Note that polarization
voltage does not affect ohmic resistance and instantaneous voltage



Environment-Aware Estimation of Battery State-of-Charge

for Mobile Devices ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

Figure 4: OCV–DoD relationship of batteries: facilitates the

estimation of battery SoC based on its OCV.
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Figure 5: Resistance estimation: estimating a battery’s re-

sistance based on the voltage response when switching cur-

rents between two stable levels, i.e., r = ΔV /ΔI .

Figure 6: Battery resistance increases with reduced temper-

ature.
Figure 7: Evolution of battery temperature and resistance af-

ter putting into a −12oC environment.

drop in the mobile application. Also, high-rate measurement in a

mobile device can capture instantaneous voltage drop by limiting

the influence of voltage transient. This allows for simplifying bat-

tery equivalent circuit model without the loss of voltage estimation

accuracy. The voltage regulator then converts Vbat to a required

level to power various device modules, such as screen, CPU, etc.

The voltage regulator, however, needs an input voltage (i.e.,Vbat
in Fig. 3) no less than a pre-defined levelVshutof f ; otherwise, it will
be unable to provide the required voltage to the device, and thus

the device will shut off. According to Eq. (1), a mobile device will

shut off when its battery OCV decreases to Vshutof f +I ·r , which is

commonly referred to as the end-of-discharge OCV, i.e., OCVend .

2.2 Estimation of Battery SoC

SoC quantifies the remaining capacity of a battery, defined as the ra-

tio of battery’s remaining usable capacity to its full charge capacity,

i.e.,

SoC =
Cr emain

Cf ull
× 100%. (2)

Commodity mobile devices estimate their battery SoCs mainly

based on the OCV–DoD relationship of their batteries2. This is

because Lithium-ion batteries, the most widely used batteries for

2DoD (depth-of-discharge) describes the battery capacity that has been discharged as
a percentage of its maximum capacity. Also, many SoC estimation methods have been
proposed in the literature [15, 20, 21]. Here we mainly focus on their basic principles.

mobile devices, demonstrate a monotonic relationship between

their OCVs and DoDs as shown in Fig. 4. This relationship is tested

to be stable for batteries of the same chemistry and does not vary

much with manufacturer (e.g., < 5mV variances in OCV with given

DoD [3, 19]). We use d = D(v) to refer to the mapping from battery

OCV v to DoD d in the rest of the paper, and will elaborate on how

to obtain the OCV–DoD relationship in Fig. 4 in Sec. 5.

Based on this OCV–DoD relationship, mobile device estimates

its battery SoC by predicting its end-of-discharge OCV according

to

OCVend = Vshutof f + Iend · rend , (3)

and then estimating the battery SoC as

SoC(t) =
D(OCVend ) − D(OCV (t))

D(OCVend )
× 100%. (4)

Combination of Eqs. (1), (3), and (4) reveals the battery resistance

r (both current value and the one at the time at end-of-discharge)

is needed to estimate battery OCV. Battery resistance is measured

on mobile devices based on the principle of r = dV /dI [27, 35], as
illustrated in Fig. 5 with a battery of the Galaxy S3 phone. Switching

the discharge current from 1A to 0.5A, the battery voltage recovers

instantly from 3.61V to 3.66V, and then reduces gradually again due

to continuous discharge. This way, a current change of |1 − 0.5| =

A complete and detailed example on estimating the battery SoC for mobile devices
can be found in [35].
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Figure 8: Control flow of EA-SoC: estimating SoC with the awareness of battery’s resistance-temperature relationship and by

predicting battery’s steady-state temperature in real time; such battery characteristics are learned and updated online.

0.5A causes the battery a voltage response of |3.66 − 3.61| = 0.05V,

indicating a 0.05V /0.5A = 0.1Ω battery resistance according to

Ohm’s law. However, the two stable current levels (i.e., 1A and 0.5A
in the above example) are needed to obtain a reliable dI , which are

not always available on mobile devices due to their dynamic usage

patterns, degrading both the availability and accuracy of real-time

resistance.

