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Abstract—On shared-memory multicore machines, clas-
sic two-way recursive divide-and-conquer algorithms are
implemented using common fork-join based parallel pro-
gramming paradigms such as Intel Cilk+ or OpenMP.
However, in such parallel paradigms, the use of joins for
synchronization may lead to artificial dependencies among
function calls which are not implied by the underlying
DP recurrence. �ese artificial dependencies can increase
the span asymptotically and thus reduce parallelism. From
a practical perspective, they can lead to resource under-
utilization, i.e., threads becoming idle. To eliminate such
artificial dependencies, task-based runtime systems and
data-flow parallel paradigms, such as Concurrent Collec-
tions (CnC), PaRSEC, and Legion have been introduced.
Such parallel paradigms and runtime systems overcome
the limitations of fork-join parallelism by specifying data
dependencies at a finer granularity and allowing tasks to
execute as soon as dependencies are satisfied.

In this paper, we investigate how the performance of
data-flow implementations of recursive divide-and-conquer
based DP algorithms compare with fork-join implemen-
tations. We have designed and implemented data-flow
versions of DP algorithms in Intel CnC and compared
the performance with fork-join based implementations in
OpenMP. Considering different execution parameters (e.g.,
algorithmic properties such as recursive base size as well
as machine configuration such as the number of physical
cores, etc), our results confirm that a data-flow based
implementation outperforms its fork-join based counter-
part when due to artificial dependencies, the fork-join
implementation fails to generate enough subtasks to keep
all processors busy and does not have enough data locality
to compensate for the lost performance. �is phenomena
happens when the input size of the DP algorithm is small
or we have a huge number of compute cores in the system.
As a result, with a fixed computation resource, moving
from small input to larger input, fork-join implementation
of DP algorithms outperforms the corresponding data-
flow implementation. However, for a fixed size problem,
moving the computation to a compute node with a larger
number of cores, data-flow implementation outperforms
the corresponding fork-join implementation.
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I. Introduction & Motivation

A. Introduction

Dynamic Programming (DP) is an algorithm design tech-
nique that recursively decomposes a problem into smaller
overlapping subproblems. It solves each unique overlapping
subproblem exactly once and stores its result into the
memory (DP table) for further reuse. �eoretically and
practically, DP improves the performance of a recursive
solution by preventing solving the repeating subproblems
when they are encountered later [1, 2, 3]. DP algorithms
can be viewed as trading off space-efficiency for reduced
computation time [2]. DP is considered as one of the build-
ing blocks in solving a variety of combinatorial optimiza-
tion problems [4]. It has numerous applications in different
research and engineering areas, including computational
biology [5], molecular modeling [6], etc.

�e most common approach to implement DP algo-
rithms is to use a loop-based program that populates the
results into the underlying DP table cells iteratively. �e
recurrence relation of the DP specification enforces the
correct ordering of storage and retrieval of the results of
the subproblems. Such implementations o�en have good
spatial locality and prefetching optimizations can be ap-
plied to gain further performance. However, they do not
perform efficiently due to the lack of temporal locality.
As a result, to overcome the shortcomings of the loop-
based DP algorithms, researchers proposed tiled/blocked
algorithms [7, 8, 9, 10] as well as standard 2-way recursive
divide-&-conquer algorithms [11, 12]. Recursive divide-&-
conquer DP algorithms are, unlike the tiled programs, cache
oblivious [13, 12] and cache adaptive [14, 11]. Because of
the heterogeneous nature of many modern supercomputers,
standard 2-way (or any fixed r-way) recursive divide-
&-conquer algorithms may suffer from the lack of per-
formance portability and performance scalability on such
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supercomputers. Such important limitations led to the in-
troduction and development of parametric r-way recursive
divide-&-conquer DP algorithms (r-way R-DP) to run
efficiency on different architectures such as GPUs and
distributed-memory parallel machines [15, 16, 17, 18, 19]

