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Abstract: An analytical and numerical investigation of shear wave behavior in nearly-incompressible, 

soft, materials with two fiber families was performed, focusing on the effects of material parameters 

and imposed pre-deformations on wave speed. This theoretical study is motivated by the emerging 

ability to image shear waves in soft biological tissues by magnetic resonance elastography (MRE). In 

MRE, the relationships between wave behavior and mechanical properties can be used to 

characterize tissue properties non-invasively. We demonstrate these principles in two material 

models, each with two fiber families. One model is a nearly-incompressible linear elastic model that 

exhibits both shear and tensile anisotropy; the other is a two-fiber-family version of the widely-used 

Holzapfel-Gasser-Ogden (HGO) model, which is nonlinear. Shear waves can be used to probe 

nonlinear material behavior using infinitesimal dynamic deformations superimposed on larger, quasi-

static “pre-deformations.” In this study, closed-form expressions for shear wave speeds in the HGO 

model are obtained in terms of the model parameters and imposed pre-deformations. Analytical 

expressions for wave speeds are confirmed by finite element simulations of shear waves with various 

polarizations and propagation directions. These studies support the feasibility of estimating the 

parameters of an HGO material model noninvasively from measured shear wave speeds.  
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I. INTRODUCTION 1 

Magnetic resonance elastography (MRE) is an emerging technique to measure non-invasively the 2 

mechanical properties of soft tissue, such as muscle 1, 2, 3, liver 4, 5, and brain 6, 7. In MRE, shear waves 3 

are generated by small-amplitude external vibrations; the speeds of these waves as they propagate 4 

through a region of tissue are determined by its mechanical properties 8,9,10. However, MRE 5 

measurements usually involve only small strains from a single experiment, so mechanical properties 6 

from MRE are typically limited to linearized, isotropic models of material behavior. Thus, waves 7 

must be superimposed on an additional finite deformation in order to study material nonlinearity, 8 

and more sophisticated mathematical models are required to explain anisotropic and nonlinear 9 

behavior. 10 

Many biological soft tissues, such as blood vessels 11, 12, cardiac muscle 13,14, and white matter in 11 

brain, are structurally anisotropic, composed of one or more families of fibers, each with a dominant 12 

direction. The Holzapfel-Gasser-Ogden (HGO) model is a material model that explicitly represents 13 

the contributions of fibers to the mechanical response of soft materials under large deformations. 14 

The HGO model is straightforward to implement and has been widely used to model fibrous soft 15 

tissues 15, 16. In previous work 17, we investigated the relationships between shear wave speeds and 16 

material parameters in an HGO model with a single fiber family, which is an example of a nonlinear, 17 

transversely isotropic material. However, many biological materials contain two or more fiber 18 

families 12,18,19,20,21. In this study we extend our approach to a relatively simple two-fiber-family linear, 19 

elastic, orthotropic material as well as to a two-fiber-family HGO model. 20 

Complex biological materials are often tested in ex vivo to determine their mechanical properties. 21 

However, there are many advantages to being able to characterize such materials in their intact, 22 

living condition.  The aim of the current paper is to elucidate the relationships between shear wave 23 
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speeds and parameters of nonlinear, anisotropic materials with two fiber families, in order ultimately 24 

to extend the ability of MRE to characterize these materials in vivo. 25 

II. THEORY 26 

A. Shear wave speeds in elastic materials  27 

Speeds of plane waves in a uniform, linear elastic material are obtained from the eigenvalues of 28 

the acoustic tensor 𝑸 22,23: 29 

𝜌𝑐2𝒎 = 𝑸(𝒏) ∙ 𝒎 (𝟏) 30 

where 𝜌𝑐2 is the eigenvalue of the acoustic tensor 𝑸, 𝜌 is the density of material, 𝑐 is the wave 31 

speed, 𝒏 is the propagation direction of the wave, and 𝒎, the eigenvector of the acoustic tensor, is 32 

the polarization direction vector of the plane wave. The acoustic tensor 𝑸  corresponding to a 33 

specific propagation direction, 𝒏, is calculated from Eq. (2) 22,23 below,: 34 

𝑸 = 𝒏 ∙ 𝑨 ∙ 𝒏 (𝟐) 35 

Here 𝑨 is a fourth-order elasticity tensor which describes the relationship of the incremental 36 

stress tensor, 𝝈̃, and the incremental strain tensor, 𝜺̃, specifically: 𝝈̃ = 𝑨 ∙ 𝜺̃  In Cartesian coordinates 37 

this relationship can be written in indicial notation, 𝜎̃𝑝𝑖 = 𝐴𝑝𝑖𝑞𝑗𝜀𝑞̃𝑗. For nonlinear models with 38 

constitutive behavior defined by the strain energy density function,𝑊(𝑭), the components of the 39 

elasticity tensor can be obtained from the relationship:    40 

𝐴𝑝𝑖𝑞𝑗 = 𝐹𝑝𝛼𝐹𝑞𝛽
𝜕2𝑾

𝜕𝐹𝑖𝛼𝜕𝐹𝑗𝛽
(𝟑)  41 

where 𝑭 is the deformation gradient tensor (which accounts for the effects of pre-deformation 42 

