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Abstract— In this paper a stochastic optimal velocity dynam-
ical model in considered. The probabilistic behavior of the
solution of such dynamics can be explained by its transition
density function. We investigate an explicit approximation of
this transition function through an iterative method.

I. INTRODUCTION AND RELATED WORKS
Optimal Velocity (OV) dynamics proposed by Bando et

al. [1] is used to explain the drivers’ reaction in the sense of
acceleration or deceleration, in response to the behavior of
the other vehicles. More accurately,

Ẍ (n)(t) = α

{
V

(
X (n−1)(t)−X (n)(t)

d

)
− Ẋ (n)(t)

}
, (1)

where X (n)(t) is the location of the n-th vehicle, α > 0
is a constant associated with the drivers’ sensitivity to any
change, d is a scaling parameter and the real valued function
V is a monotonically increasing and bounded function which
will be explicitly defined in the next section. In this model,
the optimal velocity is calculated for each vehicle and
the comparison of the optimal velocity with current speed
decides the acceleration or deceleration of the vehicle under
consideration.

Optimal Velocity model is extended in different direc-
tions. [2], [3] consider the delay in reaction of the drivers
with respect to sudden changes. Simple stochastic versions
of this model have also been studied in the literature.
Drivers’ uncertain behavior is discussed in [4, section 12]
and references therein. Stochasticity which causes the traffic
breakdown is investigated in [5] and more recently [6], [7]
discuss the stochastic stability of OV models. The asymptotic
behavior of the deterministically and stochastically perturbed
OV models is studied in [8]. The rate of convergence to
the limiting approximations for these perturbed models is
investigated in [9].

For N vehicles moving in one line, we can apply the
following change of variables in model (1)

z(2n−1)(t) def
= X (1)(t)−X (n)(t) = v0t−X (n)(t)

z(2n)(t) def
= Ẋ (1)(t)− Ẋ (n)(t) = v0− Ẋ (n)(t),

(2)
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for n ∈ {1, · · · ,N}, where v0 is the constant velocity of the
first car. In fact, in this model the difference of the locations
and the velocities with the first vehicle is considered (see
[8] for more details). Such presentation will be very helpful
in interpreting the solution of the new dynamics as will be
explained later in this section. Applying the modification (2),
equation (1) can be written in the form of

ż(2n−1)(t) = z(2n)(t)

ż(2n)(t) =−α

{
V

(
z(2n−1)(t)− z(2n−3)(t)

d

)
− v0 + z(2n)(t)

}
.

(3)
In this research we are interested in the stochastic version
of the OV model (3). We refer the interested readers to [7],
[6] as well as [8] for importance and the applications of
these models. We consider (controllable) noises with constant
intensity in this work. However, the results of the analysis
can be carried over to more general noises (non-constant
diffusion terms) in a straightforward manner1.
In particular, let (Ω,F ,(Ft),P) be a probability space
with complete filtration. For simplicity of notations and
arguments, the result will be established for the first two
vehicles and it would become clear that the extension to any
number of vehicles will be immediate. The stochastic OV
model of interest is in the form of

dXε
t = Y ε

t dt

dY ε
t = β (Xε

t ,Y
ε

t )dt + εdWt ,

(Xε
0 ,Y

ε
0 ) = (x,y),

(4)

on [0,T ] for any T > 0. The drift term in this model is defind
as

β (u,v) def
= −α

{
V
(u

d

)
+ v− v0

}
, (u,v) ∈ R2

where the optimal velocity function is considered as a
hyperbolic tangent function

V (u) def
= tanh(u+2)− tanh(2).

Constant α > 0 is introduced in equation (1), (Wt)t≥0 denotes
a standard Ft - Brownian Motion and ε > 0 is constant
intensity of the Brownian motion.

The solutions of stochastic differential equation (SDE) (4)
is a random process (Xε

t ,Y
ε

t ) in R2 that is interpreted as
the distance and the difference of velocities between the
two consecutive vehicles respectively. Therefore, the aim

1It should be noted that, non-constant diffusion terms are required to
satisfy some regularities, e.g. smooth and boundedness.

