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Back to Basics

1 Introduction

Fostering economic growth is one of the primary objectives of economists and policymakers. The

amount of resources invested in research is often at the heart of the debate regarding how to best

achieve such growth. Less well known, however, is what role the composition of research plays

in determining growth, particularly when considering the breakdown between basic and applied

research. In this paper, we aim to fill this gap by studying the differential effects of basic versus

applied research on economic growth.

The distinction between basic and applied research is economically and empirically important.

According to the National Science Foundation (NSF), basic research investment refers to a “systematic

study to gain more comprehensive knowledge or understanding of the subject under study without

specific applications in mind.” Conversely, applied research is defined as a “systematic study to gain

knowledge or understanding to meet a specific, recognized need.” This distinction is empirically

important since almost half of total research investment is allocated to basic research in countries

such as France and the US.1

In a recent report by the US Congress’s Joint Economic Committee, the issue of investment in basic

research received fresh policy interest: the report argues that, despite its value to society as a whole,

basic research is underfunded by private firms precisely because it is performed with no specific

commercial applications in mind. It also states that the level of federal funding for basic research is

“worrisome” and should be increased (Joint Economic Committee, 2016). Similarly, the NSF, the Sloan

Foundation, and the National Bureau of Economic Research (NBER) have been proactively trying to

draw attention to the declining government involvement in basic research funding.2

Despite clear empirical importance and considerable policy interest, the differential roles of basic

and applied research in the growth process are still relatively unexplored from the macroeconomic

perspective, and many related questions remain to be answered: how sizable are the spillovers from

basic and applied research? What are the potential inefficiencies in a competitive economy? What

are the appropriate government policies to mitigate these inefficiencies, and does the academic sector

play a special role in determining the pace of innovation in the economy? This paper attempts to

answer these important questions.

In order to understand the potential inefficiencies in research investment and to design appropri-

ate industrial policies to address them, it is necessary to adopt a structural framework that explicitly

models the incentives of private and public entities to engage in the different types of research. We

propose a general equilibrium, multi-industry framework with private firms and a public research

sector. In our model, basic research has two distinct features relative to applied research. First, as

Nelson (1959) argues, “Successful basic research projects very often have practical value in many

fields.” In our setting, basic research can, therefore, generate spillovers that affect subsequent innova-

1The OECD provides a breakdown of gross domestic expenditure on R&D expenditures by type of research:
https://stats.oecd.org/Index.aspx?DataSetCode=GERD_TORD#.

2For instance, the NBER started a new initiative entitled the “The Science of Science Funding Initiative”
(http://admin.nber.org/drupal/SOSF) funded by the Sloan Foundation.

1



Basic Research Spillovers, Innovation Policy and Growth

tions both within and across industries. Applied research, on the other hand, generates innovations

within a targeted industry. Second, the potential returns from basic research depend on whether it

was generated in the private or the public sector. In line with the “Ivory Tower” theory of academic

research, basic research by private firms in our model will result in consumer products faster than

that undertaken by public research labs.

These features of our model also reflect the important debate in science policy about the character-

istics of basic and applied research as framed by Stokes (1997) in “Pasteur’s quadrant: Basic Science

and Technological Innovation.” The academic sector represents pure scientific discovery without ap-

plication in mind, best exemplified by Bohr’s exploration of the structure of the atom. At the other

extreme, lies the purely use-based –i.e., applied– private research, such as Edison’s notable efforts in

his Menlo Park laboratories. Finally, cutting across those extreme lines is “Pasteur’s Quadrant,” for

work that is directly influenced in its course by the quest for fundamental understanding but inspired

by an applied problem.3 In our model, this role will be filled by private basic research. Prominent

examples include the work by Nobel prize winners Arno Penzias and Robert Wilson at Bell Labs, do-

ing, according to Rosenberg (1990), “basic research in astrophysics because of its relationship to the

whole field of problems and possibilities in microwave transmissions, and especially the use of com-

munication satellites for such purposes.” Similarly, Nelson (1959) points out, “Carothers’s famous

work in linear superpolymers began as an unrestricted foray into the unknown with no particular

practical objective in view. But the research was in a new field of chemistry, and Du Pont believed that

any new chemical breakthrough would probably be of value to the company.” In time, Carothers’

research led to the discovery and use of nylon by Du Pont.

It is important to note that, given the novelty of our theoretical framework, the policy implications

are not widely known. At its core, our theoretical framework builds upon the work of Klette and Kor-

tum (2004), yet we extend it substantially in a variety of directions. Most importantly, we allow for the

distinction between basic and applied research, as well as public and private research. These unique

features allow us to be the first to simultaneously discuss the roles that spillovers generated by dif-

ferent research types and within different institutional arrangements, such as firms and universities,

play for economic growth. It allows us to understand under what alternative specifications policy

makers pushing for more public finding for private research could be right. Importantly, we show

in a simplified version of our model solved in closed form that none of the policy implications are

hard-wired as the model can generate both over- or underinvestment in each type of research efforts

Our ultimate goal in this paper is to undertake a quantitative investigation of the impact of vari-

ous innovation policies on the aggregate economy. To this end, we estimate the structural parameters

of our model using French firm-level data for the period 2000-2006. Information about research in-

vestment comes from the annual R&D Survey conducted by the French Ministry of Research. The

advantage of these data is that they include information on the basic and applied research expen-

ditures of individual firms. To measure the breadth of a firm’s activities, we combine two datasets

3The American physicist Gerald Holton called it “work that locates the center of research in an area of basic scientific
ignorance that lies at the heart of a social problem.”
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(“Enquete Liaisons Financieres” (LIFI); “Enquete Annuelle des Entreprises” (EAE)) that allow us to

precisely identify a firm’s links to different industries not only through product lines within the same

firm, but also through their ownership links. Finally, we use the balance sheet data from these firms

to measure firm dynamics and NBER patent citation data to measure the quality of innovation. The

final sample is composed of 13,708 firm-year observations.

These features of our data allow us to identify and estimate the key spillovers involved in re-

search. First, we measure the cross-industry spillovers associated with basic research through the

investment choices of multi-industry firms. According to Nelson (1959), “a broad technological base

insures that, whatever direction the path of research may take, the results are likely to be of value

to the sponsoring firm.”4 In our data, we confirm that the proportion of basic research investment

increases as the scope of a firm’s activities expands. In our analysis, we provide extensive robustness

checks of our estimates with respect to confounding factors arising from firm heterogeneity, industry

heterogeneity, and measurement error. Second, we use citation information from the patent data to

empirically measure the quality (step size) for basic and applied innovation, as well as their impor-

tance for follow-up innovations (Hall, Jaffe, and Trajtenberg, 2001). Note that, to ensure an exact

correspondence between theory and empirics, we extend our theoretical framework to have a theory

of patent citations. In particular, in the model, patents are generated through successful research

and subsequently cited by follow-up patents. Finally, to further inform the model parameters on

firm dynamics, we simultaneously target a rich set of firm characteristics related to multi-industry

presence, profitability, age, and entry/exit patterns. We discuss their identification through a set of

comparative statics and untargeted moments.

Our main result is the quantification of the inefficiencies due to dynamic misallocation in research.

We find that 68% of spillovers from basic research across industries are not internalized. As a result,

there is a dynamic misallocation of research efforts, which reduces welfare by 4.6 percentage points

in consumption-equivalent terms. One striking feature of the solution to the social planner’s prob-

lem is that the fraction of resources devoted to research activities is not substantially greater than

in the decentralized equilibrium. Indeed, the dominant misallocation here is not that between pro-

duction and research, as is common in this class of models, but among the various types of research

activities, in this case, applied and basic innovation. Another striking feature is that, in the case of ap-

plied innovation, there is actually an overinvestment in the decentralized economy due to the strategic

complementarity between basic research spillovers and the returns to applied research.

