

1 **Nationwide Assessment of Energy Costs and Policies to Limit Airborne Infection Risks in**
2 **U.S. Schools**

4 Jiannan Cai¹, Shuai Li^{2*}, Da Hu³, Yifang Xu⁴, and Qiang He⁵

6 ¹School of Civil & Environmental Engineering, and Construction Management, The University of
7 Texas at San Antonio. 501 W César E Chávez Blvd, San Antonio, TX 78207, U.S.,
8 jiannan.cai@utsa.edu

9 ²Department of Civil and Environmental Engineering, University of Tennessee, Knoxville. 851
10 Neyland Drive, Knoxville TN 37996, U.S., sli48@utk.edu (corresponding author)

11 ³Department of Civil and Environmental Engineering, University of Tennessee, Knoxville. 851
12 Neyland Drive, Knoxville TN 37996, U.S., dhu5@vols.utk.edu

13 ⁴Department of Civil and Environmental Engineering, University of Tennessee, Knoxville. 851
14 Neyland Drive, Knoxville TN 37996, U.S., yxu79@vols.utk.edu

15 ⁵Department of Civil and Environmental Engineering, University of Tennessee, Knoxville. 851
16 Neyland Drive, Knoxville TN 37996, U.S., qianghe@utk.edu

17 **Abstract**

19 Practices such as improved ventilation and air filtration are being considered by schools to
20 reduce the transmission of Severe Acute Respiratory Syndrome Coronavirus 2 that causes the
21 pandemic of coronavirus disease 2019 (COVID-19). Improved ventilation may significantly
22 increase the energy cost of heating, ventilation, and air conditioning (HVAC), exacerbating
23 financial challenges schools face amidst the worst pandemic in decades. This study evaluated
24 HVAC energy costs for reducing COVID-19 airborne infection risks in 111,485 public and private
25 schools in the U.S. to support decision-making. The average annual HVAC energy cost to
26 maintain the infection risk below 1% for the schools in the U.S. is estimated at \$20.1 per square
27 meter or \$308.4 per capita with improved ventilation and air filtration, where the private schools
28 have higher costs than the public schools on average. The cost could be reduced by adopting
29 partial online learning. It is also found that additional cost to control infection risk with increased
30 ventilation and air filtration is significantly lower for PK-5 schools than that for middle and high
31 schools in all states, indicating the possibility of remaining in-person instruction for PK-5 schools
32 with necessary governmental assistance. Analyses of school HVAC energy cost to reduce
33 airborne infection risk under different intervention scenarios provide important operational
34 guidelines, financial implications, and policy insights for schools, community stakeholders, and
35 policymakers to keep schools safe during the ongoing pandemic and improve preparedness for
36 epidemics projected in the future.

37 **Keywords:**

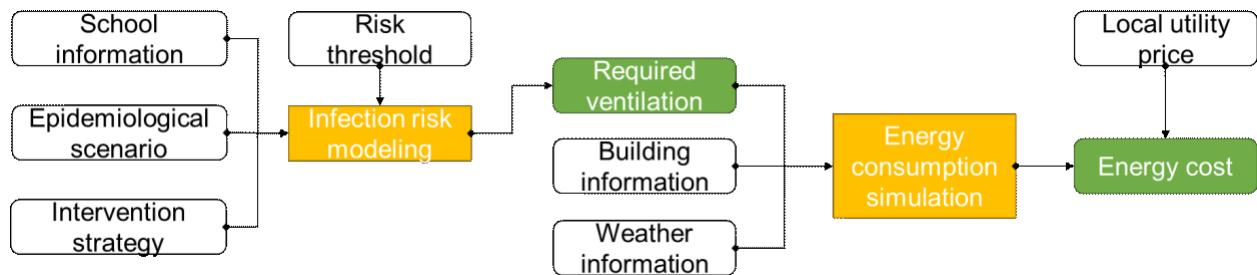
38 HVAC; Energy Cost; Airborne Infection Risks; COVID-19; School Operation Policy

41 **1. Introduction**

42 About 55 million K-12 students and 7 million adults occupy more than 130,000 public and
43 private schools in the U.S. [1]. Schools are known to be hotbeds for spreading infectious
44 diseases among students and teachers, and subsequently to households and communities.
45 School closures during the coronavirus disease 2019 (COVID-19) pandemic disrupt education,
46 result in detrimental effects on the long-term wellbeing of children and parents, and lead to
47 enormous economic and social costs [2]. Weighing the benefits of in-person schooling and
48 health risks, schools in the U.S. have already reopened or plan to reopen. However, public
49 concerns with school children contracting and spreading COVID-19 remain elevated, particularly
50 at the time of a winter flu season, resurgent waves of COVID-19, and the emergence of more

51 infectious COVID-19 strains in the U.S. [3]. Although school children may remain asymptomatic
52 or experience mild symptoms, they are not less susceptible [4] and could make schools
53 undesirable epicenters of community transmission as infections in children are rising faster than
54 in other age groups [5]. Making matters worse is that no vaccine has been approved for use in
55 children. Even vaccinated people could still be infected and transmit Severe Acute Respiratory
56 Syndrome Coronavirus 2 (SARS-CoV-2) to others [6]. The complexity highlights the necessity
57 for schools to implement non-pharmaceutical mitigation measures to curb the spread of
58 infection during the ongoing pandemic and in the events of future epidemics.
59

60 Airborne infectious pathogens including SARS-CoV-2 and influenza can be transmitted in the air
61 and dispersed throughout school buildings, infecting those who even practice social distancing
62 [7]. Improved ventilation and air filtration can dilute and/or displace airborne pathogens to
63 reduce transmissions and occupant infection risks, and thus are being considered as important
64 operational options along with other interventions such as de-densification via online learning
65 [8]. Centers for Disease Control and Prevention (CDC) has established guidelines of ventilation
66 requirements for schools and childcare programs, indicating that schools should increase
67 outdoor air ventilation as much as possible, disable demand-controlled ventilation controls that
68 may reduce air supply based on occupancy or temperature, consider running the HVAC system
69 at maximum airflow rate two hours before occupying, and improve air filtration to the highest
70 level [9]. However, improved ventilation with adequate outdoor air could significantly increase
71 the energy costs for HVAC systems to maintain thermal comfort conducive for learning in school
72 buildings. The financial costs for consistently adopting required ventilation are considerably
73 high, and become a particular concern for U.S. schools that have already been heavily
74 burdened with energy costs and budget restrictions exacerbated by the economic impact of the
75 pandemic. Most schools are unable to assume the entire financial burden alone, and the federal
76 and state governments should provide reasonable funding for schools to implement the
77 mitigation measures required to maintain individual and community health and keep schools
78 open. For instance, it is reported that California schools have been struggled to pay for the
79 upgrading of ventilation systems with few guaranteed funding streams which is insufficient to
80 cover necessary payments for ventilation improvements [10]. Therefore, it is imperative for
81 schools and governments to be informed of the financial consequences of non-pharmaceutical
82 interventions, particularly the energy costs associated with improved ventilation, which is critical
83 to keep the schools open with reduced infection risks.
84


85 SARS-CoV-2 is not the first and certainly will not be the last airborne pathogen to cause
86 outbreaks of infectious diseases. To combat the COVID-19 pandemic and other epidemics of
87 similar nature, effective and affordable ventilation strategies are highlighted as a long-term
88 precaution for infection control, particularly in mass-gathering school buildings. Despite the high
89 infection risk and magnitude of energy consumption in schools, the energy cost to reduce
90 infection risk associated with enhanced ventilation under various epidemiological and
91 operational scenarios in schools remain elusive. Schools and governments lack insights
92 regarding the reduced infection risks and increased energy costs to guide school operation and
93 policymaking. Therefore, using the pandemic of COVID-19 to set the epidemiological context,
94 this research conducts scenario analyses to examine increased energy cost for reducing
95 infection risk using different intervention strategies in 111,485 public and private schools in the
96 U.S. Employing the epidemiological modeling, infection risk prediction, energy simulation, and
97 cost estimation, a series of important insights have been derived. First, by limiting the airborne
98 infection risk under a threshold, i.e., 1%, the energy costs per square meter and per capita are
99 assessed on national, state, and county basis for both public and private schools, establishing
100 the first link between energy and health under various scenarios. Second, the impacts of air
filtration and online learning on energy costs are quantified, providing the basis for coupled

102 interventions to save energy costs while limiting infection. This study represents the first data-
 103 driven analyses of the HVAC energy cost associated with airborne infection risk control in US
 104 schools, providing important operation guidelines, financial implications, as well as policy
 105 insights to help schools and government adopt effective ventilation with other interventions to
 106 maintain low infection risk with affordable energy cost and limited funding support. Although
 107 explored under the COVID-19 context, the insights and implications derived from this study can
 108 be readily extended to future epidemics to keep schools a healthy and conducive environment
 109 for learning.

111 2. Materials and Method

112 This study integrates infection risk modeling and energy consumption simulation into a holistic
 113 framework to evaluate the energy costs for schools associated with limiting infection risk using
 114 various intervention strategies under a given epidemiological scenario (Fig. 1). With the focus
 115 on airborne transmission, the infection risk in this study is defined as the probability of
 116 susceptible individuals being infected via airborne transmission after one-day attendance in
 117 schools. In order to limit the infection risk below a sufficiently low level (1% in this study), the
 118 required ventilation rate is first computed for each school via infection risk modeling considering
 119 school information (e.g., population, occupant density, etc.), epidemiological scenario (i.e., the
 120 prevalence of COVID-19 in the population), and different intervention strategies (e.g., filtration
 121 and partial online learning). Then, the resulting ventilation rate provides the HVAC operation
 122 schedule to simulate the school energy consumption given specific building and weather
 123 information. The energy cost is finally estimated by combining energy consumption and local
 124 utility price.