2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

978-1-6654-4197-1/$31.00 ©2021 AACC 3326



is to understand the probabilistic behavior of this process
which represents the solution of the stochastic OV model.
In particular, it is known that such a solution is indeed an
Ft -adapted Markov process and hence the corresponding
transition probability (density) function explains its desired
probabilistic behavior.

Our Contributions. In this paper, we study the solution
of the stochastic dynamical model (4) by approximating its
associated transition probability function in an explicit form.
This transition density function explains what behavior to
expect from the solutions in probabilistic sense. The con-
struction of this transition function is by iteratively evolving a
simple Gaussian density and its convolution with the solution
of a Volterra equation.

Moreover, we show that the transition density function can
be approximated in a bounded domain rather than R2 due to
the structure of our problem. Such observation is crucial in
practice since calculating the integrals in unbounded domains
is impractical.

Finally, by rigorous study of probabilistic properties of the
solution, we establish a powerful tool for further analysis of
stochastic OV models.

Why OV model. The dynamical model (1) is a highly
descriptive model in terms of the interaction between the
leading and the following vehicles. Many analytical results
applicable to this model can be directly extended to other
optimal velocity dynamics. In addition, modifications of this
basic model can suitably explain many recent technological
advances such as adaptive cruise control and the dynamics
of autonomous vehicles.

Organization of this paper is as follows. In section II
we consider two special cases of the drift terms and we
calculate their transition density functions. These two cases
will motivate the general nonlinear drift term. In section
III we consider the general case of the drift term and the
transition density function for this case will be constructed
iteratively. In section ?? we simulate some of the iterations
of the constructed method. Finally, we discuss the results and
possible future directions.

II. MOTIVATION AND SPECIAL CASES

In this section we study two special cases of the drift term
β (x,y). Discussing the transition density function in these
cases will be insightful in constructing the density function
of the general drift term in the next section.

A. Transition probability Function for Time-Dependent Drift
Term

Let us suppose that the drift term β in (4) depends only
on the time variable. In other words, the drift term can be
approximated as a function of the form β (t).

Such consideration is only from the theoretical point
of view and we will explain how studying this case can
be helpful in understanding the transition probability with
nonlinear drift term (see remark 2.2).

In this case the solution of stochastic differential equation
(4) can be presented by(

Xε
t

Y ε
t

)
=

(
x+ yt +

∫ t
0
∫ s

0 β (r)drds+ ε
∫ t

0 Wsds
y+

∫ t
0 β (s)ds+ εWt

)
(5)

on time interval [0,T ]. Therefore, the solution of the system
is a Gaussian process with mean vector

µt
def
=

(
EXε

t
EY ε

t

)
=

(
x+ yt +

∫ t
0
∫ s

0 β (r)drds
y+

∫ t
0 β (s)ds

)
.

To calculate the covariance matrix of the solution we need
the following direct calculations

E(WtWs) = s∧ t,

E

{(∫ t

0
Wsds

)2
}

= E
{∫ t

0
Wsds

∫ t

0
Wrdr

}
=
∫ t

0

∫ t

0
E{WsWr}dsdr =

1
3

t3,

E
{

Wt

∫ t

0
Wsds

}
=
∫ t

0
E{WtWs}ds =

∫ t

0
sds =

1
2

t2,

where a∧ b def
= min{a,b}. Therefore, the covariance matrix

denoted by A = (ai, j) is:

A(t) = ε
2
( 1

3 t3 1
2 t2

1
2 t2 t

)
, detA(t) =

ε4t4

12
, (6)

and so the inverse matrix will be:

Â(t)= (âi j)
def
= A−1(t)= ε

−2

(
12
t3 − 6

t2

− 6
t2

4
t

)
, det Â(t)=

12
ε4t4 .

