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Abstract

Understanding how alien species assemble is crucial for predicting changes to community struc-
ture caused by biological invasions and for directing management strategies for alien species, but
patterns and drivers of alien species assemblages remain poorly understood relative to native
species. Climate has been suggested as a crucial filter of invasion-driven homogenization of bio-
diversity. However, it remains unclear which climatic factors drive the assemblage of alien species.
Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a
resolution of 2° x 2°) and administrative scale (271 native and 297 current nations and sub-nations)
on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened
vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal
barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native
ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assem-
blage after than before invasions. This pattern was driven by extremely high temperatures and
precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can
account for the alien assemblage after invasions. Our results indicated that human-assisted species
introductions combined with climate change may accelerate the reorganization of global species
distributions.
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Long-distance human-aided introductions have allowed alien species
to overcome geographical dispersal barriers and limitations from bi-
otic interaction in their native ranges (Capinha et al. 2015). This has
resulted in a modification of classic biogeography and a modern-day
homogenization of biodiversity (Rahel 2000; Olden et al. 2008;
Villeger et al. 2011; Bernardo-Madrid et al. 2019 ). Understanding
which factors influence the assemblages of invasive species is a

particularly urgent scientific question facing the world today with
the potential for the answer to direct management and policy (Pysek
et al. 2010; Redding et al. 2019). In addition to human-assisted dis-
persal factors, such as bilateral trade, climate has been documented
as a crucial factor predicting global assemblage patterns of alien spe-
cies (Capinha et al. 2015). Several climatic factors, including opti-
mal climatic conditions (Hughes et al. 1996), the magnitude of
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climatic variability (Stevens 1989), and extreme temperatures
(Gaston and Chown 1999), have been proposed to dictate species
distributions either directly, by exceeding critical thresholds of
organisms (i.e., critical thermal minima and maxima), or indirectly,
by determining the availability of key resources, such as water and
food (Hurlbert and Haskell 2003). In addition, climatic extremes
and variability tend to be more sensitive than climatic averages to
climate change (Easterling et al. 2000; Palmer and Ralsanen 2002).
Consequently, understanding the degree to which climatic factors
account for species composition before and after invasion is not
only crucial for understanding the role of climate in invasion suc-
cess, but also for providing insights into range shifts of both native
and invasive species in an era of climate change (Blois et al. 2013a).
Although previous studies provided valuable insights into the rela-
tive importance of climate and dispersal-related factors in shaping
the distribution of alien species before and after invasions (Qian and
Ricklefs 2006; Capinha et al. 2015), these studies did not thorough-
ly explore which components of climate were most important.

Amphibians and reptiles provide an ideal opportunity to address
this knowledge gap on role of specific climatic factors in the redistri-
bution of alien species because both temperature and precipitation
are considered to have marked effects on the distributions, range
sizes, and species compositional patterns of ectotherms (Aradjo
et al. 2008). Second, there are relatively accurate distributional
records of alien amphibians and reptiles in their native and invaded
ranges (Kraus 2009; Li et al. 2016a; Capinha et al. 2017; Liu et al.
2019), allowing us to precisely quantify their occupied climatic
niches before and after invasions. Finally, herpetofauna is arguably
the most threatened of terrestrial vertebrates on the planet
(Hoffmann et al. 2010), and their declines have been clearly linked
to human-assisted introductions of herpetofaunal species and the
deadly pathogens they can carry (Fisher et al. 2012). Here, based on
the distributional records of 361 alien amphibians and reptiles in
their native and invaded ranges (Supplementary Table S1), we ex-
plore the unique contributions of different climatic factors to their
global assemblage patterns before and after invasions after control-
ling for natural dispersal limitations (geographical distance) and an-
thropogenic dispersal-related factors (bilateral trade). We build on
Capinha et al.’s (2015) seminal work on the biogeographical pat-
terns of alien gastropods by adapting and advancing their analyses
which involve hierarchical cluster analyses, ordination techniques,
and generalized dissimilarity modeling (GDM), which were
approaches widely used in biogeographical studies (e.g., Ferrier
et al. 2007; Kreft and Jetz 2010; Blois et al. 2013a; Holt et al. 2013;
Supplementary Figure S1).

We hypothesize that assemblages of alien herpetofauna were pre-
dominantly associated with dispersal limitations in their native
ranges. That is, we postulate that, historically, there were suitable
climatic conditions for many herpetofaunal species in other parts of
the world but they could not successfully disperse to them. With the
vast increase in the movement of people and products, we hypothe-
size that long-distance dispersal is less of a limitation now than it
was historically and thus, the distribution of alien herpetofauna is
more a function of appropriate climatic conditions than dispersal
barriers in their current range. Given the narrow thermal breadths
of many herpetofaunal species and the reliance of most amphibians
on ample moisture (Li et al. 2013; Rohr et al. 2018), we hypothesize
that temperature extremes and precipitation variability might be the
predominant climatic factors associated with the modern-day assem-
blage of alien herpetofauna.