125

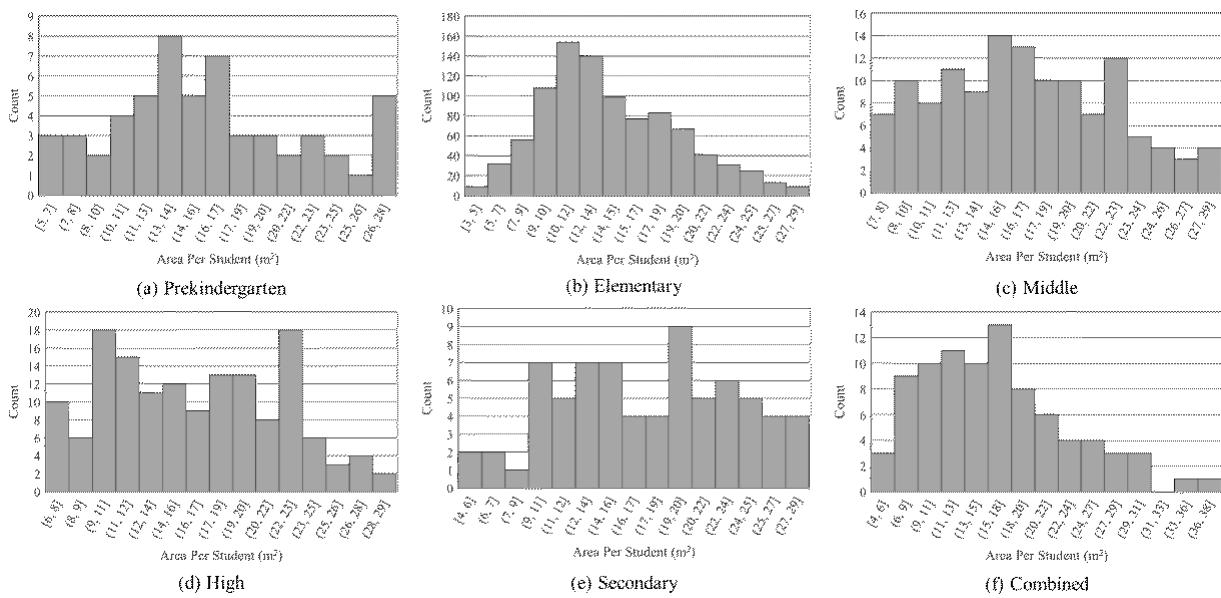
126
 127 Fig. 1 Overview framework
 128

129 2.1. Data Collection and Processing

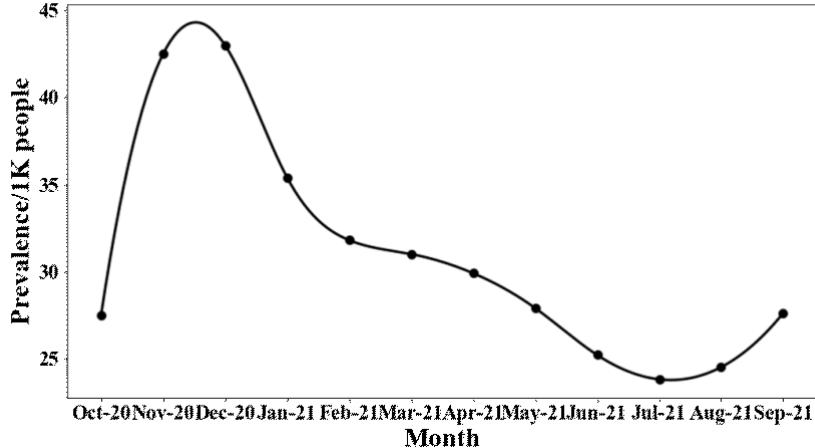
130 A total of 111,485 public and private schools in the U.S. are analyzed in this study. The school
 131 information is collected from the NCES [11], including total enrollment, the number of teachers,
 132 school type and level, and school location. The schools are categorized into six levels based on
 133 the grades offered in each school, where public schools consist of prekindergarten, elementary,
 134 middle, high, and secondary schools, and private schools include elementary, secondary, and
 135 combined schools. The gross floor area for each school is estimated as the product of the total
 136 enrollment and occupant density (area per student). The descriptive statistics of school
 137 information is listed in Table 1.

138

139


Table 1. Descriptive statistics of school information

School	Number of schools	Number of students		Number of FTE teachers		Occupant density (m ² /student)		Gross floor area (m ²)	
		Mean	SD	Mean	SD	Mean	SD	Mean	SD
All schools	111485	427	432	30	25	14.93	5.45	6156	4744


Public	90160	538	440	33	25	14.99	5.07	7128	4696
Private	21325	192	250	16	21	14.72	6.60	2869	3175
Pre-k	1131	175	171	9	10	16.04	5.88	3567	1931
Elementary (K-5)	64998	396	246	25	15	14.19	5.00	6219	2869
Middle (Grade 6-8)	16087	595	350	37	21	16.52	5.54	9403	4360
High (Grade 9-12)	20785	717	743	43	41	16.11	5.60	11303	9221
Secondary (Grade 6-12)	2475	306	351	26	26	17.39	6.19	5682	4749
Combined (PK-12)	6009	242	356	24	31	15.90	7.07	2595	2595

140

141 In this study, the occupant density is estimated based on a selected set of schools with known
 142 population and gross floor area. Specifically, a total number of 1433 schools across different
 143 levels are used as representatives to estimate the occupant density for each school level.
 144 Schools are selected from the aforementioned 111,485 schools, following three criteria: 1) the
 145 number of buildings for the school can be determined; 2) the boundary of each building can be
 146 determined; 3) the number of floors can be determined for each building. The occupant density
 147 is computed as the ratio of gross floor area to the total enrollment of the school. The gross floor
 148 area of these schools is manually collected from Google Map, estimated as the sum of space in
 149 every school building. The space in each building is the product of the building area and the
 150 number of floors. The building area is measured using the area calculator tool in Google Map
 151 API, which can draw an enclosed area along the building boundary and calculate its area. The
 152 number of floors for each building is manually obtained from the street view of Google Maps.
 153 The total number of students for each school is obtained from the NCES [11]. The resulting
 154 occupant density for each school level is shown in Fig. 2.
 155

165 duration of 10 weeks considering the rapid decrease of SARS-CoV-2 antibody level and the
 166 short duration between reinfections [13–15]. The resulting prevalence of COVID-19 (i.e.,
 167 number of infections per 1,000 people) is illustrated in Fig. 3.
 168

169
 170 **Fig. 3** Prevalence of COVID-19 in the population (generated based on [12])
 171

172 **2.3. Infection Risk Modeling**

173 The airborne infection risk is computed using Gemmation-Nucci equation (G-N equation) [16],
 174 which is well adopted [16–20] to estimate the indoor infection risk of airborne pathogens
 175 including influenza, tuberculosis, and SARS-COV-2. G-N equation is developed based on the
 176 concept of “quantum of infection” proposed in an earlier model by Wells-Riley *et al* (W-R model)
 177 [21]. The probability of infection is determined by the intake dose of airborne pathogens in terms
 178 of the amount of quanta. The randomly distributed airborne infectious particles are described
 179 using Poisson distribution. To overcome the limitation of the W-R equation that assumes a
 180 steady-state of airborne pathogen concentration, the G-N equation depicts the concentration
 181 changes in quanta level using a differential equation to consider the time-weighted average
 182 pathogen concentration [22]. In the equation, the probability of susceptible individuals getting
 183 infected after a certain duration of exposure can be calculated using Eq. 1, where I is the
 184 number of infectors, V is the room volume (m^3), N is the total disinfection rate of environment
 185 (hr^{-1}), t is the exposure duration of susceptible individuals to infectors (h), p is the pulmonary
 186 ventilation rate (m^3/h), and φ is the quantum generation rate (quanta/h).
 187

$$188 \quad Risk = 1 - e^{-\frac{pI\varphi}{V} \left(\frac{Nt + e^{-Nt} - 1}{N^2} \right)} \quad (1)$$

189 The number of infectors (I) is estimated as the product of school population and the prevalence
 190 of COVID-19 estimated in the previous section. The room volume (V) is estimated as the
 191 product of the gross floor area and the height of the classroom, where a height of 3 meters is
 192 assumed for all schools [23]. The exposure duration (t) is set as the number of hours in a typical
 193 school day, varying across different states according to [24]. The total disinfection rate of
 194 environment (N) considers a combined effect from outdoor ventilation and filtration (if applied in
 195 the HVAC system), computed as $N = \lambda_{ventilation} + k_{filtration}$, where $\lambda_{ventilation}$ is the outdoor
 196 air ventilation rate (hr^{-1}) and $k_{filtration}$ is particle removal rate due to filtration [18]. $k_{filtration}$
 197 can be calculated using Eq. 2 [25].

$$k_{filtration} = \lambda_{recirculated} \eta_{filter} \quad (2)$$

198 where $\lambda_{recirculated}$ is the recirculation rate, set as 6.4 hr^{-1} [26]; η_{filter} is the filtration efficiency
 199 weighted by infectious particle size. ASHRAE specifies the method to determine the η_{filter}
 200 based on minimum efficiency reporting value (MERV) and particle size range [27], and has
 201 suggested that the filters with $MERV \geq 13$ are efficient at capturing airborne viruses [28]. The
 202 filtration efficiency for different HVAC filters is summarized in Table 2.
 203
 204

Table 2. Filtration efficiency for different HVAC filters

Minimum Efficiency Reporting Value (MERV)	Average particle size efficiency in size range		η_{filter}
	0.3 to 1 μm	1 to 3 μm	
13	50%	85%	67.50%
14	75%	90%	82.50%
15	85%	90%	87.50%
16	95%	95%	95%

205 Note: [29] indicates that more than half of the viral RNA of SARS-COV-2 are with aerosols
 206 smaller than $2.5 \mu\text{m}$. In this study, it is assumed that half of the particles are in $0.3 \mu\text{m}$ to $1 \mu\text{m}$,
 207 and the other half are in $1 \mu\text{m}$ to $3 \mu\text{m}$.
 208

209 Because the pulmonary ventilation rate (p) varies with different age groups [30], different values
 210 are assigned to each school level (Table 3). The quantum generation rate (φ) for SARS-CoV-2
 211 is estimated as a function of pulmonary ventilation rate using Eq. 3 according to [19].