22,23). For finite strain, 𝑨 is a function of the deformation state defined by 𝑭, therefore 𝑨 and 𝑸 can 43 
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describe small-amplitude wave motion superimposed on a larger initial deformation, which we will 44 

refer to as “pre-deformation.” 45 

Since the acoustic tensor, 𝑸, depends on 𝒏, the wave speeds also depend on 𝒏. In general 46 

anisotropic materials there are three distinct eigenvalues (wave speeds) and three corresponding 47 

eigenvectors (polarization directions), which means there may be three plane waves that propagate in 48 

the same direction.   However, material symmetries and constraints can reduce the number of 49 

possible distinct wave speeds.  50 

In an isotropic linear elastic material with shear modulus, 𝜇 and bulk modulus, 𝛫, the acoustic 51 

tensor is the same for all propagation directions, and only two wave speeds exist: one longitudinal 52 

and one transverse (shear). Longitudinal waves in isotropic materials have speed 𝑐2 = (𝛫 +
4𝜇

3
)/𝜌 53 

24, and polarization parallel to the propagation direction (𝒎 = 𝒏); shear waves have 𝑐2 = 𝜇/𝜌 and 54 

polarization direction 𝒎 ⊥ 𝒏. In an isotropic, incompressible linear elastic material, the bulk 55 

modulus and longitudinal wave speed become infinite, and only one material parameter, 𝜇, and one 56 

finite (shear) wave speed remains to be determined.  57 

In anisotropic materials, three distinct wave speeds and three corresponding polarization vectors 58 

are obtained from the eigenvalue problem in Eq. (1). In transversely isotropic and orthotropic 59 

materials, the three plane wave modes are typically known as “pure shear” (or “slow”), “quasi-shear” 60 

(or “fast”), and “quasi-longitudinal” waves 25. 61 

B. Orthotropic Material Models 62 

1.  Linear elastic orthotropic materials 63 

In a linear elastic material, the generalized Hooke’s law, 64 

𝜎𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝜖𝑘𝑙 , (4) 65 
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describes the relationship between the infinitesimal strain tensor 𝜖𝑘𝑙 and the stress tensor 𝜎𝑖𝑗 . A 66 

general fourth-order tensor has 81 components, but in the elasticity tensor this number is reduced to 67 

21 by general symmetry constraints. 68 

Using Voigt notation 25, a 6 × 6 symmetric compliance matrix , 𝑺, and corresponding stiffness 69 

matrix, 𝑪 = 𝑺−𝟏, compactly capture the stress-strain relationships in the elasticity tensor. For an 70 

orthotropic material, these matrices can be written in terms of nine constants (three Young’s moduli, 71 

three shear moduli and three Poisson’s ratios). 72 

𝑺 =

[
 
 
 
 
 
 
 
 

1

𝐸1

−
𝜈12

𝐸1

−
𝜈13

𝐸1

0
0
0

     

−
𝜈21

𝐸2

1

𝐸2

−
𝜈23

𝐸2

0
0
0

     

−
𝜈31

𝐸3

−
𝜈32

𝐸3

1

𝐸3

0
0
0

   

0

0

0
1

2𝐺23

0
0

  

0

0

0
0
1

2𝐺31

0

  

0

0

0
0
0
1

2𝐺12
 
]
 
 
 
 
 
 
 
 

     𝑪 =

[
 
 
 
 
 
𝑐11

𝑐12

𝑐13

0
0
0

     

𝑐12

𝑐22

𝑐23

0
0
0

     

𝑐13

𝑐23

𝑐33

0
0
0

     

0
0
0

𝑐44

0
0

    

0
0
0
0

𝑐55

0

    

0
0
0
0
0

𝑐66]
 
 
 
 
 

 73 

If the material is incompressible, there are three additional constraints relating the components 74 

of the elasticity tensor, and the compliance and stiffness matrices. In this case, the Poisson’s ratios 75 

can be expressed as 76 

𝜈𝑖𝑗 =
1

2
𝐸𝑖 (

1

𝐸𝑖
+

1

𝐸𝑗
−

1

𝐸𝑘
)   (𝑘 ≠ 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3) (5)  77 

Thus, the number of independent constants is reduced to six in the general, incompressible, 78 

orthotropic case. 79 

2. Model 1: Linear elastic, nearly-incompressible, orthotropic material model 80 

We can illustrate wave behavior in fiber-reinforced materials using a linear, elastic, orthotropic 81 

material model derived from a strain energy density function, 𝑊 = 𝑊𝑖𝑠𝑜 + 𝑊𝑎𝑛𝑖𝑠𝑜 + 𝑊𝑣𝑜𝑙. The 82 
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volumetric component of the strain energy function can be described in terms of bulk modulus, K, 83 

and the volume ratio, 𝐽 = det  𝑭: 84 

𝑊𝑣𝑜𝑙 =
𝐾

2
(𝐽 − 1)2. (6) 85 

The isochoric (volume-conserving) component contains contributions from an isotropic term, 86 

𝑊𝑖𝑠𝑜 =
𝜇

2
(𝐼1̅ − 3), (7)  87 

and an anisotropic component due to fiber stretch and shear in the plane containing fibers.   88 

