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Abstract

Understanding how alien species assemble is crucial for predicting changes to community struc-

ture caused by biological invasions and for directing management strategies for alien species, but

patterns and drivers of alien species assemblages remain poorly understood relative to native

species. Climate has been suggested as a crucial filter of invasion-driven homogenization of bio-

diversity. However, it remains unclear which climatic factors drive the assemblage of alien species.

Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a

resolution of 2� � 2�) and administrative scale (271 native and 297 current nations and sub-nations)

on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened

vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal

barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native

ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assem-

blage after than before invasions. This pattern was driven by extremely high temperatures and

precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can

account for the alien assemblage after invasions. Our results indicated that human-assisted species

introductions combined with climate change may accelerate the reorganization of global species

distributions.
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Long-distance human-aided introductions have allowed alien species

to overcome geographical dispersal barriers and limitations from bi-

otic interaction in their native ranges (Capinha et al. 2015). This has

resulted in a modification of classic biogeography and a modern-day

homogenization of biodiversity (Rahel 2000; Olden et al. 2008;

Villeger et al. 2011; Bernardo-Madrid et al. 2019 ). Understanding

which factors influence the assemblages of invasive species is a

particularly urgent scientific question facing the world today with

the potential for the answer to direct management and policy (Py�sek

et al. 2010; Redding et al. 2019). In addition to human-assisted dis-

persal factors, such as bilateral trade, climate has been documented

as a crucial factor predicting global assemblage patterns of alien spe-

cies (Capinha et al. 2015). Several climatic factors, including opti-

mal climatic conditions (Hughes et al. 1996), the magnitude of
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climatic variability (Stevens 1989), and extreme temperatures

(Gaston and Chown 1999), have been proposed to dictate species

distributions either directly, by exceeding critical thresholds of

organisms (i.e., critical thermal minima and maxima), or indirectly,

by determining the availability of key resources, such as water and

food (Hurlbert and Haskell 2003). In addition, climatic extremes

and variability tend to be more sensitive than climatic averages to

climate change (Easterling et al. 2000; Palmer and Ralsanen 2002).

Consequently, understanding the degree to which climatic factors

account for species composition before and after invasion is not

only crucial for understanding the role of climate in invasion suc-

cess, but also for providing insights into range shifts of both native

and invasive species in an era of climate change (Blois et al. 2013a).

Although previous studies provided valuable insights into the rela-

tive importance of climate and dispersal-related factors in shaping

the distribution of alien species before and after invasions (Qian and

Ricklefs 2006; Capinha et al. 2015), these studies did not thorough-

ly explore which components of climate were most important.

Amphibians and reptiles provide an ideal opportunity to address

this knowledge gap on role of specific climatic factors in the redistri-

bution of alien species because both temperature and precipitation

are considered to have marked effects on the distributions, range

sizes, and species compositional patterns of ectotherms (Araújo

et al. 2008). Second, there are relatively accurate distributional

records of alien amphibians and reptiles in their native and invaded

ranges (Kraus 2009; Li et al. 2016a; Capinha et al. 2017; Liu et al.

2019), allowing us to precisely quantify their occupied climatic

niches before and after invasions. Finally, herpetofauna is arguably

the most threatened of terrestrial vertebrates on the planet

(Hoffmann et al. 2010), and their declines have been clearly linked

to human-assisted introductions of herpetofaunal species and the

deadly pathogens they can carry (Fisher et al. 2012). Here, based on

the distributional records of 361 alien amphibians and reptiles in

their native and invaded ranges (Supplementary Table S1), we ex-

plore the unique contributions of different climatic factors to their

global assemblage patterns before and after invasions after control-

ling for natural dispersal limitations (geographical distance) and an-

thropogenic dispersal-related factors (bilateral trade). We build on

Capinha et al.’s (2015) seminal work on the biogeographical pat-

terns of alien gastropods by adapting and advancing their analyses

which involve hierarchical cluster analyses, ordination techniques,

and generalized dissimilarity modeling (GDM), which were

approaches widely used in biogeographical studies (e.g., Ferrier

et al. 2007; Kreft and Jetz 2010; Blois et al. 2013a; Holt et al. 2013;

Supplementary Figure S1).

We hypothesize that assemblages of alien herpetofauna were pre-

dominantly associated with dispersal limitations in their native

ranges. That is, we postulate that, historically, there were suitable

climatic conditions for many herpetofaunal species in other parts of

the world but they could not successfully disperse to them. With the

vast increase in the movement of people and products, we hypothe-

size that long-distance dispersal is less of a limitation now than it

was historically and thus, the distribution of alien herpetofauna is

more a function of appropriate climatic conditions than dispersal

barriers in their current range. Given the narrow thermal breadths

of many herpetofaunal species and the reliance of most amphibians

on ample moisture (Li et al. 2013; Rohr et al. 2018), we hypothesize

that temperature extremes and precipitation variability might be the

predominant climatic factors associated with the modern-day assem-

blage of alien herpetofauna.