$$ER_{q,j} = c_v c_i p \left(\sum_{i=1}^4 V_{d,i} N_{d,i,j} \right) \quad (3)$$

212 where c_v is the SARS-COV-2 viral load in the sputum, set to be 10^9 RNA virus copies mL^{-1} [19];
 213 c_i is a conversion factor between infectious quantum and infectious dose, set to be 0.02 [19]; p
 214 is the pulmonary ventilation rate based on school levels (m^3/h) ; $V_{d,i}$ is the volume of a
 215 droplet calculated by the droplet diameter D_i , and $N_{d,i,j}$ is the droplet concentration per cm^3 of
 216 different droplet diameter i and expiratory activity j , see Table 4 for details.
 217

Table 3. Pulmonary ventilation rate of each school level based on student age groups

Parameter	Pre-k	Elementary	Middle	High	Secondary	Combined	Reference
Age	3-5	5-11	11-14	14-18	11-18	3-18	NCES[11]
Pulmonary ventilation rate (m ³ /day)	7.28	9.98	14.29	14.29	14.29	12.135	Literature[30]

Table 4. Droplet concentration (per cm^3) of different droplet size distribution during speaking activity (Adapted from [19])

Espiratory activity	D_1 (0.8 μm)	D_2 (1.8 μm)	D_3 (3.5 μm)	D_4 (5.5 μm)
Voiced counting	0.236	0.068	0.007	0.011
Unmodulated vocalization	0.751	0.139	0.139	0.059

222 Note: for respiratory activity, speaking is considered as the main activity during school hour, and
 223 is considered as mean value between unmodulated vocalization and voiced counting.
 224

225 **2.4. Energy Cost Modeling**

226 The energy consumption of school HVAC systems are estimated, including energy consumption
227 for heating ($E_{heating}$), cooling ($E_{cooling}$), and fan operation (E_{fan}). It is assumed that electricity is
228 used for indoor cooling and fan operation, while natural gas is used for indoor heating.

229 EnergyPlus is used as the primary approach for building energy modeling and simulation, which
230 requires input of building conditions, such as geometry, HVAC system, building materials, and
231 schedule, as well as other information, such as system efficiency and weather conditions.

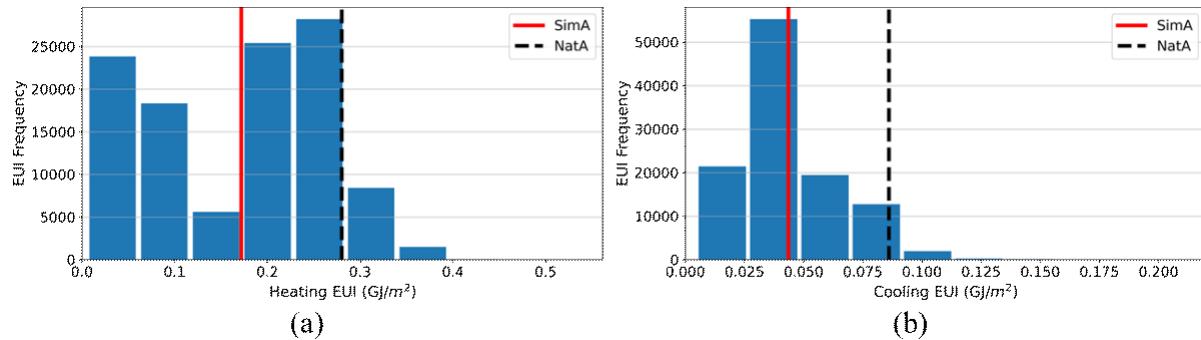
232 **2.4.1. School Building information**

233 In this study, the school is simplified as a one-story building with flat roof, with a height of 3 m,
234 and is modeled as a single thermal zone. The floor area for each school is calculated based on
235 enrollment and occupant density. The building footprint is extruded to the roof to create 3D
236 building model. The window to wall area ratio (WWR) is set as 0.35 [31]. Building material,
237 HVAC system, schedule, and load characteristics are set according to the U.S. Department of
238 Energy (DOE) school reference buildings in different climate zones [32]. In addition, it is
239 assumed all schools can implement certain strategies to achieve indoor heating, cooling, and
240 ventilation requirements.

241 **2.4.2. Weather information and Climate Change**

242 The U.S. is divided into 16 climate zones for building energy simulation based on DOE
243 commercial reference buildings [32]. The weather data in the most populous cities were
244 selected to represent the corresponding climate zone. The hourly level weather data such as
245 solar radiation, relative humidity, dry bulb temperature, and wind speed and direction are
246 important inputs for energy simulation. Typical Meteorological Year 3 (TMY3) weather data [33]
247 are used as weather input for each representative location, representing a collation of selected
248 weather data derived from a 1976-2005 period of record.

249 To evaluate the influence of climate change on annual energy cost, the climate information in
250 2050 is modeled using the climate change world weather file generator (CCWorldWeatherGen)
251 developed by Jentsch et al. [34]. The CCWorldWeatherGen tool adapts the “morphing”
252 technique to generate future weather data based on the A2 emission scenario under HadCM3
253 Climate Scenario Data [35] and has been treated as a reliable approach for climate change
254 modeling [36].


255 **2.4.3. Simulation Details**

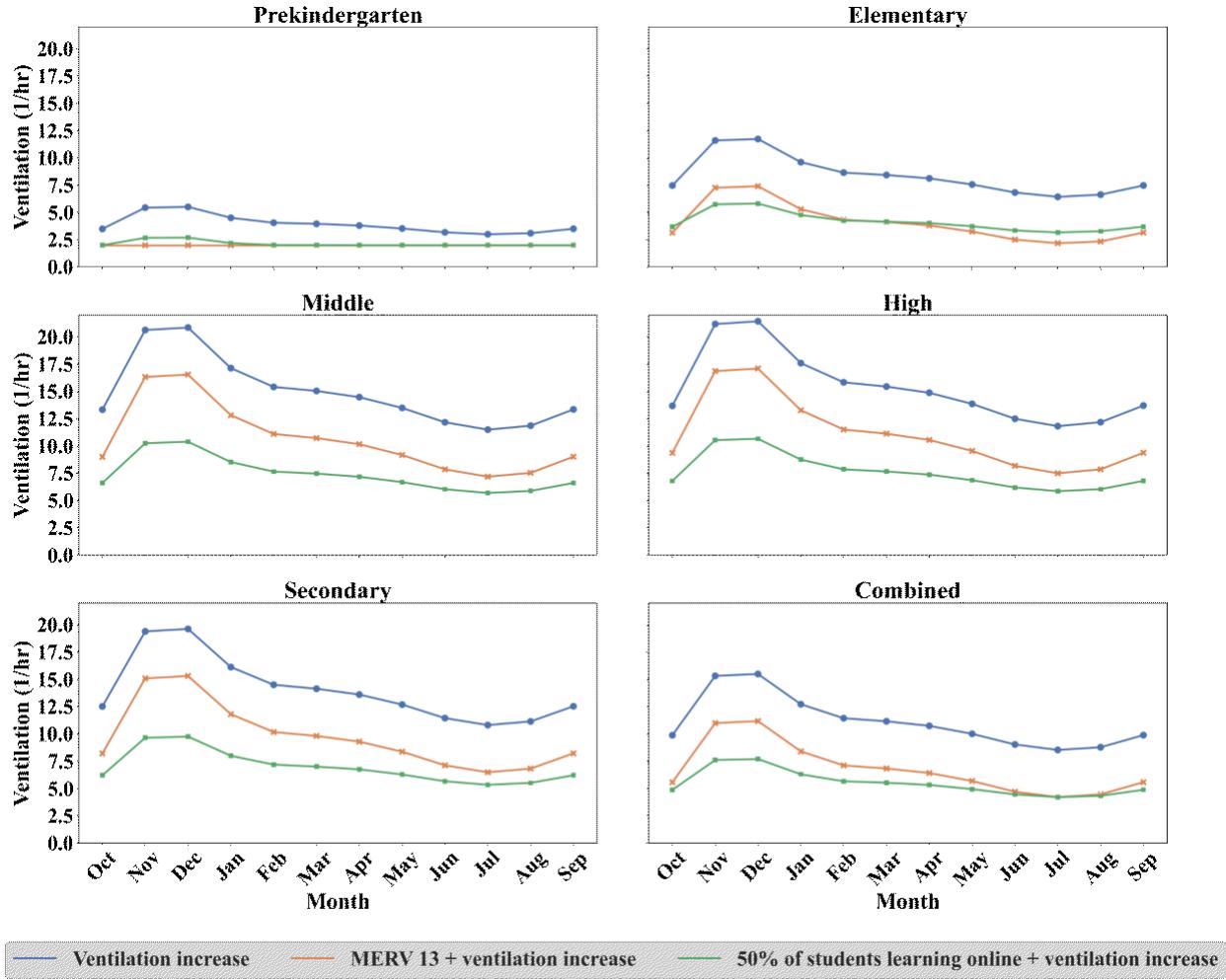
256 A total of 111,485 schools in the 50 states and District of Columbia are simulated. For each
257 school, the corresponding weather information and building materials in energy simulation are
258 set based on its corresponding climate zone. The simulation period is set as one year to
259 estimate annual energy consumption. The EnergyPlus parallel simulator is adopted due to its
260 capability to run multiple simulations at the same time. Finally, the annual energy cost for each
261 school is estimated based on energy consumption and utility price. The parameters used for
262 energy cost estimation are listed in Table 5. The equipment operation schedule is estimated
263 based on the 2012 Commercial Building Energy Consumption Survey (CBECS) for school
264 buildings which consists of 755 K-12 schools nationwide [37]. The survey indicates that the
265 average month in use for school buildings is 11.2, and the average operation hour is 8.5.
266 Therefore, equipment operation time is approximated to 9 hours from 8 am to 5 pm every day of
267 the year. The required ventilation rates of each school estimated from infection risk modeling
268 are used as inputs of energy simulation.

