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Abstract: An analytical and numerical investigation of shear wave behavior in nearly-incompressible,
soft, materials with two fiber families was performed, focusing on the effects of material parameters
and imposed pre-deformations on wave speed. This theoretical study is motivated by the emerging
ability to image shear waves in soft biological tissues by magnetic resonance elastography (MRE). In
MRE, the relationships between wave behavior and mechanical properties can be used to
characterize tissue properties non-invasively. We demonstrate these principles in two material
models, each with two fiber families. One model is a nearly-incompressible linear elastic model that
exhibits both shear and tensile anisotropy; the other is a two-fiber-family version of the widely-used
Holzapfel-Gasser-Ogden (HGO) model, which is nonlinear. Shear waves can be used to probe
nonlinear material behavior using infinitesimal dynamic deformations superimposed on larger, quasi-
static “pre-deformations.” In this study, closed-form expressions for shear wave speeds in the HGO
model are obtained in terms of the model parameters and imposed pre-deformations. Analytical
expressions for wave speeds are confirmed by finite element simulations of shear waves with various
polarizations and propagation directions. These studies support the feasibility of estimating the

parameters of an HGO material model noninvasively from measured shear wave speeds.
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I. INTRODUCTION

Magnetic resonance elastography (MRE) is an emerging technique to measure non-invasively the
mechanical properties of soft tissue, such as muscle "7, liver *°, and brain ®’. In MRE, shear waves
are generated by small-amplitude external vibrations; the speeds of these waves as they propagate
through a region of tissue are determined by its mechanical properties **'’. However, MRE
measurements usually involve only small strains from a single experiment, so mechanical properties
from MRE are typically limited to linearized, isotropic models of material behavior. Thus, waves
must be superimposed on an additional finite deformation in order to study material nonlinearity,
and more sophisticated mathematical models are required to explain anisotropic and nonlinear

behavior.

11,12 13,14

Many biological soft tissues, such as blood vessels , cardiac muscle >, and white matter in
brain, are structurally anisotropic, composed of one or more families of fibers, each with a dominant
direction. The Holzapfel-Gasser-Ogden (HGO) model is a material model that explicitly represents
the contributions of fibers to the mechanical response of soft materials under large deformations.
The HGO model is straightforward to implement and has been widely used to model fibrous soft
tissues > '% In previous work ', we investigated the relationships between shear wave speeds and
material parameters in an HGO model with a single fiber family, which is an example of a nonlinear,
transversely isotropic material. However, many biological materials contain two or more fiber

1218192021 'Tn this study we extend our approach to a relatively simple two-fiber-family linear,

families
elastic, orthotropic material as well as to a two-fiber-family HGO model.
Complex biological materials are often tested in ex z7vo to determine their mechanical properties.

However, there are many advantages to being able to characterize such materials in their intact,

living condition. The aim of the current paper is to elucidate the relationships between shear wave
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speeds and parameters of nonlinear, anisotropic materials with two fiber families, in order ultimately

to extend the ability of MRE to characterize these materials 7z vivo.

I1. THEORY
A. Shear wave speeds in elastic materials
Speeds of plane waves in a uniform, linear elastic material are obtained from the eigenvalues of

the acoustic tensor Q **:

pc’m=Q(n)-m (1)

where pc? is the eigenvalue of the acoustic tensor @, p is the density of material, ¢ is the wave
speed, M is the propagation direction of the wave, and m, the eigenvector of the acoustic tensor, is
the polarization direction vector of the plane wave. The acoustic tensor Q corresponding to a
specific propagation direction, M, is calculated from Eq. (2) *** below,:

Q=n-4-n (2)

Here A is a fourth-order elasticity tensor which describes the relationship of the incremental
stress tensot, @, and the incremental strain tensor, &, specifically: & = A+ & In Cartesian coordinates
this relationship can be written in indicial notation, Gp; = Ap;q;j€q;- For nonlinear models with

constitutive behavior defined by the strain energy density function,W (F), the components of the

elasticity tensor can be obtained from the relationship:

22w
E

A panﬁ aFiaaFjB

(3)

piqj =

where F is the deformation gradient tensor (which accounts for the effects of pre-deformation

*22). For finite strain, A is a function of the deformation state defined by F, therefore A and Q can
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describe small-amplitude wave motion superimposed on a larger initial deformation, which we will
refer to as “pre-deformation.”