Materials and Methods

Datasets
Species distribution datasets

To capture all species’ distribution and occupied climatic niches, we

followed previous studies by focusing on alien species with exact na-

tive and introduced range information, and conducted analyses com-

paring the native and current assemblages before and after their

invasions (Capinha et al. 2015). The alien species list is based on a

widely used database on global amphibian and reptile introductions

compiled by Kraus (2009) and recent updates for their establishment

during the last decade (Li et al. 2016a; Capinha et al. 2017; Liu

et al. 2019; Liu et al. 2020; Supplementary Table S1). Following the

criterion of the Kraus (2009) database, we excluded species re-

introduced into a species’ native range, released within their native

ranges, experimentally introduced into small islets, and that repre-

sented questionable introductions without robust evidence.

Furthermore, we only used those successful invaders that have estab-

lished feral populations in non-native ranges (Blackburn et al.

2011). The species native range is determined based on native-range

maps of the International Union for Conservation of Nature (IUCN;

https://www.iucnredlist.org/resources/spatial-data-download) and

validated using other databases, references such as the recent distri-

butional update of global reptiles (Roll et al. 2017), and regional

field guides (Supplementary Table S1). The Kraus (2009) and

Capinha et al. (2017) databases provided the species list and the na-

tional or sub-national information where the species established.

However, it makes no sense to use the average climates calculated

across coarse range maps, which does not provide any information

on the conditions experienced by species living only in some specific

areas of a country. Therefore, we collected occurrence data for each

alien amphibian and reptile species in both their native and invaded

ranges from various databases and an intensive review of published

references (Supplementary Table S1). We removed duplicated

records among data sources and species whose native ranges are un-

known or without precise geographical location data (based on the

expert opinion of Fred Kraus).

Analyses of species composition dissimilarity can be influenced

by a study’s scale (e.g., grid level, landscape level, or administrative

level) (Steinbauer et al. 2012). Therefore, to test whether our results

were sensitive to spatial scale, we conducted our analyses at both

grid and administrative level, respectively. In the main manuscript,

we present analyses at the grid level because it can control the effect

of area on results. We conducted the grid-level analyses at a reso-

lution of 2� �2�, a resolution frequently used in global biogeog-

raphy studies (e.g., Holt et al. 2013). We re-conducted all analyses

at the administrative level at which the trade data are available

(Capinha et al. 2015; Murray et al. 2015; Dawson et al. 2017).

In sum, we used 361 species including 108 amphibians and 253

reptiles. These species occupied a total of 368,766 native and

414,374 current occurrences assigned to a total of 2,653 native and

2,806 current 2� � 2� grids belonging to 271 native and 297 current

(sub)nations based on global administrative area designations

(www.gadm.org). We checked species synonyms from different

taxonomic authorities for amphibians, squamates, crocodilians, ser-

pents, and turtles (Supplementary Text S1).

Climatic average, variation, and extremes

We used a total of 8 climatic variables to describe temperature and

precipitation averages, variation, and extremes, which were

extracted based on the occurrence data for native and current ranges
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from the WorldClim database (version 1.4) at a resolution of 10 arc-

