
Distributed-memory multi-GPU block-sparse tensor

contraction for electronic structure

Thomas Herault∗, Yves Robert∗†, George Bosilca∗, Robert J. Harrison‡,

Cannada A. Lewis§, Edward F. Valeev¶, Jack J. Dongarra∗

∗ICL, University of Tennessee, TN, USA. {herault,yrobert,bosilca,dongarra}@icl.utk.edu
†ENS Lyon, France ‡IACS, Stony Brook University, NY, USA. robert.harrison@stonybrook.edu

§Sandia Ntl. Lab., CA, USA. canlewi@sandia.gov ¶Dept. of Chemistry, Virignia Tech, VA, USA. valeev76@vt.edu

Abstract—Many domains of scientific simulation (chemistry,
condensed matter physics, data science) increasingly eschew
dense tensors for block-sparse tensors, sometimes with additional
structure (recursive hierarchy, rank sparsity, etc.). Distributed-
memory parallel computation with block-sparse tensorial data
is paramount to minimize the time-to-solution (e.g., to study
dynamical problems or for real-time analysis) and to accom-
modate problems of realistic size that are too large to fit
into the host/device memory of a single node equipped with
accelerators. Unfortunately, computation with such irregular
data structures is a poor match to the dominant imperative,
bulk-synchronous parallel programming model. In this paper,
we focus on the critical element of block-sparse tensor algebra,
namely binary tensor contraction, and report on an efficient and
scalable implementation using the task-focused PaRSEC runtime.
High performance of the block-sparse tensor contraction on the
Summit supercomputer is demonstrated for synthetic data as well
as for real data involved in electronic structure simulations of
unprecedented size.

Index Terms—electronic structure, tensor contraction, block-
sparse matrix multiplication, distributed memory, multi-GPU
nodes, PaRSEC.

I. INTRODUCTION

The current path to exascale computing relies on an exten-

sive use of accelerators. As of today, the Summit and Sierra

systems [1] are number 2 and 3 on the TOP500 list [2]. Both

systems are distributed-memory platforms where each node is

equipped with several high performance NVIDIA accelerators.

For instance Summit nodes include 6 NVIDIA V100 GPUs,

interconnected at the node level by multiple NVLinks. The

forthcoming Frontier exascale system [1] is announced with

four AMD Radeon GPUs per node. On Summit, more than

97% of the overall compute performance is on the GPU side.

The emerging trend remains consistent across all state-of-the-

art platforms equipped with accelerated nodes: these machines

draw most of their computing power out of the accelerators;

hence, it is crucial, for any efficient and scalable algorithm, to

be able to extract the most performance out of the accelerators

to achieve high overall efficiency.

The existence of highly capable hardware only translates

in application performance if software support exists. The

community effort is well on its way to implement dense linear

This research was supported by the Exascale Computing Project (17-SC-
20-SC), and the NSF projects #1931347, #1931384, and #1931387; it used
resources of the Oak Ridge Leadership Computing Facility at ORNL, which
is supported by the U.S. D.o.E. under Contract No. DE-AC05-00OR22725.

algebra libraries for multi-GPU accelerated nodes. Several on-

going projects aim at designing dense linear algebra kernels,

not only to achieve high TOP500 performance, but to allow

a broad range of applications to benefit from the computing

power lying in the accelerators. While most projects are

conducted by vendors (Intel, AMD, NVIDIA, Cray), some

academic projects, such as SLATE [3], are publicly available,

and provide efficient CPU or GPU implementations for most

traditional dense linear routines. Recently, support for a limited

number of operations in a multiple-accelerator setting has been

added, with some matrix-size constraints. For instance the

current matrix product C = A × B is limited to problems

where the entire C matrix can reside in the memory of the

accelerators. A similar academic effort proposes a distributed

multi-accelerators prototype for matrix-matrix multiplication

without any size restriction within the PaRSEC task-based

runtime system [4].

Achieving good performance for dense linear algebra ker-

nels is only a first step to achieving exascale performance for

general scientific applications. This can be seen by looking

at the performance discrepancies between two of the most

widely used benchmarks in HPC, the HPL (High Performance

LINPACK) benchmark used in the Top500 list, and HPCG

(High Performance Conjugate Gradient) benchmark, more rep-

resentative of the behavior of a typical scientific application.