Materials and Methods

Datasets

Species distribution datasets

To capture all species’ distribution and occupied climatic niches, we
followed previous studies by focusing on alien species with exact na-
tive and introduced range information, and conducted analyses com-
paring the native and current assemblages before and after their
invasions (Capinha et al. 2015). The alien species list is based on a
widely used database on global amphibian and reptile introductions
compiled by Kraus (2009) and recent updates for their establishment
during the last decade (Li et al. 2016a; Capinha et al. 2017; Liu
et al. 2019; Liu et al. 2020; Supplementary Table S1). Following the
criterion of the Kraus (2009) database, we excluded species re-
introduced into a species’ native range, released within their native
ranges, experimentally introduced into small islets, and that repre-
sented questionable introductions without robust evidence.
Furthermore, we only used those successful invaders that have estab-
lished feral populations in non-native ranges (Blackburn et al.
2011). The species native range is determined based on native-range
maps of the International Union for Conservation of Nature (IUCN;
https://www.iucnredlist.org/resources/spatial-data-download) and
validated using other databases, references such as the recent distri-
butional update of global reptiles (Roll et al. 2017), and regional
field guides (Supplementary Table S1). The Kraus (2009) and
Capinha et al. (2017) databases provided the species list and the na-
tional or sub-national information where the species established.
However, it makes no sense to use the average climates calculated
across coarse range maps, which does not provide any information
on the conditions experienced by species living only in some specific
areas of a country. Therefore, we collected occurrence data for each
alien amphibian and reptile species in both their native and invaded
ranges from various databases and an intensive review of published
references (Supplementary Table S1). We removed duplicated
records among data sources and species whose native ranges are un-
known or without precise geographical location data (based on the
expert opinion of Fred Kraus).

Analyses of species composition dissimilarity can be influenced
by a study’s scale (e.g., grid level, landscape level, or administrative
level) (Steinbauer et al. 2012). Therefore, to test whether our results
were sensitive to spatial scale, we conducted our analyses at both
grid and administrative level, respectively. In the main manuscript,
we present analyses at the grid level because it can control the effect
of area on results. We conducted the grid-level analyses at a reso-
lution of 2°x2°, a resolution frequently used in global biogeog-
raphy studies (e.g., Holt et al. 2013). We re-conducted all analyses
at the administrative level at which the trade data are available
(Capinha et al. 2015; Murray et al. 2015; Dawson et al. 2017).

In sum, we used 361 species including 108 amphibians and 253
reptiles. These species occupied a total of 368,766 native and
414,374 current occurrences assigned to a total of 2,653 native and
2,806 current 2° x 2° grids belonging to 271 native and 297 current
(sub)nations based on global administrative area designations
(www.gadm.org). We checked species synonyms from different
taxonomic authorities for amphibians, squamates, crocodilians, ser-
pents, and turtles (Supplementary Text S1).

Climatic average, variation, and extremes

We used a total of 8 climatic variables to describe temperature and
precipitation averages, variation, and extremes, which were
extracted based on the occurrence data for native and current ranges

1202 1SNBNYy $0 U0 1sonB AQ L9¥ 1L ¥BS/EBE/¥/L9/oI0ME/Z0/Woo"dNo"olWapedk//:SARY WOl papeojumoq


https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data
https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data
https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data
https://www.iucnredlist.org/resources/spatial-data-download
https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data
https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data
http://www.gadm.org
https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoaa068#supplementary-data

Liu et al. - Climate extremes, variability, and trade shape biogeographical patterns 395