minute, and averaged each of 8 variables over each country

(Capinha et al. 2015). This database was based on meteorological

average monthly climate data recorded from 1950 to 2000 (Hijmans

et al. 2005). These 8 bioclimatic variables represent annual trends

(e.g., mean annual temperature, annual precipitation), seasonality

(e.g., annual range in temperature and precipitation), and extreme

or limiting climatic factors (e.g., maximum and minimum tempera-

ture of the coldest and warmest month, and precipitation of the wet-

test and driest month). Climate average refers to the average annual

temperature (Tav, Bio1) and average annual precipitation (Pav,

Bio12) across all 10-min grid cells encompassed by all species in that

region. Climate seasonality refers to the temperature (Tsea, Bio4,

standard deviation) or precipitation seasonality (Psea, Bio15, coeffi-

cient of variation) calculated as the average value across occupied

grid cells by all species in each region (Pither 2003). In the climate

literature, climate extreme usually refers to extreme weather and cli-

mate events, such as heat waves, cold waves, droughts, and storms,

exceeding climate thresholds on a particular occasion (Easterling

et al. 2000). In the macroecological and biogeographical literature,

“climate extreme” is usually classified as the maximum temperature,

minimum temperature, maximum precipitation, and minimum pre-

cipitation at any grid cell within the geographic range of a focal spe-

cies based on averaging monthly data from public climate database

(Pither 2003; Li et al. 2016b). Here, we followed this latter classifi-

cation of extremes. More specifically, as there are usually multiple

species in each grid/nation or sub-nation, we first extracted the high-

est or the lowest value of the maximum or minimum temperature of

the hottest (Tmax, Bio5) or the coldest month (Tmin, Bio6) and the

highest or the lowest value of average precipitation of the wettest

(Pmax, Bio13) or the driest month (Pmin, Bio14) encountered by each

species in each grid/nation or sub-nation. We then averaged the

extracted highest or lowest Tmax, Tmin, Pmax, and Pmin values per

species in the same grid/nation or sub-nation to represent the aver-

age climate extreme of the grid/nation or sub-nation. These 8 climat-

ic variables were selected because they reflect climate average,

variability, and extremes that can be important to species distribu-

tions (Janzen 1967; Li et al. 2016b). Moreover, pairwise Pearson

rank correlation analyses (at which scale the cluster, ordination, and

GDM analyses were performed) revealed that the correlation coeffi-

cients of these 8 climatic predictors were all <0.75 (Supplementary

Table S2), a commonly used cutoff for evaluating climatic collinear-

ity in modeling climate effects on species distributions (Capinha

et al. 2015). Thus, these 8 variables were not highly collinear.

Although previous studies suggested that amphibians and rep-

tiles usually have different climatic requirements, as reptiles are par-

ticularly rich in hot and dry climates, whereas amphibians are

strongly associated with humid climates (Powney et al. 2010), we

did not find significant differences in the climatic variables between

distributional ranges occupied by amphibians and reptiles

(Supplementary Figure S2). Although certain microhabitats might

vary among taxa, our results were consistent with previous macro-

ecological studies showing that climatic variables tend to be similar

for amphibians and reptiles, reflecting their general physiological

requirements for water and energy (Araújo and Pearson 2005).

Consequently, as the sample size of amphibians (108 species) is

much smaller than reptiles (253 species, Supplementary Table S1),

we combined the 2 taxa together to provide a more robust analysis

based on a larger sample size.

Natural dispersal and trade data

We used geographical distance calculated based on the geographical

coordinates of centroids of each pair of grids (nations or sub-nations at

the administrative scale) as a comprehensive proxy of the natural dis-

persal barriers of species (Blois et al. 2013b; Capinha et al. 2015). It

has been widely reported that range expansions of alien species can be

associated with human-assisted dispersal factors, such as trade (Essl

et al. 2015; Dyer et al. 2016). We, therefore, used average bilateral

trade data for the sub-samples of current ranges (2,651 grids across

183 countries, in US dollars across the years of 1962–2010) from the

UN trade database (https://comtrade.un.org) to test for the effect of bi-

lateral trade on the species assemblage pattern after invasions (Essl

et al. 2015). For countries (e.g., USA, Canada, Australia, and China)

that are subdivided into multiple areas, we re-calculated the species

compositional dissimilarity, and different climatic and dispersal-related

variables for each country as a whole. To calculate bilateral trade, we

first calculated all traded commodities (imports and exports) of country

i with j, and then divided by the total trade of country i with the world

(Capinha et al. 2015). For the grid-level analysis, those grids in the

same country were assigned the same trade values.

Delineation of alien species assemblages
Species compositional dissimilarity

We quantified pairwise compositional dissimilarity among grids/

nations or sub-nations using the turnover component of the

Baselga’s dissimilarity bsim index (Baselga 2010), which is widely

used as a standard index in biogeography and macroecology studies

because it robust to differences in species richness among countries

(Kreft and Jetz 2010), and to differences in sample size between

grids/nations or sub-nations being compared (Barwell et al. 2015).

The bsim was expressed as follows:

bsim ¼ 1 � a

min b; cð Þ þ a

(1) where a refers to the number of shared species between 2 grids

(nations or sub-nations) i and j, b refers to the number of species

found in grid (nation or sub-nation) i but not grid (nation or sub-

nation) j, and c is the number of species found in grid (nation or

sub-nation) j but not grid (nation or sub-nation) i. bsim varies from 0

to 1, with low bsim values indicating that grid (nation or sub-nation)

i and j share many similar taxa (i.e., 0, complete similarity) and a

high bsim values indicating that grid (nation or sub-nation) i and j

share a small number of similar taxa (i.e., 1, complete dissimilarity).

The application of the bsim index resulted in 3,517,878 and

3,935,415 pairwise distance values at the grid scale, and 36,585 and

43,956 pairwise distance at the administrative scale for native and

current ranges, respectively. The bsim index was calculated using the

betapart package (Baselga and Orme 2012) in R (Core T 2016).