On Summit, the performance of HPCG is 50 times lower than

that of HPL. This is because HPCG involves a communication-

bound kernel with sparse fine-grained computational kernels,

as opposed to a computation-bound kernel with dense Level3-

BLAS routines for HPL.

This paper aims at complementing the insight gained from

the HPCG benchmark by exploring another important and

widely used computational kernel in High Performance Com-

puting. We consider how the binary contraction of block-

sparse tensors, a key paradigmatic operation for a variety of

physical simulation and data-science domains, can be imple-

mented efficiently on large-scale distributed-memory multi-

GPU accelerated platforms. To assess the performance, we

consider a mix of synthetic problem setups and contrac-

tions taken from actual simulations of electronic structure

of molecules. The binary tensor contraction will be mapped,

as is typically done, onto the GEneral Matrix Multiplica-

tion (GEMM) C ← αAB + βC. While the dense matrix

multiplication is a formidable, but manageable, challenge on



distributed memory heterogeneous platforms for the relevant

problem sizes [4], the block-sparse matrix multiplication adds

several new challenges. First, the rows and columns of the

three matrices are tiled nonuniformly, due to the nonuniform

structure of the underlying physical problem. Second, the

matrices are block-sparse, with the fill degree greatly varying

with the particular simulation from 100% (for high-precision

simulation on compact molecules) to a few percent even

for modestly-sized simulations. Third, the aspect ratios of

the matrices can vary greatly from 1 (square) to 100s (tall-

and-skinny, or short-and-wide); the particular paradigmatic

example from the electronic structure domain that we focus on,

involves a large square matrix B and short-and-wide matrices

A and C, with aspect ratios on the order of 100. All these

characteristics decrease potential data-reuse and arithmetic

intensity, and dramatically complicate the design of an efficient

algorithm targeting multi-GPU accelerated nodes. The main

contribution of this work is the design of a generic and flexible

implementation of this block-sparse kernel, and its analysis on

a large multi-GPU platform.

The rest of the paper is organized as follows. Section II sur-

veys the motivating science application. Section III overviews

the main design principles of our algorithm. Section IV

discusses the main details of the prototype implementation,

which is publicly available with all benchmarks used in this

work [5]. In Section V, we report preliminary performance

results. Section VI briefly discusses related work, before we

conclude in Section VII.

II. MOTIVATING SCIENCE APPLICATION

Our goal is to deploy the distributed memory block-sparse

matrix multiplication in the context of electronic structure

applications for quantum mechanical simulation of molecules

and materials from first principles. Accurate simulation of

electronic structure, via the coupled-cluster [6] and many-

body Green’s function approaches, is feasible but expensive,

i.e., such many-body methods have high-order polynomial

operation and space complexity; for the foundational Coupled-

Cluster Singles and Doubles method (CCSD), these are N6

and N4, respectively, with N proportional to the system size.

The high complexity limits the applicability of conventional

(naive) formulations of predictive methods to systems with a

few (5-10) atoms on a single workstation, and a few dozen

(50-100) atoms on a supercomputer [7]. However, the recent

emergence of robust fast/reduced-scaling formulations has

greatly extended the applicability of such methods to hundreds

of atoms on a single workstation in a matter of days [8].

Modern state-of-the-art HPC platforms should make it possible

to deploy reduced-scaling coupled-cluster (CC) methods with

time-to-solution measured in minutes rather than in days. The

complex tensor algebra involved in the CCSD method can

be reduced for our purposes to a single representative term,

usually the most expensive one (accounting routinely for 90%

or more of the work), colloquially known as the ABCD term:

R
ij
ab =

∑

cd

T
ij
cdV

cd
ab + . . . , (1)

where the elements of tensor T are the model parameters to

be refined iteratively (in typically 10-20 iterations) to make

tensor R vanish. Tensor V is fixed (does not change between

iterations). Ranges of all indices are proportional to system

size N , hence each tensor has N4 space complexity, and the

operation has N6 operation complexity.

The tensor contraction in Equation (1) can be viewed as

a multiplication of matrix T (with fused indices ij and cd

playing the role of row and column indices, respectively; in

subsequent sections such matricized tensor T will serve as

matrix A in C = C+AB) with square matrix V (with cd and

ab row and column indices; this will serve as matrix B). In

practice the range of unoccupied indices (a, b, c, d) has rank U

that is a factor of 5-20 times larger than the corresponding rank

O of the occupied indices ij, hence transposes of matricized

tensors T and R are tall-and-skinny matrices, with aspect

ratios of 25-400.

