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ABSTRACT

In Open Source Software (OSS) projects, pre-built tools dominate
DevOps-oriented pipelines. In practice, a multitude of configuration
management, cloud-based continuous integration, and automated
deployment tools exist, and often more than one for each task. Tools
are adopted (and given up) by OSS projects regularly. Prior work
has shown that some tool adoptions are preceded by discussions,
and that tool adoptions can result in benefits to the project. But
important questions remain: how do teams decide to adopt a tool?
What is discussed before the adoption and for how long? And, what
team characteristics are determinant of the adoption?

In this paper, we employ a large-scale empirical study in or-
der to characterize the team discussions and to discern the team-
level determinants of tool adoption into OSS projects’ development
pipelines. Guided by theories of team and individual motivations
and dynamics, we perform exploratory data analyses, do deep-dive
case studies, and develop regression models to learn the determi-
nants of adoption and discussion length, and the direction of their
effect on the adoption. From data of commit and comment traces of
large-scale GitHub projects, our models find that prior exposure to
a tool and member involvement are positively associated with the
tool adoption, while longer discussions and the number of newer
team members associate negatively. These results can provide guid-
ance beyond the technical appropriateness for the timeliness of tool
adoptions in diverse programmer teams.

Our data and code is available at https://github.com/lkyin/tool_
adoptions.
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1 INTRODUCTION

OSS software development practices are evolving away from de
novo programming and toward adopting pre-made tools for various
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tasks, which are then integrated into existing development and pro-
duction pipelines [14, 50]. Part of the reason for this has been the
popularity of the DevOps software development movement, which
seeks to bring changes into production as quickly as possible with-
out compromising software quality, primarily by automating the
processes of building, testing, and deploying software. In practice,
DevOps is supported by a multitude of configuration management,
cloud-based continuous integration, and automated deployment
tools, short-circuiting the need for coding from scratch [22, 24].
Using pre-made tools can shorten the development process, so long
as an appropriate set of tools is used and properly integrated into a
development pipeline.

Tool adoption decisions, however, are often not well informed.
DevOps engineers frequently lack the decision-making support to
help them discern the best choices among the many tools avail-
able [24]. In large part, that’s because current empirical evidence on
the effectiveness of DevOps practices is, at best, fragmented and in-
complete. While questions about best tools and practices in DevOps
abound in online forums, the existing answers are typically generic
rules of thumb, or dated advice, mostly based on third-party expe-
riences, often non-applicable to the specific context. While they
likely consider that scattered knowledge, teams seem to leverage
their strengths and experiences in making tool adoption decisions.
Some tool adoption events in projects are preceded by a discussion
among team members on the issues involved [24], but it is not clear
what is discussed in them among team members and how those
discussions correlate with adoption decisions.

Moreover, instituting a project-wide change is a complex social
process when there are many stakeholders [44]. Adopting a new
tool, e.g., can require a team-wide adjustment in practices that affect
every developer—thus they are all stakeholders in the adoption
decision. This is especially true when the team is more diverse in
terms of developer tenure with the project, their prior exposure
to the tool being considered for adoption, and their day-to-day
involvement in the project. Naturally, supporters and detractors can
and do arise over decisions when developers espouse different views
toward a tool, resulting in champions and detractors, and sometimes
arguments can get emotional [20, 27]. Many of these individual and
team-level factors may contribute to the ultimate adoption decision,
but which ones actually do? And in what proportion?

Inspired by the availability of large, comprehensive data sets on
tool adoptions from diverse GitHub projects, here we undertake
both qualitative and quantitative methods to uncover the social
determinants of team discussions and dynamics leading to tool
adoption events in OSS projects. We operationalize our study at
the team-level instead of at the individual level. Central to our
study is the analogy that a project team adopting a tool is akin to
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a community adopting an idea. We use theories on diffusion of
innovation and individual and team social judgment to guide us in
discerning the important factors underlying tool adoption.

We start from a data set of social and technical traces from a large
number of GitHub projects, together with project-tool adoption
data for each. Then, we perform exploratory data analyses, do deep-
dive case studies, and built regression models to determine how
team properties and their communication behaviors are associated
with tool adoptions. We find that:

e Team dynamics changes around adoption time in substantial
ways, and some of those changes remain with the project.

e Project teams undergo meaningful discussions and exhibit
significant dynamics changes in the period before and after
a new tool is adopted.

o Influencer developer’s participation is associated with shorter
discussion length, and likelier tool adoption.

o New developers are positively associated with longer discus-
sion length and lower adoption success.

Related questions have been asked before, in narrower settings.
Zhu et al. [54] use code accept/ignore rate to compare the goodness
between issue tracker and pull request systems, but less focus on
the adoption dynamics. Using surveys Xiao et al. [52] find that
coworker recommendation is a significant determinant of security
tool use. Witschey et al. [51] find that the strongest predictor of
using security tools is the ability to observe their coworkers using
those tools. These findings are based on a small number of commer-
cial software projects and can be difficult to generalize, especially
to OSS projects. Moreover, surveys, by their nature are based on
individual experience and feedback. Kavaler et al. [24] have looked
more comprehensively at a large swath of JavaScript projects, but
have focused more on the effects of tool choices on software en-
gineering outcomes, and found that some choices are better than
others.

2 BACKGROUND AND THEORIES

Here we position our current work in the space of representative
prior work on tools, tool adoptions, and OSS teams, as well as
present two most relevant sociological theories that will guide our
hypotheses and research questions.

2.1 Tools, Teams and Adoptions

Software developers use various techniques to implement and main-
tain software, including, at times, adopting new technology [7]. T.
Gorschek et al. [12] describe five different stages in technology
transfer, including identifying potential problems, formulating is-
sues, proposing candidate solutions, validations, and releasing so-
lutions. S.L Pfleeger [32] proposed a model of technology transfer
that can be tailored to a particular organization’s needs. Riemen-
schneider et al. [35] find that opinions of developers’ coworkers
and supervisors on using some technology matters to an individual
developer when they consider whether to use this method. Our
paper extends such implications to tool adoptions in OSS projects.