B. Motivation

On shared-memory multicore machines, classic 2-way al-
gorithms have been implemented by fork-join based paral-
lel programming paradigms such as Intel Cilk+ or OpenMP.
However, in such parallel paradigms the use of joins for
synchronization may create artificial dependencies among
function calls which are not implied by the underlying DP
recurrence. �ese artificial dependencies can increase the
span asymptotically, and thus reduce parallelism [20, 21].
From a practical perspective, they can lead to resource
underutilization, i.e., threads becoming idle. Due to such an
important limitation, several researchers introduced task-
based runtimes [22, 23, 24, 25, 26] and data-flow parallel
paradigms [27, 28, 29, 30]. Such runtimes and paradigms
which follow the data-flow model of execution and point-
to-point synchronization, overcome the limitations of fork-
join parallel paradigms. Data dependencies between tasks
can be specified at finer granularity and tasks can exe-
cute as soon as the data becomes available (i.e., when
dependencies are satisfied). In this paper, we investigate
the application and efficiency of running DP algorithms on
Intel Concurrent Collections (CnC) [31] which is one of the
pioneering implementations of the data-flow based parallel
paradigm. We compare the results with implementations
in OpenMP. Considering different execution parameters
(e.g., algorithmic properties such as recursive base size
as well as machine configuration such as the number of
physical cores, etc), we explain in what scenarios data-
flow based implementation outperforms the fork-join based
implementation. Considering Gaussian Elimination without
pivoting (GE) algorithm, we provide an analytical model
approximating the execution time of a DP computation. To
summarize, followings are the key contributions of this
work:

• By summarizing some of the important differences
of fork-join based and data-flow based parallel
paradigms, we explain how a standard 2-way recur-
sive divide-&-conquer DP (2-way R-DP) algorithm is
specified and developed in OpenMP and Intel CnC. We
explain how the CnC runtime executes the program.

• We explain how the use of joins for synchronizations
in the fork-join (OpenMP) implementations of R-DP

algorithms introduces artificial dependencies which
leads to increase in span, reduction in parallelism and
resource underutilization. We explain how data-flow
implementation can resolve the issue.

• We design, implement and analyze three important
DP benchmarks in OpenMP and Intel CnC: Gaussian

Elimination without Pivoting, Smith-Waterman Local
Alignment, and Floyd Warshall’s All Pairs Shortest
Path. We summarized the lessons learned from the
experiments. We compared the experimental results
and explained in what scenarios, each of the parallel
paradigms outperform the other.

• Due to the importance of data movement cost in the
memory hierarchy, in order to understand it be�er, for
GE benchmark, we design an analytical model which
correctly predicts the trend in data movement cost
obtained from experimental results. �e model can be
easily extended to the other DP algorithms.

�is paper is organized as follows. Sec. II provides
a background on CnC model. Using the GE algorithm
as a running example, Sec. III explains fork-join based
implementation (in OpenMP) as well as data-flow based
implementation (in Intel CnC) of the recursive divide-&-
conquer DP algorithms. Experimental results are provided
in Sec. IV. �is section explains under what circumstances
data-flow based implementation outperforms the fork-join
based implementation and vice versa. Sec. V discusses the
extensions and applications of the CnC model as related
work. Sec. VI concludes the paper by summarizing the key
points and mentioning the future work.

II. Background

Concurrent Collections (CnC) [28] is a data-flow based
parallel programming model (originated from TStreams
[32]). Different forms of parallelism, (including task, data,
loop, pipeline and tree) can be expressed using this model.
�e important aspect of CnC is the idea of separation
of concerns between application logic and parallel imple-
mentation. A CnC program/specification can be viewed
as a communication means (or an interface) between the
domain expert1 and the tuning expert2. �is separation
of concerns simplifies the task of the domain expert, as
writing a program in this language does not require any
reasoning about parallelism or any knowledge of a target
architecture [33]. �e domain expert does not specify
how operations are scheduled. �e tuning expert (who
can also be the domain expert) does not need to have
an understanding of the domain (e.g., physics, chemistry,
etc). S/he maps the CnC specification to a specific target
architecture to be executed efficiently.
�e three main CnC concepts are step collections, item

collections (or data collections) and tag collections (or
control collections). �e CnC program is specified as a
graph of collections, communicating with one another.
More precisely, a CnC specification is a graph whose

1Whose interests and expertise in the application domain (e.g., finance,
genomics, numerical analysis, etc) who does not necessarily have expertise
in parallel programming and performance tuning.

2Whose interests and expertise are in performance and parallel pro-
gramming.
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directly at finer granularity and tasks get executed as soon

as its data dependencies are satisfied. We explain Intel CnC
implementation of the same algorithm in the next section.