To set the scale for target calculations we consider predictive

calculations of the electronic structure of large molecules using

many-body theory. Central to this problem is solving a set

of coupled non-linear equations for the amplitudes tabij in

which i, j label one-electron states occupied in a zeroth-order

approximation to the wave function and a, b label excited

states with about 10 such states per electron. In a fully

dense calculation, which remains of interest for calibration and

benchmarking, the number of amplitudes grows as the fourth

power of the number of electrons. Thus, a calculation on just

1000 electrons exceeds the aggregate memory of all GPUs

in Summit just to hold the solution. Intermediates and other

quantities multiply the required memory. Reduced scaling

calculations significantly reduce the amount of data, but our

ambitions extend to systems with at least O(104) electrons

for which again, predictive calculations with controlled error

would greatly exceed available GPU memory.

In the conventional formulation of CCSD, all tensors are

generally dense (modulo prefactor-reducing block-sparsity due

to discrete geometric symmetries; here we only focus on

block-sparsity due to dynamical structure of the physical

problem that can lead to the reduction of complexity). The

formulation of dense matrix multiplication on distributed-

memory systems [9], including for rectangular matrices [10],

is relatively well understood and makes possible strongly

scalable CCSD implementations [7], [11]. Extending these

advances to reduced-scaling coupled-cluster variants in which

tensors have complex block-sparse structure is nontrivial due

to the physically-motivated nonuniform tiling of index ranges

(e.g., it is not in general possible to partition the basis into

even chunks without sacrificing locality). This leads to the

loss of the near-perfect load balance that makes traditional

communication-optimal algorithms attain strong scaling. Par-

allel computation with irregularly-tiled and/or data-sparse ten-

sorial data structures is also a poor match to imperative, bulk-

synchronous parallel programming style and execution models

due to the irregular (and potentially dynamic) structure of the

data. In this work, we demonstrate how these challenges can

be addressed by modern task-based dataflow-style scheduling



to achieve high performance on a distributed-memory het-

erogeneous cluster with multi-GPU nodes. The block-sparse

evaluation of the ABCD term in Equation (1) in the so-called

atomic orbital formulation will serve as the target performance

benchmark; the reference CPU-only implementation of this

term was developed in the open-source Massively Parallel

Quantum Chemistry (MPQC) program [12].

III. DESIGN PRINCIPLES

As already mentioned, the problem is generated from a 4-

dimension tensor, but can be viewed as a matrix multiplication,

C ← C +AB, with the following characteristics:

• The matrices are composed of heterogeneous tiles: the size

of the tiles strongly vary across rows and columns. and many

of them are too small to provide high computational intensity.

• The matrices are block-sparse. A significant fraction of the

tiles in A and B are zero tiles (which opens the possibility for

some tiles of C to be zero tiles too). The non-zero tiles are

dense, thus efficient dense linear algebra GEMM kernels can

be used for the non-zero tile products. Only non-zero tiles are

stored in memory.

• The matrices have very different sizes: A and C are short-

and-wide, while B is square. More precisely, A has size

M × K, B has size K × N , and C has size M × N ,

where M ≪ K = N (typically N = 100M ). As for tile

indices, A has M (t) tile rows (of various heights) and B has

N (t) tile columns (of various widths) All these characteristics

dramatically complicate the problem.

• As pointed out in Section I, designing an efficient algorithm

for matrix multiplication on multi-GPU accelerated distributed

memory platforms is already a difficult task when A, B

and C are dense and square. Here, the heterogeneity of tile

sizes further hardens the management of GPU memory and

diminishes the peak performance of the kernels, while the

sparsity decreases data reuse across different GEMMs.

The target platform is composed of P processors, or nodes,

each equipped with g GPUs. We aim at executing the block-

sparse matrix product on a p× q process grid, where pq ≤ P .

For square and dense matrices, the traditional algorithm uses

a square 2D-grid with p = q, a 2D-cyclic distribution of the

three matrices, and computes C in place while A and B are

communicated through the network. The significantly larger

size of B in front of that of A and C requires changing the

traditional algorithm. In order to minimize network traffic, we

need to avoid circulating the largest of the matrices, so B

will be stationary. A solution is to distribute full columns of

B to processors, meaning that the distribution of B becomes

uni-dimensional on a flat 1 × q grid (where q = P ). Each

column of B is then entirely held by a single node, as opposed

to partitioned across grid rows. However, this alternative

is known to increase the communication volume related to

A; this is why 2D-grids are generally preferred for matrix

multiplication.