Marlow et al. [29] find that length of tenure may be associated
with attitudes toward new tools. More senior developers may get
more attached to a working style, thus making them less flexible
to adopt new tools. New developers [10], in contrast, need less
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time to adapt to a new working style due to lack of history in
the project, and eagerness to learn/follow technology trends. Xiao
et al. [52] find developers are more likely to adopt a tool if their
peers or co-workers are using or have used it. Also, if experienced
individuals join a project, their knowledge and social ties move
with them to the project [1, 49]. Thus, the sum-knowledge of the
whole team is constantly changing as the project evolves. Likewise,
previous research has found that emotional contagion from co-
workers can percolate within the team [15, 39] causing a slowdown
in communication and productivity.

With publicly available traces of working records and discus-
sions, it is possible for researchers to study team dynamics before,
during, and after a change. However, studying tool adoptions is
complex because of the variety of contributing factors. Previous
work [16] has found that changing previous practices can force
software developers out of their safe zone, resulting in nonconfor-
mity with the methodology. Zelkowitz et al. [53] find that many
software professionals are resistant to change, and that timing is of
importance when adopting new technology. Johnson et al. [21] con-
sider that having intuitive defect presentation may contribute to the
willingness of using static analysis tools. Related literature [51, 52]
shows that developers’ social networks (e.g., through discussions
about tools [43]) benefit the spread of tools. Poller et al. [33] pointed
out correlations between organizational factors and the success of
security practices.

2.2 Diffusion of Innovations Theory

Diffusion of innovations (DOI) theory was first proposed by Rogers
in 1983 [36], and has since become popular in socio-technical fields.
Rogers considered diffusion as the process by which an innova-
tion unfolds over time through communication channels among
the population, and found that some properties of innovation are
crucial to an adoption: perceived usefulness, perceived complexity,
peer pressure, etc. The innovation diffusion process at an orga-
nizational level can be summarized as having two stages [36, 40]:
initiation (perceiving the issues, and knowing they can be addressed
by adopting certain innovations), and implementation (adopting the
innovation and customizing it to fit own culture if necessary, then
the team-collected information reinforces/devitalize the adoption
until the innovation becomes a part of the organization).

In the context of software engineering, DOI theory can be of
vital value to offer understandings of the phenomenology and con-
sequences. E.g., tool builders want to know if anyone will use the
tool they built, and how to persuade the community to use it. For
general developers, they want to know if there exist tools to help
them be more efficient. However, even if a tool can be beneficial,
individual resistance may still exist. To reduce such individual resis-
tance, organizational mandate has been shown to have influence on
adoptions [16, 35]. However, those authors also find that the orga-
nizational mandate is not sustainable compared to other factors. A
catalog of non-coercive adoption patterns has been proposed [40],
to help organizations achieve successful software engineering prac-
tices in a more persuasive manner.

In GitHub OSS projects, Bertram et al. [2] found that communi-
cation and knowledge sharing exist for coordinating work in issue
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trackers. This suggests that developers within a project communi-
cate and learn from each other [45]. Moreover, knowledge sharing
exists even across projects. Singer et al. [40] noted that some devel-
opers use GitHub to learn how other projects use the same tools in
their projects. Thus, developers in the GitHub ecosystem, and in its
tighter sub-ecosystems, share and distribute knowledge about tools
through participation in different projects, thus creating a diffusion
process.

2.3 Social Judgment Theory

Social Judgment Theory (SJT) [4] was proposed to study how people
self-persuade to adopt a new idea when they encounter it. Accord-
ing to SJT, when people are exposed to new information or a new
environment, they tend to consider three things. First is their pre-
viously formed attitude, or anchor to which they compare the new
idea [46]. Then they look at available alternatives. In this process,
people recognize themselves, form their views, and express their
ideas. Finally, there is the ego involvement or the centrality of the
issue being considered to a person’s life, which can explain why
people can accept some ideas and novelty easier than others. In-
dividuals with high ego involvement on an issue tend to be more
passionate on the topic and are more likely to evaluate all possible
positions [13]. High-ego individuals also have a larger latitude of
rejection, and it is difficult to persuade them to adopt a new idea. In
contrast, low-ego individuals tend to have a larger non-commitment
latitude, meaning they often do not take a stance on an issue, and
they do not care much about the arguments.

There are several ways to aggregate the judgments of individuals
from a group into a group judgment [11, 37]. Mathematical aggrega-
tion amounts to simple counting/averaging of individual judgment.
On the other hand, behavioral aggregation is the outcome of group
members agreeing after discussing the matter. Experimental ev-
idence suggests that group judgment is generally more accurate
than individual judgment, and how it is measured can be significant
to the outcome [11]. However, others found that the superiority
of group judgment is due to reliability produced by larger sam-
ples [25].

In the context of OSS projects, team discussions on tool adop-
tions transpire during which possible options are proposed. These
discussions can be considered a form of behavioral aggregation of
individual opinions. However, group judgment may get biased, as
high-ego individuals with strong opinions can potentially sway a
group decision in their direction, even if it offers no overall benefit.