C. Data-Flow based Implementation of R-DP

To implement the 2-way R-DP in Intel CnC, by consid-
ering the recursive specification of function calls, we figure
out the data dependencies among them. For example, from
the specification of function AGE , we can conclude that
functions BGE and CGE depend on the output of AGE .
Similarly, functionDGE depends on the output of functions
AGE , BGE , and CGE .

�e CnC program has four step collections with one
for each of the functions, four tag collections with one
for prescribing each of the step collections, and four item
collections. �e item collections are used as means of
synchronization among the step collections to enforce fine-
grained data dependency among the instances of step collec-
tions. �e high level structure of the CnC graph/program
is depicted in Listing 4.

1 s t r u c t GEContext : p u b l i c CnC : con tex t<GEContext> {
2 doub le ∗ dp tab le ; i n t input sz , base sz ;
3 t yp ed e f pa i r<pa i r<i n t , i n t >, p a i r<i n t , i n t>> Co l l e c t i o nT ;
4 / / d e f i n i n g s t e p / t ag / i tem c o l l e c t i o n s , X in {A, B , C}
5 CnC : : s t e p c o l l e c t i o n<Funct ionX> funcX step ;
6 CnC : : t a g c o l l e c t i o n<Co l l e c t i onT> funcX tags ;
7 CnC : : i t em co l l e c t i on<Co l l e c t i onT , bool> funcX outputs ;
8 / / c on s t r u c t o r , c on t a i n g i n g CnC graph i n f o rma t i on
9 GEContext ( doub le ∗ dp t , i n t p sz , i n t b sz )
10 : dp tab le ( dp t ) , input sz ( p sz ) ,
11 base sz ( b sz ) , funcX step ( ∗ t h i s ) {
12 / / p r e s c r i b i n g / produc ing / consuming r e l a t i o n s h i p s
13 / / X in {A, B , C}
14 funcX tags . p r e s c r i b e ( funcX step , ∗ t h i s ) ;
15 funcX step . p roduces ( funcX outputs ) ;
16 / / consumes , d e f i n e d based on the da t a dependenc i e s
17 funcB step . consumes ( funcA outputs ) ;
18 funcB step . consumes ( funcD outputs ) ;
19 / / . . .
20 }
21}

Listing 4: Intel CnC graph description of R-DP GE algo-
rithm.

In Listing 4, tag collections are
templated by CollectionT which is
pair<pair<int,int>,pair<int,int>>. �is data
structure contains the information which is needed
for the functions to execute correctly. For example,
for function BGE which updates the tile [I, J ] of
size b by reading from the tile [I,K], the tag is
<<I,J>,<K,b>>. Item collections are templated by
<CollectionT,bool>, which is a mapping from the
tile information <<I,J>,<K,b>> to Boolean indicating
whether the tile has been updated completely (and it is
ready to be used by other functions). For example, function
BGE puts the mapping (<<I0,J0>,<K0,b0>> → true) to
the item collection funcB outputs a�er completing the
update on tile [I0,K0]. Such put will trigger the execution
of all other functions waiting for this tile.

Step collections are templated by C/C++ structs Func-

tionA, …, FunctionD. Each of these structs has a method
called execute that takes the tag information execInfo

as the first argument as well as the GE context ctx as the
second argument.
Based on the data dependencies among the kernels we

complete the implementation of the execute method in
each of the structs. As an example, we explain method
FunctionD::execute and others are implemented simi-
larly. �e implementation has been provided in Listing 5.