Moreover, the battery’s internal resistance depends strongly on

the temperature, complicating its estimation further. To shed more

light on this, we log the battery resistance of a Nexus 5X smartphone

after putting it in a freezer and until it shuts off. These experiments

are repeated 3 times and a total number of 1, 263 pairs of battery

resistance and temperature are collected, as plotted in Fig. 12: the

battery resistance increases dramatically when its temperature

drops below 5oC.

3 UNEXPECTED DEVICE SHUTOFFS IN COLD
ENVIRONMENTS

Knowing the basics of batteries and the estimation of their SoC, we

next examine why the mobile devices tend to prematurely shut off

in cold environments.

Cold temperature slows down the chemical reactions inside the

batteries, impeding the batteries to produce the same current and

deliver the same capacity as with warmer temperature. This chemi-

cal degradation is observed physically as the increase of battery’s

internal resistance [16, 26, 33], as empirically validated in Fig. 6.

Also, such an increase of battery resistance in cold environments

occurs gradually. Fig. 7 plots the resistance and temperature of a

Nexus 5X phone’s battery after putting an idle Nexus 5X phone

into a −12oC environment: (i) the battery temperature reduces

gradually to −11.8oC , and during the same process, (ii) the bat-

tery resistance gradually increases to about 0.66Ω. This gradually
changing battery information, albeit intuitive, makes the estimation

of end-of-discharge battery condition (i.e., Eq. (3)) non-trivial. Let

us consider the scenario in which a mobile user is moving from

a warm to a cold environment. The fuel-gauge chip of the mobile

device will estimate the end-of-discharge condition of the device

battery based on its current information, i.e., a resistance measured

in a warm environment rwarm [35]. Such an estimation, however,

is clearly inaccurate because the battery resistance will increase

when it is moved to the cold environment, denoted as rcold and

rcold > rwarm . Thus, the device’s fuel-gauge chip will underesti-

mate rend in Eq. (3), leading to under-estimation of OCVend . This
will, in turn, cause over-estimation of battery SoC according to

Eq. (4), thus causing unexpected device shutoffs.

4 ENVIRONMENT-AWARE ESTIMATION OF
BATTERY SOC

To mitigate the unexpected shutoffs of mobile devices in cold envi-

ronments, we design a novel method called EA-SoC to estimate the

battery SoC for mobile devices with the awareness of environment

temperature.

4.1 EA-SoC Overview

EA-SoC estimates the battery SoC by (i) predicting the end-of-

discharge battery temperature, (ii) estimating the end-of-discharge

battery resistance based on the thus-predicted temperature, and

then (iii) estimating battery SoC based on Eqs. (3) and (4). Fig. 8

provides the flow chart of EA-SoC.

4.2 Predicting the End-of-Discharge Battery
Temperature

EA-SoC predicts the end-of-discharge battery temperature by ex-

ploiting the interplays between battery temperature and that of

the ambient environment. Note that same as with phone’s built-in

fuel-gauge chips, EA-SoC assumes the recent discharge current of

the battery will be kept stable until shutoff [35].

• Battery’s Thermal Model. Battery temperature Tbat is jointly
determined by device operation and ambient environmentTamb , as
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Figure 9: Battery’s thermal

circuit model: thermal behav-

ior of battery is characterized

as thermal resistance (Rth)
and capacitance (Cth).

Figure 10: Experimentally

validate the relationship

among I , Tbat and Tamb .

×

Figure 11: Interactions among battery current, battery tem-

perature, and ambient temperature: linearity between Tbat
and I2 is observed, andTamb contributes toTbat as an offset.

shown in Fig. 9 with a thermal circuit model. According to Fourier’s

law, a thermal circuit is analogous to an electric circuit where

voltage represents temperature (Tbat ), current source represents
heat generation (Pbat ), and thermal resistance and capacitance (Rth ,
Cth ) describes how battery dissipates heat. Since heat conserves,

heat generation from the battery must equate to the heat dissipation

through thermal capacitance and resistance:

Cth ·
dTbat (t)

dt
+
Tbat (t) −Tamb

Rth
= Pbat , (5)

where the left-hand side is heat dissipation and the right-hand side

is heat generation from the battery. Eq. (5) can be further divided

into two cases based on dTbat (t)/dt : the battery will be in a stable

thermal state when dTbat (t)/dt = 0, and in a transient thermal

state otherwise. Fig. 7 highlights the two-state thermal behavior

of batteries. EA-SoC estimates, and update in real time, the (to-

be-converged) stable-state battery temperature based on recent

battery information, and use it as the battery temperature at the

end-of-discharge to estimate the battery SoC.