(7)
Let

z = (x,y) ∈ R2, ξ = (ξ1,ξ2) ∈ R2,

then the transition probability function of the process in this
case is a standard Gaussian density of the form

p(t,z,ξ ) def
=

√
det Â(t)

2π
exp
{
−1

2
(
ξ −µt , Â(t)(ξ −µt)

)
R2

}
(8)

where, (a,b)R2 denotes the inner product in R2. Therefore,
we can calculate the desired statistics of the trajectory
(Xε

t ,Y
ε

t ) by using p(t,z,ξ ).
Remark 2.1: Equation (5) reveals an important interaction

between the solutions Xε
t and Y ε

t . In fact, the perturbation
in the dynamics of Y ε

t is as the result of Brownian motion,
while the perturbation in the dynamics of Xε

t is generated
by perturbation in Y ε

t . This results in the variance of order t
in y direction and order of t3 in x direction. As we shall see
later, this causes some degeneracy in the system.
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B. Transition probability Function for Linear Drift Term
As the second case we consider the linearization of the

drift term β in (4) along the trajectory (Xt ,Yt). That is,

β (Xε
t ,Y

ε
t )≈ β (Xt ,Yt)+∂xβ (Xt ,Yt)(Xε

t −Xt)+∂yβ (Y ε
t −Yt).

(9)
It is not difficult to rewrite the dynamical system (4) as a

linear SDE of the from

dZε
t =

(
f (t)+F(t)Zε

t

)
dt +

(
0
ε

)
dWt , (10)

where, Zε
t =

(
Xε

t
Y ε

t

)
and Wt is a standard 1-dim Ft Brownian

motion and for some vector-valued function f (t) and a
matrix-valued function F(t). Equation (10) is a linear SDE
with initial value of Zε

0 = z = (x,y). Let us assume that Φ(t),
the fundamental matrix solution of homogeneous form of
(10), exists. For instance, if we consider

(Xt ,Yt)
T = (X∞,0)T

def
= (d ·V−1(v0),0)T,

which is the equilibrium solution of the OV model, then
Φ(t) = eFt and can be explicitly calculated. We denote by

Φ̂(t) =
(
φ̂i j(t)

) def
= Φ

−1(t).

Then, the solution of linear SDE (10) will be

Zε
t = Φ(t)

(
z0 +

∫ t

0
Φ̂(s) f (s)ds+

∫ t

0
Φ̂(s)Bε dWs

)
,

which implies that solution (Zε
t )t≥0 is a Gaussian process

and hence it can be fully characterized by the mean vector

EZε
t = Φ(t)

(
z0 +

∫ t

0
Φ̂(s) f (s)ds

)
. (11)

and the covariance matrix

A(t) = Φ(t)E

{(∫ t

0
Φ̂(s)Bε dWs

)

×
(∫ t

0
Φ̂(s)Bε dWs

)T
}

Φ
T(t)

= Φ(t)E{H(t)}Φ
T(t),

(12)
where, CT denotes the transpose of a matrix C. Elements of
matrix H = (Hi j) can be calculated by

EHi j(t) = EH ji(t) = E
{(∫ t

0
φ̂i j(s)dWs

)(∫ t

0
φ̂ ji(s)dWs

)}
,

=
∫ t

0
φ̂i j(s)φ̂ ji(s)ds, i, j = 1,2,

(13)
where all terms are directly calculated from the isometry of
the Gaussian white noise.

Remark 2.2: The study of both previous cases shows that
by focusing on the dominant interactions between Xε

t and Y ε
t

rather than the nonlinear drift term, the transition probability
function of the process is a Gaussian density. This implies
that even in the presence of the nonlinear drift term we might
be able to find the transition probability function by evolving
some Gaussian density associated to our problem. In the next
section we show that this is in fact the case. �

Fig. 1: Left figure: Trajectories of degenerate system (Dark trajectories) as well as
the trajectories of approximate system (colored trajectories) for σ = 0.05.
Right figure: The same set of trajectories for σ = 0.01. For smaller noises the
trajectories almost coincide.
Other common parameters are α = 2, v0 = 0.5, d = 1, (X0,Y0) = (0.5,−1), ε = 0.05,
and T = 30; Fifty trajectories are generated for each dynamical model.