3 HYPOTHESES AND RESEARCH QUESTIONS

Central to this paper is the analogy that adopting a tool is akin
to adopting an idea. An OSS project involves a social organiza-
tion in which activities are coordinated through communication
to achieve both individual and collective goals. By coordinating
activities, the organizational structure has to be created to assist
individuals to communicate. In GitHub projects, in particular, the
two main communication channels are through code committing
and issue posting. Moreover, contributing code changes and approv-
ing others’ pull requests suggests that the developers are mutually
aware of each other, and this forms the basis for communications
and discussions.
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The DOI theory suggests that innovations and new technolo-
gies can be spread to teams through diffusion. For tool adoption
in GitHub projects, this diffusion happens through information
exchange within and between projects, through their developers.
One mechanism is through reading/participating in discussions
that are accessible to all team members in a project. The publicly
available traces of commits and comments allow us to study dis-
cussion dynamics of how tools are perceived, discussed, and then
finally adopted. Thus, a hypothesis arising from DOI is that devel-
opers who have previously had exposure to certain tools will be
more knowledgeable of them and contribute to a discussion on it,
to make the adoption process smoother and faster.

On the other hand, SJT suggests that since it is likely some devel-
opers prefer adopting a tool more strongly than other developers do,
the former naturally will have high-ego on adoptions. A hypothesis
arising is that developers who post more comments on tools than
others will be the influencers in the discussions, and will affect
the direction of the adoption. Moreover, contributing to cognitive
dissonance, people will react more strongly to negative information
than positive information [42]. Therefore, another hypothesis is
that the people’s discussion sentiment (positive or negative) may
correlate with eventual tool adoption.

We formalize the above into our Research Questions (RQs), as fol-
lows. First, we seek to uncover the patterns and changes happening
at team-level, in the period surrounding tool adoption events.

RQ1: What is the team dynamics when a project team goes
through the process of adopting a new tool?

Then, we want to understand what goes on in the discussions
before and after the tools are adopted.

RQ2: What topics are discussed during tool adoptions? How are
people’s sentiments evolving toward the tools they are adopting?

Next we look at notable individuals in the discussions. According
to the aforementioned theories, people who care the most and
comment voluminously, i.e. influencers, may play a significant role
in the innovation diffusion process. Namely,

RQ3: Are tool adoption events associated with influencers? How
much does their opinion weigh in on others?

In the final thrust, to comprehensively understand tool adoption
and discussions, we quantitatively model adoptions and discussion
length in terms of our chosen variables using multiple regression.

RQ4: What are the quantitative determinants of project-wide
tool adoption and the preceding discussion length?

4 DATA

We start from a data set by Trockman et al.[48] of GitHub npm
projects that have adopted any of 19 different DevOps tools .
They were collected by gathering tool badges from the projects’
README.md files. Some projects use badges to signal important
information [34], e,g, code coverage percentage ,
number of downloads per month [ downioads 1.1k | package dependen-
cies [EZIEEEE) and continuous integration status [ builc Jpassing gy NS
tool adoption data is current as of Jan 2019. The data set consists of
52,923 distinct GitHub projects, the adopted tools, and the adoption
dates. In total, 96,176 tool adoptions are identified, or about 2 tool
adoptions per project on average. Among them, 28,430 projects

!Data and code is available at https://github.com/lkyin/tool_adoptions
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Table 1: Tool adoption event summary

Tool Task Class Per Tool Per Tool Category
karma 4116
sauce Browser 1654 6157
selenium 387
coveralls 14430
codecov 4239
codeclimate Coverage 2731 21626
codacy 213
coverity 13
uglify 2018
minimist Minifier 62 2124
minifier 44
mocha 33280
istanbul Testing 11864 47119
jasmine 1975
eslint 10978
standard Linter 4827 18969
jshint 3164
snyk 179
gemnasium Dependence Manager 2 181

adopted only one tool, 11,272 projects adopted two tools, 8,900
projects adopted three tools, and 3,378 projects adopted four tools.
Projects which have adopted more than four tools are fewer than
2% of the total.

The collected tools can be classified into the following six cate-
gories according to their functionality. We illustrate each category
with an example tool. Browser testing: e.g., Selenium is an auto-
mated testing framework for automated testing of web applications
and User Interfaces (UIs) [6]. Test Coverage: e.g., Coveralls mea-
sures software quality in terms of test cases line coverage, function
coverage, branch coverage, and statement coverage [17]. Minifier:
e.g., Uglifyjs is a JavaScript compressor tool used to merge and
minimize JS resources by removing blank rows, shorten the vari-
ables and functions names to make the web applications load faster
[41]. Testing: e.g., Mocha has good support for testing asynchro-
nous code, allowing any use of failed exception test libraries [9].
Linters: e.g., ESLint is a plug-in JavaScript code style/error detec-
tion tool [47], thereby achieving effective control of the quality
of the project. Dependency managers: e.g., Snyk helps developers
track the dependency tree to find which module introduces the
vulnerability [30, 38]. The categories and the summary statistics of
adoption data is given in Table 1.

4.1 Data Collection and Cleaning

We use the GitHub API (v3) [8] to collect and extract historical
records of the commits and discussions from the GitHub projects.
For commits data, the author is the one who made the changes,
while the committer is the one who committed the changes to
GitHub. Thus, we align the ‘author’ with each commit. For discus-
sions, since the commit messages are usually not meaningful [19],
we only collect and use issues and comments as their discussions.

Some projects have very low levels of activity, while others have
team sizes that may be too small to study their dynamics. To avoid
those, in this paper commits and comments of only the durable
and persistent projects are collected. We set three requirements: (1)
Durable: The projects that have commit records spanning at least
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two years. (2) Persistent: The projects having at least 6 months of
commit history before and after the tool adoption event and have
at least 50 total commits. (3) Related: The projects having at least
one comment related to the adopted tools. After filtering, the final
data set consists of 684 distinct GitHub projects.

Since we focus on discussion comments which specifically as-
sociate with tools, we filter out all discussion comments which do
not explicitly mention a tool name (of the 19 tool names), with the
following exception. If an issue starts a thread and mentions a tool
name, the replies to that thread are likely a part of the discussion,
therefore, all comments following the tread are also included even
if they do not contain a tool name. On the other hand, some issues
are automatically posted, e.g., by continuous integration (CI) tools;
we identify the comments by checking the title of the comments
(e.g., ‘[Snyk Update]’) and exclude the comments from the data set.