Yet another alternative is to duplicate the columns of B and

to use a p× q processor grid with p ≥ 2. In this last solution,

each grid row computes the product of an horizontal slice of A

by the whole matrix B. More precisely, A is segmented into

p horizontal slices, and all p grid rows work independently

on their own slice, without any communication and in full

parallelism. The price to pay is to replicate each column of B

p times in memory, one time per grid row, which puts pressure

on CPU memory, but not on GPU memory which is the actual

bottleneck for the computational perspective. We investigate

this last solution and keep the number p of grid rows as a

trade-off parameter: using p = 1 avoids the replication of B

but increases the communication volume of A; using p ≥
2 requires p copies of each column of B but decreases the

communication volume of A by a factor p.

The algorithm targets a 2D-grid of p× q processors where

p is a parameter and q = ⌊P
p
⌋, where P is the total number of

available processors, so that pq ≤ P (see Figure 1). The matrix

A is distributed with a standard 2D-cyclic distribution. Let

A(k) be the slice of A distributed on row grid number k where

0 ≤ k ≤ p− 1: A(k) is composed of tile rows of A of index i

such that i mod p = k. Let C(k) be the corresponding slice of

C (same row indices as A(k)). Row grid number k computes

the product C(k) ← C(k) + A(k)B. All these products are

independent and are executed in parallel. Therefore, we focus

on the description of the algorithm on a single grid row, and

keep using A instead of A(k) to ease notations. Recall that A

now has M(t)

p
tile rows (assume p divides M (t) for simplicity).

To ease reading, we will denote the algorithm in terms of rows

and columns, but remember that all operations are tiled, and

we use row to denote a tile row and column to denote a tile

column. The main operation of the algorithm on a processor

row of size 1× q is the following:

• Assign columns of B to the q processors, and on each

processor partition assigned columns into blocks, using

the load-balancing algorithm detailed in Section III-1.

• On each processor in parallel, compute the column blocks

one after the other. The size of a column block is

monitored so that its size does not exceed 50% of a GPU

memory. Hence each block will be transferred from the

CPU to the GPU only once. See Section III-2 for details.

• The operation within each block is segmented to avoid

GPU memory overflow. Communications from CPU to

GPU are carefully monitored throughout execution to

limit the number of A tiles transferred to GPU, in order

to ensure that no tile of B and C is ever flushed back to

CPU before all computations involving it, are completed.

See Section III-3 for details.

The overhead induced by the algorithm is of the same order

as the number of non-zero B tiles, and has a negligible cost

on execution. See the companion report [13] for details.

1) Column Assignment: To load-balance the product C ←
C+AB, let fk be the total number of floating point operations

(flop) corresponding to column k of B in the product, for

1 ≤ k ≤ N (t), assuming that non-zero tiles are dense. We

sort the columns by non-decreasing values of fk and assign

them to the q processors in a mirrored cyclic distribution: the

first q columns are assigned to the q processors in that order,

and the next q columns are assigned to the q processors in



q0 q1 q1 q0 q0q1

p0
p1

p0

p1
p0

q0 q1 q0 q1 q0q1

A is distributed 2D cyclic

B
is

g
en

er
at

ed

o
n

d
em

an
d

Number of columns

of B and tiles of A

that participate to a

phase depend on the

tiling, sparsity and GPU

memory

Fig. 1. Representation of a phase of the algorithm for the process at the
position (p = 0, q = 0) in the 2× 2 process grid. Dark grey represent data
used for computations by this process, light grey by other processes.

reverse order, and the process repeats every 2q columns. The

mirroring (reverse) pass is used to compensate the imbalance

due to the initial forward pass.

Let Bq denote the subset of columns assigned to processor

q. This node will be in charge to compute the same columns of

the product C. Note that C will therefore follow the same row

distribution as A and the same column distribution as B. The

assignment algorithm ensures that each node receives a set of

columns involving approximately the same amount of floating

point operations, at the granularity of the columns of B,

aiming at providing a good load-balance of the computations.