from the WorldClim database (version 1.4) at a resolution of 10 arc-
minute, and averaged each of 8 variables over each country
(Capinha et al. 2015). This database was based on meteorological
average monthly climate data recorded from 1950 to 2000 (Hijmans
et al. 2005). These 8 bioclimatic variables represent annual trends
(e.g., mean annual temperature, annual precipitation), seasonality
(e.g., annual range in temperature and precipitation), and extreme
or limiting climatic factors (e.g., maximum and minimum tempera-
ture of the coldest and warmest month, and precipitation of the wet-
test and driest month). Climate average refers to the average annual
temperature (T,,, Biol) and average annual precipitation (P,,,
Bio12) across all 10-min grid cells encompassed by all species in that
region. Climate seasonality refers to the temperature (T, Bio4,
standard deviation) or precipitation seasonality (P, Bio15, coeffi-
cient of variation) calculated as the average value across occupied
grid cells by all species in each region (Pither 2003). In the climate
literature, climate extreme usually refers to extreme weather and cli-
mate events, such as heat waves, cold waves, droughts, and storms,
exceeding climate thresholds on a particular occasion (Easterling
et al. 2000). In the macroecological and biogeographical literature,
“climate extreme” is usually classified as the maximum temperature,
minimum temperature, maximum precipitation, and minimum pre-
cipitation at any grid cell within the geographic range of a focal spe-
cies based on averaging monthly data from public climate database
(Pither 2003; Li et al. 2016b). Here, we followed this latter classifi-
cation of extremes. More specifically, as there are usually multiple
species in each grid/nation or sub-nation, we first extracted the high-
est or the lowest value of the maximum or minimum temperature of
the hottest (T, BioS) or the coldest month (T,,;,, Bio6) and the
highest or the lowest value of average precipitation of the wettest
(Pmax, Bio13) or the driest month (P iy, Bio14) encountered by each
species in each grid/nation or sub-nation. We then averaged the
extracted highest or lowest Traxs Tmins Pmaxs and Ppin values per
species in the same grid/nation or sub-nation to represent the aver-
age climate extreme of the grid/nation or sub-nation. These 8 climat-
ic variables were selected because they reflect climate average,
variability, and extremes that can be important to species distribu-
tions (Janzen 1967; Li et al. 2016b). Moreover, pairwise Pearson
rank correlation analyses (at which scale the cluster, ordination, and
GDM analyses were performed) revealed that the correlation coeffi-
cients of these 8 climatic predictors were all <0.75 (Supplementary
Table S2), a commonly used cutoff for evaluating climatic collinear-
ity in modeling climate effects on species distributions (Capinha
et al. 2015). Thus, these 8 variables were not highly collinear.

Although previous studies suggested that amphibians and rep-
tiles usually have different climatic requirements, as reptiles are par-
ticularly rich in hot and dry climates, whereas amphibians are
strongly associated with humid climates (Powney et al. 2010), we
did not find significant differences in the climatic variables between
distributional ranges occupied by amphibians and reptiles
(Supplementary Figure S2). Although certain microhabitats might
vary among taxa, our results were consistent with previous macro-
ecological studies showing that climatic variables tend to be similar
for amphibians and reptiles, reflecting their general physiological
requirements for water and energy (AraGjo and Pearson 2005).
Consequently, as the sample size of amphibians (108 species) is
much smaller than reptiles (253 species, Supplementary Table S1),
we combined the 2 taxa together to provide a more robust analysis
based on a larger sample size.

Natural dispersal and trade data

We used geographical distance calculated based on the geographical
coordinates of centroids of each pair of grids (nations or sub-nations at
the administrative scale) as a comprehensive proxy of the natural dis-
persal barriers of species (Blois et al. 2013b; Capinha et al. 2015). It
has been widely reported that range expansions of alien species can be
associated with human-assisted dispersal factors, such as trade (Essl
et al. 2015; Dyer et al. 2016). We, therefore, used average bilateral
trade data for the sub-samples of current ranges (2,651 grids across
183 countries, in US dollars across the years of 1962-2010) from the
UN trade database (https://comtrade.un.org) to test for the effect of bi-
lateral trade on the species assemblage pattern after invasions (Essl
et al. 2015). For countries (e.g., USA, Canada, Australia, and China)
that are subdivided into multiple areas, we re-calculated the species
compositional dissimilarity, and different climatic and dispersal-related
variables for each country as a whole. To calculate bilateral trade, we
first calculated all traded commodities (imports and exports) of country
i with j, and then divided by the total trade of country i with the world
(Capinha et al. 2015). For the grid-level analysis, those grids in the
same country were assigned the same trade values.

Delineation of alien species assemblages

Species compositional dissimilarity

We quantified pairwise compositional dissimilarity among grids/
nations or sub-nations using the turnover component of the
Baselga’s dissimilarity f, index (Baselga 2010), which is widely
used as a standard index in biogeography and macroecology studies
because it robust to differences in species richness among countries
(Kreft and Jetz 2010), and to differences in sample size between
grids/nations or sub-nations being compared (Barwell et al. 2015).
The fqm was expressed as follows:

a

fsim =1 - min(b,c) +a

(1) where a refers to the number of shared species between 2 grids
(nations or sub-nations) 7 and j, b refers to the number of species
found in grid (nation or sub-nation) i but not grid (nation or sub-
nation) /, and c is the number of species found in grid (nation or
sub-nation) j but not grid (nation or sub-nation) i. B, varies from 0
to 1, with low B, values indicating that grid (nation or sub-nation)
i and j share many similar taxa (i.e., 0, complete similarity) and a
high fgm values indicating that grid (nation or sub-nation) i and j
share a small number of similar taxa (i.e., 1, complete dissimilarity).
The application of the fg, index resulted in 3,517,878 and
3,935,415 pairwise distance values at the grid scale, and 36,585 and
43,956 pairwise distance at the administrative scale for native and
current ranges, respectively. The B, index was calculated using the
betapart package (Baselga and Orme 2012) in R (Core T 2016).