269 **Table 5.** Parameters for energy consumption simulation

Parameter	Description	Reference
Equipment operation time	9 hours per day, 365 days per year	Estimated based on [37]
Average temperature (°F)	Hourly temperature varying across climate zones	TMY3[33]
Electricity unit cost (cents/kWh)	Average unit cost of electricity for each state (estimated from July 2019 to June 2020)	EIA[38]
Gas unit cost (dollars per thousand cubic feet)	Average unit cost of gas for each state (estimated from July 2019 to June 2020)	EIA[39]
Thermostat	21°C - 24°C	DOE[32]
Heating efficiency	80%	ASHRAE[40]
Cooling efficiency	3.325	DOE[2]
Fan efficiency	0.596	DOE[2]

275
276 To validate the reliability of energy simulation, the energy use intensity (EUI) estimated via
277 simulation was compared with that obtained from 2012 CBECS survey data [37] under baseline
278 scenario with ventilate rate of 2 hr^{-1} [41], as shown in Fig. 4. The simulated average heating
279 EUI is estimated as 0.172 GJ/m^2 , and the national average is 0.280 GJ/m^2 in the 2012 CBECS
280 survey. For the cooling usage, the simulation result is 0.043 GJ/m^2 and the survey result is
281 0.086 GJ/m^2 . In general, the simulated results are compatible with the national school average,
282 indicating the efficacy of the energy simulation model.
283

284
285 **Fig. 4** Comparison of EUI between energy simulation and the 2012 CBECS school survey data.
286 SimA represents simulated average EUI using 111,485 schools. NatA represents national
287 average of school EUI from survey data.
288

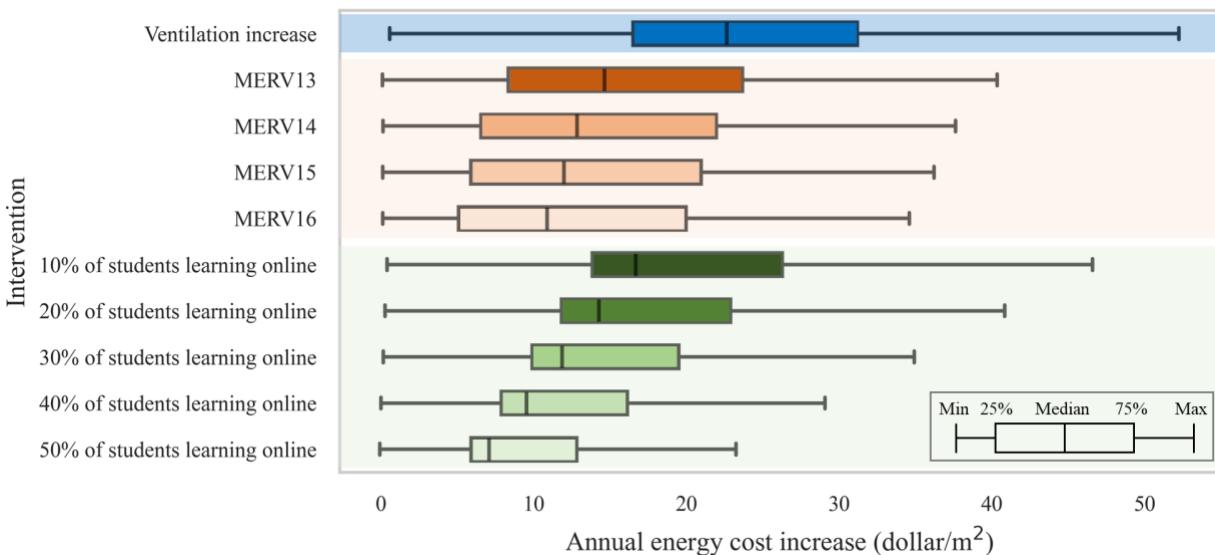

289 3. Results

290 3.1. Required Ventilation Rate for Limiting Infection Risk

291 To limit the infection risk below a sufficiently low threshold, 1% in this study, the required
292 ventilation rate throughout the year is first determined for each school using Eq. (1), considering
293 school parameters, intervention strategies, and COVID-19 prevalence in different months of the
294 year. Fig. 5 illustrates the required ventilation rates throughout the year of different student
295 populations with different mitigation measures. Modeling results show that PK-5
296 (prekindergarten and elementary) schools can limit the infection risk below 1% by modestly
297 increasing ventilation rates with air filtration. In contrast, the 1% infection risk could not be
298 achieved in middle and high schools without unrealistically high ventilation rates even with the
299 use of air filtration. The results indicate that these schools may consider additional infection
300 control measures such as de-densification by implementing partial online learning to maintain

301 infection risk at acceptable levels and lower the required ventilation rates to save energy costs.
 302 These required ventilation rates under different scenarios serve as the ventilation schedule to
 303 compute the energy cost for schools.

304


306
 307 **Fig. 5** Required ventilation rate in different schools to limit infection risk below 1%
 308

309 **3.2. Unit Energy Costs and Implications**

310
 311 Different cost measures have different implications for decision-making. Cost per square meter
 312 and cost per capita under various mitigation strategies are useful for guiding school operations.
 313 Total cost at the national and state level could help federal and state governments to assess
 314 funding gaps and prioritize funding allocation to limit infection risk. Under the baseline scenario
 315 with ventilate rate of 2 hr^{-1} [41], the nationwide average annual school HVAC energy cost is
 316 \$3.98 per square meter and \$60 per capita, setting the basis for comparison. It is noted that
 317 Hawaii and Alaska are separately analyzed due to their extreme climate and high utility rate.
 318

319 Fig. 6 presents the additional energy costs per square meter to limit infection risk below 1% by
 320 implementing different mitigation measures: ventilation increase only, ventilation increase with
 321 air filtration, and ventilation increase with partial online learning. Solely improving ventilation to
 322 limit infection is not affordable in most schools, as the average additional cost amounts to
 323 \$24.18 per square meter. Coupled intervention has significant impacts on saving energy costs

324 while maintaining low infection risks, but exhibits different effects. The use of air filters could
 325 significantly reduce energy costs. Considering the additional costs for advanced filters MERV
 326 14-16, MERV 13 with ventilation is a feasible solution to consider. Limiting the number of
 327 students present in schools via online learning also significantly reduces the HVAC energy cost,
 328 with median value shifting to the low end and variance decreasing, representing a more
 329 aggressive measure in infection control and potential energy saving during the pandemic.
 330 However, limiting in-person schooling could have other impacts such as hindering learning
 331 productivity, exacerbating educational inequality, and thus its adoption should be carefully
 332 considered by schools and governments.
 333

Fig. 6 Extra annual school HVAC energy cost under different interventions

334
 335 Because most school districts are associated with counties, and budget allocation and school
 336 policies are usually determined by local and state governments, the results are aggregated to
 337 county and state levels. The average additional annual energy cost for each county under
 338 different interventions is presented in Fig. 7, which provides high-resolution energy cost
 339 information for schools across the U.S. For all counties, solely improving ventilation to limit
 340 infection risk below 1% will lead to an average cost increase of \$23.39 per square meter.
 341 Adopting MERV 13 filter will reduce the average cost increase to \$15.89 per square meter, and
 342 having half of the students learning online will reduce the cost increase to \$9.67 per square
 343 meter. Counties in the northeastern and southeastern U.S. and California will have greater cost
 344 increases due to their climate conditions. Climate change will have different impacts on the cost
 345 increase in different states, ranging from \$-6.10 to \$8.41 per square meter. The extra energy
 346 cost for infection control in California and the northeastern U.S. will be further elevated, while
 347 that for the western U.S. will be reduced. Schools can identify appropriate interventions to
 348 control risk considering their energy budget, geospatial locations, and the potential influence
 349 from climate change.
 350
 351
 352