1 s t r u c t Funct ionD {
2 / ∗ Updat ing t i l e X by r e ad i ng the t i l e s updated by
3 k e r n e l s C , B , and A ∗ /
4 i n t e x e cu t e ( c on s t Co l l e c t i o nT& exec In fo ,
5 GEContext& c t x ) c on s t {
6 i n t I = e x e c I n f o . f i r s t . f i r s t ,
7 J = e x e c I n f o . f i r s t . second ,
8 K = e x e c I n f o . second . f i r s t ,
9 b lock sz = e x e c I n f o . second . second ;
10 boo l v ;
11 i f ( b lock sz <= c t x t . base sz ) { / / base c a s e
12 / / check ing wr i t e −wr i t e dependency
13 i f (K > 0 )
14 { c t x . funcD outputs . g e t ({{ I , J } ,{K−1 , b lock sz }} , v ) ;}
15 / / check ing read −wr i t e dependenc i e s
16 c t x . funcA outputs . g e t ({{K , K} ,{K , b lock sz }} , v ) ;
17 c t x . funcB outputs . g e t ({{K , J } ,{K , b lock sz }} , v ) ;
18 c t x . funcC outputs . g e t ({{ I , K} ,{K , b lock sz }} , v ) ;
19 / / A l l d ependenc i e s OK, e x e cu t i n g the base c a s e
20 g e i t e r a t i v e k e r n e l ( c t x . input sz , block sz ,
21 I , J , K , c t x t . dp tab le ) ;
22 c t x . funcD outputs . put ({{ I , J } ,{K , b lock sz }} , t r u e ) ;
23 }
24 e l s e { / / r e c u r s i v e p a r t
25 i n t t i l e s z = block sz / 2 ;
26 f o r ( i n t kk = 0 ; kk < 2 ; ++kk )
27 f o r ( i n t i i = 0 ; i i < 2 ; ++ i i )
28 f o r ( i n t j j = 0 ; j j < 2 ; ++ j j )
29 c t x . funcD tags . put ({{ I ∗2+ i i , J ∗2+ j j } ,
30 {K∗2+ kk , t i l e s z }} ) ;
31 }
32 r e t u r n CnC : : CNC Success ;
33 }
34 } ;

Listing 5: Struct functionD in CnC implementation of R-
DP GE algorithm.

If the execution of function DGE reaches its base
case, it updates the tile/block with coordinate [I, J ] by
first reading from the tiles/blocks with coordinate [I,K],
[K, J ], and [K,K] which are produced by kernels C , B,
and A, respectively. �ese three read-write dependencies

can be enforced by using blocking get method on the
item collections funcC outputs, funcB outputs, and
funcA outputs. Additionally, since it is updating the tile
[I, J ], for K > 0, we need to ensure that the previous
call to DGE has finished its update on tile [I, J ]. So, in
order to enforce this write-write dependency, we use block-
ing get method on the item collection funcD outputs.
If all the dependencies are met, the kernel updates the
tile/block and put the item <<I,J>,<K,b>>→ true in
the item collection funcD outputs. Otherwise, if the
function has not yet reached the base case, based on the
recursive specification of DGE , for each of the recursive
function calls defined in its specification, irrespective of
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their data dependencies5, it puts tags into the tag collection
funcD tags to trigger their executions.

D. Improving Intel CnC performance through Tuners

Intel CnC provides tuners that can pass hints to the
runtime system on how to improve performance [31]. One
of them is the pre-scheduling tuner which enforces the
execution of a step on the same thread that puts the
prescribing tag, only a�er all the data dependencies are
satisfied. �is can improve performance by avoiding re-
scheduling of a step due to unavailability of the items.
Another way of improving the performance is to manually
pre-declare all the dependencies, before the actual execu-
tion of updates in the algorithm. In this way, the underlying
scheduler can trigger tasks when all the items are available.
We have evaluated both approaches in order to tune the
R-DP computations and be�er understand the behavior.

IV. Experimental Results

We implement the three following benchmarks in Intel
CnC and OpenMP: (1) Gaussian Elimination without

Pivoting (GE). Section III-A contains a detailed expla-
nation of this benchmark. It is noteworthy that the GE
with partial pivoting does not have a DP-like structure
[35] and going beyond DP algorithms is part of the future
works. (2) Smith-Waterman Local Alignment (SW).

�e SW algorithm is used to determine the similarity
between two DNA (or amino acid) sequences [36]. (3)

Floyd Warshall’s All Pairs Shortest Path (FW-APSP).

For each pair of vertices in a directed graph, the FW-APSP
algorithm computes the cost of the shortest path [3, 37].

A. Experimental Setup

�e testbed for our experiments includes AMD Epyc
and Intel Skylake processors which are part of the Mystic
testbed [38]. �e AMD Epyc 7501 machine has 2 sockets
with 32 cores each, 8 NUMA zones, 32K L1, 512K L2 and
8192K L3 caches, 130GB RAM and per socket memory
bandwidth of 170 GiB/s. �e Intel(R) Xeon(R) Platinum 8160
CPU @ 2.10GHz machine has 8 sockets with 24 cores per
socket, 8 NUMA zones, 32K L1, 1024K L2, 33792K L3, 768GB
RAM and a theoretical memory bandwidth of 119 GiB/s.
For our Intel CnC implementations, we used Intel CnC

version 1.0.1 and compiled using gcc version 7.5.0, with
the following flags: -std=c++11 -O3 -march=native -

mavx2 -lcnc -lrt -ltbb -ltbbmalloc. We have op-
timized the algorithms by eliminating branches in the
innermost loop to enable vectorization. Naive implemen-
tation of SW uses (O(n2)) space and we have opti-
mized the algorithm to consume (O(n)) space for im-
proving performance. GNU OpenMP implementations are
used in the benchmarks with OMP PLACES =cores and