Hierarchical cluster and ordination analyses

Both hierarchical clustering and ordination techniques were used to

calculate and visualize the spatial patterns of compositional similar-

ity based on the bsim index. We conducted cluster analyses using an

unweighted pair-group method based on arithmetic averages

(UPGMA), which is frequently used in large-scale biogeographical

studies (Kreft and Jetz 2010). UPGMA is a hierarchical clustering

technique that classifies different grids/nations or sub-nations with

similar species composition into clusters within a dendrogram. We

also analyzed the species compositional similarity using 6 other clus-

tering techniques including the weighted pair-group method based

on arithmetic averages (McQuitty’s method), Ward’s minimum
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variance, Median, Centroid, Single, and Complete method (Kreft

and Jetz 2010) (descriptions on each cluster method are shown in

Supplementary Table S3). We evaluated the accuracy of different

cluster methods in converting the dissimilarity matrices into dendro-

grams using cophenetic correlation coefficients, which measure the

agreement between cluster assignments and the original compos-

itional dissimilarity matrix (Legendre and Legendre 2012). We

found that UPGMA method had higher cophenetic correlation coef-

ficient, indicating that it performed better than other methods to

quantify pairwise dissimilarity for both native and current ranges

(Supplementary Table S4). Based on the UPGMA hierarchical den-

drograms, we determined the optimal number of biogeographical

regions by applying the Kelley–Gardner–Sutcliffe (KGS) penalty

function in the maptree package. KGS is an objective method widely

used in biogeographical research to determine the number of distinct

clusters. For each level of the hierarchical tree, the KGS penalty is

calculated as the average distance between nodes within each cluster

plus the number of clusters at the level (Kelley et al. 1996). The KGS

penalty maximizes differences between clusters and the cohesiveness

within clusters and the level of the tree with the minimum value cor-

responds to the optimal number of clusters (a detailed process of the

method is given in Supplementary Figure S3) (Kelley et al. 1996).

To validate the results of the hierarchical clustering analyses, we

also analyzed the data using nonmetric multidimensional scaling

(NMDS), which is considered the most robust ordination technique

for generating low-dimensional projections by arranging range

assemblages based on taxonomic composition (Legendre and

Legendre 2012). It is especially useful for visualizing the inter-

relationships among different grids/nations or sub-nations according

to their taxonomic compositional similarity rather than forcing

them into discrete groups (i.e., clusters). Additionally, the generated

plot can display ranges that are close to one another in ordination

space. NMDS represents the original position of data in multidimen-

sional space as accurately as possible using a reduced number of

dimensions that can be plotted and visualized (like principal compo-

nent analysis). The stress value was used to assess the agreement be-

tween the original distances and distances in the reduced ordination

space of the NMDS (Legendre and Legendre 2012). Stress value is a

goodness-of-fit statistic representing the sum of the squared differen-

ces between distances in the reduced dimensional space compared

with the complete multidimensional space. It ranges from 0 to 1,

with smaller values indicating less of a difference and thus a better

fit (Legendre and Legendre 2012). We performed the cluster analysis

using hclust function and NMDS analyses using monoMDS function

in vegan package (Oksanen et al. 2013).

Predictors of alien species assemblages in native and

current ranges
We applied GDM (Ferrier et al. 2007) to investigate the drivers of

assemblage patterns of alien species in native and current ranges.

GDM has been widely used to identify the independent contribu-

tions of different factors explaining species compositional dissimilar-

ity (e.g., Blois et al. 2013a; Fitzpatrick et al. 2013; Capinha et al.

2015). Compared with traditional matrix regression approaches,

GDM can accommodate nonlinearities of ecological predictors with

observed compositional dissimilarity (i.e., bsim measure) (Ferrier

et al. 2007). GDM uses maximum-likelihood estimation and flexible

I-splines to explore the relationship between environmental/geo-

graphical distance and species compositional dissimilarity (Ferrier

et al. 2007). For the administrative-level analysis, to account for the

potential influence of country size in representing centroid-based

distance, we set weights for each nations or sub-nations according

to their ranking in the size distribution. This method is regarded as

more robust than weights proportional to country area, which can

result in overweighting small island countries. For the grid-level ana-

lysis, we set equal weights to each grid. We used the default 3 I-

splines basis functions per predictor variable. These 3 coefficients of

the I-splines provide the final transformation function representing

the best-supported relationship between pairwise distances of pre-

dictor variables and observed species compositional dissimilarity

(Fitzpatrick et al. 2013). Spatial autocorrelation was accounted for

by including the geographical distance between pairs of grids/

nations or sub-nations as a predictor variable (Ferrier et al. 2007).

Disentangling the relative influence of climatic factors, geographical

distance, and human dispersal is challenging as different climatic

components may be correlated, and climate might also co-vary with

dispersal factors. To achieve this, we followed previous studies using

the total height of the transformation function curve, which serves

as the relative importance of each variable to species compositional

change holding all other variables constant (e.g., “partial ecological

distance”), and the shape of the curve reflects the rate of species

compositional change along the gradient of the independent variable

(Ferrier et al. 2007; Fitzpatrick et al. 2013). The significance of each

predictor was tested using Monte Carlo permutation procedures as

implemented in the gdm.varImp function (Ferrier et al. 2007). The

permutation process was implemented by first calculating the differ-

ence in deviance between the models with and without the predictor.