Hierarchical cluster and ordination analyses

Both hierarchical clustering and ordination techniques were used to
calculate and visualize the spatial patterns of compositional similar-
ity based on the fi;,, index. We conducted cluster analyses using an
unweighted pair-group method based on arithmetic averages
(UPGMA), which is frequently used in large-scale biogeographical
studies (Kreft and Jetz 2010). UPGMA is a hierarchical clustering
technique that classifies different grids/nations or sub-nations with
similar species composition into clusters within a dendrogram. We
also analyzed the species compositional similarity using 6 other clus-
tering techniques including the weighted pair-group method based
on arithmetic averages (McQuitty’s method), Ward’s minimum
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variance, Median, Centroid, Single, and Complete method (Kreft
and Jetz 2010) (descriptions on each cluster method are shown in
Supplementary Table S3). We evaluated the accuracy of different
cluster methods in converting the dissimilarity matrices into dendro-
grams using cophenetic correlation coefficients, which measure the
agreement between cluster assignments and the original compos-
itional dissimilarity matrix (Legendre and Legendre 2012). We
found that UPGMA method had higher cophenetic correlation coef-
ficient, indicating that it performed better than other methods to
quantify pairwise dissimilarity for both native and current ranges
(Supplementary Table S4). Based on the UPGMA hierarchical den-
drograms, we determined the optimal number of biogeographical
regions by applying the Kelley-Gardner-Sutcliffe (KGS) penalty
function in the maptree package. KGS is an objective method widely
used in biogeographical research to determine the number of distinct
clusters. For each level of the hierarchical tree, the KGS penalty is
calculated as the average distance between nodes within each cluster
plus the number of clusters at the level (Kelley et al. 1996). The KGS
penalty maximizes differences between clusters and the cohesiveness
within clusters and the level of the tree with the minimum value cor-
responds to the optimal number of clusters (a detailed process of the
method is given in Supplementary Figure S3) (Kelley et al. 1996).

To validate the results of the hierarchical clustering analyses, we
also analyzed the data using nonmetric multidimensional scaling
(NMDS), which is considered the most robust ordination technique
for generating low-dimensional projections by arranging range
assemblages based on taxonomic composition (Legendre and
Legendre 2012). It is especially useful for visualizing the inter-
relationships among different grids/nations or sub-nations according
to their taxonomic compositional similarity rather than forcing
them into discrete groups (i.e., clusters). Additionally, the generated
plot can display ranges that are close to one another in ordination
space. NMDS represents the original position of data in multidimen-
sional space as accurately as possible using a reduced number of
dimensions that can be plotted and visualized (like principal compo-
nent analysis). The stress value was used to assess the agreement be-
tween the original distances and distances in the reduced ordination
space of the NMDS (Legendre and Legendre 2012). Stress value is a
goodness-of-fit statistic representing the sum of the squared differen-
ces between distances in the reduced dimensional space compared
with the complete multidimensional space. It ranges from 0 to 1,
with smaller values indicating less of a difference and thus a better
fit (Legendre and Legendre 2012). We performed the cluster analysis
using hclust function and NMDS analyses using monoMDS function
in vegan package (Oksanen et al. 2013).

Predictors of alien species assemblages in native and
current ranges

We applied GDM (Ferrier et al. 2007) to investigate the drivers of
assemblage patterns of alien species in native and current ranges.
GDM has been widely used to identify the independent contribu-
tions of different factors explaining species compositional dissimilar-
ity (e.g., Blois et al. 2013a; Fitzpatrick et al. 2013; Capinha et al.
2015). Compared with traditional matrix regression approaches,
GDM can accommodate nonlinearities of ecological predictors with
observed compositional dissimilarity (i.e., Bsm measure) (Ferrier
et al. 2007). GDM uses maximum-likelihood estimation and flexible
I-splines to explore the relationship between environmental/geo-
graphical distance and species compositional dissimilarity (Ferrier
et al. 2007). For the administrative-level analysis, to account for the
potential influence of country size in representing centroid-based

