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Photoirradiation of a binary cocrystal composed of two different
cyclic dienes generates a highly-symmetric cubane-like tetraacid
cage regioselectively and in quantitative yield. The cage forms by a
double [2+2] photodimerization of one of the diene cocrystal
components. The second diene while photostable in the cocrystal
reacts in a double [2+2] photodimerization as a pure form quanti-
tatively to form a tetramethyl cubane-like cage. The stereo-
chemistry of the cage is structurally authenticated.

Cocrystals are proving successful to support the assembly of
alkenes in the solid state that undergo intermolecular [2+2]
photocycloadditions." In addition to rules on geometry criteria
for a photocycloaddition to occur as delineated by Schmidt,
the last century witnessed work that described the formation of
rigid three-dimensional (3D) cubane-like cages from photodi-
merizations of cyclic dienes, and more specifically pyrones, in
the solid state.® Uses of cocrystals to enable photodimerizations
in organic solids have typically involved linear alkenes cocrys-
tallized with photoinert coformers (e.g., resorcinols),” and there
has been only a single report on the formation of a cage using
the cocrystal approach.’

Here we report a novel binary cocrystal composed of two
cyclic dienes with one component that reacts to generate the
photodimeric cubane-like tetraacid cage CG1.® The cocrystal
consists of chelidonic acid (CA) and 2,6-dimethyl-4-pyrone
(DMP) with the diacid undergoing a double [2+2] photodimeri-
zation to generate CG1 regioselectively and in quantitative yield
(Scheme 1). We are unaware of a cocrystal composed of two
4-pyrones. We also report on the first structural authentication
of the cubane-like tetramethylated cage CG2 that has hitherto
remained unreported and is generated from pure solid DMP.***
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Cubane-forming cyclic dienes that exhibit
orthogonal reactivities in the solid statef

Changan Li, Michael A. Sinnwell, Dale C. Swenson and Leonard R. MacGillivray (= *

Cubanes,” and cubane-like cages (ie., tetraasterane,®
hexaprismane,” basketane'®), are important constructs** and
structural motifs in organic synthesis,'> medicinal chemistry,"
and material science.'* Carboxylic acid functionalized cubanes,
for example, can find applications as crosslinking agents for
drug delivery."> Despite many efforts, however, accessibility to
cage compounds analogous to cubane and related hydro-
carbons remains limited."” Indeed, efforts toward the syntheses
of highly functionalized cubane structures can offer new oppor-
tunities to pharmaceutics and beyond.

We initially determined diacid CA (Honeywell Research
Chemicals) to be photostable as a pure form. When CA
(55 mg, 0.30 mmol) was crystallized from tetrahydrofuran
(THF) (5 mL), colorless irregular prisms of CA-THF formed
upon slow evaporation over a period of 2 days.

A single-crystal X-ray analysis (SCXRD) (150 K) showed CA
and the THF molecules to crystallize in the monoclinic space
group P2,/c (Fig. 1). The asymmetric unit contains one CA and
one THF molecule that interact via O-H(acid)---O (solvent)
hydrogen bonds (04---07 2.581(2) A). The diacids self-
assemble as bent dimers that form a tape structure sustained
by O-H- - -O hydrogen bonds (02- - -03 2.560(2) A) (Fig. 1a). The
tapes run parallel to the b-axis with neighboring CA molecules
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Scheme 1 Solid-state constructions of CG1 (binary cocrystal) and CG2
(pure solid).
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Fig.1 X-Ray structure DMP-THF: (a) tape and (b) ht-stacked CA of
adjacent tapes.

stacked offset face-to-face and head-to-tail (ht). The shortest
distance between two stacked CA rings is 5.33 A (plane-to-
plane) (Fig. 1b).

CA-THEF loses the entrapped THF solvent molecules under
ambient conditions to generate non-solvated CA within periods
of minutes. Powder X-ray diffraction (PXRD) showed the result-
ing solid to be of the same crystalline phase as the commercial
solid (Fig. S4, ESIt). When subjected to UV-radiation (150 h),
both the desolvated and commercial solids were photostable
(Fig. S1, ESIY).

By contrast, cocrystallization of CA with DMP affords the
cocrystal dihydrate CA-DMP-2H,0 wherein CA is photoactive.
Single crystals as colorless prisms were obtained by slow
evaporation of a MeOH/H,O (1:1) solution of CA (50 mg,
0.27 mmol) and DMP (33.7 mg, 0.27 mmol) over a period of
3 days. The composition of CA-DMP-2H,0 was confirmed by
SCXRD and "H NMR spectroscopy (Fig. S3, ESIY).