Since the acoustic tensor, @, depends on N, the wave speeds also depend on n. In general
anisotropic materials there are three distinct eigenvalues (wave speeds) and three corresponding
eigenvectors (polarization directions), which means there may be three plane waves that propagate in
the same direction. However, material symmetries and constraints can reduce the number of
possible distinct wave speeds.

In an isotropic linear elastic material with shear modulus, ¢ and bulk modulus, K, the acoustic

tensor is the same for all propagation directions, and only two wave speeds exist: one longitudinal
e . . : 4
and one transverse (shear). Longitudinal waves in isotropic materials have speed ¢ = (K + ?'u) /p

* and polarization parallel to the propagation direction (I = n); shear waves have c? =pu/pand
polarization direction m L M. In an isotropic, incompressible linear elastic material, the bulk
modulus and longitudinal wave speed become infinite, and only one material parameter, i, and one
finite (shear) wave speed remains to be determined.

In anisotropic materials, three distinct wave speeds and three corresponding polatization vectors
are obtained from the eigenvalue problem in Eq. (1). In transversely isotropic and orthotropic
materials, the three plane wave modes are typically known as “pure shear” (or “slow”), “quasi-shear”
(or “fast”), and “quasi-longitudinal” waves *.

B. Orthotropic Material Models

1. Linear elastic orthotropic materials

In a linear elastic material, the generalized Hooke’s law,

0ij = Aijki€ri » (4)
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describes the relationship between the infinitesimal strain tensor €j; and the stress tensor 0;. A
general fourth-order tensor has 81 components, but in the elasticity tensor this number is reduced to
21 by general symmetry constraints.

Using Voigt notation *, a 6 X 6 symmetric compliance mattix , S, and corresponding stiffness
matrix, C = $~1, compactly capture the stress-strain relationships in the elasticity tensor. For an
orthotropic material, these matrices can be written in terms of nine constants (three Young’s moduli

bl

three shear moduli and three Poisson’s ratios).

1 _Ya Va9 0 0 ]
E, E E
%12 1 i V332 0 0 0 [(C11 €12 €3 0 0 07
T E, F. E. Ciz €2 C3 O 0 0
% b ’ €13 Cz3 C33 O 0 0
S=| Vi V23 1 0 0 0 C=
E, E, E. 1 0 0 0 0 0 ¢4 O 0
El E2 E3 O O O 0 c 0
0 0 0 2G 1 0 55
0 0 0 o 2. 1 L0 0 0 0 0 Cel
31
L0 0 o 0 0 2G|

If the material is incompressible, there are three additional constraints relating the components
of the elasticity tensor, and the compliance and stiffness matrices. In this case, the Poisson’s ratios

can be expressed as

1 1 1 1

vijzin<E+Ej—E—k> (k#i+j,i,j=123) (5)

Thus, the number of independent constants is reduced to six in the general, incompressible,
orthotropic case.

2. Model 1: Linear elastic, nearly-incompressible, orthotropic material model

We can illustrate wave behavior in fiber-reinforced materials using a linear, elastic, orthotropic

material model derived from a strain energy density function, W = Wig, + Wyniso + Wyor. The
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volumetric component of the strain energy function can be described in terms of bulk modulus, K,

and the volume ratio, | = det F:

K
5 U -1 (6)

Wyor = 2

The isochoric (volume-conserving) component contains contributions from an isotropic term,

L -3), 7)

Wiso = 2

and an anisotropic component due to fiber stretch and shear in the plane containing fibers.

Waniso = %[{A(I_AL — D? 4+ nals + 3T — 1) + 015 + ap (I, — DU — 1)] (8)

Here I is the modified first invariant defined by I; = J ~2/31,,(J = detF), where I, is the first

invariant (trace) of the Cauchy-Green strain tensor C. The modified pseudo-invariants are I, =

- 4 -_—
J7231,, whete I, = a4 - Cay; Ii = 7315, where If = Is — I, andls = a, - C?ay; Iy = J7%/31,,

_ 4
where Ig = ag - Cag; and I} = J 7315 where I; = I, — IZ, and I, = ag - C*ag (a4 and ag are the

initial fiber directions). The pseudo-invariants I, and I¢ (invariant under rotations about @4 and ag
respectively) are the squared stretch ratios in the corresponding fiber directions, and I5 and I7
represent the squared shear strains in planes parallel to those directions.