III. TRANSITION PROBABILITY FUNCTION IN
THE PRESENCE OF NONLINEAR DRIFT TERM

In this section we find an explicit approximation for
transition probability function associated with the Markov
process that represents the solution of (4). As mentioned in
remark 2.1, this stochastic dynamical model is degenerate
in the sense that it does not include any perturbation in
the first equation. Such degeneracy creates some analytical
complexities in bounding the growth rate of some terms.
While it is possible to analyze the degenerate problem
directly, in this paper to avoid analytical complexities we
consider the following non-degenerate (elliptic) approximate
dynamical system

dXt = Ytdt +σdUt

dYt = β (Xt ,Yt)dt + εdWt ,
(14)

for t ∈ [0,T ] and where Ut and Wt are independent standard
Wiener processes. The parameters σ and ε are positive
intensity constants and nonlinear drift β (x,y) is introduced
before. We consider the initial condition to be (X0,Y0) =
(x,y).

It can be shown rigorously (see [8, Theorem 3] for a
similar argument) that for sufficiently small intensity σ , the
dynamical model (14) is a good approximation of dynamical
model (4). More accurately, if Zσ ,ε

t = (Xσ ,ε
t ,Y σ ,ε

t )T denotes
the solution of (14) and Zε

t = (Xε
t ,Y

ε
t )

T the solution of (4)
on time interval [0,T ], then we have

P

{
sup

t∈[0,T ]

∣∣Zσ ,ε
t −Zε

t
∣∣> δ

}
≤ δ

−2
σ

2u(T ), (15)

for some bounded real valued function u on [0,T ]. This
means that for sufficiently small value of σ , for the main
part Zε,δ

t will remain in δ -neighborhood of Zε
t on [0,T ],

and the probability of residing outside this neighborhood
is very small. Figure 1 illustrates the comparison between
the trajectories of degenerate and non-degenerate systems
and shows that for sufficiently small σ -noise the trajectories
of the two models coincide with high probability (the right
figure).
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Fig. 2: Trajectory of Deterministic OV Model with v0 = 0.5, d = 1, (X0,Y0) =
(0.5,−1) and α = 2 and 0.5 respectively; T = 50.

Therefore, in this paper we consider the non-degenerate
(elliptic) approximate model and will discuss its transition
probability function in what follows.

A. Presentation of Fundamental solution

It is known that the transition probability function of a
Markov process satisfies Kolmogorov equations in the form
of an initial value partial differential equations (PDE) (c.f.
(16)). In this section, we will derive an explicit form of
such transition density functions by discussing the solution
of initial value Kolmogorov equations.
Before we proceed to the main results, we need to recall
some properties of the OV dynamics that helps in defining
a proper PDE approximation model. In particular, for the
deterministic model

Ẋt = Yt

Ẏt = β (Xt ,Yt),

we can study the energy level of the system by introducing
the Hamiltonian

H(x,y) def
=

1
2

y2 +W (x),

with
W (x) def

= α

∫ x

0
V (x′/d)dx′−αv0x,

which implies that

H(Xt ,Yt)−H(X0,Y0)≤−α

∫ t

0
Y 2

s ds.

The negative value on the right hand side implies that the
energy level of the system dissipates with time. Taking such
behavior into consideration, the solution of the system is
proven to be bounded in deterministic case ([8, Theorems
1]). Figure 2 illustrates the trajectory of the deterministic
OV model for two different values of α while other pa-
rameters are fixed. Although the trajectory can be affected
by parameters, the solution will remain bounded. Therefore,
[8, Theorem 3] and (15) suggest that with high probability
the solution of stochastic OV model remains in a bounded
region for sufficiently small perturbations on time interval
[0,T ]. Figure 3 provides visualization of the boundedness of
the stochastic trajectories for two sets of parameters (ε,σ).
Moreover, Figure 4 shows the 95% confidence interval for
generated trajectories which illustrates the neighborhood in

Fig. 3: Brownian perturbation of the OV model. Left Figure: (ε,σ) = (0.05,0.05).
Right Figure: (ε,σ) = (0.1,0.1); T = 50 and fifty trajectories have been generated.
Other parameters are fixed and the same as the deterministic case.