distance, we set weights for each nations or sub-nations according
to their ranking in the size distribution. This method is regarded as
more robust than weights proportional to country area, which can
result in overweighting small island countries. For the grid-level ana-
lysis, we set equal weights to each grid. We used the default 3 I-
splines basis functions per predictor variable. These 3 coefficients of
the I-splines provide the final transformation function representing
the best-supported relationship between pairwise distances of pre-
dictor variables and observed species compositional dissimilarity
(Fitzpatrick et al. 2013). Spatial autocorrelation was accounted for
by including the geographical distance between pairs of grids/
nations or sub-nations as a predictor variable (Ferrier et al. 2007).
Disentangling the relative influence of climatic factors, geographical
distance, and human dispersal is challenging as different climatic
components may be correlated, and climate might also co-vary with
dispersal factors. To achieve this, we followed previous studies using
the total height of the transformation function curve, which serves
as the relative importance of each variable to species compositional
change holding all other variables constant (e.g., “partial ecological
distance”), and the shape of the curve reflects the rate of species
compositional change along the gradient of the independent variable
(Ferrier et al. 2007; Fitzpatrick et al. 2013). The significance of each
predictor was tested using Monte Carlo permutation procedures as
implemented in the gdm.varImp function (Ferrier et al. 2007). The
permutation process was implemented by first calculating the differ-
ence in deviance between the models with and without the predictor.
Then, this observed deviance difference was compared with a null
distribution of deviance differences obtained by fitting the 2 models
using random permutations of the order of sites in the compositional
dissimilarity matrix. A predictor was considered as nonsignificant if
no significant difference was found in deviance between the 2 mod-
els (Ferrier et al. 2007; Fitzpatrick et al. 2013; Capinha et al. 2015).
We performed 1,000 permutations until all nonsignificant variables
were removed. Permutation analyses can test the significance of pre-
dictor variables, but cannot quantify parameter uncertainty through
confidence interval estimations. In GDM, an estimate of parameter
uncertainty, or the variance in fitted I-splines of each predictor, was
achieved by a bootstrapping approach using the plotUncertainty
function in the gdm package (Shryock et al. 2015). However, evalu-
ation of the uncertainty of overall model fit is unfortunately not
available for GDM yet. Consequently, we used the multifaceted bio-
diversity modelling (MBM) approach based on Gaussian processes
to generate the 95% confidence intervals of the overall model fit
and qualitatively compared it to the model fit with GDM (Talluto
etal. 2018). We then evaluated model fits for MBM and GDM using
a root mean square prediction error (RMSE) test with smaller values
indicating better performance (Talluto et al. 2018). The MBM anal-
yses were conducted using the mbm package (Talluto et al. 2018) in
R. MBM analyses showed similar trends with GDM for changes in
species compositional dissimilarity with environmental distance
(Supplementary Figure S4). RMSE values for both the GDM and
MBM models were very small (0.051-0.070), suggesting a good fit
to the data (Supplementary Table S5).

To quantify the unique explained deviances of climatic predic-
tors (Dejim), dispersal predictors (Dgis) and their shared deviances
(Dshared) to species compositional dissimilarity, we fit 3 GDMs: (1)
only climatic variables; (2) only dispersal predictors including geo-
graphical distances in combination with bilateral trade variables;
and (3) full models containing all predictors (Blois et al. 2013a;
Fitzpatrick et al., 2013; Capinha et al. 2015). D, was calculated
as the deviance explained by all predictors minus the deviance
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explained by the model with only dispersal predictors, Dg;s as the
deviance explained by all predictors minus the deviance explained
by the model with only climate, and Dgpareq a8 1—Dejim—Dais. The
relationship between environmental or geographical predictors and
compositional dissimilarity is achieved by reformulating traditional
matrix regression as a generalized linear model in terms of a link
function in inverse form (Ferrier et al. 2007):

p=1-" (2)

where p is the predicted response variable (i.e., species composition-
al dissimilarity among sites here), and 7 is the environmental or geo-
graphical distances. To account for the nonlinearity of the rate of
species compositional dissimilarity along environmental or geo-
graphical gradients, 7 is then formulated as:

VI:“JFZ;fp(xpi)*fp(xpj) (3)
p:

where 7 is environmental or geographical variables (x; to x,,) from
gird/region i to j, f, (x) is the fitting function between predicted and
observed compositional dissimilarity as a linear combination of I-

spline basis functions:
p
fp(xp) = Zapklpk(xp) (4)
k=1

where ap (>0) is a constraint, 7, is the number of I-spline
employed, and I,y is the kth I-spline for variable x, and a,,. is the fit-
ted coefficient for Ip,.

Sensitivity analyses for data uncertainties

A potential issue in exploring the importance of extreme high tem-
peratures and precipitation seasonality was that our results may be
dependent on differences in species introduction opportunities to
high versus low-temperature extremes or precipitation seasonality.
Although there was a higher proportion of pole-wards (i.e., higher
absolute latitude, 65.4%) than equator-wards introductions (i.e.,
lower absolute latitude, 34.6%) of herpetofaunal species, which was
coincident with previous findings on introduction directions of alien
mammals, birds, and plants (Guo et al. 2012), we did not detect sig-
nificant differences in high temperatures (Kruskal-Wallis test:
=295, df =1, P=0.204) or precipitation seasonality
(7=2.46,d.f. =1, P=0.216) of occupied grids between pole-ward
and equator-ward introduction events. This demonstrated that our
results were not an artifact of differences in species introduction

opportunities along this latitudinal gradient.