• Estimating Battery Temperature via Stable-State Analy-

sis. Eq. (5) facilitates the identification of battery’s steady-state tem-

perature, i.e., the equilibrated battery temperature when
dTbat (t )

dt
=

0. Specifically, given stable device operation and ambient environ-

ment, battery’s steady-state temperature Tbat can be calculated

as

dTbat (t)

dt
= 0 ⇔

Tbat (t) −Tamb

Rth
= Pbat

⇔ Tbat = Tamb + Rth · Pbat. (6)

We can see that (i) Tbat is linear to battery’s heat dissipation Pbat ,
and (ii) the ambient temperature Tamb contributes to Tbat as an
offset.

Battery’s heat generation Pbat can be modeled by the Joule’s

law, and according to Eq. (11), we know

Pbat = I2 · rbat

= I2 · (a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat ). (7)

Substituting Eq. (7) into Eq. (6), we get

Tbat = Tamb + Rth · I2 · (a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat ), (8)

which can be used to estimate the stable-state battery temperature

based on that of the ambient environment.

Next, we empirically validate these observations with a Nexus

5X smartphone. Specifically, we use an Android app called

BatteryDrainer to regulate the phone operation and thus achiev-

ing a (relatively) stable phone operation but with a controllable

intensity. The phone, with the thus-regulated operation, is then

put in a thermal chamber to achieve controllable ambient tempera-

ture, as shown in Fig. 10. We conducted 27 such experiments with

[−13, 30]oC ambient temperature, during which the battery temper-

ature and current are logged at 1Hz. Each experiment lasts at least 1

hour which is observed to be long-enough for battery temperature

to equilibrate. Fig. 11 plots the experiment results, showing (i) clear

linearity between Tbat and I
2 (i.e., the key factor in battery’s heat

generation) and (ii) Tamb ’s contribution to Tbat as a temperature

offset, validating the analytical observations in Eq. (8). Also note

that all other parameters in Eq. (8) can be identified on mobile de-

vices in practice: Rth and <a1,b1, c1,d1,> can be identified based on
collected training samples, and I can be accessed from the devices’

fuel-gauge chips.3

• Estimating Battery Temperature via Transient-State Anal-

ysis. The ambient temperature Tamb is needed to predict Tbat
based on Eq. (8). The sensing of ambient temperature Tamb , how-

ever, is not supported by most commodity devices,4 thus requir-

ing the development of a new ambient temperature estimation

method. Fortunately, Eq. (5) also allows the transient-state analysis

of battery’s thermal behavior, which, when combined with Eq. (8),

facilitates the estimation of Tamb .

From Eq. (5), the transient-state battery temperatureTbat (t) can
be described as

Tbat (t) = (T0 − (Tamb + Rth · Pbat)) · e
−t

Rth ·Cth

+Tamb + Rth · Pbat, (9)

where T0 is battery’s initial temperature, and the thermal-time

constant, Rth ·Cth , represents the time duration required for the

battery temperature to stabilize. Note that the second term captures

3Current sensing is now pervasively supported by the fuel-gauge chips of mobile
devices, although not so a few years ago [34].
4To the best of our knowledge, only a few existing device models support ambient
temperature sensing, such as Samsung Galaxy S4 and Note 3. Samsung, however, has
removed the ambient temperature sensing from its later models.
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Figure 12: Battery’s resistance–temperature relationship:

battery resistance r (Tbat ) can be described using a 2-term

exponential model with respect to its temperature Tbat , i.e.,

r (Tbat ) = a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat .

the steady-state temperature while the first term corresponds to the

effects of initial temperature, which decays exponentially over time.