This raises an important question: to what extent can public policies address this inefficiency? The

first policy we analyze is a uniform research subsidy to private firms. In this environment, subsidiz-

ing overall private research is ineffective since this policy exacerbates the existing overinvestment in

applied research arising from excessive competition. Therefore, the welfare improvements from such

a subsidy are limited unless the policymaker is able to discriminate between types of research projects

at the firm level. Thus, we consider a type-dependent research subsidy and find that the optimal pol-

4Specific examples include Gibb’s law of phases, which has been applied to activities ranging from petroleum refining
to metal ore separation; or the development of the laser in 1964, which was used progressively in printers (1969), fiber optic
communications (1970), bar code scanners (1974), vision correction surgery (1987), and DVD players (1995).
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icy is to subsidize basic research by 49% and applied research by 11%. While the type-dependent

subsidy is a promising policy tool to increase welfare, one concern is that it might be difficult to

implement. As Rosenberg (1990) notes, it is not always clear whether or not a specific undertak-

ing should be considered basic research. This might lead firms to misclassify research investment

to exploit the differential subsidy rates. Therefore, we compute the optimal type-dependent policy

under different degrees of misclassification. Importantly for policymakers, the welfare gains aris-

ing from a type-dependent subsidy are robust to a substantial amount of misclassification. Loosely

speaking, the welfare gains associated with a type-dependent research subsidy are robust for levels

of misclassification below 50%.

This leads us to explore the relationship between public and private research efforts. We leverage

our model to show how it can provide interesting insights into the debate about the worrying decline

in research productivity in the U.S. economy. In our model, we find strong complementarity between

public and private research efforts. More investment by public entities encourages more private

research investment by making private research more productive. Our model implies that roughly

50% of the decline in research productivity can be explained by the reduction in public research

funding over the past 30 years.

We extend our theoretical and quantitative analysis to show the robustness of our policy conclu-

sions. In particular, we re-estimate and evaluate the policy implications of extensions of the model

featuring (i) industry heterogeneity and (ii) persistent firm types. To address concerns about indus-

try heterogeneity, we split the economy into two groups of industries that are differentiated by their

parameters governing basic research costs and benefits. To address concerns about firm heterogene-

ity, we introduce a firm type, that is fully persistent, and that determines a firm’s basic research cost

structure. The implications for policy are robust across these extensions.

We also re-estimate two versions of the model without the distinction between research efforts:

(i) we eliminate private basic research but still maintain public basic research; (ii) we eliminate basic

research altogether, both private and public, and obtain a model closely resembling that of Klette and

Kortum (2004) with a single type of research. It turns out that the existence of investment in basic

research by the private and public sectors is important for our policy conclusions. Without these

distinctions in research investment, and their associated spillovers, optimal policy would actually

discourage research relative to the baseline economy.

We then consider two factors related to public basic research. First, research produced in the

public sector is a public good, while private research may be kept secret by firms. Therefore, we

consider a version of the model in which private basic research still benefits the firm but makes only

a limited contribution to future economic growth. That is, firms keep a fraction of their research

findings secret, and, hence, future innovators cannot build on that knowledge. Second, since the cost

of doing basic research in the private and public sectors might be different, we check the robustness

of our results to different levels of public research productivity.

As a final set of robustness checks, we first consider whether applied research is necessarily tar-

geted to specific product lines/industries. We extend the cross-industry spillover to applied research
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as well and provide a quantification of the model fit as a function of different applied step sizes.

Second, since the identification of the Constant Relative Risk Aversion (CRRA) parameter is indirect,

we also perform a robustness check in which we fix the parameter to a standard value of the literature

and re-estimate the model.

Related Literature Our main contribution is to the macro literature on endogenous technical

change. Although policymakers have considered the different characteristics of basic and applied

research, as well as public and private research, to be of first-order importance, these issues have

received insufficient attention from the economic growth literature. In particular, models of endoge-

nous technological change (see Aghion, Akcigit, and Howitt (2014) for a survey) mainly consider a

uniform type of (applied) research and ignore basic research investment in the economy. A few ex-

ceptions are Aghion and Howitt (1996, 2009), Cozzi and Galli (2009, 2014), Gersbach, Schneider, and

Schneller (2013), Gersbach and Schneider (2015), Morales (2004), and Mansfield (1995), who consider

theoretical models with both basic and applied research investment.

We contribute to this mostly-theoretical literature in various ways. First, we build a model with

rich “firm dynamics” that is estimated with new firm-level micro data on firms’ research investment.5

To the best of our knowledge, ours is the first study to map a model with basic and applied research

to firm-level data. In addition to including the private investment in basic research, we enrich the

analysis of the distinct features of basic research by introducing a novel method to identify within-

and cross-industry spillovers. Second, ours is the first framework that allows for a distinction between

basic and applied research by private firms. Thanks to this feature, we are able to allow for differential

efficiency properties of private basic versus applied research investments. One of our main results

shows that standard innovation policies are ineffective since they oversubsidize applied research and

undersubsidize basic research. Third, we complement this setting by also considering public research

labs. This feature allows us to analyze the potential substitutability or complementarity between

public and private research investments. In the end, we find some important complementarities,

which can potentially shed some light on the declining research productivity of private firms (see

Bloom, Jones, Van Reenen, and Webb (2017)).

The paper also relates to the micro literature on innovation policy that discusses and quantifies the

distinction between basic and applied research. Consistent with our framework, Nelson (1959) argues

that a key distinction between these two types of research lies in the breadth of the potential discov-

eries. At the same time, Rosenberg (1990) provides a skeptical view on the possibility of categorizing

research on the basis of the motives of the person performing it. We consider the associated measure-

ment issue from within the context of our model and quantitative results. Cohen and Klepper (1992)

focus on the relationship between firm size and R&D. In particular they argue that “social advantages

of large firm size stem from the idea that large firms possess an advantage in appropriating the re-

turns from innovation, due, in part, to imperfections in the market for information. This causes the

5See Section 1.4 in Aghion, Akcigit, and Howitt (2014) for a detailed account of “realistic firm dynamics” in endogenous
growth.
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returns to large firms to conduct more socially desirable R&D than smaller firms.” In this paper, we

identify the economic scope of a firm as a factor attenuating the appropriability problem of research,

and we conceptually disentangle it from a pure size effect. Empirically, several important papers

(Mansfield, 1980; Mansfield, 1981; Link, 1981; Griliches, 1986) show that the distinction between basic

and applied research is quantitatively important. These papers typically evaluate the importance of

basic and applied research by relating it to production data and estimating its output elasticity or rate

of return from an extended Cobb-Douglas production function. The common conclusion from those

papers is that basic research seems to command a significant “premium”– i.e., that its contribution to

firm productivity is significantly larger than that of applied research.

Methodologically, our paper is related to the growing branch of endogenous growth with firm dy-

namics that estimates these models structurally using micro data. For instance, Lentz and Mortensen

(2008, 2016) use a panel of Danish firms; Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018), Akcigit and

Kerr (2018), and Garcia-Macia, Hsieh, and Klenow (2015) use US Census of Manufacturing; Peters

(2015) uses Indonesian micro data; and Ates and Saffie (2014) use Chilean firm-level data to estimate

enriched versions of the quality-ladder models. A number of papers also study the role of innova-

tion policy in a similar class of models. For instance, Atkeson and Burstein (2015) study the impact

of policy-induced changes in innovative investment by firms on growth in aggregate productivity.

Akcigit, Hanley, and Stantcheva (2016) use a mechanism design approach to solve for the optimal de-

sign of innovation policy using a quality-ladder model with asymmetric information on firm types.

Finally, Garicano, Lelarge, and Van Reenen (2016) use firm-level data to study the impact of size-

dependent policies on misallocation of factors of production in France. These papers do not consider

the distinction between basic and applied research, whereas our focus is on estimating the associated

spillovers using French firm-level data and design-relevant policies around these spillovers.

Consistent with our results, some papers show that the speed of technology diffusion is linked to

the ability of inventors to utilize ideas for production (Akcigit, Celik, and Greenwood (2016)), or to the

existing patent rights over those technologies (Galasso and Schankerman (2015)). In the same spirit,

Bloom, Schankerman, and Van Reenen (2013) identify technology and product market spillovers for

US manufacturing firms. They show that small firms generate lower social returns to R&D because

they operate in technological niches. Our paper suggests that their result can be rationalized by

these firms’ lower incentives to invest in basic research that is more difficult to appropriate. In our

framework, more public basic research investment stimulates more private applied research. In that

regard, our results parallel the findings of Cozzi and Impullitti (2010) and Impullitti (2010), who

show that increases in the technological content of public spending encourages more private R&D

spending in the US.