We identify and remove the following strings from comments
that do not comprise text, as they would bias downstream analysis:
non-ASCII characters (by checking if all characters are from ‘u4e00’
to “u9fff’), code snippets (by checking if the comments are enclosed
with single or triple backticks), URLs (by using the regular expres-
sion from the re module in Python 3.7 with pattern ‘https?://S+’),
and emojis by checking the encoding of the characters. Finally, since
some comments mention multiple tools at the same time, therefore,
they are counted multiple times. To avoid such duplication by those
comments (about 1.77% of the total), we manually re-label these
comments with only one tool, we achieve this mainly by referring
the outcome of the adoption (which one is finally adopted) and
context of the discussion.

4.2 Variables Used

The variables that we use in this study have been identified based
on our discussion and consideration of the underlying theories.
They include the following.

Outcomes: Adoption success and discussion length. Adoption
success (adoption_success) is a binary variable (0="No" or 1="Yes")
indicating whether a tool was adopted in a project. A successful
adoption is if a tool is being used in a project, regardless of whether
discussions on it ever happened. An unsuccessful adoption is if a
project’s team had a discussion on a tool yet they never adopted
it. Discussion length (discussion_length) for a project and a tool is
calculated as the number of months from the first day the tool was
mentioned in the project discussion, until the tool was adopted. The
discussion length suggests how long it takes for teams to reach an
agreement and eventually adopt the tool, although in practice can
be much longer if the team keeps coming back to discussing a tool
after longer breaks without mentioning it. To address those cases
we introduce a control variable num_mentions, see below, which
measures the volume of tool mentions in a discussion.

Controls: Project Age, Number of Commits, Number of Com-
ments/Mentions. Project age (project_age) at the time of adoption
of a tool is the number of months from the first commit date in the
project to that specific tool’s adoption date. Number of Commits
(num_commits) at the time of adoption is the number of commits
made during the discussion (based on the discussion length above)
on that tool, in the project. Number of Comments (num_comments)
/ Mentions (num_mentions) is defined as the number of comments
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Table 2: Summary statistics for our 10 variables over all 1,085
adoption events (after removal of top 2% as outliers)

Statistic Mean St. Dev. Min Max
adoption_success 0.798 0.402 0 1
discussion_length 9.927 11.428 0.033 56.633
project_age 33.542 20.688 6 100
num_comments 15.852 32.792 1 272
num_commits 338.246 588.521 0 4,163
num_new_dev 18.852 32.933 0 252
num_w_tool_expos 7.724 13.973 0 133
num_involved_dev 2.373 2.377 1 23
num_neg_dev 0.678 1.077 0 7
num_pos_dev 0.641 0.975 0 8

(including all follow-up comments in the same thread) made in
that tool’s discussion interval, while the number of mentions only
counts the number of comments which explicitly mention the tools,
for a given project. Tool (tool) is the full name in lowercase of the
corresponding tool (e.g., eslint).

Team Metrics: We calculate team measures for each project, for
each tool discussion. New Developers (num_new_dev) at time t in
the project are those developers who have made their first con-
tribution (either by committing code changes or participating in
discussions) within the 3 months prior to t. For convenience, we
refer to all other developers who are not new developers as Senior
developers. Developers with prior tool exposure (num_w_tool_expos)
are the developers who had already been in a project before time ¢
that had used that tool, and have committed code changes before
time ¢ to current project (but after their contributions to the other,
tool using project). In contrast, the developers without prior expo-
sure are the ones who did not participate in a project that had used
the tool before time t. Involved Developers (num_involved_dev) are
the developers who have been involved (i.e., participated) in the tool
discussion. Positive Developers (num_pos_dev) are the developers
who have posted overall more comments with positive sentiment
than negative sentiment in the tool discussion. While Negative De-
velopers (num_neg_dev) are the opposite. The descriptive statistics
for the metrics are shown in Table 2.

5 METHODS

5.1 Topics Identification

We use Latent Dirichlet Allocation (LDA) [3] to study topics in
discussions. LDA is a statistical technique used to identify topics
in large documents and high-frequency words associated with the
topics. LDA yields a topic probability distribution for each docu-
ment, enabling topic clustering and/or text classification across all
documents in a set.

Before training the LDA model, we pre-processed the GitHub
comments by tokenizing with the Apache Open NLP library [26],
and stemming with the Porter stemmer (this removed all stop-words
from the comments). Due to the large number of discussions we
have, many high-frequency words are not very meaningful. To get
a corpus with a higher concentration of topics [28], we removed
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both the 5% words with the lowest frequency (e.g., user names) and
the 5% words with the highest frequency (e.g., bugs). After this, the
LDA model is more able to distinguish topics from each other.

5.2 Sentiment Analysis

A sentiment analysis tool identifies the emotional characteristic of
a text, typically in terms of its aggregate positivity or negativity.
Many sentiment analysis tools used in software engineering are
trained solely on social media corpora, e.g., Twitter, Facebook, and
Yelp. However, some words in the context of software engineer-
ing can represent a different meaning compared to social media
corpus [23, 39]. For example, to ‘kill a process’ is neutral in the
context of programming, while some sentiment analysis predictors
trained on other media corpus, treat it as a strong indicator for
negative emotion. To avoid such issue, we use Senti4SD to pre-
dict the sentiment of the GitHub comments. It has been trained
on Stack Overflow annotated comments, and it has been shown
to be more accurate in the software engineering domain [5, 18].
Senti4SD yields ternary sentiment for each comment, i.e., positive,
neutral, or negative. The following are examples from our data of
positive, neutral, and negative comments, as per Senti4SD (sensitive
words are anonymized and replaced by <notation>). Positive: “sure
<user>! appreciate your point, thanks for the suggestion” Neutral:
“Let’s have this project actually be <tool> and not try to duplicate
on our own what <tool> does internally. Let’s just let <tool> handle
all merging itself” Negative: “BTW, <tool> failed because you added
a function without tests”

GitHub discussion comments can still be different from the Stack
Overflow comments. To verify that Senti4SD can effectively identify
sentiment in comments on GitHub, we selected a random set of
50 comments and via observation determined them to contain 25
comments of neutral, 13 comments of negative, and 12 comments
of positive sentiment. Then we ran them through Senti4SD and
found that 6 were mispredicted by Senti4SD, showing the accuracy
of 88% (2 neutral comments were deemed negative, while 1 positive
and 3 negative comments were deemed neutral).