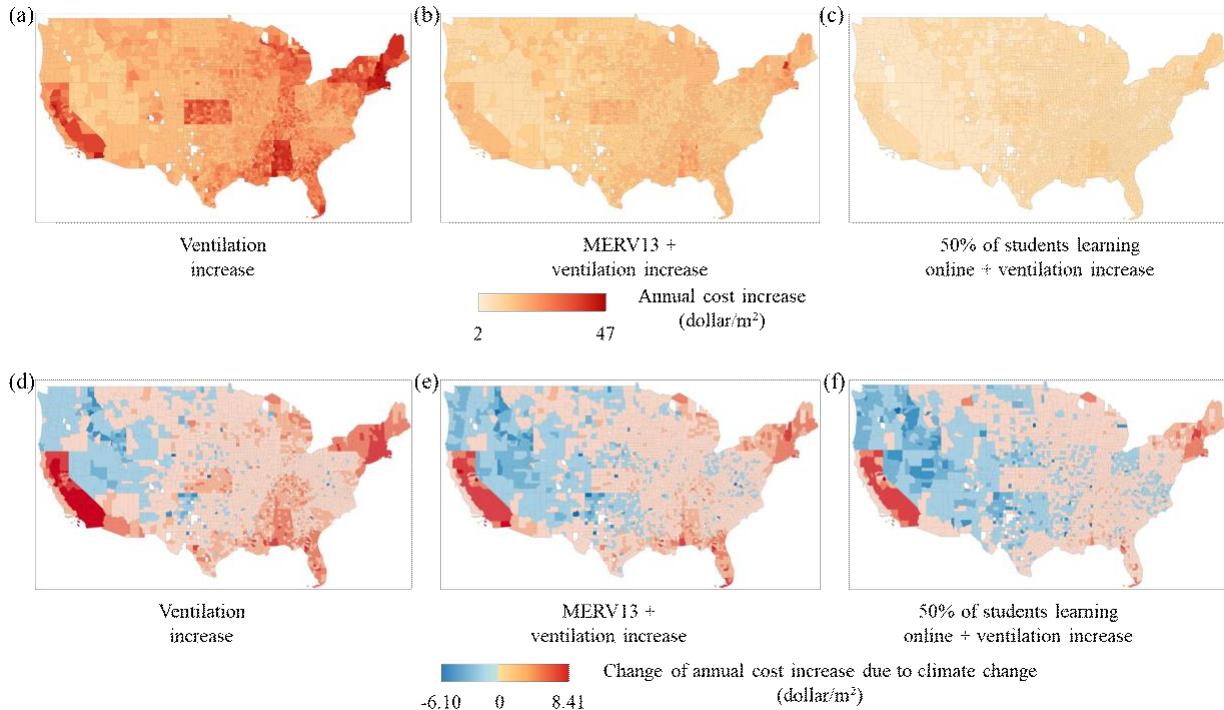
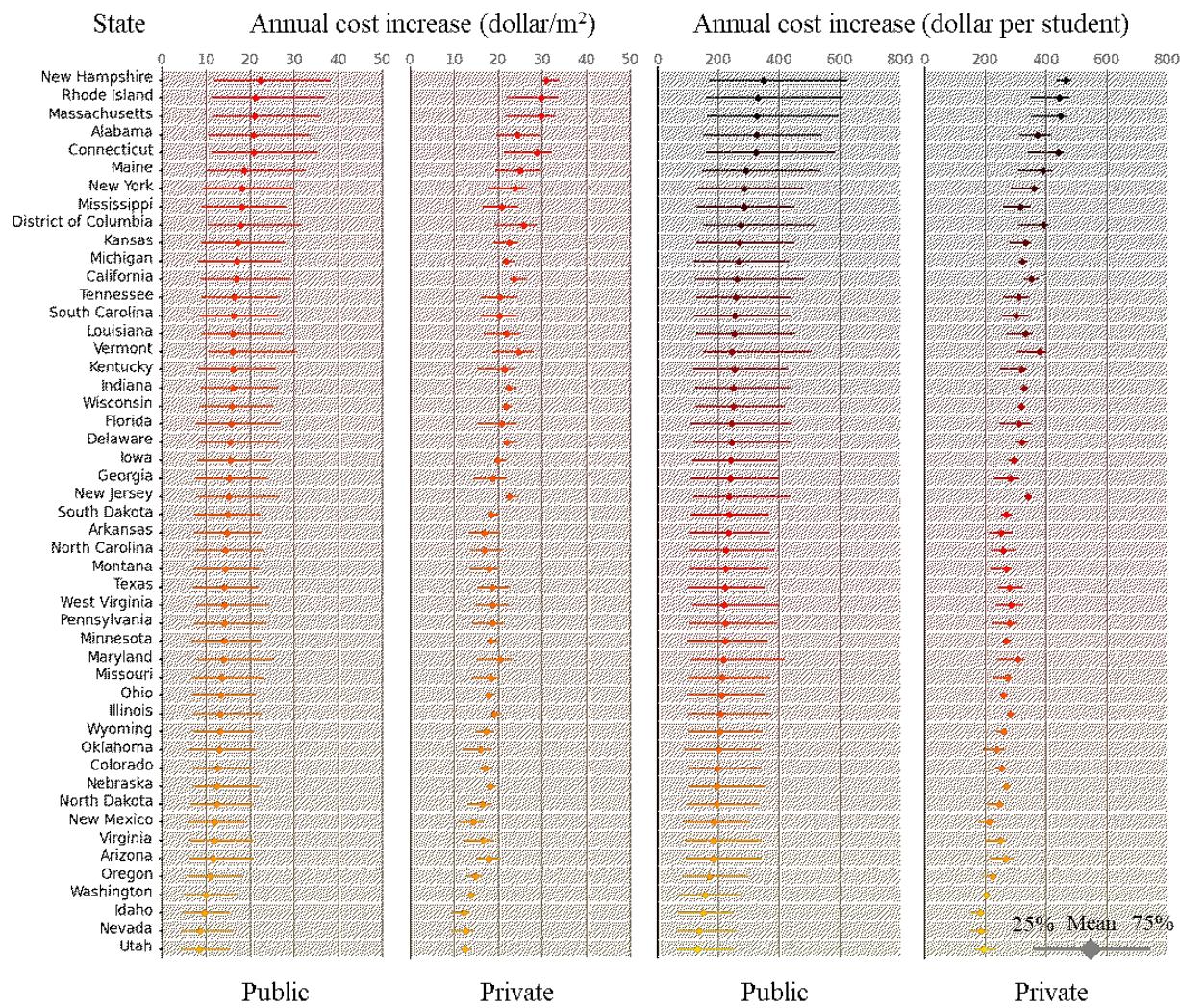



Fig. 7 Average extra energy cost for schools at county level and under climate change

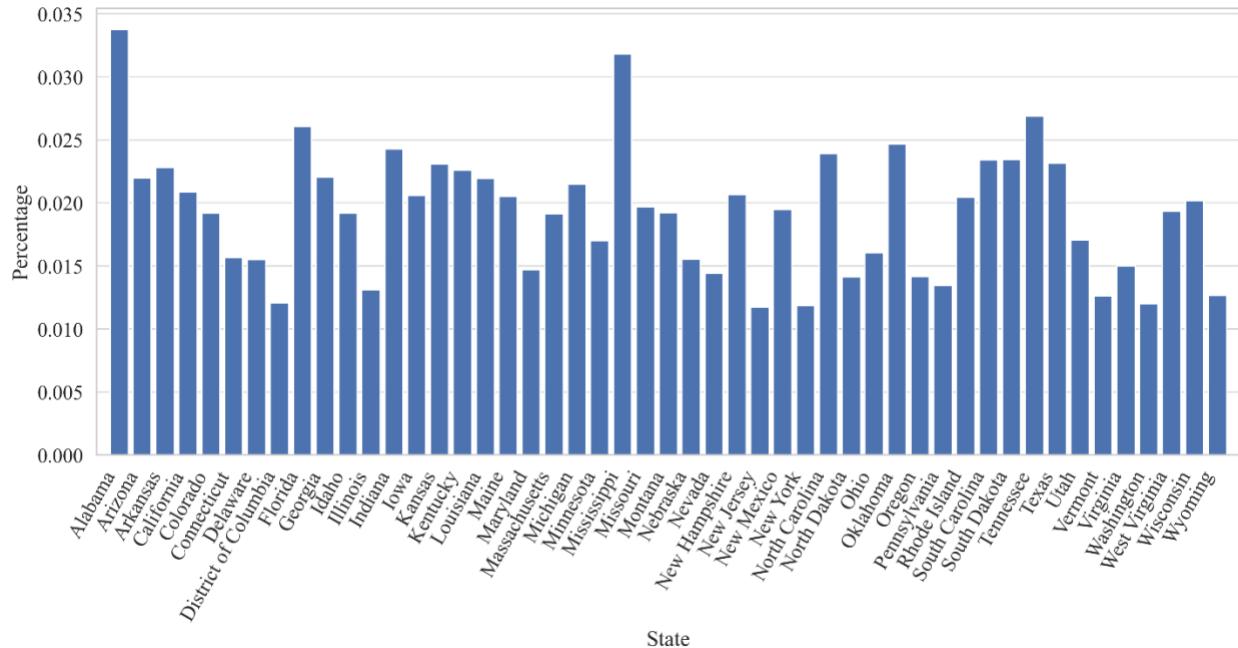

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

Fig. 8 presents the energy costs per square meter and per capita for both public and private schools for the states in the United States, showing the differences across states and between public and private schools. To facilitate the analyses, costs are calculated for the scenario of improving ventilation with MERV-13 to limit infection risks for all students below 1%. Note that, the energy costs per square meter and per capita is first calculated for each school. Then, for schools in the same state, their energy costs are averaged to represent state-level costs. The average extra annual HVAC energy cost is \$15.04/ m² for public schools and \$20.55/ m² for private schools nationwide. The additional energy cost is \$234.74 per student for public schools and \$306.29 per student for private schools. The average enrollment in private schools (192 students) is lower than public schools (538 students), resulting in smaller gross floor area and thus a higher energy cost per unit area. For public schools, the extra energy costs per student represent 1.17% to 3.38% of the expenditures spent on each student in each state in 2018 [42] (Fig. 9). Considering the loss in revenue due to decreased enrollment and additional expenditure on online learning during the pandemic, public schools need public funding support and private schools need to identify potential revenue sources to cover the costs to consistently implement the mitigation measures. The states have different average extra HVAC energy cost and cost variance, which are affected by a variety of factors such as state climate and schools in the state. The extra costs per square meter and per capita across the states represent different patterns for public and private schools. Given the varying conditions in the states in U.S., the results could inform both the schools and governments of energy costs to reduce infection risks.

377
378
379
380

Fig. 8 Annual extra HVAC cost for public and private schools in each state to limit infection risk below 1% with improved ventilation and MERV-13

381
382
383
384
385
386

Fig. 9 Percentage of additional costs per capita with respect to annual expenditure per student in public schools

Note: The annual expenditure per student in public schools is obtained in [42]. The percentage is 4.53% in Hawaii and 2.17% in Alaska.