The rest of the paper is organized as follows. In Section 2, we introduce the model, characterize

its dynamic equilibrium, and discuss the main mechanisms. In Section 3, we present and discuss

the empirical patterns that provide the basis for the structural estimation. Section 4 describes the

estimation and identification of the model. Section 5 provides a detailed discussion of the welfare

effects of various policies on the decentralized economy. Section 6 illustrates the robustness of our
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estimation results and policy analysis to a number of variations on our sample and model. Section

7 discusses the role of federal support for scientific research and its implications for research pro-

ductivity. Section 8 concludes. The Appendices contain: a detailed data description (A); additional

robustness checks on cross-industry spillovers (B) and within-industry spillovers (C); omitted proofs

and derivations (D); simplified model (E); algorithm outline (F); further details on identification of

structural estimates (G); and additional tables for the quantitative robustness checks (H).

2 Theory: Growth with Basic and Applied Research

Our theoretical framework will depart from standard endogenous growth models in a number of

ways. First, we introduce a distinction in the appropriability of innovations from basic and applied

research. Following the influential literature on basic science, we consider the possibility that basic

research generates not only spillovers within an industry, but also across industries (Nelson (1959)).

Thus, we model an economy in which firms can operate in multiple industries, a feature that endoge-

nously generates incentives for firms to invest in basic research.

A second key feature of our model is the distinction between embodied and disembodied knowl-

edge in the economy. Both private firms and public research labs are investing in basic research in this

economy. However, successful basic research in the the private sector is more likely to be immediately

turned into a consumer product (embodied), as opposed to simply increasing the stock of knowledge

available for future innovators (disembodied). This will induce a delay in the effect of public basic

research. This ivory tower nature of academic research has been widely discussed in academic and

policy circles, with a formal analysis being provided by Aghion, Dewatripont, and Stein (2008).6

2.1 Basic Environment

2.1.1 Production

Production is divided into three major sectors: downstream, midstream, and upstream. First, the up-

stream sector produces intermediate goods (yij); next these goods are used to produce industry

aggregates (Yi) in the midstream sector; and, finally, the downstream sector combines these industry

aggregates into the final good (Z). We will now describe them in detail.

Downstream Sector The final good Z(t) is produced in the downstream sector by infinitely many

competitive firms that combine inputs from M different industries according to the following Cobb-

Douglas production function:

Z (t) = ∏M
i=1 Yi (t)

1
M . (1)

In this production function, Yi (t) is the aggregate output from industry i ∈ {1, ..., M}. The economy

consists of M ∈ N+ industries. In the context of firm-level data, each industry i can be thought of as

6In their model, the academic sector is a precommitment mechanism that allows scientists to freely pursue their own
interests. Consistent with our model, academic scientists may, therefore, end up working on projects with little immediate
economic value. An important difference, however, is that in their setup, there is full appropriability of the innovation. We
relax this assumption and show that it generates a delay in the innovation process with consequences for economic growth.
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a different 1-digit Standard Industrial Classification (SIC) code and Z(t) is simply the aggregate GDP

of the economy.7 We normalize the price of the final good to 1 at every instant t without any loss of

generality. For notational simplicity, time subscripts will henceforth be suppressed.

Midstream Sector Each industry aggregate Yi is produced competitively, combining inputs from a

continuum of product lines. Let yij denote the production of upstream good j in industry i by the

firm that has the best technology in that product line. Industry aggregate i is produced according to

the following CES production function:

Yi =

[∫ 1

0
y

ε−1
ε

ij dj
] ε

ε−1

. (2)

Upstream Sector In product line j, the firm that has the latest (and also the best) technology pro-

duces as a monopolist according to the following linear production technology that takes only labor

as an input:

yij = qijlij, (3)

where qij > 0 is the labor productivity associated with product line j, and lij is the number of

production workers employed. Let us denote the wage rate in the economy by w in terms of the final

good. The specification in (3) implies that each product yij has a constant marginal cost of production

w/qij > 0. We denote the productivity index of industry i by

q̄i ≡
(∫ 1

0
qε−1

ij dj
) 1

ε−1

. (4)

Definition of a Firm In this model, as in Klette and Kortum (2004), a firm is defined as a collection of

product lines in which it is the lead producer. These product lines can come from multiple industries.

In what follows, m f ∈ {1, .., M} will denote the number of industries in which the firm actively

operates; ni f ∈ N0 will denote the number of product lines firm f owns in a given industry i (e.g.,

ni f = 0 means no presence of firm f in industry i); and n f will stand for the total number of product

lines owned by the firm and will satisfy n f ≡ ∑M
i=1 ni f . For notational tractability, henceforth, we will

drop the firm index f , when it creates no confusion.

A firm’s payoff in a given product line j in industry i depends on its productivity level qij. There-

fore, the payoff-relevant state of a firm is denoted by

q = (q1, q2, . . . , qm) ,

where qi =
{

qi,j1 , qi,j2 , . . . , qi,jni

}
is a multi-set keeping track of all the productivity levels of the firm

in industry i, where it has the best technology.8

7Note that we introduce this multi-industry structure in order to model cross-industry spillovers. To avoid any additional
theoretical complications, we will focus on symmetric equilibria in which industry aggregates assume a common value.

8A multi-set is a generalization of a set that can contain more than one instance of the same member. For example, given
j 6= j′, a multiset qi f can contain qi f (j) and qi f (j′) regardless of whether qi f (j) = qi f (j′).
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Example 1. An example is helpful to summarize the description so far. Figure 1 illustrates an economy that

consists of M = 4 industries and a firm that operates in m = 3 industries (i = 1, i = 3, and i = 4). It has

n1 = 3 product lines in industry i = 1, n3 = 2 lines in i = 3, and n3 = 1 line in i = 4; thus, firm f has n = 6

product lines in total. This firm does not currently operate in industry i = 2.

Figure 1: Payoff-Relevant State q

i = 1 i = 2 i = 3 i = 4

q(t) ≡


q1,j1(t) q3,j1(t) q4,j1(t)
q1,j2(t) q3,j2(t)
q1,j3(t)

 .

A firm’s portfolio of products will expand through successful innovation. Likewise, it will lose

product lines when other firms or potential entrants successfully innovate on one of its product lines

(thus stealing it). These innovations will be the source of economic growth in this economy. The next

subsection will describe the details of the innovation technology.

2.1.2 Innovation and Technological Progress

In this economy, there are two types of innovations (basic and applied) and two different groups of

agents (private and public sectors) generating productivity growth. As Nelson (1959) and Aghion

and Howitt (1996) describe it, fundamental advances in technological knowledge come through basic

innovation and open up windows of opportunity for future research. Applied innovation builds on

these existing basic innovations, thus realizing these opportunities.

Research by Private Firms For the innovation production function, we will follow the literature,9

but extend it to both (a)pplied and (b)asic research. More specifically, firms undertake s−type re-

search (s ∈ {a, b}) operating with the following convex cost function:

Cs (si | ni) = wnis
νs
i ξs, (5)

where si ∈ {ai, bi} is the s−type innovation Poisson flow rate per product line; w is the wage rate;

and ξs is a scale parameter.10

9See, for instance, Klette and Kortum (2004), Lentz and Mortensen (2008), Acemoglu, Akcigit, Hanley, and Kerr (2016),
and Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018).

10This cost function is derived from a production function by combining intangible capital, proxied by the number of
frontier technologies ni in sector i, with researchers Hsi in a Cobb-Douglas production function as follows:

Si = Ωsn
1− 1

νs
i H

1
νs
si ,

where S ∈ {A, B} denotes the resulting Poisson flow rate of applied or basic innovation; Ωs > 0 an innovativeness scale
parameter; νs > 1 is the inverse of the innovation production function elasticity with respect to researchers; and Hsi denotes
the number of researchers that the firm hires to conduct research in industry i ∈ {1, ..., M}.
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Both applied and basic research are directed toward particular industries but undirected within

those industries. In other words, once a firm chooses Si, the realization of innovations will take place

on a random product within industry i.

In our data, some firms do not invest in basic research. To capture this fact, we generalize the

basic research technology by introducing a fixed cost of doing basic research. At each instant, a firm

with n product lines draws a fixed labor cost of doing basic research nφ ≥ 0, where φ is distributed

according to the distribution B(·).