Then, this observed deviance difference was compared with a null

distribution of deviance differences obtained by fitting the 2 models

using random permutations of the order of sites in the compositional

dissimilarity matrix. A predictor was considered as nonsignificant if

no significant difference was found in deviance between the 2 mod-

els (Ferrier et al. 2007; Fitzpatrick et al. 2013; Capinha et al. 2015).

We performed 1,000 permutations until all nonsignificant variables

were removed. Permutation analyses can test the significance of pre-

dictor variables, but cannot quantify parameter uncertainty through

confidence interval estimations. In GDM, an estimate of parameter

uncertainty, or the variance in fitted I-splines of each predictor, was

achieved by a bootstrapping approach using the plotUncertainty

function in the gdm package (Shryock et al. 2015). However, evalu-

ation of the uncertainty of overall model fit is unfortunately not

available for GDM yet. Consequently, we used the multifaceted bio-

diversity modelling (MBM) approach based on Gaussian processes

to generate the 95% confidence intervals of the overall model fit

and qualitatively compared it to the model fit with GDM (Talluto

et al. 2018). We then evaluated model fits for MBM and GDM using

a root mean square prediction error (RMSE) test with smaller values

indicating better performance (Talluto et al. 2018). The MBM anal-

yses were conducted using the mbm package (Talluto et al. 2018) in

R. MBM analyses showed similar trends with GDM for changes in

species compositional dissimilarity with environmental distance

(Supplementary Figure S4). RMSE values for both the GDM and

MBM models were very small (0.051–0.070), suggesting a good fit

to the data (Supplementary Table S5).

To quantify the unique explained deviances of climatic predic-

tors (Dclim), dispersal predictors (Ddis) and their shared deviances

(Dshared) to species compositional dissimilarity, we fit 3 GDMs: (1)

only climatic variables; (2) only dispersal predictors including geo-

graphical distances in combination with bilateral trade variables;

and (3) full models containing all predictors (Blois et al. 2013a;

Fitzpatrick et al., 2013; Capinha et al. 2015). Dclim was calculated

as the deviance explained by all predictors minus the deviance
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explained by the model with only dispersal predictors, Ddis as the

deviance explained by all predictors minus the deviance explained

by the model with only climate, and Dshared as 1—Dclim—Ddis. The

relationship between environmental or geographical predictors and

compositional dissimilarity is achieved by reformulating traditional

matrix regression as a generalized linear model in terms of a link

function in inverse form (Ferrier et al. 2007):

l ¼ 1 –e�g (2)

where l is the predicted response variable (i.e., species composition-

al dissimilarity among sites here), and g is the environmental or geo-

graphical distances. To account for the nonlinearity of the rate of

species compositional dissimilarity along environmental or geo-

graphical gradients, g is then formulated as:

g ¼ aþ
Xn

p¼1

fp xpið Þ � fp xpjð Þ (3)

where n is environmental or geographical variables (x1 to xn) from

gird/region i to j, fp (xp) is the fitting function between predicted and

observed compositional dissimilarity as a linear combination of I-

spline basis functions:

fp xpð Þ ¼
Xmp

k¼1

apkIpk xpð Þ (4)

where apk (�0) is a constraint, mp is the number of I-spline

employed, and Ipk is the kth I-spline for variable xp and apk is the fit-

ted coefficient for Ipk.

Sensitivity analyses for data uncertainties
A potential issue in exploring the importance of extreme high tem-

peratures and precipitation seasonality was that our results may be

dependent on differences in species introduction opportunities to

high versus low-temperature extremes or precipitation seasonality.

Although there was a higher proportion of pole-wards (i.e., higher

absolute latitude, 65.4%) than equator-wards introductions (i.e.,

lower absolute latitude, 34.6%) of herpetofaunal species, which was

coincident with previous findings on introduction directions of alien

mammals, birds, and plants (Guo et al. 2012), we did not detect sig-

nificant differences in high temperatures (Kruskal–Wallis test:

v2¼2.95, d.f. ¼1, P¼0.204) or precipitation seasonality

(v2¼2.46, d.f. ¼1, P¼0.216) of occupied grids between pole-ward

and equator-ward introduction events. This demonstrated that our

results were not an artifact of differences in species introduction

opportunities along this latitudinal gradient.