5Note that all the data dependencies are enforced using the blocking
get method

OMP PROC BIND=close. For Intel CnC experiments, we
set CNC NUM THREADS to 64 on AMD Epyc and 192 on
Intel Skylake servers.

B. Performance Results

�e goal of our evaluation is to characterize the behavior
of R-DP computations under a data-flow execution model.
With this in mind, we designed 3 × 2 × 4 × 4 = 96
experiments, which include three benchmarks (GE, SW and
FW-APSP) to explore on two multicore machines, while
varying the problem parameters (problem size and base-
case size). Our experiments show that even though R-DP

is meant to enhance the program’s locality, controlling and
characterizing the behavior in a data-flow model remains
challenging. For each R-DP benchmark, we implemented
4 versions:

• (Native-CnC) A base CnC program without schedul-
ing hints.

• (Tuner-CnC) A CnC program with task scheduling
hints by using CnC tuners (discussed in Sec. III-D).

• (Manual-CnC) A manually pre-scheduled CnC pro-
gram (discussed in Sec. III-D).

• (OMP-Tasking) An R-DP program using OpenMP
tasking.

It is worth mentioning that we also implemented the
benchmarks using non-blocking get approach [33] and
noticed that the non-blocking get implementation is prof-
itable only for smaller block sizes. However, the best overall
performance is obtained by using blocking get approach.

Overall, our validation shows some high-level conclu-
sions. First, R-DP data-flow programs incur large runtime
overheads on small block sizes. Second, large base case sizes
reduce potential run-time task scheduling options.

Figures 4 and 5 show the execution time of the GE bench-
mark on the two machines. To understand the behavior
of GE on these machines, due to the importance of the
data movements in the memory hierarchy [39], we have
developed an analytical model to estimate the overall cost
of cache misses and the data movements.

As the first step, we will compute the total number
of tasks generated by the recursive divide-and-conquer
algorithm for GE. Observe that if the base case size is
set to 1 × 1, the total number of times the base case
is reached will be equal to the number of assignments
made by the looping implementation of GE, which is:
∑n−1

k=0

∑n

i=k+1

∑n

j=k+1
(1) = 1

3
n3 + 1

2
n2 + 1

6
n. Now, if

we coarsen the base case matrices to m × m, clearly,
the number of times such base cases will be reached, i.e.,
the number of base case tasks generated by the recursive
algorithm, will be:

1

3

( n

m

)3

+
1

2

( n

m

)2

+
1

6

( n

m

)

(1)
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Assuming a fair distribution of the tasks to the pro-
cessors and among all the cores, we know that the total

number of tasks per processor is
⌈

total number of tasks
number of processors

⌉

.

Once reached, a base case task that works on matrices
of size m × m will perform between 1

3
m3 + 1

2
m2 + 1

6
m

(inside func A) and
∑m−1

k=0

∑m

i=0

∑m

j=0
(1) = (m+ 1)

2
m

(inside func D) assignments.

Considering the base-case implementation of the GE al-
gorithm, which is the serial implementation (in the Listing
2), we can compute the maximum number of cache misses
as follows. We know that the triply nested loop executes up
to ∀

m−1

k=0
∀mi=0∀

m
j=0 iterations, while accessing memory cells

C[i][j], C[i][k], C[k][j], and C[k][k]. �en, we proceed to
count the total number of memory elements accessed for
each distinct array reference, divided by the cache line size
L, and add them up to get an upper bound on the total
number of cache misses assuming that the cache cannot
hold more than three cache lines and thus has very limited
temporal locality. �e bound is obtained as follows:

2
(

∑m−1

k=0

∑m

i=0

⌈
∑

m
j=0

8

L

⌉)

+
(

∑m−1

k=0

∑m

i=0
1
)

+
(

∑m−1

k=0
1
)

= m
(

1 + (m+ 1)
(

1 +
⌈

8m+8

L

⌉))
(2)

�e first term in the summation above accounts for
the maximum number of cache misses incurred when
accessing C[i][j] and C[k][j], the second term accounts
for C[i][k], and the third one for C[k][k]. Given this,
the total number of cache misses for each cache L1, L2,
and L3, is approximated by adding up all the cache miss
penalties at each level of cache. Figures 4 and 5 show the
cost estimated using this model. �e model assumes the
recursion and looping overheads to be zero.