𝑊𝑎𝑛𝑖𝑠𝑜 =
𝜇

2
[𝜁𝐴(𝐼4̅ − 1)2 + 𝜂𝐴𝐼5̅

∗ + 𝜁𝐵(𝐼6̅ − 1)2 + 𝜂𝐵𝐼7̅
∗ + 𝜁𝐴𝐵(𝐼4̅ − 1)(𝐼6̅ − 1)] (8) 89 

Here 𝐼1̅ is the modified first invariant defined by 𝐼1̅ = 𝐽−2 3⁄ 𝐼1, (𝐽 = det 𝑭), where 𝐼1 is the first 90 

invariant (trace) of the Cauchy-Green strain tensor 𝑪. The modified pseudo-invariants are 𝐼4̅ =91 

𝐽−2 3⁄ 𝐼4, where 𝐼4 = 𝒂𝑨 ⋅ 𝑪𝒂𝑨;   𝐼5̅
∗ = 𝐽−

4

3𝐼5
∗, where 𝐼5

∗ = 𝐼5 − 𝐼4
2,  and𝐼5 = 𝒂𝑨 ∙ 𝑪2𝒂𝑨;  𝐼6̅ = 𝐽−2 3⁄ 𝐼6, 92 

where 𝐼6 = 𝒂𝑩 ⋅ 𝑪𝒂𝑩; and 𝐼7̅
∗ = 𝐽−

4

3𝐼7
∗, where 𝐼7

∗ = 𝐼7 − 𝐼6
2,  and 𝐼7 = 𝒂𝑩 ∙ 𝑪𝟐𝒂𝑩 (𝒂𝑨 and 𝒂𝑩 are the 93 

initial fiber directions). The pseudo-invariants 𝐼4 and 𝐼6 (invariant under rotations about 𝒂𝑨 and 𝒂𝑩 94 

respectively) are the squared stretch ratios in the corresponding fiber directions, and 𝐼5
∗ and 𝐼7

∗ 95 

represent the squared shear strains in planes parallel to those directions. 96 

The linear, orthotropic material model was derived by using Eq. (3) with 𝑭 = 𝑰, to obtain the 97 

elasticity tensor in terms of the parameters 𝜇, 𝜁𝐴, 𝜁𝐵, 𝜁𝐴𝐵 ,  𝜂𝐴, and 𝜂𝐵 . In this model, the 98 

parameters 𝜁𝐴 and 𝜁𝐵 describe additional strain energy due to tensile stiffness contributed by the two 99 

fiber families, and 𝜁𝐴𝐵 quantifies additional strain energy due to interactions between the fiber 100 

families. The parameters 𝜂𝐴 and 𝜂𝐵 describe additional strain energy due to shear in the planes 101 

containing the fibers. Thus non-zero 𝜁𝐴, 𝜁𝐵, 𝜁𝐴𝐵 , model tensile anisotropy, and non-zero 𝜂𝐴, and 102 
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𝜂𝐵 model shear anisotropy. If these parameters all were to vanish, the material model would become 103 

isotropic. 104 

3.  Model 2: Nonlinear model: the two-fiber-family HGO model 105 

The HGO model, which is widely used in soft biological tissues, is described in detail in v 106 

reference26. The HGO model represents a hyperelastic material reinforced by families of fibers, each 107 

with a dominant direction and distribution parameter. For multiple fiber-family models, each 108 

additional fiber family can be modeled by adding contributions from 𝐼4𝑖 = 𝒂0𝑖 ⋅ 𝑪 ⋅ 𝒂0𝑖 to the strain 109 

energy, as follows:       110 

𝑊 = 𝑊𝑖𝑠𝑜 + 𝑊𝑎𝑛𝑖𝑠𝑜 + 𝑊𝑣𝑜𝑙,                 where  𝑊𝑣𝑜𝑙 =
𝐾

2
(𝐽 − 1)2,                𝑊𝑖𝑠𝑜 =

𝜇

2
(𝐼1̅ − 3) 111 

𝑊𝑎𝑛𝑖𝑠𝑜 𝐻𝐺𝑂𝑁 = ∑
𝑘1

2𝑘2
[𝑒𝑥𝑝 (𝑘2𝐸̅𝑖

2
) − 1]

𝑖
;     𝐸̅𝑖 = 𝜅𝐼1̅ + (1 − 3𝜅)𝐼4̅𝑖 − 1,   𝑓𝑜𝑟 𝐼4̅𝑖 > 1. (9) 112 

where k1 and k2 respectively describes the initial slope and the nonlinearity of strain-stress 113 

curve, 𝜅 is the fiber angle dispersion parameter, varying from 𝜅 = 0 (all fibers within a fiber family 114 

perfectly aligned in a single orientation) to 𝜅 = 1/3 (no preferred orientation). 115 

The linear orthotropic model is a minimal, linear elastic model that can describe materials in 116 

which fibers contribute both shear and tensile anisotropy in the reference configuration, but which 117 

is not designed to describe behavior under large deformations. In contrast, in the HGO material 118 

model, fiber reinforcement does not affect slow shear wave behavior in the undeformed 119 

configuration. However, the HGO model is well suited for describing behavior under large 120 

deformations. As a result, it is one of the most widely used models of fibrous soft tissues. We wish 121 

to study both models, because both small and large deformations are important in biomechanics, 122 

and can possibly be interrogated by shear waves. 123 

 124 
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C.  Computational domain and boundary conditions 125 