Fig. 4: Brownian perturbation of the OV model with 95% Confidence Interval for
fifty generated trajectories. The Dashed line is the mean trajectory of the generated
data. (ε,σ) = (0.1,0.1).

which the stochastic trajectories reside in for sufficiently
small noises.
Putting all together, it is reasonable to approximate the
solution of (14) in a sufficiently large bounded domain
rather than the entire R2. Such consideration will remove
the complexity of dealing with unbounded coefficients and
integral domains from both theoretical and practical point
of view and provides a good approximation of the solution.
We define set D to be an open and bounded domain which
is sufficiently large, and hence the transition probability
function of the solution (14) (which is known to be a
Markov process) can be approximated by the solution of the
following backward Kolmogorov equations:

∂tu(t,z) = Lu(t,z), z = (x,y) ∈ D, t ∈ (0,T ]
lim
t↘0

u(t,z) = δξ (z),
(16)

for any ξ = (ξ1,ξ2) ∈ D and where δξ is the Dirac distri-
bution concentrated at ξ . The differential operator L (the
generator of the Markov process) is defined as

Lu def
=

1
2

σ
2
∂xxu+

1
2

ε
2
∂yyu+ y∂xu+β (x,y)∂yu,

which is defined based on coefficients of stochastic dynam-
ical model (14). We refer interested readers to any standard
textbook in stochastic differential equations like [10] for
more detail on the infinitesimal operator of the Markov
processes associated with the solution of the stochastic
dynamical model of interest.
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Therefore, our goal is to discuss an explicit solution of (16).
We define the parabolic operator in the form

L
def
= L−∂t .

Definition 3.1: The solution of equations (16) is called
fundamental solution of operator L or fundamental solution
of L u = 0.

Remark 3.1: Motivated by previous special drift cases, the
idea is to start with a Gaussian density and (iteratively)
evolve this kernel to solve (16). Such iterative scheme
traces back to Levy and several papers discuss this method
under different regularity assumptions, see for example [11]
and references therein. In this paper, we customize this
method and the proofs to serve the particular structure of
our problem. �
Let us consider only part of the differential operator L and
define:

L0u def
=

1
2

σ
2
∂xxu+

1
2

ε
2
∂yyu,

and the corresponding parabolic operator L0 = L0−∂t . The
fundamental solution of L0u = 0 is then a Gaussian density
with mean vector and covariance matrix

µ =

(
x
y

)
, A(t) = t

(
σ2 0
0 ε2

)
respectively, as we desired. We denote such Gaussian kernel
by:

pG(t,z,ξ ) =
(σε)−1

2πt
exp
{
−K (z,ξ )

2t

}
(17)

where,

K (z,ξ ) def
= σ

−2(ξ1− x)2 + ε
−2(ξ2− y)2,

and for any ξ ∈ D. In the next section, we evolve this
kernel to get the (fundamental) solution of operator L , i.e.
transition probability function of the solution of (14).

B. Construction of Fundamental Solution

Before proceeding to the detailed proof, let us briefly
mention the main results. In this section, we show that the
fundamental solution of L u = 0 (i.e. the transition density
function of the solution of stochastic OV model) can be
presented explicitly by:

p(t,z,ξ ) = pG(t,z,ξ )+
∫ t

0

∫
D

pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds

def
= pG(t,z,ξ )+H(t,z,ξ ).