The linear, orthotropic material model was derived by using Eq. (3) with F = I, to obtain the
elasticity tensor in terms of the parameters 4, {4, (g, Cap, N4, and Np. In this model, the
parameters {4 and {p describe additional strain energy due to tensile stiffness contributed by the two
fiber families, and {4p quantifies additional strain energy due to interactions between the fiber
families. The parameters 174 and 7z describe additional strain energy due to shear in the planes

containing the fibers. Thus non-zero {4, {5, {4p, model tensile anisotropy, and non-zero 1,4, and
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np model shear anisotropy. If these parameters all were to vanish, the material model would become
1sotropic.

3. Model 2: Nonlinear model: the two-fiber-family HGO model

The HGO model, which is widely used in soft biological tissues, is described in detail in *
reference™. The HGO model represents a hyperelastic material reinforced by families of fibers, each
with a dominant direction and distribution parameter. For multiple fiber-family models, each
additional fiber family can be modeled by adding contributions from Iy; = @; - C - @g; to the strain

energy, as follows:

K _
W = Wiso + Waniso + Wyor, where Wy, = E(] - 1)2, Wiso = %(11 - 3)
k, , o i} _
Wanisoncon = ) o= |exp (kBi*) = 1]; Ei=wel + (1 =300 = 1, forLi>1. (9)
i 2

where k; and Kk, respectively describes the initial slope and the nonlinearity of strain-stress
curve, K is the fiber angle dispersion parameter, varying from k = 0 (all fibers within a fiber family
petfectly aligned in a single otientation) to k = 1/3 (no preferred orientation).

The linear orthotropic model is a minimal, linear elastic model that can describe materials in
which fibers contribute both shear and tensile anisotropy in the reference configuration, but which
is not designed to describe behavior under large deformations. In contrast, in the HGO material
model, fiber reinforcement does not affect slow shear wave behavior in the undeformed
configuration. However, the HGO model is well suited for describing behavior under large
deformations. As a result, it is one of the most widely used models of fibrous soft tissues. We wish
to study both models, because both small and large deformations are important in biomechanics,

and can possibly be interrogated by shear waves.
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C. Computational domain and boundary conditions

We consider the case in which the two fiber families are mechanically equivalent. In this case for
the linear elastic model, there are only four “intrinsic” material parameters (properties of the matrix
and fibers:, {4 = {g = (o, {ag = (1, Na = Ng = Ng ). For the HGO model with two
mechanically equivalent fiber families, the number of intrinsic parameters is also four: y, k4, k, k. In
both models, a fifth independent parameter which affects the mechanical response is the fiber
angle, ¢, defined in this paper to be the angle between each fiber direction and their bisecting axis
(half the angle between fiber axes).

Finite element simulations were performed using COMSOL Multiphysics (v 5.4, COMSOL Inc.,
Burlington, MA) for both the linear elastic and HGO models, to confirm analytical predictions and
illustrate the effects of material parameters and pre-deformation on shear wave behavior. The
geometry of the computational domain is a cube (50%50X50 mm’) depicted in Figure 1. The default
parameters for the linear elastic model, unless otherwise noted, are as follows: initial isotropic shear
modulus, g = 1 kPa; tensile anisotropy o = 2; shear anisotropy 1y = 2; interaction factor {; =
0; The default parameters for the HGO model, unless otherwise noted, are as follows: pre-
deformation yx; = 0.2; initial isotropic shear modulus, g = 1 kPa; initial anisotropy ratio,
ki/uo = 2; nonlinearity parameter, k, = 5; fiber dispersion parameter, k = 1/12; and ratio of bulk

modulus to initial shear modulus, K /g = 10* (the effect of assumed bulk modulus on shear wave

speeds for 10* < ™ < 10° was investigated in a subset of simulations and found to be negligible).
0

The density p = 1000 kg/m’ in both cases. Default parameters for both models are summarized in

Table I.
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Table I. Default parameters of linear elastic model and HGO model in numerical simulation.

Linear elastic model HGO model
Ho(kPa) to(kPa) 1
do ky/uo 2
Mo k, 5
¢1 K 1/12
K/uo 10*
p(kg/m3) 1000
f(Hz) 200

The HGO model is implemented in COMSOL by defining a hyperelastic material model with
properties specified by a user-defined strain energy density function. The isochoric and volumetric
components of the strain energy density function in Eq. (9) are entered separately.