2.1.3 Spillovers of Basic Research

Let qij(t) be the highest productivity technology for producing j in industry i. When a firm that

operates in sector i produces a basic innovation in industry i and product line j, the same firm uses

this basic knowledge for production and patents this new high-value technology. As a result, the firm

improves qij(t) by ηq̄i(t)

qij (t + ∆t) = qij (t) + ηq̄i(t), (6)

where η > 0 is the step size drawn from exponential distributions with mean η̄, and q̄i is the produc-

tivity index defined in equation (4). Notice that this additive formulation features mean reversion in

terms of proportional step sizes and, therefore, generates an invariant firm-size distribution over the

normalized quality (qij/q̄i). When the firm produces this new innovation, it adds this product line

with the productivity improvement to its portfolio q(t + ∆t) = q(t) ∪
{

qij(t + ∆t)
}

, which generates

per-period profit of π
(
qij(t + ∆t)

)
. For instance, when the firm in Figure 1 is successful with its

basic research investment in sector i = 1, its number of products goes up from n1 = 3 to n1 = 4, as

illustrated in Figure 2:

Figure 2: Impact of Basic Innovation in Industry i = 1

i = 1 i = 2 i = 3 i = 4

q(t) ≡


q1,j1 (t) q3,j1 (t) q4,j1 (t)

q1,j2 (t) q3,j2 (t)

q1,j3 (t)

q1,j4 (t) + ηq̄1(t)

 .

Basic research features two potential spillovers: (a) cross-industry spillover and (b) within-industry

spillover. These spillovers lie at the heart of our analysis; therefore, we will now discuss each in more

detail.

Cross-Industry Spillover from Basic Research The characteristic feature of basic research that we

wish to capture is that it often has applications in many industries other than the one for which it

was originally intended. Therefore, we will assume that when a basic innovation occurs, it applies

with probability one to the target industry i (as illustrated above in Figure 2) and generates a random

number of “additional” spillovers in other (or the same) industries. We denote the expected number

10
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of such additional spillovers with p > 0. Thus, p is our measure of the intensity of cross-industry

spillovers. Note that not every spillover can be utilized by the firm. When a firm generates some

basic knowledge, it can turn this into an immediate application only in the sectors in which it has

working knowledge. This structure captures a hypothesis put forth by Nelson (1959).

Going back to our earlier example in Figures 1 and 2, we can now illustrate how cross-industry

spillovers operate. Thanks to its success, the firm has already produced a new basic innovation in

sector i = 1. Assume, now, that this basic innovation has “additional” spillovers in sectors 1, 2, and 3

but not in i = 4. Since firm f already operates in sectors 1, 3, and 4, it can turn this new finding into

patentable products in sectors 1 and 3, as illustrated in Figure 3.

Figure 3: Cross-industry Spillover into Industry i = 3

i = 1 i = 2 i = 3 i = 4

q(t) ≡



q1,j1 (t) q3,j1 (t) q4,j1 (t)

q1,j2 (t) q3,j2 (t)

q1,j3 (t) q3,j(t) + ηq̄3(t)

q1,j4 (t) + ηq̄1(t)

q1,j5 (t) + ηq̄1(t)


.

We model the randomly realized number of spillovers generated with a geometric distribution.

That is, the probability of receiving n ≥ 0 spillovers (in addition to the original innovation) is given

by

Fn = (1− s)sn where s =
p

1 + p
. (7)

Note that the number of spillovers has expectation p by construction. Recall that m denotes the

number of industries in which a firm has working knowledge. As we show in Appendix D, this

leads to the following distribution of utilized spillovers (k) for a firm with working knowledge in m

industries:

Fk
m = (1− sm)sk

m where sm =
sm

sm + (1− s)M
≤ s. (8)

Consequently, the expected number of utilized spillovers for the firm is

Utilized_Spillovers(m) = p× m
M

.

This highlights the well-known appropriability problem of basic research. As Nelson (1959) puts it,

firms that have “ fingers in many pies”–i.e., m in our model–have a higher probability of using the

results of basic research. Hence, a broad technological base increases the probability of benefiting

from successful basic research.

Within-Industry Spillover from Basic Research Applied research makes use of the within-industry

spillover from basic research and builds on the existing latest basic technological knowledge in a

product line. The productivity of each applied innovation is a function of how depreciated the latest

11
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basic technology is. If the latest basic knowledge in j is undepreciated (i.e., still hot), a successful

applied innovation will benefit from it and improve the latest productivity qij(t) of that product

line by ηq̄i(t), as in expression (6). If the latest basic technology of the product line is depreciated

(i.e., cold), a successful applied innovation will improve the latest productivity only by an amount

proportional to λ, so that

qij(t + ∆t) =
{

qij(t) + ηq̄i(t) if j is hot
qij(t) + λq̄i(t) if j is cold

(9)

Note that the step sizes η and λ are drawn each time from an exponential distributions with mean η̄

and λ̄.

We assume that a new basic technology depreciates (innovations run into diminishing returns) at

a Poisson rate ζ > 0. On the other hand, a new basic innovation reactivates the product line until the

next time that it cools down again. If the product line was already hot, there is no additional effect.

Let us denote the arrival rate of basic innovations to product lines by τb. Then, during a small time

interval ∆t, each product line j will be subject to the transition rates denoted in Table 1:

Table 1: Transition matrix for within-industry spillovers

hot cold
hot 1− ζ∆t ζ∆t
cold τb∆t 1− τb∆t

Public Basic Research In our model, the academic sector will be the other source of basic knowledge

creation. One of the main tasks of public research labs in an economy is to produce the necessary

basic scientific knowledge that will be part of the engine for subsequent applied innovations and

growth. We assume that the public research sector consists of a measure U of research labs per

industry. Each lab receives the same transfer R̄ from the government to finance its research, which

results in an overall funding level of R = R̄×U ×M.

We assume that each public research lab generates a flow rate of u by hiring hu researchers with the

same basic research technology as a one-product firm in (5), so that u = Ωbh
1

νb
u .11 This specification

implies that the government can affect the basic knowledge pool in the economy through the amount

of funds R allocated to the academic sector. The flow rate of basic innovation from the academic

sector will satisfy

u = (R̄/w)
1

νB Ωb, (10)

where u is the academic basic innovation flow per lab. In this economy, R is a policy lever controlled by

the policymaker. As with private firms, each basic innovation has the same within- and cross-industry

11In reality, public research labs may have a different research technology than private labs. However, obtaining data on
both the inputs and outputs of individual public labs is difficult. The separate estimation of public and private innovation
production functions is left for future research.
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spillover structure. Note that the equilibrium fraction of hot product lines α will be determined by

the aggregate rates of public (u) and private (bm) basic research, as well as by the cooldown rate (ζ).

The key difference between private and public basic research is the "Ivory Tower" nature of the latter,

meaning that these innovations by public labs will turn into output only upon a subsequent private

applied innovation.12

2.1.4 Entry, Exit, and Industry Dynamics

Entry There is a mass E of outside entrants per industry. The research technology for a single

outside entrant is assumed to be the same as that of applied innovation for a firm with a single

product line. Thus, if an outside entrant hires he researchers, it produces a flow probability of entry

of ae = h
1

νa
e Ωa.

Exit In our model, there will be both endogenous and exogenous channels for firm exit. First, a

firm that loses all of its product lines to other competitors will have a value of zero and, thus, will

exit. Second, each firm has an exogenous death rate κ > 0. When this occurs, the firm sells all of its

product lines to random firms at a “fire sale” price P .13 On the flip side, firms will receive a buyout

option with a probability that is proportional to their number of products.