2) Partition into Blocks: Once the columns of B have

been assigned to the processors, they are divided into blocks

which are assigned to GPUs. While the assignment of columns

across nodes is intended to load-balance computations, the

partitioning into blocks on each node aims at monitoring GPU

memory usage. Locally, each processor computes a partition

of its columns into blocks whose size fits in half the memory

of one GPU. The goal is to enforce that each column of

B, together with the local C tiles in that column, will be

transferred only once to the GPU. The algorithm sorts local

columns (B columns assigned to the node) by non-increasing

memory size (volume of data for the column and local C

tiles) and allocates these columns in that order to the GPUs,

using a worst-fit algorithm. Each GPU starts with an empty

block which is filled as the worst-fit algorithm progresses. A

new block is created and assigned to a GPU in a round-robin

fashion when the current column does not fit anywhere, in

order to ensure no GPU is assigned more than one block

than any other GPU. During execution, blocks are transferred

from CPU to GPUs in sequence: the transfer of the next

block cannot start before operations on the current block are

completed (although some overlap is made possible by the

implementation as a task system, see Section IV). This is to

avoid new B tiles flushing out current B tiles still in use,

which is critical for performance [4]. Again, the size of a block

(including C tiles) is computed so as not to exceed 50% of

the GPU memory.

3) Segmentation into Chunks: There remains approxi-

mately 50% of GPU memory for A tiles, depending on the

space occupied by B and C. How to organize the transfer

of A tiles to maximize re-use within a block? Say there are c

columns of B in the block. We would like to work with groups

of several rows of A in parallel, say r rows, and to segment the

transfer of these tiles by chunks of k tiles per row: this mimics

the traditional algorithm that maximizes re-use by allowing b

chains of GEMMs to progress in parallel (one per column) and

enforcing a total of brk GEMMS with only rk transfers of A

tiles. The value of the chunk depth k is computed for each new

chunk of A so that rk tiles of A fit in the remaining memory of

the GPU. Unfortunately, there is no guarantee that such a nice

re-use will be achieved for our problem, because of the sparsity

pattern of the tiles. It may well be the case that a tile of A is

used only once instead of c times in the block, if c−1 out of the

c potential products involving it are with zero tiles of B. Still,

this segmentation should improve re-use, and we implement it

into chunks of r rows of A. However, due to the heterogeneity

of the tiles, we cannot load k tiles per row any longer; instead,

we build chunks greedily by adding one tile per row of A in

a cyclic fashion until half the remaining GPU memory, i.e.,

25% of total GPU memory, is exhausted. The other half of

remaining memory, i.e., the last quarter of total GPU memory,

is saved to prefetch the next chunk of A tiles, to increase the

overlap of communications with computations. Owing to this

careful GPU memory management, chunks can proceed with

minimal gap due to communications of A tiles, and without

any flushing of B and C tiles back to CPU memory.

IV. IMPLEMENTATION

This algorithm has been implemented using an inspector-

executor strategy over the Parameterized Task Graph (PTG)

language [14] over the PaRSEC runtime system [15]. The

implementation, as well as the benchmarks used to evaluate it

are available at [5]. See [13] for more information on PaRSEC

and PTG. The idea behind PTG is to define the Directed

Acyclic Graph (DAG) of tasks as a concise and parameterized

collection of tasks that exchange data through flows. Tasks

are defined using task classes (a rudimentary templating ap-

proach), and task classes express synthetic conditions to enable

input and output flows that carry the data. When the algorithm

is regular, these conditions are fixed by a few parameters of the

problem (e.g., the input matrix size, the tile size). In our case,

however, the problem is irregular, both because the matrices

are block-sparse and because they are irregularly tiled. Thus,

an inspector phase computes first what tasks exist, and how the

data must flow between them. Then, a generic PTG that takes

as input an execution plan produced by this inspector phase,

allows the runtime system to execute it. This is sufficient to

obtain a correct implementation of the irregular block-sparse

matrix product. However, in order to implement the algorithm

described above, one needs to be able to control the flow of

data across node boundaries; so we introduce, in addition to

the necessary data flow, a control flow that constraints the

choices of the runtime scheduler to those allowed by the



algorithm (Section III). Thus, the algorithm representation

can be seen as the superposition of two DAGs, having the

same nodes (the tasks) but different sets of edges. One DAG,

the dataflow DAG, represents the tasks and the data flow

between them, a pure dataflow description of the algorithm

as an unhindered rendition of the potential parallelism. The

second DAG, the control DAG, represents a set of performance

constraints, that are application and architecture specific, and

that are necessary for the runtime to provide a finer control

of the existing parallelism, in order to constraint when data

transfers happen. This is the way chosen to optimize the

execution of the tasks represented by the dataflow DAG.