Eq. (9) implies the equilibrating process of battery temperature

conforms to an exponential process, i.e.,

Tbat (t) = a2 · e
b2 ·t + c2, (10)

for certain <a2,b2, c2>. To corroborate this exponential relation-

ship, we exponentially fit 34 empirically collected temperature equi-

librating processes, obtaining an averaged goodness-of-fit (in terms

of AdjRsquare) of >0.95 and thus showing a promising goodness

fit.

Such an exponential equilibrating process allows EA-SoC to pre-

dict the steady-state battery temperature based on its recent temper-

ature traces, if the device has operated stably for a certain amount

of time. EA-SoC determines the stable device operation based on

its recent current. Specifically, EA-SoC smoothes the recent (e.g., 10

minutes) current trace via moving average, and then applies linear

fitting on the smoothened current trace, concluding a stable device

operation if the resultant slop factor is small, e.g., ≤0.1. In case of

stable device operation, EA-SoC trains the exponential model in

Eq. (10) based on the recent 10-minute battery temperature trace,

i.e., identifying <a2,b2, c2>, and using it to predict the steady-state
battery temperature, i.e., when dTbat /dt < 1

oC/5min. The thus-
estimated steady-state battery temperature is then used to estimate

the ambient temperature according to Eq. (8). We will experimen-

tally explore the required duration of stable device operation, e.g.,

10 minutes in the above explanations, in Sec. 6.

• Estimating Ambient Temperature. Now, we have identified

two approaches to predict the battery temperature, combination

of which forms a feedback loop to estimate the ambient temper-

ature, as shown in Fig. 8: estimates the end-of-discharge battery

temperature and the ambient temperature by exploiting battery’s

transient-state behavior when the device has been operate stably

recently, and use the thus-estimated ambient temperature to predict

the end-of-discharge battery temperature otherwise.

4.3 Estimating the End-of-Discharge Battery
Resistance

EA-SoC then estimates the end-of-discharge battery resistance

based on the above predicted end-of-discharge battery temper-

ature. As shown in Fig. 6, batteries’ resistance increases with the

Algorithm 1 Pseudocode of EA-SoC.

1: initializing <a1,b1, c1,d1> and Tamb ;

2: while true do
3: estimate steady-state battery temperature according to Eq. (8)

with I and Tamb;

4: estimate end-of-discharge battery resistance according to

Eq. (11)

5: estimate end-of-discharge OCV according to Eq. (3);

6: estimate remaining usable capacity and thus SoC;

7: estimate SoC via Coulomb counting;

8: if stable operation for the past 10 minutes then

9: predict steady-state battery temperatureTbat according to
Eq. (10);

10: update Tamb according to Eq. (8);

11: end if

12: if phone is fully charged and the charger is still connected

then

13: update <a1,b1, c1,d1>;
14: end if

15: time = time + 1;
16: end while

decrease of temperature, reducing their usable capacity. This ex-

plains why commodity mobile devices operate reasonably well in

warmer environments (i.e., with relatively stable resistance), but fre-

quently suffer from unexpected shutoffs in a cold environment (i.e.,

due to increased resistance). Moreover, these empirically-collected

samples reveal a 2-term exponential relationship between battery

resistance rbat and temperature Tbat , i.e.,

rbat (Tbat ) = a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat . (11)

Fig. 12 plots the regression results when applying such 2-term

exponential fit onto the collected samples in Fig. 6, achieving a

goodness-of-fit of RMSE<0.03 and AdjRsquare>0.998.
Inspired by such a resistance–temperature relationship, EA-SoC

identifies <a1,b1, c1,d1> in Eq. (11) based on empirically collected

samples of <rbat , Tbat>, and then estimates the end-of-discharge

battery resistance based on the previously predicted the end-of-

discharge battery temperature. Four pairs of different <rbat ,Tbat>
are needed to determine <a1,b1, c1,d1>. To enhance reliability and
reduce fluctuation, EA-SoC determines <a1,b1, c1,d1> based on