Expansion into New Industries The economy features E× ae flow of entry at any instant. We will

assume that a ς fraction of new entrants will meet a randomly selected incumbent firm. Thus, an

incumbent will have a flow rate of incoming buyout offers

x ≡ ςEae/F,

where F is the equilibrium measure of firms. If n̄ denotes the average number of product lines

per firm, then F = 1/n̄. Clearly, this new company will be from a new industry with probability

(1−m/M) or from an industry that already exists in the incumbent’s portfolio with probability

m/M. Our goal is to keep the M&A margin as tractable as possible, and we will achieve this by

assuming that the M&A price that the incumbent firm has to pay is equal to the full surplus of the

new merger.14

Labor Market Labor is split between production (Lp) and research labor. Research labor can be

further subdivided into that devoted to private basic research (Lb), public basic research (Lu), private

12It is important to note that we assume that innovation done by public labs is turned into consumer products only upon
subsequent innovation by private firms. The lag between the creation of publicly funded innovations and actual goods
production is empirically shown in a large literature (e.g., Rosenberg and Nelson (1994) and Mowery, Nelson, Sampat, and
Ziedonis (2004), among several others). This important issue is generally overlooked in the theoretical growth literature.
Inclusion of this feature generates some new and interesting dynamics, such as the importance of involvement of the private
sector in basic research.

13The exact value of this price will not play any role in the equilibrium determination.
14The resulting invariant joint distribution Γm,n over multi-industry presence m and firm product count n is described in

Appendix D
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applied research (La) and firm entry (Le). There is a unit mass of workers per industry, meaning the

total labor supply consists of M workers. The labor market clearing condition is given by

M = Lp + Lb + La + Le + Lu.

Household Problem Finally, we close the model by describing the household problem that de-

termines the equilibrium interest rate in this model. The household consumes the final good and

maximizes the following lifetime utility

W0 =
∫ ∞

0
exp (−δt)

C(t)1−γ − 1
1− γ

dt, (11)

where C (t) is consumption at time t; γ is the constant relative risk-aversion parameter; and δ is the

discount rate. The household owns all the firms in the economy, which generates a risk-free flow

return of r in aggregate. The household also supplies labor in the economy, through which it earns

wage rate w (t). Finally, the household pays a lump-sum tax T (t) ≥ 0 every instant. Thus, the

household’s intertemporal maximization is simply to maximize (11) subject to the following budget

constraint:

C (t) + Ȧ (t) ≤ r (t) A (t) + Mw (t)− T (t) ,

where A (t) is the asset holdings of the household.

2.2 Equilibrium

In this section, we characterize the dynamic equilibrium of our model. Our focus is on a symmetric

balanced-growth-path (SBGP) equilibrium in which all industries start with the same initial condi-

tions at time t = 0, and all aggregate variables grow at the same endogenous rate g.

In this model, three variables affect the payoff of the firm: the number of product lines n; the

number of industries m; and the relative productivity

q̂ij ≡ qij/q̄i (12)

of its product lines, which is the absolute productivity in line j normalized by the productivity index q̄i

in industry i. Note that this implies that successful innovation leads to a constant additive increment

in q̂ space, that is, q̂ → q̂ + s where s ∈ {η, λ} depends on the type of innovation. Thus, each

incumbent firm is characterized by its state k ≡ (q̂, n, m).

Of particular interest is the distribution of firms Γn,m, which denotes the mass of firms operating

in m industries and having n product lines in total. This will sum not to one but to the total number of

firms, which is endogenous. We also denote the mass of product lines owned by firms in m industries

by µm, which can be computed from the joint distribution using µm ≡ ∑∞
n=1 n · Γm,n. This will in fact

sum to one, as the total mass of product lines in each industry is also one.

Given a government policy sequence [T (t)]∞t=0, an SBGP equilibrium is composed of a sequence

of intermediate-good quantities; prices; the basic and applied innovation rates of private firms and

entrants; the wage rate and interest rate; the joint distribution of multi-industry presence and product
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count; hot and cold product line productivity distributions (FH (t) ,FC (t)); and the fraction of hot

product lines–i.e., [yk (t) , pk (t) , bk (t) , ak (t) , ae (t) , w (t) , r (t) , Γm,n (t) ,FH (t) ,FC (t) , α (t)]∞t=0–such

that all firms choose quantity and price to maximize their profits; incumbent and entrant firms in-

vest in research to maximize their firm value; the labor market clears; the household maximizes its

discounted sum of future utilities; and the distributions satisfy the relevant flow equations.

Solution of the Model In this setting, the intermediate producer with the state-of-the-art technology

q̂ operates as a monopolist. Thus each new innovation has an element of creative destruction, wherein

the new innovator replaces the old incumbent using superior technology. In order to avoid the

possibility of limit-pricing, we follow Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018) and Akcigit

and Kerr (2018) and assume that the current incumbent and any former incumbents in the same line

(with lower quality than the current incumbent) enter a two-stage price-bidding game. In the first

stage, each firm pays a fee of ε > 0 which is arbitrarily close to 0. In the second stage, all firms that

paid the fee announce their prices. Due to Bertrand competition in the second stage, only the most

productive firm will be able to make any sales and profits, and thus only this firm will pay the cost

ε, enter the pricing game and operate with monopoly pricing.

Standard profit maximization delivers the following familiar equilibrium price and quantities

(interested readers are referred to Appendix Section D for the detailed derivations):

yj = q̂ε
j Z and pj =

1
Mq̂j

. (13)

Clearly, a monopolist’s quantity is increasing and price is decreasing in the relative productivity q̂ of

the product line. Finally, the equilibrium profits of the monopolist are again increasing in its relative

productivity q̂ and the average market size Z/M:

π(q̂) =
q̂ε−1

ε

Z
M

. (14)

Now we are ready to introduce the value functions. A firm that has a quality portfolio of q̂ and

operates in m industries solves the following value function:

rVt(q̂, m)− V̇t(q̂, m)

= max
a,b



∑q̂∈q̂
1
ε q̂ε−1 Zt

M − nwt

[
ha(a) + hb(b) + 1(b>0)φ]

]
+na

[
αEH

q̂ Vt (q̂∪ {q̂ + η} , m) + (1− α)EC
q̂ Vt (q̂∪ {q̂ + λ} , m)− Vt (q̂, m)

]
+nb ∑k≥0 Fk

m

[
Vt

(
q̂∪ {q̂ + η}1+k , m

)
− Vt (q̂, m)

]
+∑q̂∈q̂ τ

[
∑q̂∈q̂ [Vt (q̂\ {q̂} , m)− Vt (q̂, m)]

]
+x m

M

[
αEH

q̂ Vt (q̂∪ {q̂ + η} , m) + (1− α)EC
q̂ Vt (q̂∪ {q̂ + λ} , m)−P ′m − Vt (q̂, m)

]
+x
(
1− m

M
) [

αEH
q̂ Vt (q̂∪ {q̂ + η} , m + 1) + (1− α)EC

q̂ Vt (q̂∪ {q̂ + λ} , m + 1)−Pm − Vt (q̂, m)
]

+nκ
[
Eq̂Vt (q̂ ∪ {q̂} , m)− Vt (q̂, m)

]
+nκ [−Vt (q̂, m)]



.
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Intuitively, there is discounting at the rate r. The first line simply subtracts the instantaneous

research expenditures from operating profits to obtain the net instantaneous profits. The second line

expresses the change in firm value due to applied innovation. Notice that with applied innovation,

we must form an expectation about how big the innovation size is going to be using the share of

undepreciated product lines α. The third line expresses the change in firm value due to basic innova-

tion in the initial industry and in the spillover industries. Note that spillovers will land in a random

number of industries, but, in expectation, the firm will be able to use innovations in p× m
M industries.

The fourth line describes the change in firm value due to creative destruction, which happens at the

rate τ. The fifth and sixth lines describe the effects of potentially buying out entrants is cases when

the product line does or does not fall within one of the firm’s active industries. In either case, the

buyout price (Pm or P ′m) is simply the present discounted production value to the incumbent firm,

reflecting a case in which they have very low bargaining power. The last two lines describe the effects

of exogenous destruction of product lines and the random redistribution of these to other firms.

Proposition 1. Let the value of a firm with a productivity portfolio q̂ in m industries be denoted by V(q̂, m).

This value is equal to

V(q̂, m) =
Z
M

[
∑̂
q∈q̂

V(q̂) + nVm

]
,

where

V(q̂) =
q̂ε−1

ε [r + τ + κ + g (ε− 2)]
,

and

(r− g)Vm = max
a,b


−w̃

[
ha(a) + hb(b) + 1(b>0)φ]

]
+a
[
αVH + (1− α)VC + Vm

]
+ b

(
1 + p m

M

) [
VH + Vm

]
+x
(
1− m

M

)
[Vm+1 −Vm]− τVm + κEq̂V(q̂t)

 . (15)

The analogous production values are defined as VH ≡ EH
q̂,ηV(q̂ + η) and VC ≡ EC

q̂,λV(q̂ + λ).