Local frequency estimation (LFE) " was used to estimate wavelength in simulated displacement
tields. LFE, which is based on the successive application of a bank of spatial filters, provides an
estimated wave speed within each “voxel” in a central region of interest. The mean value and
standard deviation of voxel-wise estimates are reported for each simulation *>*. In this study, the
LFE parameters were pg = 1/L (L.=50 mm) for the central spatial frequency of the first filter and

Nf = 11 for the number of filters.
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(a)?

Figure 1. Geometry of computational domain. Green dashed lines represent harmonic excitation in
two perpendicular directions (X- and Y-) on the top surface. Red arrows show the propagation
direction parallel to the Z-axis. Blue and orange solid lines show dominant directions of two fiber
families, where the fiber angle ¢y = /4 in this example. (a) Undeformed geometry. (b) Simple
shear in the XZ-plane. (c) Compression in the X-direction, which also causes stretch in the Y- and

Z - directions.

III. RESULTS: SHEAR WAVE SPEEDS IN LINEAR ELASTIC AND HGO TWO-

FIBER MODELS
A. Model 1: Incompressible, orthotropic, linear elastic material model
1. Compliance matrix in terms of model parameters
The compliance matrix, S, can be expressed compactly as a “normal compliance” matrix (R) and

“shear compliance” matrix (T). In the limit of incompressibility (infinite bulk modulus) we obtain:

A —-(A+B)  —(4-B)
uz 2uz 2uz
R O —(A+B) A+2B+C A-C
S = [0 T],where R = 20z Y 0z and
—(A-B) A-C A-2B+C
2uz 4uz a4uz

10
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1

0 0

T= 2u(142n0 cos? 2¢o+(24o—J1) Sin? 2¢ho) 1 0
- 0 2u(1+2n¢ cos? ¢g) 1 ’
0 0 2u(1+21m0 sin? ¢)

where A = 1 4 2no sin? 2¢, + (24, + {;) cos? 2¢o, B = %(2(0 + {1)cos2¢y(1 +

2 cos? 2¢), and C = 3 + 2{; + {y, where Z = AC — B2,

Elements of the compliance matrix are compared to the classical elastic parameters (Young’s

moduli, shear moduli, and Poisson’s ratios) in Table II.

Table II. Comparison of classical elastic parameters to elements of compliance matrix in

orthotropic, linear elastic model.

Parameter | Element Parameter Element Parameter Element
uz A+ B 2(A+B)
E; — V12 Ea— V21 R R ——
A 24 A+ 2B+ C
4uz A-—B 2(A—-B)
E, —] V13 B V31 R ———
A+2B+C 24 A—2B+C
4uz —(A-0) —(A-0)
E; — 5 A V23 R R —— V32 —_—
A—-2B+C A+2B+C A—2B+C
Parameter Element of compliance matrix
Ga3 u(1 + 2ng cos? 2¢g + (24y — §;) sin? 2¢p,)
G3q (1 + 2no cos? )
G2 1(1 + 2ng sin® ¢)

For the special case where ¢pg = 0 (two fiber families are parallel, Figure 2a), the compliance

matrix is identical to that of an incompressible transversely isotropic (ITI) model, in which

11



1+280+{1 —(1+44p+231) -1

uI3+4(260+¢0]  2u[3+4(200+3)]  2p[3+4(280+¢1)] —tr 0 0
| —(a+480+28y) 1420+ -1 4T = 2u(1+2n,) 1 0
184 T |2uB+4@30+D]  u3+4(50+D]  2ul3+4%+7p] | AT T 0  2u(i+2no) 1|
-1 -1 1 0 0 2u
2u[3+4(280+¢1)]  2ul3+4(200+31)]  m[3+4(240+¢1)]
185 In this special case, there is no effect of tensile anisotropy in the shear compliance matrix (T),

186  and no effect of shear anisotropy in the normal compliance matrix (R).
187 When ¢pg = m/4 (when the two fibers are perpendicular, Figure 2b), the compliance matrix