(18)

Function Φ(t,z,ξ ) can be calculated from the iterative
method of the form

Φ(t,z,ξ ) =
∞

∑
r=1

φr(t,z,ξ ) (19)

φ1(t,z,ξ )
def
= L pG(t,z,ξ ),

φr+1(t,z,ξ )
def
=
∫ t

0

∫
D

L pG(t− s,z,ζ )φr(s,ζ ,ξ )dζ ds

and

L pG(t,z,ξ ) = LpG(t,z,ξ )−∂t pG(t,z,ξ )

= y∂x pG(t,z,ξ )+β (z)∂y pG(t,z,ξ ).
(20)

To show these results in detail, suppose we apply operator
L on equation (18). Despite the singularity at t = 0,z = ξ ,
it can be shown that (see Appendix A for the rigorous proof)

L H(t,z,ξ ) =
∫ t

0

∫
D

L pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds

−Φ(t,z,ξ ).
(21)

Kernel p(t,z,ξ ) should solve (16) as a solution and so L p=
0 (this will be proven in theorem 3.3). Therefore, function
Φ should satisfy a Volterra quation of the form

Φ(t,z,ξ ) = L pG(t,z,ξ )

+
∫ t

0

∫
D

L pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds.
(22)

where, L pG(t,z,ξ ) is calculated in (20). Volterra equation
(22) suggests that there exists a function Φ that can be
calculated recursively. The next theorem shows that this is
in fact the case.

Theorem 3.2: For any ξ ∈ D, function Φ(t,z,ξ ) in (19)
solves the Volterra equation (22).

Proof: In what follows C > 0 is considered to be
a generic constant. First, we show that summation (19)
converges. For any t ∈ (0,T ], z = (x,y) ∈ D and ξ ∈ D,
equation (17) implies that∣∣∂x pG(t,z,ξ )

∣∣≤Ct−2+ 1
2

(
(ξ1− x)2

t

)1/2

exp
{
−K (z,ξ )

2t

}
≤Ct−1/2 pG(t, ẑ, ξ̂ ),

(23)

where, ẑ = λ
1/2
◦ z and ξ̂ = λ

1/2
◦ ξ , for any λ◦ ∈ (0,1). The

same bound can be established for ∂y pG(t,z,ξ ). Therefore,

|φ1(t,z,ξ )|= |L pG(t,z,ξ )| ≤Ct−1/2 pG(t, ẑ, ξ̂ ). (24)

Now, in the second iteration by considering the Chapman-
Kolmogorov equation we have

|φ2(t,z,ξ )| ≤C
∫ t

0
(t− s)−1/2s−1/2

∫
D

pG(t− s, ẑ, ζ̂ )

× pG(s, ζ̂ , ξ̂ )dζ̂ ds

≤CpG(t, ẑ, ξ̂ )
Γ(1/2)Γ(1/2)

Γ(1)
.

Here, Γ is the Gamma function. By induction we can show
that for any t ∈ (0,T ] and z,ξ ∈ D we have

|φn(t,z,ξ )| ≤Cnt
n
2−1 pG(t, ẑ, ξ̂ )

1
Γ(n/2)

.

This implies that the series (19) is absolutely convergent.
Moreover, on the interval [τ◦,τ1] ⊂ (0,T ] the series is uni-
formly convergent.
The bound on each term of the series suggests that

|Φ(t,z,ξ )| ≤ |L pG(t,z,ξ )| ≤Ct−1/2 pG(t, ẑ, ξ̂ ). (25)
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Replacing function Φ(t,z,ξ ) in the integral term of (22)
shows that

∞

∑
r=1

∫ t

0

∫
D

L pG(t− s,z,ζ )φr(s,ζ ,ξ )dζ ds = Φ(t,z,ξ )

−L pG(t,z,ξ ),

which proves the claimed result.
The next step is to show that p(t,x,ξ ) is the desired transition
probability function.

Theorem 3.3: Transition function p(t,z,ξ ) defined in (18)
is a fundamental solution of L u = 0.

Proof: First we show that L p = 0 for t > 0, z,ξ ∈ D.
This can be seen directly by applying operator L on (18)
and considering definition of function Φ in theorem 3.2. It
remains to show that

lim
t→0

p(t,z,ξ ) = δξ (z),

as a distribution. In other words, we show that

lim
t→0

∫
D

p(t,z,ξ )ϕ(z)dz = ϕ(ξ ), ∀ϕ ∈C∞
c (D).