We aligned each post with their Senti4SD derived ternary senti-
ment (i.e., positive, neutral, and negative). We find that 23.8% of the
discussions are positive, 48.4% of the comments are neutral, and
27.8% of them are negative. The average length of the comments is
194 characters for neutral, 242 characters for positive, and 422 char-
acters for the negative. This suggests that the negative comments
may carry more information than other two types.

5.3 Linear Mixed-effect Regression

We use Generalized Linear Mixed Effect Regression (GLMER) mod-
els (glmer package in R) to study the contribution of our indepen-
dent variables to explain the variability in the outcome variable,
while mixing fixed and random effects. The tool is used as the
random effect in the models.

We use logistic regression for modeling the adoption success and
generalized regression with the Poisson family for the modeling
discussion length. To avoid convergence issue we use the bobyqa
optimizer. We use scale() function to z-normalize each variable as
they vary across orders of magnitude between variables. To avoid
influential points caused by outliers in the fixed effects, we remove
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Figure 1: The adoption time distributions of tool adoption events of five tool categories.

the projects with top 2% num_commits, num_comments, and with
top 1% of the rest variables. We also use nonlinear log transform for
two variables: num_new_dev and num_involved_dev, containing
extreme values and high variance. We use the Variance Inflation
Factor (VIF) to check whether multicollinearity exists between the
independent variables in the regression models, which can lead
to regression coefficients that are difficult to interpret. Typically,
if the VIF values are smaller than 5 then multicollinearity is not
significant. This is the case with all our models. To describe the
goodness of fit of our models, we use the squared GLMM() function
in R to report two pseudo-R? values: the marginal R?, interpreted as
the variance solely described by the fixed effects, and the conditional
R?, interpreted as the variance introduced by both fixed and random
effects in the model [31]. We also report the standard goodness of fit
measures of log-likelihood and the Bayesian information criterion,
the latter often used for model choice.

6 RESULTS AND DISCUSSION
6.1 RQ1: Tool Adoption and Team Dynamics

First, to study tool adoption events over time, we align all projects
around their adoption dates and plot those adoptions for each tool.
The results, per tool category and per tool are shown in Figure 1.
The figures suggest that adoptions in OSS projects spread in a non-
constant speed, some group of people adopt a tool much sooner
than the average adoption time, while others adopt it only if they
are fully convinced, i.e., have an adoption lag. This fits well within
the predictions of the DOI theory. Note that the tool category De-
pendence manager is not included because of lacking enough data
points.

Second, to study the team dynamics around adoption events,
we examine the temporal data of our five team-level metrics: the
number of developers with prior exposure, new developers, in-
volved developers, comments associated with tools, and commits
at monthly intervals, as illustrated in Figure 2.

We see from Figure 2 that the average number of involved de-
velopers is almost linearly increasing over time, likely correlating

Table 3: Topics Discovered in Discussions

Topic Sample vocabulary
1 Testing run, test, use, report, case, mocha
2 Development js, setup, window, browser, npm
3 Debugging fail, stack, error, timeout, check
4  General ideas work, support, dependency, need
5 Integration CL function, module, nodejs, client

with the general GitHub trend. This implies that more developers
participate in the discussions of adopting tools.

We also observe a significant discontinuity in the steady numbers
of commits and comments just before and even more so after the
adoption event, in the positive direction. This is arguably associated
with increased activities related to the adoption. Also notable, is
that the number of developers with prior exposure to the tool is
steadily growing in the period before the adoption, thereby likely
increasing the diffusion probabilities and the adoption chances.

Answer to RQ1: Successful adoption distributions are in line
with DOI theory, with some projects adopting early and others
late. We observe that new developer numbers increase slower
than involved developer numbers but significantly more so
after the tool adoption.

6.2 ROQ2: Discussion Topics and Sentiment

Pre- and Post-adoption Discussions LDA is regularly used to reveal
the frequent topics in text information. However, different from the
corpus gathered from social media, the comments from GitHub, by
their nature, are in a much narrow domain. Therefore, the number
of different discussion topics on GitHub is much fewer compared
to social media corpus. Even though, many topics still overlap
with each other. We uncover the top-ranked topic features and
their associated sample vocabulary in the tool discussions, and
summarized them in Table 3.
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To understand and identify topics and emerging patterns in the
discussions, we go through 3,342 discussion comments within the
6 months prior to the adoption date. By using the topic-vocabulary
pairs as the keywords, we find the following three topics in tool
discussions are prominent:

Perceiving Demands of Tools: "right now the <file> is extremely
distracting and the test output is impossible to read (just the result).
We need a <tool> PR to solve this."

Choosing One Tool Over Another: "<dev 1> thanks. I should have
done this, to begin with. I set up <tool 1> because that’s what <tool
2> was using before. But you are correct, that is better for testing"

Deciding When to Adopt: "Thank you for sending us these contri-
butions! Moving to <tool> is, in fact, something we have hoped to
do, I just wanted to let you know it might take us a few more days
before we’re ready to engage.’