The control flow DAG is also expressed within the PTG,

and depends on the GPU memory, and the sparsity of the

input matrices. Thus, it is also computed during the inspection

phase, and provided as part of the execution plan. Note,

however, that communications between nodes and transfers

between the main RAM to GPUs are not explicit: they are

deduced from the dataflow and realized in the background

(i.e., in parallel of task executions) by the runtime system.

As a consequence, when the algorithm reserves 50% of a

GPU memory to receive tiles of B and C when building a

block, this is really implemented by constraining, with control

flow, which tasks are ready to execute on that GPU, so they

cannot refer more than 50% of the GPU memory if they were

scheduled together on that GPU. Data transfers happen at the

granularity of tiles, and tasks are scheduled as soon as the

data they need is available on the GPU. The same applies to

node-to-node transfers: although processes sharing the same

row in the process grid need to have a copy of their share of

the matrix A, this broadcast happens in the background, at the

tile granularity, and tasks can be scheduled as soon as the data

they need becomes available.

In addition to the data flow, PaRSEC programmers need to

provide a description of the data to the runtime system. In our

case, the matrices A and C are given using the data collections

library available in PaRSEC. The matrix B, however, is stored

implicitly: generation functions allow to instantiate any tile

when needed. We extended PaRSEC’s data collection library

by developing a new data collection that instantiates the tasks

corresponding to the tile generation on demand, when a tile

needs to be instantiated. The usual mechanisms within the

PaRSEC runtime system to manage the life-cycle of these

data is then used to cache them as long as they are needed by

any task, and discarded after this. The algorithm ensures that

each tile of B is instantiated at most once per node that needs

it (as noted, columns of B are replicated between processes

that share the same column in the process grid), and since

the generation routine requires complex computation of some

integrals that does not map well onto GPUs, these tasks are

always executed on the CPUs.

Last, implicit data movement allows the runtime system to

select the ’best’ source of data, when multiple sources are

available. This happens, for example, when two GPU devices

need the same tile of A in our algorithm. One GPU needs

to pull it from main memory, but the second may use the

copy already on the first one, leveraging the fast NVlink

to implement a device-to-device copy, thereby reducing the

pressure on the PCI-Express bus to allow other memory

transfers. This feature comes directly from the runtime system

and does not require any modification of the algorithm itself.

V. PERFORMANCE EVALUATION

All performance measurements presented below were run

on Summit, hosted at Oak Ridge National Laboratory. Summit

holds 4,600 IBM AC922 compute nodes, each containing

two POWER9 CPUs and 6 NVIDIA Volta V100 GPUs. The

POWER9 CPUs have 22 cores running at 3.07 GHz, and 42

cores per node are made available to the application. Dual

NVLink 2.0 connections between CPUs and GPUs provides

a 25GB/s transfer rate in each direction on each NVLink,

yielding an aggregate bidirectional bandwidth of 100GB/s.

PaRSEC, the proposed GEMM implementation and the

driver program were all compiled in optimized (Release)

mode, using XLC 16.1.1-2, CUDA 9.2.148, Spectrum MPI

10.3.0.0 available on the Summit programming environment.

The BLAS3 GEMM kernel was the one provided in the

cuBLAS library shipped with CUDA. We measured the prac-

tical peak of the GEMM kernel in this version of cuBLAS and

this hardware at 7.2Teraflop/s per GPU. To obtain this value,

we ran a single GEMM operation on large matrices that were

pre-initialized in the GPU memory, repeated the operation 10

times, and took the fastest run measured.

All performance evaluation results presented below are ob-

tained by measuring the time of executing the implementation

described in Section IV, with the matrix A distributed between

the nodes in a 2D-cyclic fashion, C empty (the necessary tiles

will be allocated and initialized to zero when needed), and B

generated on demand, on the cores. The time to generate B

and inspect the execution, as well as the time to move data of

C back and forth to the GPU, are all taken into account in the

measurements presented below. Moreover, it is important to

point out that, due to the target domain science, in most cases,

the matrices A and C are too large to fit in GPU memory.

Each point is measured 5 to 10 times, and all figures

showing performance present a Tukey box plot at the mark.

On most figures, the measured variability is so small that the

box plot is hidden by the mark or the line placed at the mean

value, highlighting the stability of the distributed algorithm.