Results

Alien species assemblages in native and current ranges
The 361 alien amphibians and reptiles have established populations

worldwide (mean 6 SE of alien richness: 0.976 0.045 across grids)

after 3,516 introduction events in 297 regions (mean 6 SE:

1262.61). There are 17.8% of regions with >50% amphibians and

reptiles considered alien species (Supplementary Figure S5). The

Atlantic and (sub)tropical Pacific Islands, Florida, and western states

of the USA, such as California, western Europe, and southeastern

Asia represent hotpots of alien herpetofauna incursions

(Supplementary Figure S5). These invasions have resulted in an in-

crease of compositional similarity of the alien herpetofauna in

current ranges relative to their native ranges (2-tailed Wilcoxon

signed-rank test, Z¼�19.80, P<0.001).

These increases in species compositional similarity have further

simplified the global biogeography of alien herpetofauna with sig-

nificant decreases in the number of assemblages along different lev-

els of UPGMA cluster depths (grid level: native ranges,

27.566 3.79, current ranges, 15.8663.62, Z¼�6.03, P <0.001;

administrative level: native ranges, 22.186 1.24, current ranges,

14.326 1.37, Z¼�6.17, P<0.001, Supplementary Figure S6).

According to the KGS penalty function that aims to objectively iden-

tify the optimal number of clusters (Supplementary Figure S7), we

found that the assemblages have been simplified from 10 distinct

groups in native range to only 4 distinct arrangements in their cur-

rent range (Figure 1). The native assemblages were generally consist-

ent with the classic zoogeographical classifications, such as

Nearctic, Neotropics, Afrotropic, Indo-Mala, Palearctic, and

Australia with some Caribbean countries as unique zones (Figure 1).

However, after invasions, some distant or isolated islands were no

longer distant regions, and some areas were clustered into similar

groupings, such as Atlantic islets, Florida U.S., Madagascar, Asia,

Australia, and the America (Figure 1). The results of NMDS analy-

ses were highly concordant with the cluster analyses, showing a

change from greater dispersion in native ranges to increased similar-

ity among current regions after invasions (Supplementary Figure

S8). The stress values both for native distributions and for current

distributions were relatively low (0.011 and 0.021, respectively),

supporting a good projection of the species compositional dissimi-

larity matrix into the 2-dimensional ordination space.

We obtained similar species assemblage patterns when we

excluded American bullfrog (Lithobates catesbeianus ¼ Rana cates-

beiana), blind snake Ramphotyphlops braminus, and slider turtle

Trachemys scripta (Supplementary Figure S9), which we hypothe-

sized might have significant effects on the biogeographical patterns

because of their more widespread introductions than other species.

We also obtained similar patterns for remaining regions (i.e., 6 main

groups for native ranges and 4 groups for current ranges) after

excluding the Atlantic islands where considerable homogenization

occurred (Supplementary Figure S10).

Important predictors of alien species assemblages
Overall, the compositional similarity significantly decreased with

increasing geographical distance in both native ranges (Spearman

correlation coefficient r¼�0.427, P<0.001) and current ranges

after invasions (r¼�0.365, P<0.001). However, highly similar

species compositions occurred more frequently with increasing geo-

graphical distance in current ranges (Supplementary Figure S11).

Monte Carlo permutation analyses based on GDMs revealed that

geographical distance, precipitation seasonality, and high-

temperature extremes were significantly (P<0.001) correlated with

compositional dissimilarity both of native and current ranges.

However, the unique variance explained by climate and geographic-

al distance changed greatly after invasions (Figure 2). In native

ranges, the unique deviance of geographical distance and climate in

explaining compositional dissimilarity was 46.2% and 18.4%, re-

spectively (Figure 2). After invasions, the unique deviance explained

by geographical distance decreased to 25.4%, whereas climate

explained 35.8% unique deviances of species compositional dissimi-

larity. When we conducted analyses using subsamples controlling

for available bilateral trade data, we obtained a similar result—the

unique deviance explained by geographical distance decreased,

whereas bilateral trade and climate explained more unique
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deviances after invasions (Figure 2). When we included bilateral

trade in the analysis of native ranges, we found that it was not a sig-

nificant variable (P¼0.60) in explaining native assemblages of alien

species, and it explained much less unique deviance (9.2%) of spe-

cies compositional dissimilarity in native ranges than current ranges

(20.4%) (Figure 2).

GDM-fitted I-splines further supported that geographical distance

was a dominant predictor with a high relative importance in explain-

ing species compositional dissimilarity in native ranges (Figure 3A-1).

In contrast, in current ranges, the relative importance values of cli-

matic factors in explaining species compositional dissimilarity re-

markably increased especially for the high-temperature extremes

(native: 1.02, current: 2.53, Figure 3A-2 and 3B-2), followed by pre-

cipitation seasonality (native: 1.04, current: 1.27, Figure 3A-3 and

3B-3). These 2 climatic variables were also the only 2 significant

(P <0.001) and most important climatic predictors of species com-

positional dissimilarity (Figure 3A-2, 3, 3B-2, 3, 3C-2 and 3). The

nonlinear shapes of the GDM curves showed an increasing rate of

species compositional change with increasing geographical distance

(Figure 3A-1, 3B-1 and 3C-1), high-temperature extremes (Figure 3A-

2, 3B-2 and 3C-2), precipitation seasonality (Figure 3A-3, 3B-3 and

3C-3), and bilateral trade (Figure 3C-4), but the species composition

tended to be stable when geographical distance and high temperatures

reached a threshold (Figure 3A-1,2, 3B-1,2 and 3C-1,2). The per-

formance of each predictor variable was stable according to the 95%

confidence bands generated by 100 bootstrapping tests (Figure 3).