We also analyze 4,278 discussions from the same projects set for
the 6-month post-adoption period. The two identified prominent
topics of discussions are about:

Adoption Feedback: "Not sure how I to write a test for this. I can’t
figure out how to get the output from <tool>"

Switching Tools: "But when comparing/choosing a testing frame-
work you will definitely need to say one is better for you or a project
at some point. I would be open to using <tool>."

In summary, we find the following prominent patterns exist in
the tool-related discussions: a discussion seems to be initiated by an
individual who found an issue and asked for addressing such issue
with a tool, and it ends with an individual who has previously used
similar tools presenting their experience, by them recommending a
tool to adopt. We also find that discussion threads are goal-oriented,
well structured, and proceed logically, and they are likely to be
beneficial for developers to decide on which tool to adopt.

Developer Sentiment To test our hypotheses from SJT about ego
involvement and from DOI about tool adoption, here we compare
the sentiment in tool adoption discussions between the comments
of a) new developers and senior (i.e., not new) developers, and b)
between developers with prior tool exposure and the ones without
prior tool exposure. To do that, we compare the negative comments
posted separately by both new developers and senior developers. As
shown in Figure 3(a), before the adoption, new developers are much
less negative to adopting new tools than senior developers, even
though their negativity significantly grows just before and more so
after the adoption events, if only for a short time. This is consistent
with SJT: new developers have less involvement in the projects
and thus lower emotional attachment than senior developers, while
the latter have to (perhaps begrudgingly) adapt to the changes
in the project. Even more interestingly, the negative sentiment of
the senior developers persists, which can in the longer term affect
project cohesion and effective management.

On the other hand, as shown in Figure 3(b), the per-developer
negativity of developers with prior exposure is much lower than
the developers without exposure, for all time-bins. And after im-
plementing tool adoptions, the negativity of developers with prior
exposure is very close to developers without exposure, however, the
negativity of developers with prior exposure drops faster right after
the adoption and remains lower in the long term. This validates the
assumption that developers with prior exposure are less negative
toward the tools than the ones without exposure. Moreover, we
find that the curves of the two types of developers are similar to
some degree, suggesting both are reacting to the same events, or
are communicating together.

Relative sentiment. To understand why developers choose one
tool t; over another tool t; from the same category (e.g., both
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t; and t are linters), we compare the relative negativity of their
corresponding discussions. First, we calculate the baseline nega-
tivity for each project (i.e., the ratio of negative comments over
all comments). Then we calculate the aggregated negativity of
a tool as the ratio of negative over all comments in the discus-
sion, minus the project’s baseline negativity. In Figure 4, each
row represents a pair of two tools (¢1-t2) from the same category.
The bars show the aggregated (team-level) negativity to tool 2
of the projects before (red) and after (green) adopting tool 1. If
tool t1 and t2 are the same (i.e., t1 = t2), the bar simply repre-
sents the change of negativity after adopting the tool t1(i.e., t2).
As shown in Figure 4(a), the bar Jasmine-Jasmine shows that, the
post-negativity becomes more negative than pre-negativity, sug-
gesting that developers find Jasmine more difficult to use than ex-
pected. In Figure 4(b), standard-jshint bar shows that after adopting
tool standard, the sentiment toward jshint becomes less negative
(i.e., more positive).

Answer to RQ2: We identify three most significant scenarios
in the tool discussions: perception of tools, choosing a tool over
another, and deciding when to adopt a tool. We also find that
sentiment toward a tool is associated with developer seniority
and prior exposure to the tool. Finally, sentiment toward a tool
is associated with adoptions, and it can change after adoptions.

6.3 ROQ3: Influencers and Adoptions

In the sentiment data set, we find that 5% of developers posted
35% of total negative comments, indicating there might exist some
strong ego-involvement and possibly influencers during the discus-
sion period. Here, we seek to answer if influencers exist, identify
them, and see how they affect tool adoptions. We first define in-
fluencers as those developers who post more than 50% of the total
comments in the tool adoption discussions. To have reliable data to
study developers who frequently comment in each discussion, we
decided to only consider adoption discussions with more than ten
comments. That filter leaves us 592 distinct adoption events to study.
Among them, 379 adoptions are successful, and 213 adoptions are
unsuccessful. We define the Successful Adoption Rate (SAR) as the
ratio of the successful adoptions to the total, i.e., 379/592 = 64.02%.

A very common situation is that a project member wants to
have a testing tool for their project, and the developers create an
issue to query other’s opinions on whether to adopt this tool. If
the majority of main contributors agree on adopting a testing tool,
then they would be discussing which tool to adopt. Our hypotheses,

arising from the ego-involvement considerations in SJT, are that: 1)
a project with an influencer has a higher likelihood to have adopted
a tool, and 2) the higher the negativity of a strong influencer, the
less likely it is for the tool to have been adopted.

We test the first hypothesis by comparing successful adoption
rates in projects with strong influencers to those without. We find
that for the former, the SAR is 68.86% and for the latter 57.75%.

To test the second hypothesis, among the adoptions that have
had an influencer, we found that if the sentiment of the strong
influencer was positive on the tool, the SAR is 72.18%, while if the
sentiment of the strong influencer was negative, the SAR is 64.71%.

In contrast, and as predicted by SJT, without an influencer inte-
grating the democratic opinions into a consensus decision may be
more difficult and take longer, while the influencer can speed up the
adoption process. We find that without an influencer, the average
discussion length is about 15 months, while with an influencer, the
length decreases to 13 months, on average.

Answer to RQ3: We identify strong influencers in the
projects, and show that projects having strong influencers
have more successful adoptions and shorter adoption dis-
cussions. Moreover, the sentiment of the strong influencer
correlates with the adoptions.

6.3.1 Case Study. We give examples from two comparably sized
projects testem/testem and bower/bower to illustrate how a strong
influencer can be of help in tool adoptions. The project sizes are
similar to each other (number of commits: 2, 305 v.s. 2, 726; number
of contributors: 157 v.s. 209).