188  describes another type of transversely isotropic material,

|' 1+27’)0 —(1+27]0) —(1+2170)
r(1+2n9)(B3+200+41)  2p(1+42n0)(3+23p+{1)  2u(1+21m9)(3+20+{1)
189 R = —(1+2n0) 4+210+24p+3; 2m9—2—-2{o—{1 d
T |2u(+200)B+280+0)  ap(1+2n0)(B+200+¢1)  4p(1+2n0)(3+280+30) |
—(1+270) 219—2-2p—{; 44+210+209+{4 J
2u(1+2n0)(3+2¢o+{1)  4u(1+2n9)(3+20o+{1)  4u(1+2n0)(3+2o+{1)
_r 0 0
_ |2r1+280-¢0) 1 0
190 T= 0 a4y 1
0 0 2p(1+7m0)
191 In this case, both R and T contain all the model parameters.
ag
192

193  Figure 2. Two special (transversely isotropic) cases of the linear, orthotropic model defined by fiber

194  axes (ay, ap): (a) Fiber axes are parallel (¢pg = 0°); (b) Fiber axes are perpendicular (¢ = 1/4).

12
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2. Shear wave behavior in the incompressible, linear elastic orthotropic model

In the incompressible limit (as K — 00) the longitudinal wave speed becomes infinite, and two
shear wave modes can be separated into “slow” (pure shear) and “fast” (quasi-shear) shear waves
with perpendicular polarization directions. The slow and fast polarization directions can be
calculated from the propagation direction 1 and the “symmetry axis”, @, which is normal to the
plane spanned by the two fiber directions. For propagation in the Z —direction (n = %K) , the

acoustic tensor @ below is expressed in terms of model parameters in this situation (two fibers

aligned on YZ plane):
ul1 + 21, cos? ¢y 0 0
Q= 0 U1 + 2ng cos? 2¢o + (20, — 1) sin? 2¢p] 0| (10)
0 0 o0

where ¢y is the angle between two fibers and Z-axis. In the absence of boundary effects,
harmonic excitation in the slow polarization direction Mg generates only slow shear waves, and
excitation in the fast polatization direction My only generates fast shear waves. Figure 3 illustrates
the slow and fast polarization directions in an orthotropic material.

In the undeformed configuration, the slow shear wave speed increases with ¢ and 1 but is not
affected by {g. In contrast, the fast shear wave speed increases with y and (g, but is not sensitive to
No. For the specific case in which the shear waves propagate in the Z-direction, relatively simple

expressions for shear wave speeds can be found in terms of material parameters:

cortho = % J1+ 21, cos? ¢, (11)

cgrtho = % V1 + 219 cos? 2¢ + (200 — {1) sin? 2¢ (12)

13
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Figure 3. Wave propagation with two polarization directions in the two-fiber-family, linear elastic,
orthotropic material. @4 and @pg are the fiber axes. (a) A pure shear (“slow”) wave is induced by
harmonic shear displacement in the slow polarization direction, M. (b) A quasi-shear (“fast”) wave

atises from harmonic shear displacement in the fast polarization direction, my.

These analytical predictions are illustrated in Figure 4 along with corresponding estimates from
FE simulation. For other propagation directions, more complicated expressions can be calculated
from the general relationships between the acoustic tensor, its eigenvalues (wave speeds), and the
mechanical parameters of the undeformed baseline model. We emphasize that these results apply to
material that is incompressible or nearly-incompressible. In Figure 4(h), the fast shear wave speed is
independent of the fiber angle because this particular example depicts the special case in which shear
anisotropy and tensile anisotropy parameters are equal (o = (). In Figure 5, the general effects of

shear and tensile anisotropy are illustrated using two different combinations of 1, {j.

14
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Figure 4. Relationships between pure shear (“slow”) and quasi-shear (““ fast”) shear wave speeds
and parameters (U, 1o, (o , Po) of the linear elastic, orthotropic material model. (a-d) Relationships
between “slow” shear wave speeds and model parameters (i, 1o, (o, Po). (e-h) Relationships

between “fast” shear wave speeds and model parameters. Blue bars denote mean =+ standard

deviations of voxelwise estimates of wave speed from LFE of simulation; orange curves show

analytical results. Default parameters are g = 1000 Pg, #i =1,n9=2,{y = 2, and ¢y = /4.
0
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Figure 5. Relationships between slow and fast shear wave speeds and fiber angle ¢ in the linear
elastic orthotropic model for combinations of unequal anisotropy parameters. (a, ¢) Slow and fast
shear wave speeds vs fiber angle for tensile anisotropy greater than shear anisotropy (g = 1,{y =
2) (b, d) Slow and fast shear wave speeds and fiber angle for shear anisotropy greater than tensile
anisotropy (g = 2,{y = 1). Blue bars denote mean % standard deviations of voxelwise estimates

of wave speed from LFE of simulation; orange curves show analytical results. Default parameters:

Default parameters are g = 1000 Pg, ui =1.
0

B. Model 2: comparison between simulation and theory in the HGO model

1. Elements of the linearized compliance matrix in terms of HGO model parameters

The HGO model can also be linearized about the reference configuration to obtain elements of
an orthotropic stiffness matrix expressed as functions of HGO model parameters (Table I1I). In this
linearization, the fibers are assumed to resist an infinitesimal amount of axial compression (as

though they are under an infinitesimal amount of pre-stretch). In the original HGO model, fibers

16
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cannot resist compressive axial loading; this is a strong nonlinearity that we avoid here, for

simplicity.

Table III. Comparison of classical elastic parameters to elements of compliance matrix in the HGO

model

Parameter Element Parameter Element Parameter Element
Uz A+ B 2(A+B)
E; — V12 — V21 (—
A 24 A+ 2B+ C
4uz A—B 2(A—B
E, —_— Vi3 s V31 ¥
A+2B+C 24 A—2B+C
4uz —-(A-0) —(A-0)
E; — V23 D EE— V32 e ——
A—-2B+C A+ 2B + ( A—2B+C
Parameter Element of compliance matrix
2 ki . 2
Gy3 U (1 +2(1 - 3k) Fsm 2(;[)0)
G31 Iz
G1z u

where A =1+ 2(1 — 3K)2%cosz 2¢0, B=2(1— 3K)2%6052¢0(1 + 2 cos? 2¢,)
C = 3+2(1—3K)2%,andZ=AC—BZ.

2. Shear wave behavior in the HGO model — reference configuration
As in the undeformed model, for waves propagating in the Z-direction, the closed-form

expressions for fast and slow shear wave speed in the linearized HGO model (under no pre-

deformation) can be summarized as

17
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cioo — & (13)

k
c;-IGO = % \/1 + 2(1 - SK)Z IlSl.le 2¢0 . (14)

Analytical expressions and simulations were used to illustrate the effects of the HGO parameters
(Figure 6). In the undeformed case, slow shear wave speeds only varied with the initial shear
modulus f, fast shear wave speeds increased with g and k4, but decreased with k. Estimates of wave
speeds in simulations agree well with the analytical predictions. In the HGO model, fast shear wave
speeds exhibit a marked sinusoidal relationship with fiber angle (Figure 6h), but slow shear wave
speeds are insensitive to fiber orientation (Figure 6d). This insensitivity is because in the HGO

model in the reference configuration fibers add stiffness in tension but not in shear.

18
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Figure 6. Relationships between slow and fast shear wave speeds and parameters (i, kq, k, g ) of
the HGO model in its undeformed configuration (A = 1). (a-d) Relationships between “slow” sheatr
wave speeds and parameters (U4, kq, K, Pg) of the HGO model.(e-h) Relationships between “fast”
shear wave speeds and model parameters. Blue bars denote mean + standard deviations of
voxelwise estimates of wave speed from LFE of simulation; orange curves show analytical results.

u
0

Default parameters: 4y = 1000 Pz, = 1, ki/puo =2, k =1/12, k, =5,yxz = 0.

3. Shear wave behavior in the HGO model — deformed configuration

Simulated displacement fields due to slow and fast shear waves after different pre-deformations
are applied are shown in Figure 7. Fibers are aligned with the YZ-plane. The entire domain is
deformed by compression in X-direction and simple shear in XZ-plane, leading to changes in the

shear wave speeds.

19
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Figure 7. HGO model. Displacement fields due to slow and fast shear waves superimposed on two
types of pre-deformation. Black dashed lines represent harmonic excitation in the specified direction
on the top surface, a, and ag are fiber axes. (a,c) Fast and slow small-amplitude shear waves
superimposed on finite compression in the X-direction (1 — A4 = 0.2). (b,d) Fast and slow small-

amplitude shear waves superimposed on finite pure shear deformation in XZ-plane (yxz = 0.2).