Proof. See Appendix D

This important result has a number of implications. First, the value of a firm has a tractable

additive form across product lines. Moreover, the firm value has two major components: the first

component is the production value V(q̂), which simply computes the sum of the future discounted

profits where the effective discount rate takes into account the rate of creative destruction τ, the

exogenous destruction rate κ, and the obsolescence of the relative productivity q̂ due to the growth of

q̄. The second component is the R&D option value Vm, which is a direct function of the multi-industry

presence due to the associated internalization of spillovers. Finally, because of the stochastic nature

of step sizes, the expectations now integrate over the productivity (which is type specific) and step

size.

Because the value function is additive across product lines, so then are innovation rates. Now we

can express the first-order condition for basic innovation at the product line level with

bm =

[(
1 + p m

M

) (
VH + Vm

)
νbξbw̃

] 1
νb−1
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The most important result here is the fact that basic research investment is increasing in the multi-

industry presence of the firm. The strength of this positive relationship will be governed mainly by

the probability of the cross-industry spillover parameter p.

Fact 1. A firm’s basic research investment is increasing in its multi-industry presence.

Both private firms and public research labs are generating basic research in this economy. It

is useful to break down total basic research into its embodied and disembodied components. The

distinction is based on whether the basic knowledge is immediately turned into a consumer product

(embodied) or simply added to the stock of knowledge available for future innovators (disembodied).

We obtain the following aggregates:

Embodied: τe
b ≡

M

∑
m=1

µm(1 + ρm)bm

Disembodied: τd
b ≡

M

∑
m=1

µm(p− ρm)bm + (1 + p)u (16)

Total: τb ≡ τe
b + τd

b ,

Recall that µm is the the mass of product lines owned by firms operating in m industries µm. Then,

τe
b and τd

b correspond, respectively, to the embodied and disembodied components of basic research.

Note that the disembodied component includes both private spillovers that are unused and the results

of public basic innovation. Finally, τb is simply the overall flow of basic innovation, including all

spillovers.

Using this aggregate rate and the cooldown rate ζ, we can express the steady-state flow equation:

the number of product lines that become hot must be equal to the number of product lines that cool

down. In other words, we must have αζ = (1− α)τb. As a result, the steady-state fraction of hot

product lines is

α =
τb

ζ + τb
. (17)

The share of hot product lines–those having basic knowledge that can be turned into better consumer

products (α)–is increasing in the amount of basic research flow. This expression highlights the role

of public policy in affecting the knowledge stock. The more money that is allocated to public basic

research, the higher will be the basic research flow from public research labs (u), which will then

increase the fraction of hot product lines through τb, as in (16) and (17).

Firms invest in applied research according to

a =

[
αVH + (1− α)VC

νaξaw̃

] 1
νa−1

.

The crucial observation here is the complementarity between basic and applied research. In equilib-

rium, VH > VC since hot product lines are associated with a larger step size η. Hence, if there are

more hot product lines (a higher α), each firm increases its investment in applied research.
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Fact 2. Basic and applied research investments are complementary. In particular, higher public basic research

investment encourages firms to invest more in applied research.

Let us denote the aggregate rate of applied innovation by τa such that

τa =
M

∑
m=1

µmam + Eae. (18)

Recall that τe
b denotes the arrival rate of embodied basic research, as defined in (16). Now we can

denote the aggregate rate of creative destruction (the rate at which firms lose product lines to other

firms) by τ:

τ ≡ τa + τe
b . (19)

Creative destruction is determined by the rate at which incumbents produce basic innovations that

can be embodied into production immediately (τe
b ), and by the rate at which incumbents and entrants

produce applied innovations (τa). Now we are ready to state the following lemma:

Lemma 1. Let FH(·) and FC(·) be the aggregate product cumulative measures by type (hot or cold). The flow

equations for these objects are, respectively,

ḞH(q̂) = −τ [FH(q̂)−FH(q̂− η)] + τe
bFC(q̂− η)− ζFH(q̂) + τd

bFC(q̂) + gq̂[∂FH(q̂)/∂q̂]

ḞC(q̂) = −τa [FC(q̂)−FC(q̂− λ)]− τbFC(q̂) + ζFH(q̂) + gq̂[∂FC(q̂)/∂q̂].

Proof. See Appendix D.

The labor market clearing condition can now be expressed in terms of the above endogenous

variables. One additional relationship we will exploit is that between the mass of labor devoted to

production and the normalized wage rate. This can be derived from the goods production specifica-

tion (see Section D in the Appendix for its detailed derivation)

Lp =
Z
w

(
ε− 1

ε

)
Using this and the symmetric nature of the equilibrium, we express the labor market clearing condi-

tion as an average over industries:

1 =
1
w̃

(
ε− 1

ε

)
+ ξb

(
∑
m

µmbνb
m + Uuνb

)
+ ξa(aνa + Eaνa

e ). (20)

This expression equates the labor supply per industry (= 1 since the total labor supply is M) to labor

demand for production workers; private basic researchers, which is a function of the multi-industry

presence of the firms; public basic researchers, which is determined by public policy; incumbent

applied researchers; and entrant basic researchers.

Finally, plugging the equilibrium intermediate good quantity (13) into the aggregate production

functions (2) and (1), we find that the aggregate output is

Z = q̄Lp/M. (21)
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This expression simply says that the aggregate output is equal to the product of the number of

workers employed for production and the aggregate productivity index of the economy. In an SBGP

equilibrium, the labor allocated for production is constant. Therefore, the growth rate of aggregate

output (and also output per worker) will be equal to the growth rate of the productivity index q̄. The

following proposition provides the exact growth rate of the productivity index.

Proposition 2. In an SBGP, the growth rate of the productivity index is

g =
τa

[
αEH

q̂ (q̂ + η)ε−1 + (1− α)EC
q̂ (q̂ + λ)ε−1 − 1

]
+ τe

b

[
Eq̂ (q̂ + η)ε−1 − 1

]
ε− 1

. (22)

Proof. See Appendix D

This growth expression shows that the engines of economic progress include both applied and

basic innovation. More important, the basic knowledge stock in the economy, represented by α, makes

each applied innovation more valuable and contributes more to growth (since η > λ). This expression

shows how public funding can contribute to growth through its indirect impact on private research.

2.3 Welfare Properties

Finally, we close this section by describing the SBGP equilibrium welfare. In an SBGP equilibrium

that has an initial consumption C0 and a growth rate of g, welfare is computed as

W(C0, g)SBGP =
∫ ∞

0
exp (−δt)

(
C0egt)1−γ − 1

1− γ
dt =

1
1− γ

(
C1−γ

0
δ− (1− γ) g

− 1
δ

)
.

We will report our results in consumption-equivalent terms. In particular, when two different public

policies T1 and T2 generate different SBGP equilibrium welfare values as W(CT1
0 , gT1) and W(CT2

0 , gT2),

we will report β such that

W(βCT1
0 , gT1) = W(CT2

0 , gT2).

In other words, β constitutes the compensating differential in initial consumption that equalizes the

welfare of the two proposed policy environments. Therefore, it provides an intuitive measure for

evaluating policy tools.

To sum up, let us briefly discuss the sources of inefficiency and what policy can achieve in this

model. First, as in standard quality ladder models, there are intertemporal spillovers within each

product line. Second, firms simply enjoy the expected duration of monopoly power due to the

competition channel of creative destruction. As a result, the private value of innovation differs from

the social value of innovation. It is also worth highlighting that, in this model, there could be either

over- or underinvestment in R&D. In addition to the standard channels, our model features additional

spillovers due to basic research, both within and across industries. Finally, there are additional static

distortions due to monopoly power. However, since we are interested primarily in the dynamic

inefficiencies associated with innovation and basic research, we will consider the case of a social

planner who is still subject to monopoly distortions on the production side.
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Given the novelty of our theoretical framework we provide analytical results for a simplified

version of our model in Online Appendix (E). First, it highlights the possibility for our framework

to generate both overinvestment or underinvestment in research expenditures. Overinvestment is

mainly driven by competition due to business stealing effects, while underinvestment is driven by

the magnitude of spillovers. Second, it shows that, for any given level of total research investment,

the split between basic and applied research might not be optimal depending on the amount of public

basic research. To sum up, neither the overall level of research nor the composition between applied

and basic investment is necessarily optimal, which is why there is the need for a structural estimation

of the parameter values.