With a strong influencer In the project testem/testem, the fol-
lowing discussion transpired, on using a tool to automate testing,
where <Dev 2> is the strong influencer in the team.

<Dev 1>: "... I think it would be convenient to render the page as
template and pass there..."

<Dev 2> "Why do you need this? Please give more details about
your use case."

<Dev 1> ".. ] use testem not just to run unit tests to see standard
test report page, but as a watching tool that automatically reloads
my web application when sources changed .."

<Dev 2> "I get most of what you are saying. Are you using <tool
1>? The hash issue I think I need to rethink how to handle that ..

<Dev 1> "Now I switched to <tool 2> (as it really more robust
and convinient), I used <tool 1> as well it doesn’t actually matter.
And I use dependency management tool to load scripts ..."

"
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Without a strong influencer In contrast, the project bower/bower
encountered an issue when trying to use a tool for automated
testing. A developer asked for help from the community, however,
no one presented strong opinions in favor of continued use of this
tool. One member suggested to not use <tool> anymore and switch
to another tool.

<Dev 1>: "Should we have a common way to declare the tests for
any component? For example, I'd specify <tool> and file in <file>.
I'd then run <command>, which would open the <tool> page in a
browser. Thoughts?"

<Dev 2>: "what we could support is something similar to <pack-
age name> which is common scripts specified in the <file> ... what
do <Dev 3> and <Dev 4> think?"

<Dev 4>: "<Dev 5> has said it was a mistake to make them all
globals. they should be triggered with <file> .."

<Dev 6>: "... Any component with unit tests that I've written just
ends up using a separate node module (like <tool>) to automate the
test workflow. I'd be in favor of closing this."

The two decisions are in contrast. In the first project, tool adop-
tion happened after a strong influencer insists on it. In the second,
multiple project members are involved, and the project adopted a
different tool than the one discussed.

6.4 RQ4: Adoption & Discussion Determinants

In the previous RQs, we conducted exploratory and qualitative
studies of team discussion and dynamics before and following an
adoption event. Here we triangulate those with quantitative studies,
to understand the determinants, as well as the direction of their
effects, on adoption success and discussion length.

Our data is naturally hierarchically organized based on the tool
being discussed. We use tool as a random effect in our models,
allowing all projects adopting a specific tool to have the same
random intercept. All other variables are used as fixed effects in
our mixed effect models.

We model each of the two outcomes with a base model, com-
prised of the control variables, and a full model, which adds to
the base the complement of team variables. We perform the likeli-
hood ratio test between the base and full models using the anova()
function, and present both models for each outcome variable.

Modeling Adoption Success. The results are shown in Table 4.
We see from the AIC that the full model fits the data significantly
better than the base model, with the three significant team variables
explaining about 5% of the total variance, as per the marginal R?.
Overall, the fixed effects alone do not present a good model, but
together with the random effect, the model is much better, at 48%
conditional R?. This, together with the vif’s being smaller than 5,
gives us confidence that we can interpret the coefficients of the
variables.

Of the controls, the variables discussion_length, num_comments
and num_commits have significant, sizeable negative effect on tool
adoptions, holding all else constant. This is consistent with the SJT
prediction that group judgment needs more time to form in larger
teams, and that an adoption may be more difficult to succeed since
an agreement is needed from more people. num_mentions, on the
other hand, shows a sizeable positive effect, which makes sense
from a DOI perspective, that an adoption needs a wider spread to
succeed.
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Table 4: adoption_success glmer model, tool as random effect.

Base Model Full Model

—0.477*** (0.110)
—0.051 (0.105)
0.612"** (0.150)
—0.183* (0.110)
—0.208** (0.097)

—0.484*** (0.129)
—0.115 (0.108)
0.448"* (0.214)

—0.268** (0.115)

—0.222** (0.108)

scale(discussion_length)
scale(project_age)
scale(num_mentions)
scale(num_comments)
scale(num_commits)

—0.464™* (0.163)
0.617*** (0.141)
0.419** (0.181)
—0.126 (0.141)
—0.120 (0.140)

scale(log(num_new_dev + 0.1))
scale(num_w_tool_expos)
scale(log(num_involved_dev + 0.1))
scale(num_pos_dev)
scale(num_neg_dev)

Constant 1.264*** (0.410) 1.434*** (0.399)
Observations 1,085 1,085

Log Likelihood —407.502 —391.491
Akaike Inf. Crit. 829.003 806.981
Bayesian Inf. Crit. 863.929 866.854
Marginal R? 9.94% 14.79%
Conditional R? 46.72% 47.97%
Note: *p<0.1; **p<0.05; ***p<0.01

Of the team variables, num_involved_dev is positively associ-
ated with adoption success, all else held constant. When multi-
ple developers are highly involved in the project, they may all
be on the same page concerning the project’s needs. This is con-
sistent with SJT, as aligned egos will easier agree. The predictor
num_w_tool_expos also has a significant, sizable positive effects on
adoption success. One possible reason for this is that the develop-
ers who had previously been active in projects that have used the
tool, are more familiar with the tool. Consistent with DOI theory,
those are the developers that contribute to the diffusion (spread)
of information on the tool in their new projects, which can lead to
successful adoptions. Refined temporal diffusion models can offer
a more detailed, temporal view of this diffusion process, and are
left for future work. An interesting finding is that num_new_dev is
significant and negatively associated with adoptions. We can see
several explanations. First, new developers may not feel comfortable
to state their opinions publicly, which practically, may amount to a
negative overall opinion. Second, as they do not understand the ins
and outs of the projects yet, they may not perceive the need for the
change, especially since they have just recently started contributing.
Also, we find that neither num_neg_dev nor num_pos_dev have a
significant effect on adoptions. We see this in the context of SJT:
high ego developers are likely to be the ones participating in the
discussions, and their arguments, emotional or not, are unlikely to
change the opinions of other high ego developers.