We consider the case in which the two fiber families are mechanically equivalent. In this case for 126 

the linear elastic model, there are only four “intrinsic” material parameters (properties of the matrix 127 

and fibers:𝜇, 𝜁𝐴 = 𝜁𝐵 = 𝜁0,  𝜁𝐴𝐵 = 𝜁1,  𝜂𝐴 = 𝜂𝐵 = 𝜂0 ). For the HGO model with two 128 

mechanically equivalent fiber families, the number of intrinsic parameters is also four: 𝜇, 𝑘1, 𝑘2, 𝜅. In 129 

both models, a fifth independent parameter which affects the mechanical response is the fiber 130 

angle, 𝜙0, defined in this paper to be the angle between each fiber direction and their bisecting axis 131 

(half the angle between fiber axes).  132 

Finite element simulations were performed using COMSOL Multiphysics (v 5.4, COMSOL Inc., 133 

Burlington, MA)  for both the linear elastic and HGO models, to confirm analytical predictions and 134 

illustrate the effects of material parameters and pre-deformation on shear wave behavior. The 135 

geometry of the computational domain is a cube (50×50×50 mm3) depicted in Figure 1. The default 136 

parameters for the linear elastic model, unless otherwise noted, are as follows: initial isotropic shear 137 

modulus, 𝜇0 = 1 kPa; tensile anisotropy 𝜁0 = 2;  shear anisotropy 𝜂0 = 2; interaction factor 𝜁1 =138 

0; The default parameters for the HGO model, unless otherwise noted, are as follows: pre-139 

deformation 𝛾𝑋𝑍 = 0.2; initial isotropic shear modulus, 𝜇0 = 1 kPa; initial anisotropy ratio, 140 

𝑘1/𝜇0 = 2; nonlinearity parameter, 𝑘2 = 5; fiber dispersion parameter, 𝜅 = 1/12; and ratio of bulk 141 

modulus to initial shear modulus, 𝐾/𝜇0 = 104 (the effect of assumed bulk modulus on shear wave 142 

speeds for 104 <
𝐾

𝜇0
< 106 was investigated in a subset of simulations and found to be negligible). 143 

The density 𝜌 = 1000 kg/m3 in both cases. Default parameters for both models are summarized in 144 

Table I. 145 

 146 

 147 
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Table I. Default parameters of linear elastic model and HGO model in numerical simulation. 148 

Linear elastic model HGO model 

𝜇0(𝑘𝑃𝑎) 1 𝜇0(𝑘𝑃𝑎) 1 

𝜁0 2 𝑘1/𝜇0 2 

𝜂0 2 𝑘2 5 

𝜁1 0 𝜅 1/12 

𝐾/𝜇0 104 

𝜌(𝑘𝑔/𝑚3) 1000 

𝑓(𝐻𝑧) 200 

 149 

The HGO model is implemented in COMSOL by defining a hyperelastic material model with 150 

properties specified by a user-defined strain energy density function. The isochoric and volumetric 151 

components of the strain energy density function in Eq. (9) are entered separately. 152 

Local frequency estimation (LFE) 27 was used to estimate wavelength in simulated displacement 153 

fields. LFE, which is based on the successive application of a bank of spatial filters, provides an 154 

estimated wave speed within each “voxel” in a central region of interest. The mean value and 155 

standard deviation of voxel-wise estimates are reported for each simulation 27, 28. In this study, the 156 

LFE parameters were 𝜌0 = 1/𝐿 (L=50 mm) for the central spatial frequency of the first filter and 157 

𝑁𝑓 = 11 for the number of filters. 158 
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 159 

Figure 1. Geometry of computational domain. Green dashed lines represent harmonic excitation in 160 

two perpendicular directions (𝑋- and 𝑌-) on the top surface. Red arrows show the propagation 161 

direction parallel to the Z-axis. Blue and orange solid lines show dominant directions of two fiber 162 

families, where the fiber angle 𝜙0 = π/4 in this example. (a) Undeformed geometry. (b) Simple 163 

shear in the 𝑋𝑍-plane. (c) Compression in the 𝑋-direction, which also causes stretch in the 𝑌- and 164 

𝑍- directions. 165 

III. RESULTS: SHEAR WAVE SPEEDS IN LINEAR ELASTIC AND HGO TWO-166 

FIBER MODELS 167 

A. Model 1: Incompressible, orthotropic, linear elastic material model  168 

1.  Compliance matrix in terms of model parameters 169 

The compliance matrix, 𝑺, can be expressed compactly as a “normal compliance” matrix (𝑹) and 170 

“shear compliance” matrix (𝑻). In the limit of incompressibility (infinite bulk modulus) we obtain: 171 

𝑺 = [
𝑹 𝟎
𝟎 𝑻

], where    𝑹 =

[
 
 
 
 

𝐴

𝜇𝑍

−(𝐴+𝐵)

2𝜇𝑍

−(𝐴−𝐵)

2𝜇𝑍

     

−(𝐴+𝐵)

2𝜇𝑍

𝐴+2𝐵+𝐶

4𝜇𝑍

𝐴−𝐶

4𝜇𝑍

     

−(𝐴−𝐵)

2𝜇𝑍

𝐴−𝐶

4𝜇𝑍

𝐴−2𝐵+𝐶

4𝜇𝑍 ]
 
 
 