387
388
389
390
391
392
393
394
395
396
397

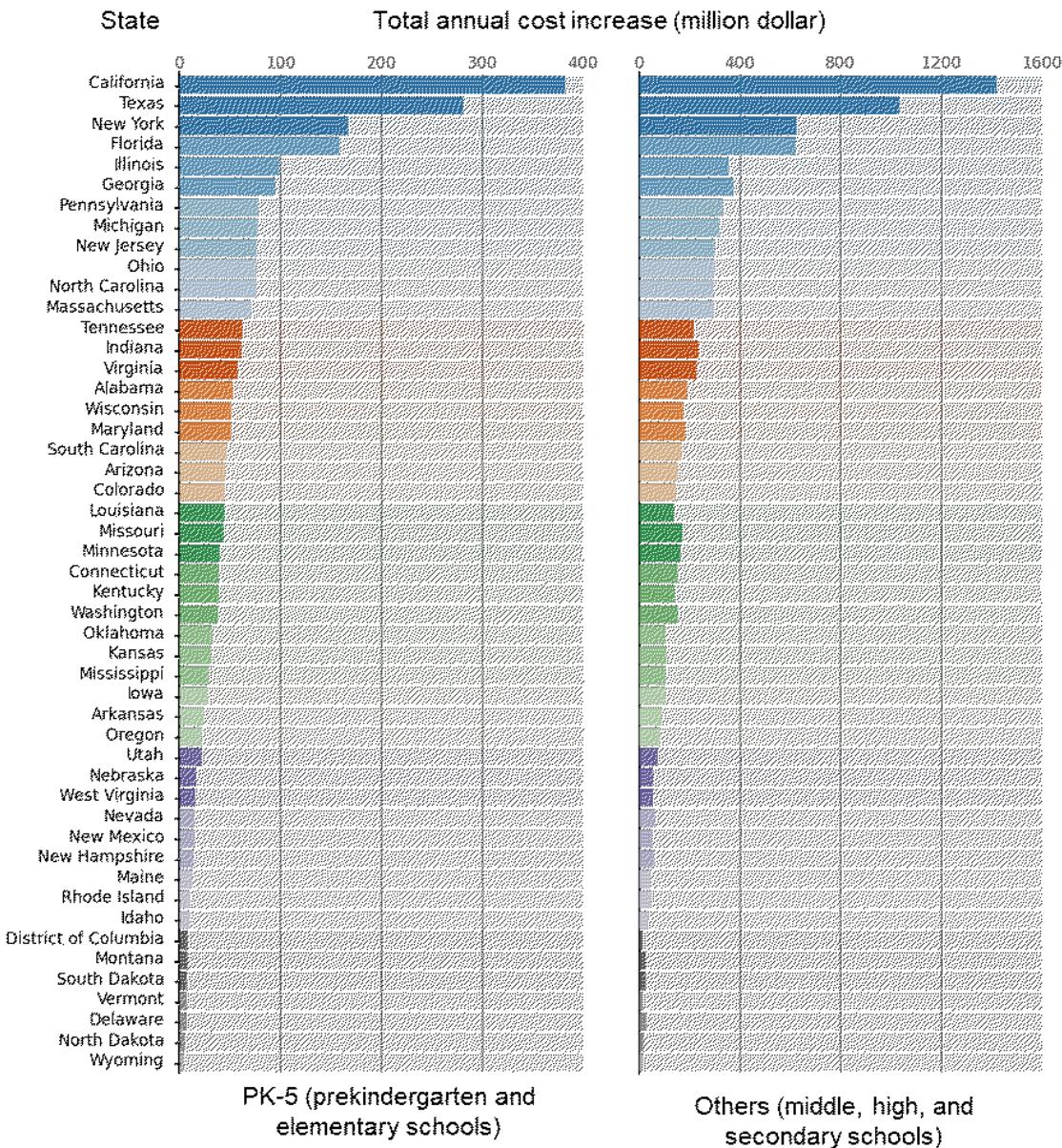
3.3. Total Energy Costs and Implications

The annual total HVAC energy costs are assessed at the national and state level (see Table 6). The annual total costs for improving ventilation with MERV-13 to have all students attending schools range from \$26.67 million to \$2.43 billion for all states with an average of \$351.86 million. For states such as California and Texas, the expected costs are very high, and complementary interventions (such as online learning) might need to be implemented to maintain low infection risks and save energy costs. For states such as Wyoming, the costs seem to be affordable depending on the state fiscal conditions.

Table 6. Total annual energy cost in each state to control infection risk below 1% with MERV 13 and improved ventilation

State	Annual energy cost (million dollar)		
	Total	Public	Private
Alabama	316.27	292.06	24.21
Arizona	268.24	253.48	14.76
Arkansas	143.31	136.60	6.71
California	2429.90	2229.67	200.23
Colorado	242.67	229.84	12.83
Connecticut	265.07	240.26	24.81
Delaware	52.22	46.28	5.94
District of Columbia	36.91	31.43	5.48
Florida	1069.84	944.08	125.76
Georgia	604.08	566.16	37.92

Idaho	61.48	58.46	3.02
Illinois	640.75	572.41	68.34
Indiana	406.87	365.38	41.49
Iowa	173.86	159.99	13.87
Kansas	182.75	168.62	14.13
Kentucky	246.33	224.56	21.77
Louisiana	257.11	216.40	40.71
Maine	82.25	75.01	7.23
Maryland	332.08	291.64	40.44
Massachusetts	505.15	453.60	51.55
Michigan	533.79	490.10	43.69
Minnesota	282.04	258.53	23.51
Mississippi	176.09	162.41	13.68
Missouri	295.02	263.81	31.22
Montana	45.62	42.98	2.65
Nebraska	99.94	88.76	11.19
Nevada	103.54	98.74	4.79
New Hampshire	101.74	91.04	10.70
New Jersey	526.64	466.84	59.80
New Mexico	83.64	79.95	3.70
New York	1118.68	974.46	144.22
North Carolina	484.04	454.73	29.31
North Dakota	31.19	29.04	2.14
Ohio	517.56	461.96	55.60
Oklahoma	179.01	172.02	6.99
Oregon	141.08	129.99	11.09
Pennsylvania	577.49	512.04	65.45
Rhode Island	80.15	72.45	7.70
South Carolina	277.36	260.00	17.36
South Dakota	43.58	40.27	3.31
Tennessee	362.69	337.50	25.19
Texas	1626.83	1552.98	73.84
Utah	125.58	121.76	3.82
Vermont	33.30	29.71	3.59
Virginia	379.28	350.05	29.24
Washington	258.52	238.85	19.67
West Virginia	90.24	86.18	4.06
Wisconsin	322.58	279.57	43.01
Wyoming	26.67	26.07	0.61
Total	17241.02	15728.68	1512.34

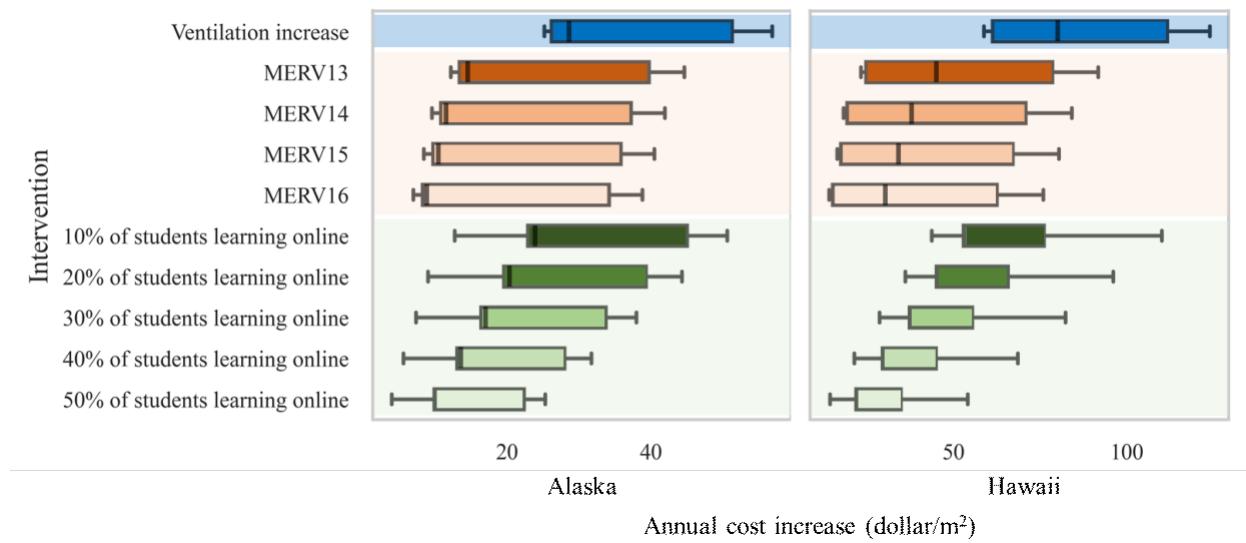

398

399

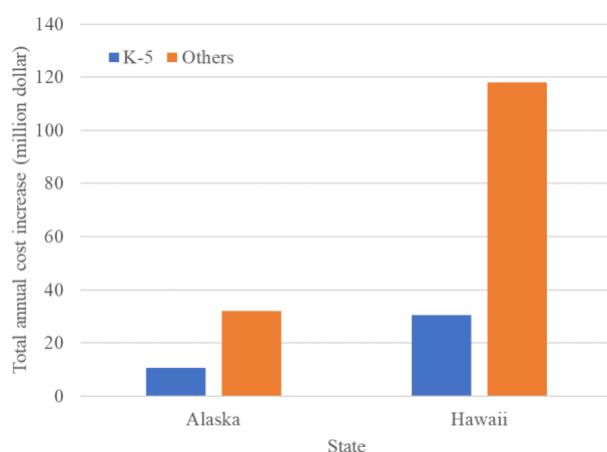
400

Fig. 10 present the additional energy costs required for different levels of public schools across the states in U.S. The results suggest that the energy cost for reopening PK-5 schools and keep

401 them open with low infection risk for all students seems to be affordable in many states. The
 402 insights could guide the federal and state government in assessing the financial resources
 403 needed to cover the costs, particularly energy costs for schools to operate with mitigation
 404 practices during pandemics and epidemics.



405
 406 **Fig.10** Additional funding needed for public schools to have all students attending schools with
 407 MERV 13 and improved ventilation to limit infection risk
 408


409 **3.4. Energy Cost in Hawaii and Alaska**

410 Due to extreme climate and high utility price, the energy costs for schools in Hawaii and Alaska
 411 are much higher than other states in U.S., and thus analyzed separately. Under the baseline
 412 ventilation, the average annual HVAC energy cost is \$13.31 per square meter and \$198.49 per
 413 student in Hawaii, and \$7.36 per square meter and \$110.13 per student in Alaska. To control
 414 infection risk below 1% with MERV 13 and improved ventilation, the average annual energy cost
 415 increase is \$50.71 per square meter in Hawaii and \$25.75 per square meter in Alaska, which

416 will further increase by 30.3% and 14.6%, respectively, under climate change. The additional
 417 cost per capita in public schools amounts to \$690.5 and \$384.3 in Hawaii and Alaska,
 418 accounting for 4.5% and 2.2% of annual expenditure per student. The cost increase under other
 419 interventions can be found in Fig.11. Furthermore, to have all students attending schools while
 420 limiting infection risk below 1% with MERV 13 and improved ventilation, a total amount of
 421 \$220.71 million and \$53.88 million is needed for energy cost in Hawaii and Alaska. The
 422 additional funding needed to keep K-5 public schools open seems to be more affordable in
 423 Hawaii and Alaska, i.e., \$32.07 million and \$10.56 million respectively (Fig. 12).
 424

425 **Fig. 11** Annual cost increase in different interventions in Hawaii and Alaska
 426
 427