Modeling Discussion Length. As we see in Table 5, the AIC tells
us that the full model fits the data significantly better than the base
model, with the three significant team variables explaining about
40% of the total variance, as per the marginal R2. Overall, the fixed
effects alone present a good model, but together with the random
effect, the model is excellent, at 91% conditional R2. This, together
with the vif’s being smaller than 5, gives us confidence that we can
interpret the variables coefficients and trust the model.
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Table 5: discussion_length glmer model, tool as random effect.

Base Model

0.360*** (0.010)
0.038*** (0.009)
0.072*** (0.009)
0.183*** (0.008)

Full Model

0.242*** (0.010)
0.059*** (0.014)

—0.072*** (0.010)
—0.006 (0.009)

0.922*** (0.020)
—0.062*** (0.009)
—0.038** (0.016)
—0.030** (0.013)
—0.013 (0.012)

scale(project_age)
scale(num_mentions)
scale(num_comments)

scale(num_commits)

—~

scale(log(num_new_dev + 0.1))
scale(num_w_tool_expos)
scale(log(num_involved_dev + 0.1))
scale(num_pos_dev)
scale(num_neg_dev)

Constant 1.838** (0.155)  1.644*** (0.098)
Observations 1,085 1,085

Log Likelihood -5,868.721 —4,451.806
Akaike Inf. Crit. 11,749.440 8,925.611
Bayesian Inf. Crit. 11,779.380 8,980.494
Marginal R? 31.50% 77.99%
Conditional R? 86.71% 91.33%
Note: *p<0.1; **p<0.05; ***p<0.01

Of the control variables only project_age has a significant, size-
able positive effect. It is in line with expectations: older active
projects will have more participants and this likely longer discus-
sions. In the team variables, num_new_dev is sizeable and positively
associated with the discussion length, all else kept constant. Both
DOI and SJT are consistent with these findings, as the new people,
who have little ego involvement, can be the ones with questions or
comments about tools and the project. The other team variables are
negatively associated with the discussion length, but their effects
are small. In particular, num_involved_dev and num_w_tool_expos
are negatively associated with discussion length, in line with expec-
tations that involved developers and those exposed to the tool pre-
viously may not need long discussions to decide. The num_pos_dev
variable has a small, but a significant negative effect on discussion
length, suggesting that more positive developers can be beneficial
to shortening discussions.

Answer to RQ4: For adoption success, the positive significant
variables are the number of mentions, developers with prior
exposure, and involved developers. As for discussion length,
the number of new developers seems to be the most significant
indicator to extend the discussion, while the exposure factor
has a positively sizable effect on shorting the discussion.

7 TAKEAWAYS FOR PRACTITIONERS

Here we distill from our findings some practical takeaways and
suggestions. Generally, OSS project team discussions are helpful
for community building. But they are sorely lacking during tool
adoptions, and since we also found that the discussions tend to
be goal-oriented and rational, we recommend that they should be
encouraged in the OSS community.

Our finding that having more people on the project with prior
exposure to a tool is associated with successful adoption is evi-
dence toward proceeding with adoptions after a team has multiple
members with prior exposure. However, longer discussions can be
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distracting to a team, and we found they are not associated with
better adoption outcomes; on the other hand, having an influencer
as a champion for the adoption may help.

We also found that some tools are associated with longer dis-
cussions than others, perhaps because they demand certain prior
exposure and further research. Setting expectations for the team
ahead of time can limit feelings of frustrations arising out of lengthy
discussions. And while we found no association between negative
(or positive) developers and adoption success, discussions tend to
be shorter as the number of positive developers increases. Thus,
being more positive than negative may help keep things shorter.

Further, more new developers are associated with lower adoption
and longer discussions. While the number of new developers cannot
be modulated much, perhaps timing tool adoptions during periods
of low influx of new people may help the proposed tool adoption.
Finally, more commits and comments are associated with lowered
success of adoption, thus, planning tool adoptions away from busy
project times may result in more successful adoptions.

8 THREATS TO VALIDITY AND CONCLUSION

Threats. Both adoption data and commits/comments data were
gathered from GitHub, thus, generalizing the results beyond GitHub,
or even beyond the gathered corpus, carries some risk. However,
the projects were selected randomly (with some minimum activity
requirements), thus lowering this risk. Also, we do not consider
any offline/in-person communication channels between developers
except through GitHub. Previous work has found that there exists a
notable decrease in communications associated with same company
affiliation, implying that developers may share their opinions offline.
Also, Senti4SD is trained on communications among developers
in Stack Overflow. GitHub comments can be different than Stack
Overflow comments, though our small sample study here capped
that to 12%.

Conclusion. Motivated by the availability of multiple tools per
use category in DevOps settings, and the general lack of guidance
about their appropriateness for specific projects, we studied team
level determinants of tool adoptions and discussions.

In terms of the relative timing of tool adoptions, we found that
there is a significant difference between the distribution of adoption
times for tools in the same use category, making it challenging to
choose which tool to adopt for projects that are laggards.

We considered tool adoption as a project-wide phenomenon,
affecting every member in the group. But also depending on the
opinion of many of them, including their prior impressions of tools
and linguistic sentiment, we demonstrated that the involvement,
tenure, and more importantly, prior exposure to the tool play sig-
nificant roles in the discussion. We also find that strong influencers
are associated with more, successful adoptions.

We find that the attitude towards adoptions varies across dif-
ferent groups of people, and that a team’s relative negativity is
tool-specific, and can change after adoption, suggesting that the
usability of tools can be over- and underestimated. We conducted
topic analysis, and in-depth case studies on how and why some
similar projects choose one tool over another one. We conclude
that tool adoption is akin to a reasonable team negotiation, that
proceeds through multiple phases. We hope our results can be of
help in future tool adoption decisions.
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