�e ratio of the maximum cache misses estimated by
the analytical model over the actual cache misses (i.e.,
estimated max cache misses

actual cache misses
) provides an interesting mea-

sure of temporal locality. �e larger this ratio the higher the
temporal locality. For the GE benchmark with the problem
size 8K × 8K , we captured the actual cache misses using
the PAPI library [40] on SKYLAKE, and calculated this
ratio. Table I shows the ratios for different base case sizes.
Considering the sizes of L2 and per-core L3 cache share
(which are 1MB and 32MB, respectively), we observe that
for the L2 and L3 caches, this ratio sharply drops for
the base cases larger than 128 × 128 and 1024 × 1024,
respectively. �ese two base cases (128 × 128 for L2 and
1024×1024 for L3) reflect the largest blocks (more specifi-
cally, three such blocks storing double precision floats) that
can fit into the L2 and L3 cache for GE on SKYLAKE.

Another important observation is that the execution
times are significantly lower with hardware prefetching
turned off for the CnC version. �is is due to the coarse-
grained data-flow irregularity not allowing full usage of

❛
❛

❛
❛

❛
❛
❛
❛
❛❛

Base Size

Cache Miss Ratio

L2 Cache L3 Cache

64 107.61 294.50

128 240.63 660.02

256 38.38 1637.20

512 7.97 5793.74

1024 6.13 8247.60

2048 5.96 127.06

Table I: Ratio of the maximum estimated cache misses over
the actual cache misses for the GE benchmark with problem
size 8K × 8K on SKYLAKE.

prefetched data, i.e. the prefetcher bringing in data ex-
pected to be used, while (CnC) data-flow dependencies
essentially flushing the cache immediately a�er, causing
unnecessary overheads.
�e analytical model does not take into account the load

imbalance due to the data dependencies between the tasks
causing the model to underestimate the cost. However, in
some cases, using maximum cache misses to calculate the
estimated cost causes the model to overestimate. �e model
also ignores overhead of scheduling of large number of
tasks which significantly increases the execution time in
case of Manual-CnC.

Another important observation from the figures is that
for GE and FW-APSP benchmarks, for a fixed computation
resource, as we increase the size of the input, the fork-join
implementation (i.e,. OpenMP) outperforms the data-flow
implementations (i.e., intel CnC). �is is due to the fact
that for the smaller problem size, because of the artificial
dependencies that exists in the fork-join implementation,
there are not enough tasks generated by the OpenMP to
keep all the processors busy and does not have enough
data locality. As a result, we have resource underutilization
issue. However, as the problem size gets larger, in spite
of the existence of the artificial dependencies, OpenMP
is capable of generating enough tasks to feed all the
processors and we have less resource underutilization.
Figures 6 and 7 show the execution time of SW bench-

mark on EPYC-64 and SKYLAKE-192 systems. Regarding
the SW benchmark, the issue of artificial dependencies
are so problematic that even for bigger problem sizes, still
data-flow implementation outperforms. �e main reason is
the artificial dependencies in the fork-join implementation
prevents the wavefront parallelism among the tasks, where
tasks operate on tiles along diagonals of the input matrix6.

However, data-flow implementation can easily benefit
from the wavefront parallelism as data dependencies are
specified at a finer granularity and there is no coarse-grain
barrier synchronization for every wavefront computation.

6In fork-join implementation, there is a barrier synchronization for
every wavefront computation
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Figures 8 and 9 show the results obtained for FW-APSP
benchmark. �e analytical model described above for GE
also applies to FW-APSP since both the same computational
complexity as GE (O(n3)) and similar data access pa�erns.

Best running time is achieved with block size of 128 and
256 for all the variations of Intel CnC as well as OpenMP.

While fine-grained scheduling and task placement has
not been explored in this work, we believe that leveraging
other Intel CnC tuners such as compute on and other
forms of tasks pre-scheduling can lead to large performance
improvements. Such tuner can effectively allow to pin spe-
cific tasks to execution locations (cores), thereby minimiz-
ing potential inter-core and inter-NUMA data movement.