Results

Alien species assemblages in native and current ranges
The 361 alien amphibians and reptiles have established populations
worldwide (mean * SE of alien richness: 0.97 = 0.045 across grids)
after 3,516 introduction events in 297 regions (mean = SE:
12 +2.61). There are 17.8% of regions with >50% amphibians and
reptiles considered alien species (Supplementary Figure S5). The
Atlantic and (sub)tropical Pacific Islands, Florida, and western states
of the USA, such as California, western Europe, and southeastern
Asia  represent hotpots of alien herpetofauna incursions
(Supplementary Figure S5). These invasions have resulted in an in-
crease of compositional similarity of the alien herpetofauna in

current ranges relative to their native ranges (2-tailed Wilcoxon
signed-rank test, Z=—19.80, P < 0.001).

These increases in species compositional similarity have further
simplified the global biogeography of alien herpetofauna with sig-
nificant decreases in the number of assemblages along different lev-
els of UPGMA cluster depths (grid level: native ranges,
27.56 £3.79, current ranges, 15.86 £3.62, Z=-6.03, P <0.001;
administrative level: native ranges, 22.18 * 1.24, current ranges,
14.32+1.37, Z=-6.17, P<0.001, Supplementary Figure S6).
According to the KGS penalty function that aims to objectively iden-
tify the optimal number of clusters (Supplementary Figure S7), we
found that the assemblages have been simplified from 10 distinct
groups in native range to only 4 distinct arrangements in their cur-
rent range (Figure 1). The native assemblages were generally consist-
ent with the classic zoogeographical classifications, such as
Nearctic, Neotropics, Afrotropic, Indo-Mala, Palearctic, and
Australia with some Caribbean countries as unique zones (Figure 1).
However, after invasions, some distant or isolated islands were no
longer distant regions, and some areas were clustered into similar
groupings, such as Atlantic islets, Florida U.S., Madagascar, Asia,
Australia, and the America (Figure 1). The results of NMDS analy-
ses were highly concordant with the cluster analyses, showing a
change from greater dispersion in native ranges to increased similar-
ity among current regions after invasions (Supplementary Figure
S8). The stress values both for native distributions and for current
distributions were relatively low (0.011 and 0.021, respectively),
supporting a good projection of the species compositional dissimi-
larity matrix into the 2-dimensional ordination space.

We obtained similar species assemblage patterns when we
excluded American bullfrog (Lithobates catesbeianus = Rana cates-
beiana), blind snake Ramphotyphlops braminus, and slider turtle
Trachemys scripta (Supplementary Figure S9), which we hypothe-
sized might have significant effects on the biogeographical patterns
because of their more widespread introductions than other species.
We also obtained similar patterns for remaining regions (i.e., 6 main
groups for native ranges and 4 groups for current ranges) after
excluding the Atlantic islands where considerable homogenization
occurred (Supplementary Figure S10).

Important predictors of alien species assemblages

Overall, the compositional similarity significantly decreased with
increasing geographical distance in both native ranges (Spearman
correlation coefficient r=—0.427, P <0.001) and current ranges
after invasions (r=—0.365, P<0.001). However, highly similar
species compositions occurred more frequently with increasing geo-
graphical distance in current ranges (Supplementary Figure S11).
Monte Carlo permutation analyses based on GDMs revealed that
geographical distance, precipitation seasonality, and high-
temperature extremes were significantly (P < 0.001) correlated with
compositional dissimilarity both of native and current ranges.
However, the unique variance explained by climate and geographic-
al distance changed greatly after invasions (Figure 2). In native
ranges, the unique deviance of geographical distance and climate in
explaining compositional dissimilarity was 46.2% and 18.4%, re-
spectively (Figure 2). After invasions, the unique deviance explained
by geographical distance decreased to 25.4%, whereas climate
explained 35.8% unique deviances of species compositional dissimi-
larity. When we conducted analyses using subsamples controlling
for available bilateral trade data, we obtained a similar result—the
unique deviance explained by geographical distance decreased,
whereas bilateral trade and climate explained more unique
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Figure 1. Dendrograms and global maps of compositional similarities for 361 alien amphibians and reptiles at a grid level with a resolution of 2° x 2° for native
ranges (A, n=2,653) and current ranges (B, n=2,806). Colors represent main groups from the cluster analyses using a UPGMA approach based on the fi;, index.
The number of assemblage groups is determined based on the KGS penalty function (Supplementary Figure S7). Caribbean islands included in this study are

magnified in the inset.

deviances after invasions (Figure 2). When we included bilateral
trade in the analysis of native ranges, we found that it was not a sig-
nificant variable (P =0.60) in explaining native assemblages of alien
species, and it explained much less unique deviance (9.2%) of spe-
cies compositional dissimilarity in native ranges than current ranges
(20.4%) (Figure 2).