the most recent n (n ≥ 4) different pairs of <r ,Tbat> — calculat-

ing <a1,b1, c1,d1> based on each of C4
n possible combinations of

logged samples, and describing the resistance–temperature relation-

ship with the averaged <a1,b1, c1,d1>. Also, EA-SoC only updates

<a1,b1, c1,d1> when the device is fully charged and the charger is

kept connected, which (i) offers reliable conditions to estimate bat-

tery resistance [17] and (ii) does not incur any additional overhead

in battery energy consumption due to the connected charger and

thus the existence of external power supply.

Note that we implicitly assume a uniform temperature distribu-

tion across the battery, i.e., describing battery temperature with a

single value Tbat . This assumption is reasonable as most mobile

devices use single-cell batteries which are of much smaller form
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Figure 13: Current trace of a Galaxy S5 phone with 5, 000Hz

sampling rate: based on which the impact of current sam-

pling rate on fuel-gauging accuracy is investigated.

Figure 14: Effects of current sampling rate: 1/10Hz sampling

rate can achieve over 99% fuel-gauging accuracy.

Figure 15: Using the battery testing system to identify bat-

tery’s OCV–SoC relationship

Figure 16: Empirically identified OCV–SoC relationship of

Nexus 5X battery

factors than large multi-cell battery packs, e.g., those for EVs, al-

though Lithium-ion batteries are known to have complex thermal

behaviors due to their non-uniform temperature distributions and

non-linear chemical reactions. Such a simplification is also widely

used in practice — to the best of our knowledge, all commodity

mobile devices use a single thermal sensor to monitor their battery

temperature, and thus represent their battery temperature with a

single temperature reading.

4.4 Estimating Battery SoC with Temperature
Awareness

At last, EA-SoC estimates the end-of-discharge battery OCV based

on the predicted rend according to Eq. (3), and then further esti-

mates the battery SoC based on Eqs. (1) and (4).

4.5 EA-SoC Summary

Alg. 1 summarizes EA-SoC in the form of pseudocode. EA-SoC esti-

mates the steady-state battery temperature based on the discharge

current and ambient temperature (i.e., Eq. (8) and line 3), which is

then used to predict the end-of-discharge battery resistance accord-

ing to Eq. (11) (line 4). This way, the end-of-discharge OCV can be

calculated as in Eq. (3) (line 5). EA-SoC then estimates battery SoC

based on the OCV–DoD relationship as in Eq. (4) (line 6). EA-SoC
updates the knowledge of (i) ambient temperature Tamb when the

device has been working reliably for, e.g., 10 minutes (line 9-10),

and (ii) the resistance-temperature model after the device has been

fully charged and the charger is still connected (line 13).

5 IMPLEMENTATION

Given below are a few details of EA-SoC’s implementation.

5.1 Logging of Battery Information

EA-SoC monitors and logs real-time information on battery

current and temperature, based on which the device’s SoC is

estimated with environment-awareness. This battery informa-

tion can be obtained from the devices’ fuel-gauge chips, e.g.,

the system files of current_now and temp under directory

/sys/class/power_supply/battery/ for Nexus 5X and Nexus

6P. The real-time logging of such information, however, incurs

energy consumption to the device. So, EA-SoC is desired to collect

battery information at a low frequency while ensuring sufficient

SoC estimation accuracy. Note that the fuel-gauge chips of mobile

devices easily support up to 1Hz (or higher, depending on specific

device models) sampling rates of battery information, which, for

example, can be adjusted on the Android platform by configuring

the fuel-gauge driver at drivers/power/qpnp-fg.c.
We empirically identify such proper sampling rates on battery

temperature and current. First, we examine the frequency for bat-

tery temperature to change based on 34 temperature equilibrating

processes, which are originally collected at 1Hz sampling frequency.