V. Related Work

Sbirlea et al. introduced an intermediate graph represen-
tation for macro-data-flow programs (DFGR). It is an exten-
sion to the CnC model [41]. DFGR enables programmers to
express programs at a high level with data-flow graphs as
an intermediate representation. DFGR graphs consist of step
nodes for computation and item nodes for data, which are
partitioned into collections by unique tag. DFGR improves
the efficiency by expressing what items are read and
wri�en to each step (through tag functions [42]). It is used
as an abstraction to map the application for extreme-scale
systems and run on heterogeneous architectures including
GPUs/FPGAs, distributed-memory clusters, etc.

Later, they have proposed a polyhedral compiler frame-
work, Data-Flow Graph Language (DFGL) which uses
DFGR to represent dependencies [43]. �e framework
applies polyhedral analysis on dependencies to perform
two important legality checks (single assignment rule and
potential deadlocks) as well as applying automatic loop
transformation, tiling, and code generation of parallel loops
with coarse-grained and fine-grained synchronizations.
DFGL framework compiles the input graph program into
Habanero-C, which is an extension to C language built on
top of CnC. �e framework uses the ROSE compiler [44] to
also generate OpenMP-4 compatible code, including task-
level parallelism. �ey used Smith-Waterman, Cholesky
factorization, Livermore Unstructured Lagrange Explicit
Shock Hydrodynamics (LULESH) and some stencil kernels
from PolyBench as their benchmarks. �eir experimental
results show that the DFGL versions optimized by their
framework can deliver up to 6.9× performance improve-
ment relative to OpenMP versions of the benchmarks.

�ere are several experimental studies that have been
done illustrating performance and scalability of the CnC
model. Chandramowlishwaran et al. [45] evaluated two
dense linear algebra algorithms: (1) asynchronous-parallel
Cholesky factorization and (2) ”higher-level” partly-
asynchronous generalized eigensolver for dense symmetric
matrices. For both benchmarks, they showed that their CnC
implementations match or exceed the Intel Math Kernel

Library (MKL) implementation. �ey also compared their
CnC implementations with other parallel models including
ScaLAPACK with shared-memory MPI, OpenMP, Cilk+,
and PLASMA 2.0, on Intel Harpertown, Nehalem, and AMD
Barcelona systems. For the C++ implementation, Budimlić
et al. [28] has used Dedup, a benchmark from PARSEC
benchmark suite [46] and compared the performance of
CnC implementation and pthread implementation. �ey
showed that the CnC implementation outperforms the
pthread implementation for two reasons. First, in the
pthread implementation, the load imbalance exists between
the stages of the computation. Second, the pthread im-
plementation, unlike the CnC implementation, has data
locality (to a thread) issue. �ey also considered Cholesky
Factorization as another case study and showed speed-up
with respect to increase in the number of threads. Liu and
Kulkarni implemented the proxy application, LULESH in
CnC model and have shown that with step fusion and tiling
optimizations, the implementation outperforms the original
implementation with good scalability (38× speed up) for
up to 48 processor machines [47].

VI. Conclusion

In this paper, using the GE algorithm as a running
example, we discussed two different paradigms of parallel
programming on shared-memory multicore machines: fork-
join and data-flow parallel paradigms. Focusing on recur-
sive DP algorithms, we explained the major performance
bo�leneck that exists in fork-join model: Joins at synchro-
nization points introduce artificial dependencies which are
not implied by the underlying DP recurrence.

�ese artificial dependencies exist in all sub-function
calls and hence increase the span asymptotically and reduce
parallelism. We explained how this performance issue can
easily be eliminated by using data-flow based parallel
paradigms such as CnC. Considering different execution
parameters (e.g., algorithmic properties such as recursive
base size as well as machine configuration such as the
number of physical cores, etc), we explained under which
scenarios a data-flow implementation outperforms the cor-
responding fork-join implementation. We provided an ana-
lytical model upper bounding the total data movement cost
of the GE benchmark as one of the DP algorithms, which
can be easily extended to the other DP algorithms. As the
next steps, we would like to investigate algorithms beyond
DP. Additionally, we would like to explore polyhedral
compiler transformations which can help us automatically
obtain data-flow based algorithms from the serial loop-
based algorithms. Extending the framework to distributed-
memory parallel machine is part of the future works.
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