From equation (18) we have that

p(t,z,ξ ) = pG(t,z,ξ )+H(t,z,ξ ).

For the first term, we know that pG is fundamental solution
of L0 and hence

lim
t→0

pG(t,z,ξ ) = δξ (z).

It remains to show that

I
def
= lim

t→0

∫
D

H(t,z,ξ )ϕ(z)dz = 0, ∀ϕ ∈C∞
c (D).

From (25) and definition of function H(t,z,ξ ) in (17) we
have that

I ≤C lim
t→0

∫
D

(∫ t

s=0
s−1/2

∫
D

pG(t− s, ẑ, ζ̂ )pG(s, ζ̂ , ξ̂ )dζ ds
)

×ϕ(z)dz

≤C lim
t→0

∫
D

t1/2 p(t, ẑ, ξ̂ )dz≤C lim
t→0

t1/2 = 0.

IV. CONCLUSION AND FUTURE WORKS

In this paper we discussed and iterative method which can
be used in constructing the transition probability function for
the solution of the stochastic OV model. Transition density
functions contain all the statistical properties of the process
and hence they explain the behavior of the solution.

The OV model, considered in this paper, in its current
form is highly dependant on the parameters of the model
which makes it unstable in some situations. As our future
work we are considering a modified version of this model in
which such dependence has been addressed by incorporating
some terms to the dynamical system. We shall extend our
probabilistic analysis to this new model to study the behavior
of its solution.

APPENDIX

A. Differentiation of the Convolution Term

For z = (x,y) ∈ D, ξ ∈ D and t ∈ (0,T ], we defined

H(t,z,ξ ) =
∫ t

0

∫
D

pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds,

and function Φ(t,z,ξ ) to be determined. The goal is to show
that

L H(t,z,ξ )=
∫ t

0

∫
D

L pG(t−s,z,ζ )Φ(s,ζ ,ξ )dζ ds−Φ(t,z,ξ )

This is equivalent to showing that the following theorem
holds true.

Theorem 1.1: Suppose function Φ(t,z,ξ ) is differentiable
with respect to (t,z)∈ (0,T )×D, and the function and its first
order derivatives are continuous on [τ◦,τ1]× D̄ for any fixed
[τ◦,τ1]⊂ (0,T ]. Moreover, we suppose that Φ ∈ L1((0,T ]×
D) in the sense of Lebesgue integration. Then, we have

1) ∂xH(t,z,ξ ) exists, continuous and

∂xH(t,z,ξ ) =
∫ t

0

∫
D

∂x pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds

The same result holds true for derivative with respect
to y,

2) ∂yyH(t,z,ξ ) exists, is continuous and

∂xxH(t,z,ξ ) =
∫ t

0

∫
D

∂xx pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds.

The same result holds true for the second partial
derivative with respect to y.

3) ∂tH(t,z,ξ ) exists, is continuous and

∂tH(t,z,ξ ) =
∫ t

0

∫
D

∂t pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds

−Φ(t,z,ξ ).
Proof: Let t ∈ (0,T ] and z,ξ ∈ D. The first statement

is obvious by (23) and (25).
For the second statement we calculate

|∂xx pG(t,z,ξ )| ≤ t−2 exp
{
−K (z,ξ )

2t

}
≤Ct−1 pG(t, ẑ, ξ̂ ),

(26)

where, ẑ= λ
1/2
◦ z and similarly for ξ̂ , for any λ◦ ∈ (0,1). This

implies that due to singularity t = 0,z = ξ the bound on the
second order derivatives of pG(t,z,ξ ) is not sufficient for
proving the integrability and hence we need more delicate
discussions to show that the second statement of the theorem
is valid. To do so, we split the integral’s domain in the form
of

F(t,z,ξ ) def
=

(∫ t/2

0

∫
D
+
∫ t

t/2

∫
D

)
∂x pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds

= I (t,z,ξ )+J (t,z,ξ ).