This way, we find that the battery temperature changes every 8.9s,
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Figure 17: Predicting future battery temperature based on

its exponential equilibrating process: <2oC prediction error

when training with 18-minute temperature trace.

on average, based on a total of 17, 212 samples. Second, the current

information is needed to quantify the device’s energy consump-

tion. To identify the necessary current sampling rate for accurate

fuel gauging, we collected a 12-minute current trace from a Galaxy

S5 phone with the Monsoon power monitor running at 5kHz, as

shown in Fig. 13, during which 114mAh capacity is discharged.

Using this trace, we calculate the total energy consumption when

emulating different current sampling rates of 1Hz, 1/10Hz, 1/30Hz,

and 1/60Hz, achieving the discharged capacity of 115mAh, 113mAh,

109mAh, and 98mAh, respectively — a 1/10Hz sampling rate is able

to achieve over 99% fuel-gauge accuracy, as shown in Fig. 14. Com-

bining the above empirical observations, EA-SoCmonitors and logs

battery temperature and current once every 8s.

5.2 Identifying the OCV–DoD Relationship

EA-SoC needs the OCV–DoD relationship of device battery to esti-

mate its DoD, which is collected via offline training. Given a specific

model of mobile device, e.g., Nexus 5X, we use the battery tester as

in Fig. 15 to discharge its battery with 200mA current and log the

process at 1Hz, collecting traces on the relationship between the

battery terminal voltage and its DoD. We then perform resistance

compensation on the thus-collected traces based on Eq. (1) to derive

its OCV–DoD table. The small current of 200mA is to reduce the

I · rbat voltage and thus improve the accuracy of the derived OCD–

DoD table. Fig. 16 shows the thus-collected OCV–DoD relationship

of a Nexus 5X battery. The OCV–DoD relationship shown in Fig. 4

is collected similarly.

6 EXPERIMENTS

We have evaluated EA-SoC extensively with two Nexus 5X smart-

phones.

6.1 Accuracy in Predicting Battery
Temperature

We first validate the reliability of predicting battery temperature

based on its exponential equilibrating process, i.e., Eq. (10). Specif-

ically, we collected 42 temperature equilibrating processes of a

Nexus 5X phone’s battery, while keeping the phone in stable op-

eration conditions. These traces last for [18, 190] minutes and the

battery temperature varies in the range of [−9.5, 43]oC. We then

Figure 18: Needed training duration: a 10-minute training

trace is able to achieve <1oC prediction error.

Figure 19: Temperature-compensated SoC estimation:

EA-SoC provides more reliable SoC information to users

than existing estimations provided on Nexus 5X smart-

phone.

use the first x minutes of these traces to train the exponential equi-

librating model in Eq. (10), and then use the thus-trained models

to predict the battery temperature at the end of their respective

traces.

Fig. 17 summarizes the prediction errors when the first 18-minute

portion of each trace is used for training, showing within ±2oC

errors for all the 42 traces and an average error of 0.366oC. To

further examine how long a stable operation is needed to train a

reliable model, Fig. 18 plots the average prediction error for the 42
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Figure 20: Environment-aware SoC estimation with 35 case-studies: EA-SoC achieves (i) much more reliable SoC esti-

mation in a cold environment, and (ii) comparable results in a warmer environment, compared to the existing SoC

estimation on Nexus 5X smartphone.

traces when training with the first x-minute traces, together with

their 5- and 95-percentiles — higher prediction accuracy could be

achieved by training with longer traces, while a 10-minute training

trace is enough to achieve less than 1
oC prediction error. Note that

for each case, only the traces with a duration longer than x-minutes

are used for validation.

6.2 Accuracy of SoC Estimation

We next validate EA-SoC’s accuracy in estimating battery SoC with

35 case-studies. The thus-estimated environment-aware SoCs are

then compared with those provided by the phones, further validat-

ing EA-SoC’s reliability in predicting phones’ shutoffs. Specifically,

in each of these case-studies, the phones are used for either Youtub-

ing, or playing an offline video, or kept idle but with screen on,

until it shuts off. The experiments start with a [37, 100]% phone

battery SoC, and are conducted in a [−15, 28]oC environment. The

real-time SoCs estimated by EA-SoC, together with those provided

by the phone’s fuel-gauge chips, are logged. Note that a closer-to-0

end-of-discharge SoC indicates higher reliability in predicting the

phone’s shutoffs.