428 **Fig. 12** Additional annual energy cost for public schools in Hawaii and Alaska to control infection
 429 risk below 1% with MERV 13 and improved ventilation
 430
 431

432 **4. Discussion**

433 The ongoing COVID-19 pandemic reveals the significance of improved ventilation and air
 434 filtration to reduce the airborne infection risk, which could lead to considerably high energy
 435 costs. Several recent studies have explored the energy consumption of HVAC systems in
 436 different buildings when maintaining a low risk of COVID-19 transmission. For instance, Sha *et*
 437 *al.* [43] investigated the relationship between increased ventilation rate and energy consumption

438 in high-rise buildings, and found a ventilation rate of 5.2 ACH is required to maintain infection
439 risk under 1% when conducting social distance and wearing masks for 8-hour exposure, leading
440 to energy consumption of 265 MWh for chiller system, and 252 MWh for fans. Wang *et al.* [44]
441 found that the standard minimum airflow rate is insufficient to maintain the infection risk at low
442 level, and the energy consumption can reach up to 2.9 kWh for 1-hour exposure when limiting
443 the infection risk below 2%. Mokhtari *et al.* [45] analyzed the impact of occupant distribution on
444 energy consumption and infection risk using a university building as a case study. The result
445 indicated that with the increase of ventilation rate, the number of infected people decreases
446 exponentially, with a near-linear increase in energy consumption. In accordance with our study,
447 the above relevant studies have illustrated the excessive energy consumption to control
448 infection risks when solely improving ventilation. However, apart from existing studies that only
449 focus on ventilation strategy for a specific building example, our study considered different
450 infection mitigation measures to provide a nationwide assessment of energy cost of K-12
451 schools, and have derived the following managerial insights and recommendations.
452

453 Schools serve manifold purposes for the communities and school closures result in ripple
454 effects. District leaders and school administrations are wrestling with the complex and high-
455 stakes decision of balancing public health risks, in-person schooling benefits, and mitigation
456 costs for opening and operating schools as the pandemic persists and future epidemics may
457 emerge. Based on the results of this study, the energy costs for implementing the
458 recommended ventilation practices are high. Given the importance of in-person interaction for
459 learning and development, districts should prioritize offering full-time, in-person instructions in
460 grades PK-5 who are still developing the skills to regulate their behavior, emotion, and attention
461 and thus cannot be best served by online learning. The results also suggest that the infection
462 risks in most PK-5 schools are low and costs required for ventilation with air filtration are
463 affordable with governmental assistance. For middle and high schools, the required ventilation
464 rate is difficult to achieve or cost-prohibitive, thus online learning should be practiced, and full in-
465 person learning could be resumed when the infection risk is low, which balances the infection
466 risk and energy cost. The schools should also adopt other strategies together with mitigation
467 measures to control infection risks and save energy consumptions. For example, turning off
468 unnecessary lighting to save energy for improved ventilation, and practicing social distancing
469 and wearing masks to further limit pathogen transmission and reduce infection risks could be
470 considered by schools.
471

472 Schools alone, particularly public schools will not be able to take on the entire financial burden
473 for implementing the mitigation strategies, and are not warranted to shift the costs to
474 households, further exacerbating the burden and inequality. Private schools relying on tuition as
475 the main revenue need additional funding sources or raise tuition to cover the expenditure.
476 Schools are the quintessential public good, and thus federal and state governments should
477 provide significant resources to districts and schools to enable them to implement the suite of
478 measures required to maintain individual and community health and allow schools to remain
479 open. The costs per square meter, per capita, and total costs, as well as the total costs for
480 different levels of schools vary across different states. Comparing the additional costs per capita
481 with the annual expenditure per student across states, the percentages range from 1.17% to
482 3.38%, implying plausible justification given the benefits. For states with affordable costs,
483 opening schools and offering in-person instruction with government support to cover
484 expenditure are feasible, for other states, coupled interventions should be in place to maintain
485 health and safety with a limited budget. Decision-makers should consider the trade-off between
486 infection risk and energy cost based on disease prevalence, climate condition, and utility costs
487 within the state, as well as consider the pandemic and energy disparities that may persistently
488 devastate some communities. Due to the economic impact of the pandemic, state budgets are

489 shrinking and the education budgets are being cut, making it even more difficult for schools and
490 districts to obtain the funding. The costs for PK-5 schools in most states are relatively
491 affordable, and thus priority for additional energy budget approval could be given for these
492 schools.

493
494 To maintain healthy school environments, governments should also consider school
495 maintenance and retrofit to save energy costs in the long run. Poor facilities will need additional
496 financial support to improve facilities to basic health and safety standards, requiring high upfront
497 costs as estimates on HVAC system repair amounts to about \$32 for a school building square
498 meter and replacements estimated to be about \$108 per building square meter [46]. In addition,
499 the government should continue energy efficiency program for schools to be energy-efficient, as
500 energy has important implications for student health, school, and even community and society
501 functions.

502
503 **5. Conclusions**

504 This study performed a data-driven scenario-based analysis to assess increased energy cost
505 associated with reducing airborne infection risk of SARS-CoV-2 under different mitigation
506 measures, including increased ventilation, air filtration, and online learning, in 111,485 public
507 and private schools in the U.S. The epidemiology scenario is used to derive the infection risks
508 and energy costs to inform response and preparedness for the ongoing pandemic and the
509 inevitable emergence of the next pandemic. There are three main findings that could lead to
510 managerial insights at different levels.

511
512 First, to limit the airborne infection risk below 1%, the energy costs per square meter and per
513 capita are estimated on national, state, and county basis for both public and private schools for
514 different ventilation and intervention strategies. The impacts of increased ventilation, air
515 filtration, and online learning on energy costs are quantified, providing the basis for coupled
516 interventions to save energy costs while limiting infection. To ensure in-person schooling, solely
517 improving ventilation is cost-prohibitive with an average additional annual cost of \$24.2 per
518 square meter and \$369.6 per capita. The costs could to a large extent be reduced by adding air
519 filtration, but are still not affordable for many schools. Thus, for some schools, in-person
520 schooling should be compromised to limit infection risks and also save energy costs. The
521 insights provide the basis for schools to implement different and coupled interventions during
522 and after the pandemic. In addition, the private schools have higher costs than the public
523 schools on average, requiring deliberate decisions for them to cover the costs.

524
525 Second, the unit and total costs vary significantly across the states in the U.S. to provide all
526 students in public schools with in-person learning. The unit costs range from \$11.09 to \$28.92
527 per square meter and from \$170.64 to \$447.74 per capita, and the total costs range from \$26.07
528 million to \$2.23 billion, providing unprecedented information for state governments to assess
529 funding needs and allocate limited funding to maintain school operation during the pandemic
530 and beyond. Besides, with increased ventilation and air filtration, the total annual additional
531 energy costs to control infection risk below 1% is significantly lower for PK-5 schools than that
532 for middle and high schools in all states. In such situation, PK-5 schools may consider
533 remaining fully in-person instruction with governmental assistance, whereas, for middle and high
534 schools, partial online learning could be practiced to balance the infection risk and energy cost.

535
536 Third, examining from a long-term perspective to maintain healthy school environments, the
537 impact of climate changes on energy costs has also been explored, demonstrating climate-
538 induced spatial variance for the energy costs. The findings will help design guidelines to

539 upgrade HVAC systems as well as develop school operation practices to accommodate
540 infection control needs and control energy costs to facilitate a healthy and sustainable school
541 environment.

542
543 There remain several limitations. First, as a nationwide assessment of energy cost, schools are
544 simplified as one-story buildings due to the unavailability of detailed information (e.g., building
545 story and layout) for every school in the U.S., as well as the high computation cost for national-
546 scale energy simulation. With detailed information for specific schools, more sophisticated
547 models can be developed to improve the accuracy of energy simulation. Second, for the
548 estimation of indoor airborne transmission, the assumption of our study was based on the well-
549 mixed assumption of the school without room separation, which aligns with the mathematical
550 model (G-N equation) used to compute infection risk. Other approaches (e.g., agent-based
551 simulation) are need with both human behavior and detailed building information incorporated,
552 to more accurately simulate the airborne infection risk in specific buildings.

553 554 **Acknowledgements**

555 This research was funded by U.S. National Science Foundation via grants 1952140, 2026719,
556 and 2038967. The authors greatly appreciate the support from U.S. National Science
557 Foundation. The opinions, findings, and recommendations presented in this research are those
558 of the authors, and do not necessarily reflect those of the U.S. National Science Foundation, the
559 University of Tennessee Knoxville, and the University of Texas at San Antonio.

560 561 **Reference**

- 562 [1] CDC, Guidance for School Administrators to Help Reduce the Spread of Seasonal
563 Influenza in K-12 Schools, (2020). <https://www.cdc.gov/flu/school/guidance.htm>
564 (accessed October 1, 2021).
- 565 [2] UNESCO, Adverse consequences of school closures, (2021).
566 <https://en.unesco.org/covid19/educationresponse/consequences> (accessed October 1,
567 2021).
- 568 [3] S. Chen, K. Prettner, M. Kuhn, P. Geldsetzer, C. Wang, T. Bärnighausen, D.E. Bloom,
569 COVID-19 and climate: Global evidence from 117 countries, MedRxiv : The Preprint
570 Server for Health Sciences. (2020). <https://doi.org/10.1101/2020.06.04.20121863>.
- 571 [4] R. Omori, R. Matsuyama, Y. Nakata, The age distribution of mortality from novel
572 coronavirus disease (COVID-19) suggests no large difference of susceptibility by age,
573 Scientific Reports. 10 (2020). <https://doi.org/10.1038/s41598-020-73777-8>.
- 574 [5] R. Lordan, G.A. FitzGerald, T. Grosser, Reopening schools during COVID-19, Science.
575 369 (2020) 1146. <https://doi.org/10.1126/SCIENCE.ABE5765>.
- 576 [6] CDC, Delta Variant: What We Know About the Science, (2021).
577 <https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html> (accessed
578 October 1, 2021).
- 579 [7] WHO, Transmission of SARS-CoV-2 : implications for infection prevention precautions,
580 (2020). <https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions> (accessed October 1, 2021).
- 582 [8] CDC, Guidance for COVID-19 Prevention in K-12 Schools, (2021).
583 <https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/k-12-guidance.html> (accessed October 1, 2021).
- 585 [9] CDC, Ventilation in Schools and Childcare Programs, (2021).
586 <https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/ventilation.html>
587 (accessed October 1, 2021).
- 588 [10] B.M. Rosales, C. Jones, California schools struggle to pay for ventilation upgrades, key to

589 safely reopen campuses, (2021). <https://edsource.org/2021/california-schools-struggle-to-pay-for-ventilation-upgrades-key-to-safely-reopen-campuses/646445> (accessed October 1, 2021).