GDM-fitted I-splines further supported that geographical distance
was a dominant predictor with a high relative importance in explain-
ing species compositional dissimilarity in native ranges (Figure 3A-1).
In contrast, in current ranges, the relative importance values of cli-
matic factors in explaining species compositional dissimilarity re-
markably increased especially for the high-temperature extremes
(native: 1.02, current: 2.53, Figure 3A-2 and 3B-2), followed by pre-
cipitation seasonality (native: 1.04, current: 1.27, Figure 3A-3 and
3B-3). These 2 climatic variables were also the only 2 significant
(P <0.001) and most important climatic predictors of species com-
positional dissimilarity (Figure 3A-2, 3, 3B-2, 3, 3C-2 and 3). The
nonlinear shapes of the GDM curves showed an increasing rate of
species compositional change with increasing geographical distance
(Figure 3A-1, 3B-1 and 3C-1), high-temperature extremes (Figure 3A-
2, 3B-2 and 3C-2), precipitation seasonality (Figure 3A-3, 3B-3 and
3C-3), and bilateral trade (Figure 3C-4), but the species composition
tended to be stable when geographical distance and high temperatures
reached a threshold (Figure 3A-1,2, 3B-1,2 and 3C-1,2). The per-
formance of each predictor variable was stable according to the 95%
confidence bands generated by 100 bootstrapping tests (Figure 3).

Discussion

Our study suggests that assemblages of alien amphibians and rep-
tiles have been simplified from 10 distinct zones before their wide-
spread introductions to only 4 distinct zones in their modern-day

Legend
Geographical distance only
Climate only
Trade only
Climate-distance share
Climate-trade share
Trade-distance share

Proportion of variances explained

Nati Current  Natiye subset Current subset
e iaifegubast Curfent subs

Figure 2. Proportion of unique and shared deviance by climatic and dispersal
factors (geographical distance and bilateral trade) for species compositional
dissimilarity of 361 alien amphibians and reptiles at a grid level with a reso-
lution of 2° x 2° for native ranges (n=2,653), current ranges (n=2,806), and
sub-samples of native (n=2,473) and current ranges (n=2,651) where bilat-
eral trade data are available.
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Figure 3. GDM-fitted I-splines for significant variables associated with species compositional similarity for alien amphibians and reptiles at a grid level with a
resolution of 2° x 2° for native ranges (A, n=2,653), current ranges (B, n=2,806), and sub-samples of current ranges where bilateral trade data are available (C,
n=2,651). The maximum height reached by each curve indicates the relative importance of each predictor variable quantified by summing the coefficients of the
I-splines from GDM (e.g., “partial ecological distance” holding all other variables constant). The shape of each function provides an indication of how the rate of
compositional similarity varies along the environmental gradient. The gray color shows the confidence bands permutating 100 times of bootstrapping using 70%
subsampling of sites from the full site-pair sample to estimate uncertainty in the fitted I-splines. Only significant predictors based on Monte Carlo permutation
analyses are included and those nonsignificant predictors were shown in Supplementary Figure S12.

ranges: 1) Southeast Asia and Australia; 2) Europe, Asia, and
Northern Africa; 3) the USA and Canada; and 4) Latin America,
Florida, and Sub-Saharan Africa. The changes are particularly
marked by Atlantic islands, such as Caribbean and Canary islands,
which supports previous syntheses that islands are hotspots of alien
species invasions (Helmus et al. 2014; Bellard et al. 2017; Dawson
et al. 2017; Moser et al. 2018). These results are also robust to a few
potentially influential species and outlier regions (Supplementary
Figures S9 and S10). Although our study cannot quantify changes to
overall biogeographical patterns caused by species invasions because
we did not include data on native species, our results suggest that
human-mediated species invasions in the Anthropocene are homoge-
nizing biodiversity resulting in the dissolution of historical

biogeographical patterns (Rahel 2000; Olden et al. 2008; Villeger
et al. 2011; Bernardo-Madrid et al. 2019). We also revealed that the
dissimilarity of alien herpetofaunal communities in their native
ranges is mainly determined by geographical distance and climate,
whereas climate is more important than geographical distance in
shaping current assemblage patterns after invasions. These patterns
mirror those shown for gastropods (Capinha et al. 2015), indicating
that the discipline is rapidly approaching generality. However, un-
like these past studies, our study covered many more species and
regions of the world, focused on one of the most threatened verte-
brate groups on the planet, and demonstrated that the results were
robust to spatial scale (i.e., grid cells versus administrative units).
Also unlike these past studies, we identified the specific climatic
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factors—high-temperature extremes and precipitation seasonality—
that seem to contribute most to alien species assemblages.

Extreme high temperature was an important climatic factor
explaining herpetofaunal compositional dissimilarity, and the rela-
tionship between compositional dissimilarity and high temperatures
tended to asymptote at ~32°C (Figure 3). We anticipated that high
temperatures might be important to the current distribution of her-
petofauna. One potential explanation for the important role of high
temperatures is the inactivation of cell membranes and proteins
under temperature extremes (Angilletta 2009). In addition to tem-
perature extremes, we found that precipitation seasonality was an-
other important climatic filter of herpetofauna. Precipitation can
affect the fitness of many organisms, as rainfall is a strong selective
force influencing resource evenness and habitat suitability
(Bonebrake and Mastrandrea 2010). Our study suggests that the
seasonality of precipitation plays a more significant role in determin-
ing herpetofaunal composition than mean annual precipitation.