Discussion

Our study suggests that assemblages of alien amphibians and rep-

tiles have been simplified from 10 distinct zones before their wide-

spread introductions to only 4 distinct zones in their modern-day

Figure 1. Dendrograms and global maps of compositional similarities for 361 alien amphibians and reptiles at a grid level with a resolution of 2� �2� for native

ranges (A, n¼ 2,653) and current ranges (B, n¼ 2,806). Colors represent main groups from the cluster analyses using a UPGMA approach based on the bsim index.

The number of assemblage groups is determined based on the KGS penalty function (Supplementary Figure S7). Caribbean islands included in this study are

magnified in the inset.

Figure 2. Proportion of unique and shared deviance by climatic and dispersal

factors (geographical distance and bilateral trade) for species compositional

dissimilarity of 361 alien amphibians and reptiles at a grid level with a reso-

lution of 2� �2� for native ranges (n¼2,653), current ranges (n¼ 2,806), and

sub-samples of native (n¼2,473) and current ranges (n¼ 2,651) where bilat-

eral trade data are available.
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ranges: 1) Southeast Asia and Australia; 2) Europe, Asia, and

Northern Africa; 3) the USA and Canada; and 4) Latin America,

Florida, and Sub-Saharan Africa. The changes are particularly

marked by Atlantic islands, such as Caribbean and Canary islands,

which supports previous syntheses that islands are hotspots of alien

species invasions (Helmus et al. 2014; Bellard et al. 2017; Dawson

et al. 2017; Moser et al. 2018). These results are also robust to a few

potentially influential species and outlier regions (Supplementary

Figures S9 and S10). Although our study cannot quantify changes to

overall biogeographical patterns caused by species invasions because

we did not include data on native species, our results suggest that

human-mediated species invasions in the Anthropocene are homoge-

nizing biodiversity resulting in the dissolution of historical

biogeographical patterns (Rahel 2000; Olden et al. 2008; Villeger

et al. 2011; Bernardo-Madrid et al. 2019). We also revealed that the

dissimilarity of alien herpetofaunal communities in their native

ranges is mainly determined by geographical distance and climate,

whereas climate is more important than geographical distance in

shaping current assemblage patterns after invasions. These patterns

mirror those shown for gastropods (Capinha et al. 2015), indicating

that the discipline is rapidly approaching generality. However, un-

like these past studies, our study covered many more species and

regions of the world, focused on one of the most threatened verte-

brate groups on the planet, and demonstrated that the results were

robust to spatial scale (i.e., grid cells versus administrative units).

Also unlike these past studies, we identified the specific climatic

Figure 3. GDM-fitted I-splines for significant variables associated with species compositional similarity for alien amphibians and reptiles at a grid level with a

resolution of 2� � 2� for native ranges (A, n¼2,653), current ranges (B, n¼ 2,806), and sub-samples of current ranges where bilateral trade data are available (C,

n¼2,651). The maximum height reached by each curve indicates the relative importance of each predictor variable quantified by summing the coefficients of the

I-splines from GDM (e.g., “partial ecological distance” holding all other variables constant). The shape of each function provides an indication of how the rate of

compositional similarity varies along the environmental gradient. The gray color shows the confidence bands permutating 100 times of bootstrapping using 70%

subsampling of sites from the full site-pair sample to estimate uncertainty in the fitted I-splines. Only significant predictors based on Monte Carlo permutation

analyses are included and those nonsignificant predictors were shown in Supplementary Figure S12.
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factors—high-temperature extremes and precipitation seasonality—

that seem to contribute most to alien species assemblages.

Extreme high temperature was an important climatic factor

explaining herpetofaunal compositional dissimilarity, and the rela-

tionship between compositional dissimilarity and high temperatures

tended to asymptote at �32�C (Figure 3). We anticipated that high

temperatures might be important to the current distribution of her-

petofauna. One potential explanation for the important role of high

temperatures is the inactivation of cell membranes and proteins

under temperature extremes (Angilletta 2009). In addition to tem-

perature extremes, we found that precipitation seasonality was an-

other important climatic filter of herpetofauna. Precipitation can

affect the fitness of many organisms, as rainfall is a strong selective

force influencing resource evenness and habitat suitability

(Bonebrake and Mastrandrea 2010). Our study suggests that the

seasonality of precipitation plays a more significant role in determin-

ing herpetofaunal composition than mean annual precipitation.