 

  and 172 
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T= [

1

2𝜇(1+2𝜂0 𝑐𝑜𝑠2 2𝜙0+(2𝜁0−𝜁1) 𝑠𝑖𝑛2 2𝜙0)

0
0

  

0
1

2𝜇(1+2𝜂0 𝑐𝑜𝑠2 𝜙0)

0

  

0
0
1

2𝜇(1+2𝜂0 𝑠𝑖𝑛2 𝜙0)

], 173 

where 𝐴 = 1 + 2𝜂0 𝑠𝑖𝑛2 2𝜙0 + (2𝜁0 + 𝜁1) 𝑐𝑜𝑠2 2𝜙0,  𝐵 =
1

3
(2𝜁0 + 𝜁1)𝑐𝑜𝑠2𝜙0(1 +174 

2 cos2 2𝜙0), and 𝐶 = 3 + 2𝜁0 + 𝜁1, where 𝑍 = 𝐴𝐶 − 𝐵2.  175 

Elements of the compliance matrix are compared to the classical elastic parameters (Young’s 176 

moduli, shear moduli, and Poisson’s ratios) in Table II. 177 

 178 

Table II. Comparison of classical elastic parameters to elements of compliance matrix in 179 

orthotropic, linear elastic model.  180 

Parameter Element Parameter Element Parameter Element 

𝐸1 
𝜇𝑍

𝐴
 𝜈12 

𝐴 + 𝐵

2𝐴
 𝜈21 

2(𝐴 + 𝐵)

𝐴 + 2𝐵 + 𝐶
 

𝐸2 
4𝜇𝑍

𝐴 + 2𝐵 + 𝐶
 𝜈13 

𝐴 − 𝐵

2𝐴
 𝜈31 

2(𝐴 − 𝐵)

𝐴 − 2𝐵 + 𝐶
 

𝐸3 
4𝜇𝑍

𝐴 − 2𝐵 + 𝐶
 𝜈23 

−(𝐴 − 𝐶)

𝐴 + 2𝐵 + 𝐶
 𝜈32 

−(𝐴 − 𝐶)

𝐴 − 2𝐵 + 𝐶
 

Parameter Element of compliance matrix 

𝐺23 𝜇(1 + 2𝜂0 cos2 2𝜙0 + (2𝜁0 − 𝜁1) sin2 2𝜙0) 

𝐺31 𝜇(1 + 2𝜂0 cos2 𝜙0) 

𝐺12 𝜇(1 + 2𝜂0 sin2 𝜙0) 

  181 

For the special case where 𝜙0 = 0 (two fiber families are parallel, Figure 2a), the compliance 182 

matrix is identical to that of an incompressible transversely isotropic (ITI) model, in which 183 
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𝑹 =

[
 
 
 
 

1+2𝜁0+𝜁1

𝜇[3+4(2𝜁0+𝜁1)]

−(1+4𝜁0+2𝜁1)

2𝜇[3+4(2𝜁0+𝜁1)]

−1

2𝜇[3+4(2𝜁0+𝜁1)]

     

−(1+4𝜁0+2𝜁1)

2𝜇[3+4(2𝜁0+𝜁1)]

1+2𝜁0+𝜁1

𝜇[3+4(2𝜁0+𝜁1)]

−1

2𝜇[3+4(2𝜁0+𝜁1)]

     

−1

2𝜇[3+4(2𝜁0+𝜁1)]

−1

2𝜇[3+4(2𝜁0+𝜁1)]

1

𝜇[3+4(2𝜁0+𝜁1)] ]
 
 
 
 

  and 𝑻 = [

1

2𝜇(1+2𝜂0)

0
0

  

0
1

2𝜇(1+2𝜂0)

0

  

0
0
1

2𝜇

]. 184 

In this special case, there is no effect of tensile anisotropy in the shear compliance matrix (𝑻), 185 

and no effect of shear anisotropy in the normal compliance matrix (𝑹). 186 

When 𝜙0 = 𝜋/4 (when the two fibers are perpendicular, Figure 2b), the compliance matrix 187 

describes another type of transversely isotropic material, 188 

𝑹 =

[
 
 
 
 

1+2𝜂0

𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

−(1+2𝜂0)

2𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

−(1+2𝜂0)

2𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

     

−(1+2𝜂0)

2𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

4+2𝜂0+2𝜁0+𝜁1

4𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

2𝜂0−2−2𝜁0−𝜁1

4𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

     

−(1+2𝜂0)

2𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

2𝜂0−2−2𝜁0−𝜁1

4𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) 

4+2𝜂0+2𝜁0+𝜁1

4𝜇(1+2𝜂0)(3+2𝜁0+𝜁1) ]
 
 
 
 

 and 189 

𝑻 = [

1

2𝜇(1+2𝜁0−𝜁1)

0
0

  

0
1

2𝜇(1+𝜂0)

0

  

0
0
1

2𝜇(1+𝜂0)

]. 190 

In this case, both 𝑹 and 𝑻 contain all the model parameters. 191 

 192 

Figure 2. Two special (transversely isotropic) cases of the linear, orthotropic model defined by fiber 193 

axes (𝒂𝑨, 𝒂𝑩): (a) Fiber axes are parallel (𝜙0 = 0°); (b) Fiber axes are perpendicular (𝜙0 = π/4). 194 
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2. Shear wave behavior in the incompressible, linear elastic orthotropic model 195 