Herpetofaunal introductions were significantly greater in the
pole-ward than equator-ward direction, but this directional bias in
introductions could not account for our assemblage patterns or cli-
matic driver results. Importantly, a pole-ward bias in introductions
is consistent with the hypothesis that climate change should cause
greater pole-ward than equator-ward species range expansions or
shifts (Coristine and Kerr 2015). However, this consistency should
not be interpreted as an indication that climate change was a factor
in the current herpetofaunal assemblage patterns. Our analyses
included mean climatic factors, not the change in these factors
through time, and thus we did not test for a climate change signal.
We encourage future studies to evaluate the interactive role of spe-
cies introductions and climate change on the recent reorganization
of global biogeographical patterns.

Our study detected similar assemblage patterns at the adminis-
trative and grid levels, the latter of which is a much finer spatial
resolution than has been considered previously, indicating that our
results are robust to the spatial scale at which the analyses were con-
ducted (Supplementary Figures S13-S16). This is important because
several studies demonstrated that the relative importance of biotic
and abiotic variables to species compositional dissimilarity can de-
pend on the spatial scale of the analysis (Steinbauer et al. 2012;
Cohen et al. 2016). Our results suggest that analyses at 2 spatial lev-
els may have their own specific advantages. For instance, the grid
level analysis might reflect finer changes in species’ geographical
ranges. For example, in Florida and Mexico, biogeographical
changes only occurred in certain areas, but the administrative analy-
ses might overstate such changes to the whole jurisdiction (Figure 1
and Supplementary Figure S13). However, the administrative level
may provide more coherent species assemblage patterns than grid-
level analyses because the latter might be more sensitive to outliers
(e.g., a small number of grids were located in unique biogeographic-
al zones compared with its neighbors when the cluster analyses were
conducted at the grid level, Figure 1 and Supplementary Figure S13).
Nevertheless, our main conclusions regarding the relative import-
ance of maximum temperature and precipitation seasonality were
consistent across the 2 levels.

Although our analyses were robust to variation in spatial scales,
we acknowledge that there might be other uncertainties associated
with our analyses. For instance, despite not detecting an obvious sig-
nal of variable collinearity based on a 0.75 cutoff following previous
studies (Capinha et al. 2015) (Supplementary Table S2), we cannot
completely rule out multi-collinearity among our climate variables.
There might also be uncertainties in the definition of native ranges

of alien species, which were mainly based on the IUCN’s native map
polygons (Supplementary Table S1). TUCN polygons can only reflect
the limits of species distributions based on current known expert
knowledge, and thus some species could occur outside these poly-
gons. Third, amphibians experience climate at the microhabitat level
that can differ from the coarser grid-level climate data used in our
study and similar global-scale studies (De Frenne et al. 2019).
Finally, our results could be influenced by biases in data availability,
such as the poor coverage of species distribution data from Africa
and China. We cannot rule out that the coalescence of herpetofaunal
diversity of the Americas with Africa is not at least partially a prod-
uct of the lack of knowledge on African species invasions. Despite
these potential limitations, we believe that our analyses are currently
the most comprehensive of those in the literature. Nevertheless, they
certainly could be improved, especially as additional data are
gathered.

Amphibian and reptile population declines have been linked to
the introduction of pathogenic fungi, such as Batrochochytrium den-
drobatidis, B. salamandrivorans, and Ophidiomyces ophiodiicola
(Martel et al. 2014; Lorch et al. 20165 Scheele et al. 2019).
Additionally, both amphibian and reptile populations have experi-
enced die-offs from introduced iridoviruses (Chinchar et al. 2017).
The emergence of all of these pathogens has coincided with the glo-
bal expansion of largely unrestricted commercial trade (Fisher et al.
2012). Indeed, the pet trade of alien amphibians has recently been
shown to contribute to the intercontinental transmission of B. den-
drobatidis, a primary driver of worldwide amphibian declines (Liu
et al. 2013). Now, all lineages of B. dendrobatidis occur in traded
amphibians (O’hanlon et al. 2018). The recent invasion of
Madagascar by Asian common toads hidden in mining equipment
(Kolby 2014), exemplifies how the movement of products can unin-
tentionally disperse herpetofauna and likely contributed to the
worldwide spread of pathogens responsible for their declines. In
summary, our work suggests that ancient patterns of herpetofaunal
assemblage have been redrawn by unrestricted global trade, homog-
enizing alien herpetofaunal diversity globally. This, in turn, likely
translocated pathogens into new regions, triggering several pan-
zootics of emerging diseases of herpetofauna that are contributing to
their worldwide declines. To curb future losses of herpetofaunal bio-
diversity, we encourage the continued strengthening of transcontin-
ental biosecurity.
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