In fact, on each of these integrals either pG(t − s,z,ζ ) or
the kernel Φ(s,ζ ,ξ ) posses some smoothness which helps
us proving the result.
For the first integral, pG(t−s,z,ζ ) is smooth with no singular
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point and hence differentiation can be applied under the
integral sign. For the second integral we need to define some
notations first. Let

J (x)(t,z,ξ ) def
=
∫ t

t/2

∫
D

∂xx pG(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds,

Next, we define

Jδ (t,z,ξ )
def
=
∫ t

t/2

∫
D

∂x pG
δ
(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds,

where,

pG
δ
(t,z,ξ ) def

= pG(t,z,ξ )η
(
|M̂(ζ − z)|

δ

)
,

and
M̂ def

=

(
σ−1 0

0 ε−1

)
.

Smooth (cut-off) function η is considered such that

η(r) def
=

{
0 ,r < 1
1 ,r > 2,

and η ′(r) ∈ (0,2).
Therefore, Jδ is smooth and clearly

∂xJδ (t,z,ξ ) =
∫ t

t/2

∫
D

∂xx pG
δ
(t− s,z,ζ )Φ(s,ζ ,ξ )dζ ds.

The aim is to show that

Jδ →J , as δ → 0, (27)

uniformly with respect to z on compact subsets of D, and

∂xJδ →J (x) as δ → 0. (28)

uniformly with respect to z on compact subsets of D. Upon
proving, these results imply that J (t,z,ξ ) is continuously
differentiable with respect to z and the second statement of
the theorem holds true.
To show these results, it is more insightful to consider the
following bounds

|∂x pG(t,z,ξ )| ≤ C
tγ

1
|ξ − z|3−2γ

, γ ∈ (1/2,1) (29)

|∂xx pG(t,z,ξ )| ≤ C
tγ

1
|ξ − z|4−2γ

, (30)

which can be directly calculated from the definition of
pG(t,z,ξ ) and its derivatives by some algebraic manipula-
tion.
To show the uniform convergence in (27) considering the
assumed properties of kernel Φ, change of variable κ =
M̂(ζ − z), and definition of function η we can write

|Jδ (t,z,ξ )−J (t,z,ξ )| ≤C sup
τ∈[t/2,T ]

ν∈D̄

|Φ(τ,ν ,ξ )|

×
∫ t

t/2
(t− s)−1ds

∫
|κ|<2δ

∣∣∣∂κ

{(
η

(
|κ|
δ

)
−1
)

× exp
{
− |κ|2

2(t− s)

}}∣∣∣dκ.

Then by considering bound (29) and using polar coordinate
integration, we have

|Jδ (t,z,ξ )−J (t,z,ξ )| ≤C sup
τ∈[t/2,T ]

ν∈D̄

|Φ(τ,ν ,ξ )|C(δ ),

where, C(δ )→ 0 as δ → 0.
To follow the same argument for proving the uniform con-
vergence in (28), we need to use smoothness of kernel Φ. In
fact, we write

J (x)(t,z,ξ ) =
∫ t

t/2

∫
D

∂xx pG(t− s,z,ζ )(Φ(s,ζ ,ξ )

−Φ(s,z,ξ ))dζ ds

+
∫ t

t/2
Φ(s,ζ ,ξ )

∫
D

∂xx pG(t− s,z,ξ )dζ ds.

Intuitively, in the first integral by using the fact that

|Φ(s,ζ ,ξ )−Φ(s,z,ξ )| ≤ K|ζ − z|,

we can improve the bound (30) as

|∂xx pG(t−s,z,ζ )||Φ(s,ζ ,ξ )−Φ(s,z,ξ )| ≤ C
(t− s)γ |ζ − z|2−2γ

The second integral will vanish in ∂xJ −J(x) by applying
divergence theorem. Employing the change of variable κ =
M̂(ζ − z), improved bound (30) and using polar coordinate
integration the result follows.
The third statement of the theorem can be proven in a similar
way.

Remark 1.2: Using the definition (19) and breaking the
integral limits as in previous theorem, we can show that the
assumptions on Φ(t,z,ξ ) in the statement of the theorem are
in fact valid.
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