Fig. 19 plots the battery voltage, current, temperature, and esti-

mated SoC during one of such case-studies. Specifically, the fully-

charged phone is put into a −13oC environment, and operates

without human interactions until it shuts off, at which time its

fuel-gauge chip provides an SoC estimation of about 67% — i.e., the

phone shuts off unexpectedly. This case-study finishes with a 3.66V

end-of-discharge battery voltage, which is much higher than the

usual level, e.g., [3.2, 3.4]V [18], owing to the increased battery re-

sistance at a low temperature. On the other hand, EA-SoC captures

the decreased battery temperature in real time, and compensates

the SoC estimation accordingly — the phone shuts off when EA-SoC
concludes its battery only has a 3.8% SoC, showing EA-SoC’s ability
to predict the phone’s shutoff accurately.

Fig. 20 summarizes the end-of-discharge SoCs collected in all

the 35 case-studies, together with, and sorted according to, their

end-of-discharge battery temperature. The phones shut off with

high and random phone-provided SoCs when their batteries’ end-

of-discharge temperature is low — they are high because the low
temperature and thus increased battery resistance, and they are

random because the phones operate with different currents. By cap-

turing the battery’s resistance–temperature dependency, EA-SoC is

able to predict the phones’ shutoffs much more accurately, achiev-

ing a 3% averaged end-of-discharge SoC for the 28 case-studies with

end-of-discharge battery temperature lower than 1oC. Also, EA-SoC
performs well in a warmer environment and achieves similar end-

of-discharge SoCs as the phones’ fuel-gauge chips, as observed in

the 29th–35th case-studies.

7 RELATEDWORK

Many SoC estimation methods have been proposed in the lit-

erature [15, 20, 21], including the OCV-based methods [22, 25],

Coulomb counting [24], neural network methods [12], and various

Kalman filter-based methods [10, 13, 36]. For example, He et al. [19]

proposed a model to eliminate the effects of current drift in the cur-

rent sensor, improving Coulomb counting accuracy. A method to

improve re-initialization of Coulomb counting is developed in [30].

A multi-cell battery pack SoC estimation considering cell imbalance

is proposed in [38]. Trinh [29] explored ways to validate the SoC

estimation accuracy. An empirical study of comparison of various

SoC estimation methods can be found in [11].

Of these existing SoC estimation methods, combining the OCV-

based method and Coulomb counting to estimate real-time bat-

tery SoC is the most widely used for commodity mobile devices,

thanks to its simplicity and reasonably good accuracy. Examples of

such deployment include TI’s Impedance Track [35] and Maxim’s

MAX17047/17050 fuel-gauge chips [5], to name a few. However,

the dependency between battery performance and temperature is

still not covered well forcommodity mobile devices, causing them

to shut off unexpectedly in a cold environment [8].

To address such deficiency, we have proposed EA-SoC, an
environment-aware SoC estimation service for mobile devices,

achieving accurate SoC estimation even in cold environments. To
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the best of our knowledge, the closest to EA-SoC is [28], which also
considers battery temperature in its SoC estimation. The method
proposed therein, however, requires various fundamental battery
properties such as solid phase diffusion coefficient and electrolyte
diffusion coefficient, which are not available on mobile devices due
to the limited hardware support.

8 CONCLUSIONS
In this paper, we have designed, implemented, and validated EA-SoC,
an environment-aware battery SoC estimation service for mobile
devices. EA-SoC captures the resistance–temperature relationship
of device batteries with an empirically established regression model,
and estimates battery SoCs based on the thermal interactions among
battery’s discharge current, steady-state temperature, and ambi-
ent temperature. Such interactions are uncovered by a thermal
circuit model of the battery and validated experimentally. We have
evaluated EA-SoC with two Nexus 5X smartphones, achieving ≈3%
end-of-discharge SoC even in a −15oC environment and improving
reliability in predicting device shutoffs by 17x.
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