A. Synthetic Benchmarks

First, we consider matrices with random sparsity, in order

to understand the performance of the implementation in a

controlled setup. We set the number of nodes to 16, and start

from a square and dense problem (M = K = N ), then

increase N and K (keeping K = N to mimic the aspect ratios

of the matrices involved in the target coupled-cluster ABCD

contraction), and also decrease the density. Irregularity of tiling

is set randomly to be uniform between 512 and 2048 (in each

dimension), and both input matrices (A and B) have the target

density (the density of C being computed from the shape and

non-zero tiles of A and B). To decide which tiles are zero in











of multiple GPUs per node [23]. GAMESS has demonstrated

a GPU-capable implementation of select terms in the CCSD

code on 1 node with 1 GPU [32].

VII. CONCLUSION

In this paper, we focused on the block-sparse tensor con-

traction, a paradigmatic kernel in many scientific applica-

tions, whose characteristics (heterogeneity, sparsity, reduced

computational intensity) make it a challenging candidate for

distributed multi-GPU platforms. We have provided a highly-

tuned algorithm that carefully orchestrates task executions

and data transfers between CPU and GPUs and between

nodes to maximize resource occupancy. The flexibility and

programmability of the underlying PaRSEC runtime greatly

improved the algorithm implementation while providing a

highly efficient support for multi-GPU distributed-memory

platforms. The resulting implementation takes advantage of

the GPUs, a major source of computing power, and obtains

an efficiency and performance yet unrealized in the domain.

Although comparison with existing tools to solve the same

problem are not straightforward because these tools do not run

on the same hardware, the deployment on a real case shows a

factor 10 of speedup using the same nodes. This shows that our

new algorithm offers promising perspectives to solve problems

of unprecedented scale and complexity.

Future work will aim at modeling the interactions between

the tiling and the performance, in order to increase the effi-

ciency of the algorithm. We will also extend the experiments

to larger problems, representative of more complex molecular

structures. Although we focused the evaluation on a repre-

sentative of the most sparse cases, different molecules have

the potential to provide much denser and compute-intensive

input matrices, thereby (likely) enabling our algorithm to reach

higher peak performance.

REFERENCES

[1] Oak Ridge National Laboratory, “Oak Ridge Leadership Computing
Facility,” https://www.olcf.ornl.gov/.

[2] Top500, “Top 500 Supercomputer Sites,” June 2020, https://www.
top500.org/lists/2029/06/.

[3] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
Design of a Modern Distributed and Accelerated Linear Algebra Li-
brary,” in SC’2019. ACM Press, 2019.

[4] T. Herault, Y. Robert, G. Bosilca, and J. J. Dongarra, “Generic matrix
multiplication for multi-GPU accelerated distributed-memory platforms
over PaRSEC,” in 10th ScalA Workshop @SC. IEEE, 2019, pp. 33–41.

[5] T. Herault, Y. Robert, G. Bosilca, R. J. Harrison, C. A. Lewis, and E. F.
Valeev, “Distributed-memory multi-GPU block-sparse tensor contraction
for electronic structure: software artifact,” https://bitbucket.org/herault/
irr-gemm-gpu-over-parsec, commit 17c88d2, April 2020.

[6] I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry and Physics:

MBPT and Coupled-Cluster Theory, ser. Cambridge Molecular Science.
Cambridge University Press, 2009.

[7] C. Peng, J. A. Calvin, F. Pavošević, J. Zhang, and E. F. Valeev,
“Massively Parallel Implementation of Explicitly Correlated Coupled-
Cluster Singles and Doubles Using TiledArray Framework,” J. Phys.

Chem. A, vol. 120, no. 51, pp. 10 231–10 244, Dec. 2016.
[8] C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, “Sparse

maps—A systematic infrastructure for reduced-scaling electronic struc-
ture methods. II. Linear scaling domain based pair natural orbital
coupled cluster theory,” J Chem Phys, vol. 144, no. 2, Jan. 2016.

[9] R. A. Van De Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[10] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-Optimal Parallel Recursive Rectangular
Matrix Multiplication,” in IPDPS. IEEE, 2013.

[11] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Dem-
mel, “A massively parallel tensor contraction framework for coupled-
cluster computations,” JPDC, vol. 74, no. 12, pp. 3176–3190, 2014.

[12] C. Peng, C. Lewis, X. Wang, M. Clement, F. Pavosevic, J. Zhang,
V. Rishi, N. Teke, K. Pierce, J. Calvin, J. Kenny, E. Seidl, C. Janssen,
and E. Valeev, “The Massively Parallel Quantum Chemistry Program
(MPQC), Version 4.0.0,” http://github.com/ValeevGroup/mpqc, 2018.