In the incompressible limit (as 𝐾 → ∞) the longitudinal wave speed becomes infinite, and two 196 

shear wave modes can be separated into “slow” (pure shear) and “fast” (quasi-shear) shear waves 197 

with perpendicular polarization directions. The slow and fast polarization directions can be 198 

calculated from the propagation direction 𝒏 and the “symmetry axis”, 𝒂, which is normal to the 199 

plane spanned by the two fiber directions. For propagation in the 𝑍 −direction (𝒏 = ±𝒌) , the 200 

acoustic tensor 𝑸 below is expressed in terms of model parameters in this situation (two fibers 201 

aligned on YZ plane):  202 

𝑸 = [
𝜇[1 + 2𝜂0 cos2 𝜙0] 0 0

0 𝜇[1 + 2𝜂0 cos2 2𝜙0 + (2𝜁0 − 𝜁1) sin2 2𝜙0]  0
0 0 ∞

] (10) 203 

where 𝜙0 is the angle between two fibers and Z-axis. In the absence of boundary effects, 204 

harmonic excitation in the slow polarization direction 𝒎𝒔 generates only slow shear waves, and 205 

excitation in the fast polarization direction 𝒎𝒇 only generates fast shear waves. Figure 3 illustrates 206 

the slow and fast polarization directions in an orthotropic material.   207 

In the undeformed configuration, the slow shear wave speed increases with 𝜇 and 𝜂0 but is not 208 

affected by 𝜁0. In contrast, the fast shear wave speed increases with 𝜇 and 𝜁0, but is not sensitive to 209 

𝜂0. For the specific case in which the shear waves propagate in the 𝑍-direction, relatively simple 210 

expressions for shear wave speeds can be found in terms of material parameters: 211 

𝑐𝑠
𝑜𝑟𝑡ℎ𝑜 = (√

𝜇

𝜌
)√1 + 2𝜂0 𝑐𝑜𝑠2 𝜙0 (11) 212 

𝑐𝑓
𝑜𝑟𝑡ℎ𝑜 = (√

𝜇

𝜌
)√1 + 2𝜂0 𝑐𝑜𝑠2 2𝜙0 + (2𝜁0 − 𝜁1) 𝑠𝑖𝑛2 2𝜙0 (12) 213 
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 214 

Figure 3. Wave propagation with two polarization directions in the two-fiber-family, linear elastic, 215 

orthotropic material. 𝒂𝑨 and 𝒂𝑩 are the fiber axes. (a) A pure shear (“slow”) wave is induced by 216 

harmonic shear displacement in the slow polarization direction, 𝒎𝒔. (b) A quasi-shear (“fast”) wave 217 

arises from harmonic shear displacement in the fast polarization direction, 𝒎𝒇. 218 

These analytical predictions are illustrated in Figure 4 along with corresponding estimates from 219 

FE simulation. For other propagation directions, more complicated expressions can be calculated 220 

from the general relationships between the acoustic tensor, its eigenvalues (wave speeds), and the 221 

mechanical parameters of the undeformed baseline model. We emphasize that these results apply to 222 

material that is incompressible or nearly-incompressible. In Figure 4(h), the fast shear wave speed is 223 

independent of the fiber angle because this particular example depicts the special case in which shear 224 

anisotropy and tensile anisotropy parameters are equal (𝜂0 = 𝜁0). In Figure 5, the general effects of 225 

shear and tensile anisotropy are illustrated using two different combinations of 𝜂0, 𝜁0. 226 
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 227 

Figure 4. Relationships between pure shear (“slow”) and quasi-shear (“ fast”) shear wave speeds 228 

and parameters (𝜇, 𝜂0, 𝜁0,, 𝜙0) of the linear elastic, orthotropic material model. (a-d) Relationships 229 

between “slow” shear wave speeds and model parameters (𝜇, 𝜂0, 𝜁0,, 𝜙0). (e-h) Relationships 230 

between “fast” shear wave speeds and model parameters. Blue bars denote mean ± standard 231 

deviations of voxelwise estimates of wave speed from LFE of simulation; orange curves show 232 

analytical results. Default parameters are 𝜇0 = 1000 Pa, 
𝜇

𝜇0
= 1, 𝜂0 = 2, 𝜁0 = 2,  and 𝜙0 = 𝜋/4. 233 

  234 
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 235 

Figure 5. Relationships between slow and fast shear wave speeds and fiber angle 𝜙0 in the linear 236 

elastic orthotropic model for combinations of unequal anisotropy parameters. (a, c) Slow and fast 237 

shear wave speeds vs fiber angle for tensile anisotropy greater than shear anisotropy (𝜂0 = 1, 𝜁0 =238 

2) (b, d) Slow and fast shear wave speeds and fiber angle for shear anisotropy greater than tensile 239 

anisotropy (𝜂0 = 2, 𝜁0 = 1). Blue bars denote mean ± standard deviations of voxelwise estimates 240 

of wave speed from LFE of simulation; orange curves show analytical results. Default parameters: 241 

Default parameters are 𝜇0 = 1000 Pa, 
𝜇

𝜇0
= 1. 242 

B. Model 2: comparison between simulation and theory in the HGO model 243 

1. Elements of the linearized compliance matrix in terms of HGO model parameters 244 

The HGO model can also be linearized about the reference configuration to obtain elements of 245 

an orthotropic stiffness matrix expressed as functions of HGO model parameters (Table III). In this 246 

linearization, the fibers are assumed to resist an infinitesimal amount of axial compression (as 247 

though they are under an infinitesimal amount of pre-stretch). In the original HGO model, fibers 248 