In the full dynamic framework, all of these inefficiencies will generate room for innovation policy,

and our estimated model will govern whether there is over- or underinvestment in the various types

of research expenditures in the decentralized equilibrium. It will also provide a framework within

which to evaluate the effects of these innovation policies.

This completes the description of the theoretical environment. Now we are ready to move on to

the quantitative analysis.

3 Data, Measurement, and Empirical Evidence

In this section, we present and discuss the empirical patterns that provide the basis for the structural

estimation in Section 4. First, we describe the data sources that allow us to document patterns of

research investment and patenting decisions. Second, we show how the research investment patterns

of diversified firms allows us to identify cross-industry spillovers of research. We then use patent

citation data across public and private inventors to quantify step sizes in basic and applied research,

as well as the associated cooldown rate.

3.1 Data and Variable Construction

To test and estimate our model, we rely on a unique combination of datasets on French innovative

firms between 2000 to 2006. The final sample is composed of 13,708 firm-year observations, for which

we provide further details regarding data organization and descriptive statistics in Appendix A.

R&D Information Information about research investment comes from the annual R&D Survey con-

ducted by the French Ministry of Research. The survey is conducted in annual waves of cross-

sectional data, and covers a representative sample of French firms of more than 20 employees invest-

ing in R&D. The questionnaire includes extensive information about the financing of R&D. It not only

breaks down R&D investment according to the source of the funds, but also provides the allocation

to different types of research.

The distinction between basic and applied research is based on survey standards defined by the

OECD in the Frascati manual. Basic research investment refers to a “systematic study to gain more

comprehensive knowledge or understanding of the subject under study without specific applications
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in mind.” Conversely, applied research is defined as a “systematic study to gain knowledge or

understanding to meet a specific, recognized need.”15

One possible concern is that it is hard to conceptually draw a line between what constitutes basic

scientific research and applied scientific research. Indeed, there is a continuous spectrum of scientific

activity and “moving from the applied-science end of the spectrum to the basic science end... [,] goals

become less clearly defined” (Nelson, 1959). Similarly, Rosenberg (1990) argues that it is challenging

to categorize research on the basis of the motives of the person performing it. We address this concern

in two ways. First, we note that several seminal papers in the literature (Mansfield, 1980; Mansfield,

1981; Link, 1981; Griliches, 1986) show that the distinction between basic and applied research in this

type of data is not only conceptually useful, but also quantitatively important.16 Second, we also

consider the measurement issue from within the context of our model and quantitative results. In

particular, we explicitly allow for misclassification of research type in Section 5.3. By doing so, we

consider how policymakers could set policies in the presence of various levels of misclassification.

Multi-Industry Activity & Balance-Sheet Information To measure industry presence, we use infor-

mation from “Enquete Liaisons Financieres” (LIFI) and “Enquete Annuelle des Entreprises” (EAE).

The former allows us to distinguish activities within the same business group, while the latter distin-

guishes between activities within the same firm and provides us with accounting data. All the data

sources are connected through unique firm identifiers allowing us to match them to the R&D data.

Figure 4 plots the multi-industry presence of firms and the direction of these links. The left

panel of Figure 4 plots the share of firms as a function of the number of 1-Digit SIC industries,

which is the number of distinct SIC codes in which a firm is present. On average, firms are present

in two distinct industries as defined by 1-digit SIC codes. Although nearly 44% of the firms are

operating in only one industry, the remaining firms occupy a large spectrum of industries. Results

are very similar when using more disaggregate SIC classifications (up to the 4-digit SIC level) or when

changing the definition of an industry link. The right panel of Figure 4 plots the pairwise presence

of firms across industries through nodes and lines. Each node color represents the total number of

firms in the industry (darker means more firms), while the thickness of the lines between industries

represents the total number of links between each industry pair. The figure shows that the most

intense industry links flow between manufacturing industries (node 3) and scientific activities (node

8), while pharmaceutical firms (node 9) are less connected to the rest of the innovative firms. One

concern is that our measure of multi-industry presence could be driven by the presence of financial

units of firms. While some of the links also flow through financial firms included in “Transport,

15Descriptive statistics are provided in Appendix A. One should note that the definition of corporate basic research
does not exclude that it may be directed to fields of current or potential interest, as in the examples provided in the
introduction. Importantly, our measurement of research expenditures is based on “intramural” activities and allows us to
clearly distinguish research developed within the company from research outsourced to universities or to other units in the
group.

16These papers typically evaluate the importance of basic and applied research by relating it to production data and
estimating its output elasticity or rate of return from an extended Cobb-Douglas production function. The common conclu-
sion from those papers is that basic research seems to command a significant “premium”–i.e., that its contribution to firm
productivity is significantly larger compared to that of applied research.
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Figure 4: Distribution and Links of Firms Across Industries
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The figure uses 13,708 firm-year observations from the pooled data for the period 2000-2006. The left panel plots the share of firms as a
function of the number of 1-Digit SIC industries, which is the number of distinct SIC codes in which a firm is present. The right panel plots
the pairwise presence of firms across industries through nodes and lines. Node color is assigned in terms of total number of firms in the
industry (lighter to darker). Thickness of lines between industries is assigned in terms of the total number of links between each pair. Ac-
tivity classification: 1 "Agriculture", 2 "Food and Textile Industries", 3 "Manufacture of chemicals, metals and machinery", 4 "Manufacture
of electrical and transport equipment", 5 "Construction and Utilities", 6 "Wholesale and retail trade", 7 "Transport, Communication and Fi-
nancial Activities", 8 "Professional, scientific and technical activities", 9 "Education and Human Health Activities", 10 "Arts, entertainment
and others".

Communication and Financial Activities” (node 7), they do not appear to dominate in any way. In

Column (2) of Table 21, Appendix B, we recompute our measures for multi-industry presence and

size by excluding financial links and show that our estimate for the cross-industry spillover remains

unaffected.

3.2 Investment Across Research Types

We next identify the cross-industry spillovers associated with basic research through the investment

choices of multi-industry firms. To do so, we exploit the intuition provided in Nelson (1959): as

the range of a firm’s products and industries becomes more diversified, its incentive for investing in

basic research relative to applied research should increase due to better appropriability of potential

knowledge spillovers.

Figure 5 puts together firms’ basic research investment and their multi-industry presence. It plots

the ratio of basic to applied research according to firms’ multi-industry presence. The figure already

controls for firm size, measured in terms of log employment, to disentangle it from the multi-industry

effect. The figure provides a first visual confirmation that investment in basic research increases as

the scope of a firm’s activities expands.

Table 2 further strengthens the identification of the cross-industry spillover by adding controls for

firm and industry heterogeneity. To account for zeros in the the dependent variable, we estimate a

Tobit model and report marginal effects.

The baseline specification in column (1) controls for firm size, as measured by log employment.

The estimates suggest that a firm’s presence in an additional industry is positively correlated with

22



Back to Basics

Figure 5: Basic Research Intensity Across Industries
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The figure plots Basic Research Intensity as a function of Number of 1-Digit SIC Industries. For each firm-year observation Basic Research

Intensity is defined as the ratio of total firm investment in basic research divided by total firm investment in applied research. Average is

the average basic research intensity for firms conditional on the number of their 1-Digit SIC industries and after partialling out for firm

size, while the red line represents a linear fit of the firm-year observations.