590

591

592 [11] National Center for Education Statistics, Elementary and Secondary Information System, (2020). <https://nces.ed.gov/ccd/elsi/> (accessed October 1, 2021).

593

594 [12] S.M. Kissler, C. Tedijanto, E. Goldstein, Y.H. Grad, M. Lipsitch, Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period, *Science*. 368 (2020) 860–868. <https://doi.org/10.1126/science.abb5793>.

595

596 [13] A.W.D. Edridge, J. Kaczorowska, A.C.R. Hoste, M. Bakker, M. Klein, K. Loens, M.F. Jebbink, A. Matser, C.M. Kinsella, P. Rueda, M. Ieven, H. Goossens, M. Prins, P. Sastre, M. Deijs, L. van der Hoek, Seasonal coronavirus protective immunity is short-lasting, *Nature Medicine*. 26 (2020) 1691–1693. <https://doi.org/10.1038/s41591-020-1083-1>.

597

598 [14] Q.X. Long, X.J. Tang, Q.L. Shi, Q. Li, H.J. Deng, J. Yuan, J.L. Hu, W. Xu, Y. Zhang, F.J. Lv, K. Su, F. Zhang, J. Gong, B. Wu, X.M. Liu, J.J. Li, J.F. Qiu, J. Chen, A.L. Huang, Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, *Nature Medicine*. 26 (2020) 1200–1204. <https://doi.org/10.1038/s41591-020-0965-6>.

599

600 [15] A. Iwasaki, What reinfections mean for COVID-19, *The Lancet Infectious Diseases*. 21 (2021) 3–5. [https://doi.org/10.1016/S1473-3099\(20\)30783-0](https://doi.org/10.1016/S1473-3099(20)30783-0).

601

602 [16] L. Gammaitoni, M.C. Nucci, Using a Mathematical Model to Evaluate the Efficacy of TB Control Measures, *Emerging Infectious Diseases*. 3 (1997) 335–342. <https://doi.org/10.3201/eid0303.970310>.

603

604 [17] C.B. Beggs, S.J. Shepherd, K.G. Kerr, Potential for airborne transmission of infection in the waiting areas of healthcare premises: Stochastic analysis using a Monte Carlo model, *BMC Infectious Diseases*. 10 (2010). <https://doi.org/10.1186/1471-2334-10-247>.

605

606 [18] B. Hota, B. Stein, M. Lin, A. Tomich, J. Segreto, R.A. Weinstein, Estimate of airborne transmission of SARS-CoV-2 using real time tracking of health care workers, *MedRxiv*. (2020) 2020.07.15.20154567.

607

608 [19] G. Buonanno, L. Stabile, L. Morawska, Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment, *Environment International*. 141 (2020) 105794. <https://doi.org/10.1016/j.envint.2020.105794>.

609

610 [20] G. Buonanno, L. Morawska, L. Stabile, Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications, *Environment International*. 145 (2020). <https://doi.org/10.1016/j.envint.2020.106112>.

611

612 [21] E.C. Riley, G. Murphy, R.L. Riley, Airborne spread of measles in a suburban elementary school, *American Journal of Epidemiology*. 107 (1978) 421–432. <https://doi.org/10.1093/oxfordjournals.aje.a112560>.

613

614 [22] G.N. Sze To, C.Y.H. Chao, Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases, *Indoor Air*. 20 (2010) 2–16. <https://doi.org/10.1111/j.1600-0668.2009.00621.x>.

615

616 [23] DOE, Building Handbook, (2009). <https://www.education-ni.gov.uk/building-handbook> (accessed October 1, 2021).

617

618 [24] National Center for Education Statistics, Average number of hours in the school day and average number of days in the school year for public schools, by state: 2007–08, (2008). https://nces.ed.gov/surveys/sass/tables/sass0708_035_s1s.asp (accessed October 1, 2021).

619

620 [25] P. Azimi, B. Stephens, HVAC filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs, *Building and Environment*. 70 (2013) 150–160. <https://doi.org/10.1016/j.buildenv.2013.08.025>.

621

622 [26] W.R. Chan, S. Parthasarathy, W.J. Fisk, T.E. Mckone, Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores, *Indoor Air*. 26

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640 (2016) 331–343. <https://doi.org/10.1111/ina.12189>.

641 [27] National Air Filtration Association, Understanding MERV | NAFA User's Guide to
642 ANSI/ASHRAE 52.2, (2018). <https://www.nafahq.org/understanding-merv-nafa-users-guide-to-ansi-ashrae-52-2/> (accessed October 1, 2021).

644 [28] ASHRAE, Filtration / Disinfection, (2021). <https://www.ashrae.org/technical-resources/filtration-disinfection> (accessed October 1, 2021).

646 [29] L. Morawska, J.W. Tang, W. Bahnfleth, P.M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, S. Dancer, A. Floto, F. Franchimon, C. Haworth, J. Hogeling, C. Isaxon, J.L. Jimenez, J. Kurnitski, Y. Li, M. Loomans, G. Marks, L.C. Marr, L. Mazzarella, A.K. Melikov, S. Miller, D.K. Milton, W. Nazaroff, P. V. Nielsen, C. Noakes, J. Peccia, X. Querol, C. Sekhar, O. Seppänen, S. ichi Tanabe, R. Tellier, K.W. Tham, P. Wargocki, A. Wierzbicka, M. Yao, How can airborne transmission of COVID-19 indoors be minimised?, Environment International. 142 (2020) 105832. <https://doi.org/10.1016/j.envint.2020.105832>.

654 [30] US Environmental Protection Agency, Exposure Factors Handbook 2011 Edition (Final
655 Report), Washington, DC, 2011. <https://doi.org/EPA/600/R-090/052F>.

656 [31] E. Bonnema, D. Goldwasser, P. Torcellini, S. Pless, D. Studer, Technical Feasibility
657 Study for Zero Energy K-12 Schools, National Renewable Energy Lab.(NREL), Golden,
658 CO (United States), 2016.

659 [32] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D.
660 Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of
661 Energy commercial reference building models of the national building stock, National
662 Renewable Energy Laboratory, 2011.

663 [33] S. Wilcox, W. Marion, Users manual for TMY3 data sets, Citeseer, 2008.

664 [34] M.F. Jentsch, P.A.B. James, L. Bourikas, A.B.S. Bahaj, Transforming existing weather
665 data for worldwide locations to enable energy and building performance simulation under
666 future climates, Renewable Energy. 55 (2013) 514–524.
667 <https://doi.org/10.1016/j.renene.2012.12.049>.

668 [35] North American Regional Climate Change Assessment Program, Emissions Scenario,
669 (2007). <https://www.narccap.ucar.edu/about/emissions.html> (accessed October 1, 2021).

670 [36] M.A. Triana, R. Lamberts, P. Sassi, Should we consider climate change for Brazilian
671 social housing? Assessment of energy efficiency adaptation measures, Energy and
672 Buildings. 158 (2018) 1379–1392. <https://doi.org/10.1016/j.enbuild.2017.11.003>.

673 [37] U.S. Energy Information Administration, Commercial buildings energy consumption
674 survey (CBECS), (2012). <https://www.eia.gov/consumption/commercial/data/2012/>
675 (accessed October 1, 2021).

676 [38] U.S. Energy Information Administration, Electricity Data, (2021).
677 <https://www.eia.gov/electricity/data.php> (accessed October 1, 2021).

678 [39] U.S. Energy Information Administration, United States Natural Gas Industrial Price,
679 (2021). <https://www.eia.gov/dnav/ng/hist/n3035us3m.htm> (accessed October 1, 2021).

680 [40] ASHRAE, Standard 90.1-2007, Energy standard for buildings except low-rise residential
681 buildings, American Society of Heating, Refrigerating, and Air-Conditioning Engineers,
682 Atlanta, Georgia, USA, 2007.

683 [41] S. Batterman, F.C. Su, A. Wald, F. Watkins, C. Godwin, G. Thun, Ventilation rates in
684 recently constructed U.S. school classrooms, Indoor Air. 27 (2017) 880–890.
685 <https://doi.org/10.1111/ina.12384>.

686 [42] United States Census Bureau, 2018 Public Elementary-Secondary Education Finance
687 Data, (2018). <https://www.census.gov/data/tables/2018/econ/school-finances/secondary-education-finance.html> (accessed October 1, 2021).

689 [43] H. Sha, X. Zhang, D. Qi, Optimal control of high-rise building mechanical ventilation
690 system for achieving low risk of COVID-19 transmission and ventilative cooling,

691 Sustainable Cities and Society. 74 (2021). <https://doi.org/10.1016/j.scs.2021.103256>.

692 [44] J. Wang, J. Huang, Z. Feng, S.J. Cao, F. Haghishat, Occupant-density-detection based
693 energy efficient ventilation system: Prevention of infection transmission, Energy and
694 Buildings. 240 (2021). <https://doi.org/10.1016/j.enbuild.2021.110883>.

695 [45] R. Mokhtari, M.H. Jahangir, The effect of occupant distribution on energy consumption
696 and COVID-19 infection in buildings: A case study of university building, Building and
697 Environment. 190 (2021). <https://doi.org/10.1016/j.buildenv.2020.107561>.

698 [46] K.A. Dibner, H.A. Schweingruber, D.A. Christakis, Reopening K-12 Schools during the
699 COVID-19 Pandemic: A Report from the National Academies of Sciences, Engineering,
700 and Medicine, Journal of the American Medical Association. 324 (2020) 833–834.
701 <https://doi.org/10.1001/jama.2020.14745>.

702