[13] T. Herault, Y. Robert, G. Bosilca, R. Harrison, C. Lewis, E. Valeev,
and J. Dongarra, “Distributed-memory multi-GPU block-sparse tensor
contraction for electronic structure (revised version),” INRIA, Tech. Rep.
9365, 2020, available at https://hal.inria.fr/hal-02970659v1.

[14] A. Danalis, G. Bosilca, A. Bouteiller, T. Hérault, and J. J. Dongarra,
“PTG: an abstraction for unhindered parallelism,” in 4th WOLFHPC

workshop @SC. IEEE, 2014, pp. 21–30.

[15] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “PaRSEC: Exploiting Heterogeneity to Enhance Scalability,”
IEEE Comp. Science Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[16] liDBCSR, “A sparse matrix library,” https://www.cp2k.org/dbcsr, 2020.

[17] O. Schütt, P. Messmer, J. Hutter, and J. VandeVondele, GPU-Accelerated

Sparse Matrix–Matrix Multiplication for Linear Scaling Density Func-

tional Theory. John Wiley & Sons, Ltd, 2016, ch. 8, pp. 173–190.

[18] I. Sivkov, P. Seewald, A. Lazzaro, and J. Hutter, “DBCSR: A blocked
sparse tensor algebra library,” in PARCO, ser. Advances in Parallel
Computing, vol. 36. IOS Press, 2019, pp. 331–340.

[19] R. Kobayashi and A. P. Rendell, “A direct coupled cluster algorithm for
massively parallel computers,” Chem. Phys. Lett., vol. 265, no. 1-2, pp.
1–11, Jan. 1997.

[20] J. Almlof, “Elimination of energy denominators in Møller—Plesset
perturbation theory by a Laplace transform approach,” Chemical physics

letters, vol. 181, no. 4, pp. 319–320, Jun. 1991.

[21] C. A. Lewis, J. A. Calvin, and E. F. Valeev, “Clustered Low-Rank Tensor
Format: Introduction and Application to Fast Construction of Hartree–
Fock Exchange,” J. Chem. Theory Comput., vol. 12, no. 12, pp. 5868–
5880, Dec. 2016.

[22] J. A. Calvin, C. A. Lewis, and E. F. Valeev, “Scalable task-based
algorithm for multiplication of block-rank-sparse matrices,” in IA3 ’15.
ACM Press, 2015, pp. 1–8.

[23] C. Peng, J. Calvin, and E. F. Valeev, “Coupled-Cluster Singles, Doubles
and Perturbative Triples with Density Fitting Approximation for Mas-
sively Parallel Heterogeneous Platforms,” Int. J. Quant. Chem., vol. 12,
no. 119, p. e25894, 2019.

[24] S. Gray, A. Radford, and D. P. Kingma, “Gpu kernels for block-sparse
weights,” arXiv preprint arXiv:1711.09224, vol. 3, 2017.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[26] T. Davis et al., “SuiteSparse : a suite of sparse matrix software,” http:
//faculty.cse.tamu.edu/davis/suitesparse.html, Apr 2020.

[27] E. H. Rubensson, E. Rudberg, and P. Sałek, “A hierarchic sparse matrix
data structure for large-scale hartree-fock/kohn-sham calculations,” J.

Computational Chemistry, vol. 28, no. 16, pp. 2531–2537, 2007.

[28] E. H. Rubensson and E. Rudberg, “Locality-aware parallel block-sparse
matrix-matrix multiplication using the chunks and tasks programming
model,” Parallel Computing, vol. 57, pp. 87 – 106, 2016.

[29] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix
multiplication: The distributed block-compressed sparse row library,”
Parallel Computing, vol. 40, no. 5-6, pp. 47–58, Apr. 2014.

[30] CP2K, “Open source molecular dynamics,” https://www.cp2k.org, 2020.

[31] W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal, “Op-
timizing tensor contraction expressions for hybrid CPU-GPU execution,”
Clust. Comput, vol. 16, no. 1, pp. 131–155, 2013.

[32] A. Asadchev and M. S. Gordon, “Fast and Flexible Coupled Cluster
Implementation,” J. Chem. Theory Comput., vol. 9, no. 8, pp. 3385–
3392, Jul. 2013.