 17 

cannot resist compressive axial loading; this is a strong nonlinearity that we avoid here, for 249 

simplicity. 250 

 251 

Table III. Comparison of classical elastic parameters to elements of compliance matrix in the HGO 252 

model 253 

Parameter Element Parameter Element Parameter Element 

𝐸1 
𝜇𝑍

𝐴
 𝜈12 

𝐴 + 𝐵

2𝐴
 𝜈21 

2(𝐴 + 𝐵)

𝐴 + 2𝐵 + 𝐶
 

𝐸2 
4𝜇𝑍

𝐴 + 2𝐵 + 𝐶
 𝜈13 

𝐴 − 𝐵

2𝐴
 𝜈31 

2(𝐴 − 𝐵)

𝐴 − 2𝐵 + 𝐶
 

𝐸3 
4𝜇𝑍

𝐴 − 2𝐵 + 𝐶
 𝜈23 

−(𝐴 − 𝐶)

𝐴 + 2𝐵 + 𝐶
 𝜈32 

−(𝐴 − 𝐶)

𝐴 − 2𝐵 + 𝐶
 

Parameter Element of compliance matrix 

𝐺23 𝜇 (1 + 2(1 − 3𝜅)2
𝑘1

𝜇
𝑠𝑖𝑛2 2𝜙0) 

𝐺31 𝜇 

𝐺12 𝜇 

 254 

where 𝐴 = 1 + 2(1 − 3𝜅)2 𝑘1

𝜇
𝑐𝑜𝑠2 2𝜙0,  𝐵 =

2

3
(1 − 3𝜅)2 𝑘1

𝜇
𝑐𝑜𝑠2𝜙0(1 + 2 cos2 2𝜙0) 255 

𝐶 = 3 + 2(1 − 3𝜅)2 𝑘1

𝜇
, and 𝑍 = 𝐴𝐶 − 𝐵2.  256 

2. Shear wave behavior in the HGO model – reference configuration 257 

 As in the undeformed model, for waves propagating in the 𝑍-direction, the closed-form 258 

expressions for fast and slow shear wave speed in the linearized HGO model (under no pre-259 

deformation) can be summarized as 260 
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𝑐𝑠
𝐻𝐺𝑂 = √

𝜇

𝜌
(13) 261 

𝑐𝑓
𝐻𝐺𝑂 = (√

𝜇

𝜌
)√1 + 2(1 − 3𝜅)2

𝑘1

𝜇
𝑠𝑖𝑛2 2𝜙0 . (14) 262 

Analytical expressions and simulations were used to illustrate the effects of the HGO parameters 263 

(Figure 6). In the undeformed case, slow shear wave speeds only varied with the initial shear 264 

modulus 𝜇, fast shear wave speeds increased with 𝜇 and 𝑘1, but decreased with 𝜅. Estimates of wave 265 

speeds in simulations agree well with the analytical predictions. In the HGO model, fast shear wave 266 

speeds exhibit a marked sinusoidal relationship with fiber angle (Figure 6h), but slow shear wave 267 

speeds are insensitive to fiber orientation (Figure 6d). This insensitivity is because in the HGO 268 

model in the reference configuration fibers add stiffness in tension but not in shear.  269 

  270 
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 271 

Figure 6. Relationships between slow and fast shear wave speeds and parameters (𝜇, 𝑘1, 𝜅, 𝜙0 ) of 272 

the HGO model in its undeformed configuration (𝜆 = 1). (a-d) Relationships between “slow” shear 273 

wave speeds and parameters (𝜇, 𝑘1, 𝜅, 𝜙0) of the HGO model.(e-h) Relationships between “fast” 274 

shear wave speeds and model parameters. Blue bars denote mean ± standard deviations of 275 

voxelwise estimates of wave speed from LFE of simulation; orange curves show analytical results. 276 

Default parameters: 𝜇0 = 1000 Pa, 
𝜇

𝜇0
= 1,  𝑘1 𝜇0⁄ = 2, 𝜅 = 1 12⁄ , 𝑘2 = 5, 𝛾𝑋𝑍 = 0. 277 

3. Shear wave behavior in the HGO model – deformed configuration 278 

Simulated displacement fields due to slow and fast shear waves after different pre-deformations 279 

are applied are shown in Figure 7. Fibers are aligned with the 𝑌𝑍-plane. The entire domain is 280 

deformed by compression in 𝑋-direction and simple shear in 𝑋𝑍-plane, leading to changes in the 281 

shear wave speeds.  282 
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 283 

Figure 7. HGO model. Displacement fields due to slow and fast shear waves superimposed on two 284 

types of pre-deformation. Black dashed lines represent harmonic excitation in the specified direction 285 

on the top surface, 𝑎𝐴 and 𝑎𝐵 are fiber axes. (a,c) Fast and slow small-amplitude shear waves 286 

superimposed on finite compression in the 𝑋-direction (1 − 𝜆 = 0.2). (b,d) Fast and slow small-287 

amplitude shear waves superimposed on finite pure shear deformation in 𝑋𝑍-plane (𝛾𝑋𝑍 = 0.2). 288 