Herpetofaunal introductions were significantly greater in the

pole-ward than equator-ward direction, but this directional bias in

introductions could not account for our assemblage patterns or cli-

matic driver results. Importantly, a pole-ward bias in introductions

is consistent with the hypothesis that climate change should cause

greater pole-ward than equator-ward species range expansions or

shifts (Coristine and Kerr 2015). However, this consistency should

not be interpreted as an indication that climate change was a factor

in the current herpetofaunal assemblage patterns. Our analyses

included mean climatic factors, not the change in these factors

through time, and thus we did not test for a climate change signal.

We encourage future studies to evaluate the interactive role of spe-

cies introductions and climate change on the recent reorganization

of global biogeographical patterns.

Our study detected similar assemblage patterns at the adminis-

trative and grid levels, the latter of which is a much finer spatial

resolution than has been considered previously, indicating that our

results are robust to the spatial scale at which the analyses were con-

ducted (Supplementary Figures S13–S16). This is important because

several studies demonstrated that the relative importance of biotic

and abiotic variables to species compositional dissimilarity can de-

pend on the spatial scale of the analysis (Steinbauer et al. 2012;

Cohen et al. 2016). Our results suggest that analyses at 2 spatial lev-

els may have their own specific advantages. For instance, the grid

level analysis might reflect finer changes in species’ geographical

ranges. For example, in Florida and Mexico, biogeographical

changes only occurred in certain areas, but the administrative analy-

ses might overstate such changes to the whole jurisdiction (Figure 1

and Supplementary Figure S13). However, the administrative level

may provide more coherent species assemblage patterns than grid-

level analyses because the latter might be more sensitive to outliers

(e.g., a small number of grids were located in unique biogeographic-

al zones compared with its neighbors when the cluster analyses were

conducted at the grid level, Figure 1 and Supplementary Figure S13).

Nevertheless, our main conclusions regarding the relative import-

ance of maximum temperature and precipitation seasonality were

consistent across the 2 levels.

Although our analyses were robust to variation in spatial scales,

we acknowledge that there might be other uncertainties associated

with our analyses. For instance, despite not detecting an obvious sig-

nal of variable collinearity based on a 0.75 cutoff following previous

studies (Capinha et al. 2015) (Supplementary Table S2), we cannot

completely rule out multi-collinearity among our climate variables.

There might also be uncertainties in the definition of native ranges

of alien species, which were mainly based on the IUCN’s native map

polygons (Supplementary Table S1). IUCN polygons can only reflect

the limits of species distributions based on current known expert

knowledge, and thus some species could occur outside these poly-

gons. Third, amphibians experience climate at the microhabitat level

that can differ from the coarser grid-level climate data used in our

study and similar global-scale studies (De Frenne et al. 2019).

Finally, our results could be influenced by biases in data availability,

such as the poor coverage of species distribution data from Africa

and China. We cannot rule out that the coalescence of herpetofaunal

diversity of the Americas with Africa is not at least partially a prod-

uct of the lack of knowledge on African species invasions. Despite

these potential limitations, we believe that our analyses are currently

the most comprehensive of those in the literature. Nevertheless, they

certainly could be improved, especially as additional data are

gathered.

Amphibian and reptile population declines have been linked to

the introduction of pathogenic fungi, such as Batrochochytrium den-

drobatidis, B. salamandrivorans, and Ophidiomyces ophiodiicola

(Martel et al. 2014; Lorch et al. 2016; Scheele et al. 2019).

Additionally, both amphibian and reptile populations have experi-

enced die-offs from introduced iridoviruses (Chinchar et al. 2017).

The emergence of all of these pathogens has coincided with the glo-

bal expansion of largely unrestricted commercial trade (Fisher et al.

2012). Indeed, the pet trade of alien amphibians has recently been

shown to contribute to the intercontinental transmission of B. den-

drobatidis, a primary driver of worldwide amphibian declines (Liu

et al. 2013). Now, all lineages of B. dendrobatidis occur in traded

amphibians (O’hanlon et al. 2018). The recent invasion of

Madagascar by Asian common toads hidden in mining equipment

(Kolby 2014), exemplifies how the movement of products can unin-

tentionally disperse herpetofauna and likely contributed to the

worldwide spread of pathogens responsible for their declines. In

summary, our work suggests that ancient patterns of herpetofaunal

assemblage have been redrawn by unrestricted global trade, homog-

enizing alien herpetofaunal diversity globally. This, in turn, likely

translocated pathogens into new regions, triggering several pan-

zootics of emerging diseases of herpetofauna that are contributing to

their worldwide declines. To curb future losses of herpetofaunal bio-

diversity, we encourage the continued strengthening of transcontin-

ental biosecurity.
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