The components of CA-DMP-2H,0 crystallize in the triclinic
space group P1 (Fig. 2). The asymmetric unit consists of one CA,
one DMP and two H,O molecules. CA and DMP interact via a
combination of O-H---O (04---07 2.451(3) A) and C-H---O
(C14---03 3.390(3) A) hydrogen bonds. The primary CA-DMP
unit is extended along the c-axis to form a planar structure with
hydrogen-bonded water dimers in interstices, interacting by
O-H---O (09---010 2.653(2) A) hydrogen bonds (Fig. 2a). CA
also interacts with one water molecule by an O-H---O
(O1---09 2.471(2) A) hydrogen bond. Adjacent planar structures
assemble such that CA molecules stack face-to-face and in a ht
geometry (Fig. 2b). The C—C bonds of each ht stacked CA pair
lie approximately parallel and separated by 3.65 A (centroid-
centroid), which conforms to the criteria for a [2+2]
photodimerization.> CA molecules also participate in offset
face-to-face stacks with neighboring DMP molecules, being in
a head-to-head (hh) geometry with C—C bonds separated by
4.52 and 4.71 A (centroid-centroid). Overall, the structures
display offset ABBA-like stacking (dark/light gray) approxi-
mately parallel to the ab-plane (Fig. 2c).
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Fig. 2 X-Ray structure CA-DMP-2H,0: (a) hydrogen-bonded layer, (b) ht
stacking of CA, and (c) space-filling of diene stackings (CA pairs highlighted
dark).

When a powdered crystalline sample of CA-DMP-2H,0 was
subjected to UV-radiation (450 W medium pressure Hg lamp)
for a period of 90 hours, the C—=C bonds of CA reacted
quantitatively. The generation of a photoproduct was evidenced
in an "H NMR spectrum by disappearance of the olefinic signal
of CA at 7.01 ppm and appearance of a cyclobutane signal at
3.56 ppm in D,O (Fig. S3, ESIt). The position of the cyclobutane
peak is consistent with a double photodimerization of CA to
form CG1."°

The stereochemistry of CG1 was confirmed by SCXRD.
Specifically, when the photoreacted solid (40 mg) was recrys-
tallized in hot MeOH and benzene (2:1, v/v), single crystals as
colorless plates formed over a period of 3 days.

The crystallization resulted in the hydration of the keto
groups of CG1 to form crystalline (CG1-H)-6H,O. The cage
and water molecules assemble in the triclinic space group P1
with half a CG1-H molecule and three waters in the asymmetric
unit. The cubane-like cage, which sits on a crystallographic
center of inversion, is defined by four oxane rings interlinked
by two parallel cyclobutane rings (Fig. 3a). The oxane rings are
in an approximate boat-shaped conformation, with the four
carboxylic acid groups pointing away at the corners. CG1-H
interacts with the water molecules via a network of O-H:--O
hydrogen bonds to give a 3D hydrogen-bonded framework
(Fig. 3b) (O1---03A 3.124(4) A; O1---O2A 3.233(5) A; 02---O1A
2.623(2) A; 03---03A 2.801(6) A; O4- - -02A 2.688(7) A; O5- - -03A
2.657(5) A; 05- --07 2.605(5) A; 06 - -02A 2.871(6) A; 07---03A
3.151(5) A; O7---05 2.605(5) A).

While DMP is photostable in CA-DMP-2H,0 and effectively
serves to enable photoactivity of CA, as a pure solid is photo-
active. DMP (CSD refcode: HAXDAL)'” stacks face-to-face in a ht
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Fig. 3 X-Ray structures cubane-like cages: (a) CG1-H, (b) hydrogen-
bonded framework of CG1-H with water, (c) CG2, and (d) hydrogen-
bonded framework of CG2.

orientation with the C=C double bonds parallel and separated
by 3.46 A. When pure DMP was irradiated for a period of
140 hours CG2 formed in quantitative yield, which contrasts
the original report (yield: ca. 30%).>**

When the photoreacted solid (20 mg) was recrystallized from
chloroform (5 mL), colorless prisms formed. A SCXRD analysis
revealed CG2 to crystallize in the orthorhombic space group
Cmce (Fig. 3c). Similar to CG1-H, CG2 is composed of two
cyclobutane rings and four boat-shaped pyrone rings. In con-
trast to CG1-H, adjacent CG2 cages interact through inter-
molecular C-H---O hydrogen bonds (O1---C6 3.652(2) A;
07---C3 3.537(3) A; O1---C5 3.527(2) A; O1---C6 3.745(2) A;
O1---C6 3.652(2) A) to form, as compared to CG1-H, a 3D
hydrogen-bonded framework (Fig. 3d).

In conclusion, we have revealed the solid-state construction
of a cubane-like tetraacid cage CG1 from CA, which is photo-
stable as a pure solid, via a binary cocrystal composed of two
cyclic dienes. While DMP is photostable in the cocrystal, pure
DMP reacts to generate the cage CG2. The orthogonal reac-
tivities of the dienes provide an intriguing example of a
relationship between structurally similar molecules with a
capacity to photodimerize as pure solids versus cocrystals. We
expect our study to expand fundamental principles and appli-
cations of cocrystals as organic materials to access complex
cyclobutane products, and particularly cubanes. We are cur-
rently exploring the crystal landscape of cocrystals based on
cyclic dienes and higher-order cyclic alkenes.
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