The effects of imposed compression in the 𝑋 −direction, (stretch ratio 𝜆), imposed shear in the 289 

𝑋𝑍 −plane (shear 𝛾𝑋𝑍), and fiber angle, 𝜙0, on shear wave speeds in the HGO model are quantified 290 

in Figure 8. In the deformed configurations, both slow and fast shear wave speeds increase with 291 

increasing compression, 𝜆, and shear, 𝛾𝑋𝑍.  292 



 21 

 293 

Figure 8. HGO model. (a, c) Relationships between slow/fast shear wave speeds and compressive 294 

stretch ratio 𝜆, for waves superimposed on finite compression in the 𝑋-direction (and accompanying 295 

stretch in 𝑌- and 𝑍-directions). (b, d) Relationships between slow and fast shear wave speeds and 296 

shear deformation, 𝛾𝑋𝑍, for waves superimposed on finite shear in the 𝑋𝑍-plane. Blue bars denote 297 

mean ± standard deviations of voxelwise wave speed estimates from LFE of simulation; orange 298 

curves show analytical results. Default parameters: 𝜇0 = 1000 Pa, 
𝜇

𝜇0
= 1,  𝑘1 𝜇0⁄ = 2, 𝜅 = 1 12⁄ ,299 

𝑘2 = 5, 𝜆 = 1, 𝛾𝑋𝑍 = 0, and 𝜙0 = 𝜋/4. 300 

IV. DISCUSSION 301 

Shear wave behavior was investigated analytically and numerically in two models of fibrous, soft 302 

materials: an orthotropic, linear elastic model, and the HGO two-fiber-family model. Analytical 303 

predictions of the effects of mechanical parameters on shear wave speeds were confirmed by 304 

simulation. Analytical and numerical predictions of shear wave speeds after pre-deformations (pure 305 

shear, compression), also agree well and illustrate the effects of nonlinearity on wave behavior. 306 
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In each model, the strain-stress relationship can be captured by four intrinsic material 307 

parameters (properties of the matrix and fiber components), along with the corresponding fiber 308 

orientation 𝜙0. For materials with the same matrix and fiber properties, the wave propagation 309 

direction relative to fiber orientation is important in determining wave speed. For example, in the 310 

special cases considered in this paper, propagation is in the 𝑍-direction and fibers are in the 𝑌𝑍-311 

plane. In the linear elastic model, as the fiber angle 𝜙0 (which is also the angle between propagation 312 

direction and fiber direction) increases from 0 to 90 degrees, the slow shear wave speed decreases 313 

monotonically (Figures 4-5). In the linear elastic model, the effect on fast shear wave speed of the 314 

fiber angle varies according to the relative magnitude of shear and tensile anisotropy (Figures 4-5). 315 

In the HGO model, in the undeformed configuration slow shear waves are not affected by the fiber 316 

angle, but fast shear wave speeds exhibit a nearly sinusoidal variation with fiber angle (Figure 6), 317 

maximal at 𝜙0 = 𝜋/4.  318 

In the HGO model, which is explicitly nonlinear, finite pre-deformation (such as imposed shear 319 

deformation or compression) also affects wave speeds (Figure 7 and Figure 8). There are two points 320 

which distinguish the linear elastic model and the nonlinear HGO model: (1) The HGO model does 321 

not capture the effect of fibers on slow shear wave speed in the reference configuration (the linear 322 

orthotropic model is better suited for that purpose); (2) the HGO model does capture the behavior 323 

of waves superimposed on large deformations in which effect of fiber stretch is important. The 324 

examples in Figures 7-8 demonstrate the effects of finite deformations on wave speed. 325 

Model parameters of both the linear elastic model and the HGO model in the reference 326 

configuration were related to the parameters of the classical, linear, elastic, orthotropic model 327 

(Young’s moduli and Poisson’s ratios). In its undeformed, reference configuration, the HGO model 328 

describes an orthotropic material.  We note that in the reference configuration the HGO model does 329 

not exhibit shear anisotropy, which may be important in some fibrous tissues such as 330 
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muscle29,30 .Once it is deformed, the linearized HGO material model is no longer guaranteed to be 331 

orthotropic; the material symmetries must be determined for each specific deformed configuration.  332 

The inverse problem (estimation of parameters from shear wave behavior, as in MRE) remains a 333 

focus of future research. Compared to estimating a single shear modulus in traditional (isotropic) 334 

MRE, adding additional parameters will inevitably increase the difficulty of the estimation problem. 335 

Most importantly, measurements of waves with different polarization and propagation directions 336 

will be necessary to estimate multiple material parameters. The use of different excitation techniques, 337 

such as focused ultrasound can enrich the set of shear wave data available for parameter estimation 338 

30.  339 

V. CONCLUSION 340 

Analytical solutions were obtained for shear wave speeds in models of soft, incompressible 341 

materials with two families of reinforcing fibers, and validated by comparison to numerical 342 

simulation. These analytical solutions relate shear wave speeds to the mechanical properties of the 343 

materials, and clarify the influence of pre-deformation (compression, shear) and fiber orientation. 344 

Improved understanding of shear wave behavior in soft, anisotropic materials will advance the 345 

prospects for non-invasive characterization of fibrous soft tissue by MRE. 346 
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