The effects of imposed compression in the X —direction, (stretch ratio A), imposed shear in the
XZ —plane (shear yxz), and fiber angle, ¢, on shear wave speeds in the HGO model are quantified
in Figure 8. In the deformed configurations, both slow and fast shear wave speeds increase with

increasing compression, 4, and shear, yx.
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Figure 8. HGO model. (a, ¢) Relationships between slow/fast shear wave speeds and compressive
stretch ratio 4, for waves superimposed on finite compression in the X-direction (and accompanying
stretch in Y- and Z-directions). (b, d) Relationships between slow and fast shear wave speeds and
shear deformation, Yy, for waves superimposed on finite shear in the XZ-plane. Blue bars denote

mean =+ standard deviations of voxelwise wave speed estimates from LFE of simulation; orange

curves show analytical results. Default parameters: gy = 1000 Pa, #i =1, ki/up =2, k =1/12,
0

k2 = 5, l = 1’YXZ = O,and d)o =T[/4‘

IV.  DISCUSSION

Shear wave behavior was investigated analytically and numerically in two models of fibrous, soft
materials: an orthotropic, linear elastic model, and the HGO two-fiber-family model. Analytical
predictions of the effects of mechanical parameters on shear wave speeds were confirmed by
simulation. Analytical and numerical predictions of shear wave speeds after pre-deformations (pure

shear, compression), also agree well and illustrate the effects of nonlinearity on wave behavior.
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In each model, the strain-stress relationship can be captured by four intrinsic material
parameters (properties of the matrix and fiber components), along with the corresponding fiber
orientation ¢q. For materials with the same matrix and fiber properties, the wave propagation
direction relative to fiber orientation is important in determining wave speed. For example, in the
special cases considered in this paper, propagation is in the Z-direction and fibers are in the YZ-
plane. In the linear elastic model, as the fiber angle ¢ (which is also the angle between propagation
direction and fiber direction) increases from 0 to 90 degrees, the slow shear wave speed decreases
monotonically (Figures 4-5). In the linear elastic model, the effect on fast shear wave speed of the
fiber angle varies according to the relative magnitude of shear and tensile anisotropy (Figures 4-5).
In the HGO model, in the undeformed configuration slow shear waves are not affected by the fiber
angle, but fast shear wave speeds exhibit a nearly sinusoidal variation with fiber angle (Figure 6),
maximal at ¢y = 1 /4.

In the HGO model, which is explicitly nonlinear, finite pre-deformation (such as imposed shear
deformation or compression) also affects wave speeds (Figure 7 and Figure 8). There are two points
which distinguish the linear elastic model and the nonlinear HGO model: (1) The HGO model does
not capture the effect of fibers on slow shear wave speed in the reference configuration (the linear
orthotropic model is better suited for that purpose); (2) the HGO model does capture the behavior
of waves superimposed on large deformations in which effect of fiber stretch is important. The
examples in Figures 7-8 demonstrate the effects of finite deformations on wave speed.

Model parameters of both the linear elastic model and the HGO model in the reference
configuration were related to the parameters of the classical, linear, elastic, orthotropic model
(Young’s moduli and Poisson’s ratios). In its undeformed, reference configuration, the HGO model
describes an orthotropic material. We note that in the reference configuration the HGO model does

not exhibit shear anisotropy, which may be important in some fibrous tissues such as
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muscle”” .Once it is deformed, the linearized HGO material model is no longer guaranteed to be
orthotropic; the material symmetries must be determined for each specific deformed configuration.
The inverse problem (estimation of parameters from shear wave behavior, as in MRE) remains a
focus of future research. Compared to estimating a single shear modulus in traditional (isotropic)
MRE, adding additional parameters will inevitably increase the difficulty of the estimation problem.
Most importantly, measurements of waves with different polarization and propagation directions
will be necessary to estimate multiple material parameters. The use of different excitation techniques,

such as focused ultrasound can enrich the set of shear wave data available for parameter estimation

30

V. CONCLUSION

Analytical solutions were obtained for shear wave speeds in models of soft, incompressible
materials with two families of reinforcing fibers, and validated by comparison to numerical
simulation. These analytical solutions relate shear wave speeds to the mechanical properties of the
materials, and clarify the influence of pre-deformation (compression, shear) and fiber orientation.
Improved understanding of shear wave behavior in soft, anisotropic materials will advance the
prospects for non-invasive characterization of fibrous soft tissue by MRE.
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