Table 2: Basic Research and Multi-Market Activity - Industry and Firm Heterogeneity

(1) (2) (3) (4)

Log # of Industries 0.032*** 0.025*** 0.024*** 0.024***
(0.006) (0.008) (0.008) (0.008)

Log Employment 0.003** 0.002 0.002 -0.000
(0.001) (0.001) (0.001) (0.002)

Year & Organization FE Yes Yes Yes Yes
Industry FE No Yes Yes Yes
Areas of Research Shares No No Yes Yes
Patent Stock & No Patent FE No No No Yes

N 13708 13708 13707 13708
Notes: Pooled data for the period 2000-2006. Estimates are obtained using Tobit models and
relate to the marginal effect of the variables at the sample mean. Basic Research Intensity is
defined as the ratio of total firm investment in basic research divided by total firm investment in
applied research. Log # of Industries is the number of distinct SIC codes in which a firm is present.
Log Employment is the total employment of firms. Share in Software/Biotech/Materials is the share of
R&D investment in the respective areas of research with share of environment research omitted.
Log Patent Stock measures the number of patents obtained by firms in the pre-sample period
(1993-2000). Industry FE denote fixed effects for 1-digit SIC activities. Year FE denotes year fixed
effects, and Organization FE denotes whether the firm operates its activity as a conglomerate or
as a business group. See the Appendix for the definition of variables. Robust standard errors
clustered at the firm level are in parentheses. One star denotes significance at the 10% level; two
stars denote significance at the 5% level; and three stars denote significance at the 1% level.

its propensity to invest into more basic research. In terms of magnitude, an additional industry link

increases the firm’s basic research intensity by three percentage points, on average, corresponding to

a 50% increase in the average basic intensity of a single-industry firm.
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To better understand whether industry characteristics are the main drivers of our estimated

spillover parameter, we proceed in two steps. In Column (2) we first augment the specification re-

lating basic research intensity to multi-industry presence by including a set of industry fixed effects.

This specification, therefore, disentangles the spillover effect from industry heterogeneity in research.

While the point estimate is slightly lower, the direction and the strength of the correlation remain

very similar to the baseline estimates reported in Column (1). A potential concern is that the industry

fixed effects might fail to appropriately capture the transversal nature of research. For instance, the

multi-industry structure of a firm might be due to its focus on IT research. To address this concern,

we exploit information contained in the R&D survey about the amount spent on different areas of

research. The survey distinguishes among the following areas: software, biotech, environment, ma-

terials and social sciences. We augment our specification by including controls for areas of research

in column (3), and estimates remain very stable.17

Finally, in column 4, we try to capture firm-specific heterogeneity in innovative capacity. To do

so, we follow an insight provided by Blundell, Griffith, and Reenen (1995). Their study estimates

the determinants of innovation activity and tries to overcome the fact that “such things as the dif-

ferent appropriability conditions of research efforts and technological opportunities facing firms” are

difficult to measure. The authors argue that the permanent firm-specific capacities for successful in-

novation should be reflected in the pre-sample history of innovative success. Similar to their study,

we include the number of patents obtained by firms in the pre-sample period (1993-2000) as a variable

that approximates the knowledge stock of the firm at its point of entry into the sample. Again, our

estimates remain very similar in economic and statistical terms.

Table 3 tries to empirically address concerns about reverse causality–i.e., a firm’s comparative

advantage in basic research explaining its expansion into multiple industries. In an ideal setting,

we would vary a firms’ economic scope in order to observe its impact on research patterns. To get

as close as possible to this framework, we follow an instrumental variable approach and exploit an

historical event that affected the economic scope of firms.

In 1981, Francois Mitterrand became president of the French Republic and implemented a vast

nationalization program across industries. Even before his election, the tradition of French state

intervention had resulted in a significant fraction of the economy being under state control. Consistent

with Colbertist policies, the state modified the economic scope of firms by merging often unrelated

firms into large conglomerates of national champions. Cohen and Bauer (1985) eloquently describe

the phenomenon as a “game of monopoly” played by politicians. In 1987, the election of Jacques

Chirac on a liberal platform marked the beginning of privatizations, which then continued into the

1990s under the impetus of the European Commission’s competition directorate. Using historical

data on ownership structures we define state participation in 1985-1987 as our instrumental variable.

The first-stage estimates reported in columns (1) to (3) of Table 3 confirm that state participation

in the 1980s is associated with, on average, 1.5 more industry links for firms between 2000 and 2006.

17We also re-estimated the spillover parameter excluding an outlier industry in terms of basic research intensity that we
identify in the online Appendix. Estimates were unaffected.
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Table 3: Basic Research and Multi-Market Activity - Instrumental Variables

1st Stage 2nd Stage
(1) (2) (3) (4) (5) (6)

State Participation in 1985 .293*** .288*** .264***
(.056) (.057) (.056)

Log # of Industries 0.085*** 0.079*** 0.070**
(0.018) (0.021) (0.028)

Log Employment .120*** .120*** .117*** -0.007** -0.006 -0.006
(.003) (.004) (.004) (0.003) (0.004) (0.004)

State Participation -.057 -.057 -.049 -0.003 -0.005 -0.002
(.083) (.083) (.082) (0.011) (0.012) (0.013)

Public R&D Subsidies .013* 0.010***
(.008) (0.004)

Outsourcing to Univ. .067*** 0.019**
(.012) (0.010)

Year & Organization FE Yes Yes Yes Yes Yes Yes
Areas of Research Shares Yes Yes Yes Yes Yes Yes

N 13707 13707 13707 13707 13707 13707
Notes: Pooled data for the period 2000-2006. Estimates are obtained using Tobit models and relate to the marginal
effect of the variables at the sample mean. Basic Research Intensity is defined as the ratio of total firm investment in
basic research divided by total firm investment in applied research. Log # of Industries is the number of distinct SIC
codes in which a firm is present. State Participation in 1985 is a binary variable equal to 1 if the French state was a
shareholder of the firm in 1985. State Participation is a binary variable equal to 1 if the French state is currently a
shareholder of the firm. Public R&D Subsidies is a binary variable equal to 1 if the firm obtained public R&D subsidies.
University Collaboration is a binary variable equal to 1 if the firm collaborates/outsources some of its R&D to the
public system. Log Employment is the total employment of firms. Share in Software/Biotech/Materials is the share of
R&D investment in the respective areas of research. Industry FE denote fixed effects for 1-digit SIC activities. Year FE
denotes year fixed effects, and Organization FE denotes whether the firm operates its activity as a conglomerate or as
a business group. See the Appendix for the definition of variables. Robust standard errors clustered at the firm level
are in parentheses. One star denotes significance at the 10% level; two stars denote significance at the 5% level; and
three stars denote significance at the 1% level.

The associated F-test is well above the critical levels related to weak instruments. The second-stage

estimates, reported in column (4), suggest that the instrumented estimate is significantly larger than

the OLS one.18 This would suggest that our estimates might be a relatively conservative quantification

of spillovers.

The exclusion restriction associated with our identification strategy requires that state participa-

tion in the 1980’s should not directly affect a firm’s research incentives in the year 2000. To strengthen

the argument, all of our IV specifications include a measure of continued state participation in the

ownership of the firm. Another possible objection is that past ownership by the state also affects

the likelihood of accessing subsidies and government contracts. In columns (2) and (5) we include

as a control variable the share of public funding obtained by these firms. While public funding of

private research is associated with higher basic research, its effect does not seem to confound our IV

18The fact that the OLS estimate represents a lower bound to our spillover parameter is consistent with agency theories
in financial economics that highlight the difficulty of capital allocation in diversified firms and the associated valuation
discount (Jensen and Meckling, 1976; Rajan, Servaes, and Zingales, 2000; Scharfstein and Stein, 2000).
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estimate related to the spillover. In columns (3) and (6), we again exploit the R&D survey to con-

struct a dummy variable for links between private companies and universities. Again the estimates

remain very similar and seem to exclude a differential access to the knowledge created by the public

university system.

Taken together, the estimates across these specifications confirms the robustness of the correlation

between firms’ multi-industry presence and their investment in basic research.19

3.3 Citation Patterns Across Research Types

We next use citation information from the NBER patent data to empirically measure the quality step

size for basic and applied innovation, as well as their importance for follow-up innovations (Hall,

Jaffe, and Trajtenberg, 2001). An empirical issue is how to distinguish between patents derived from

basic and from applied research. Trajtenberg, Henderson, and Jaffe (1997) document that patents

from the public sector are more basic-research oriented than patents from the corporate sector. Con-

sequently, we use the assignee code to distinguish between patents applied for by corporations from

patents applied for by public institutions.20 The evidence on citation patterns across public- and

private-sector patents is organized in Table 4 and explained in Figure 6.

In Panel A of Table 4, we provide a first breakdown of public and private patents according to

the number of direct, 1st generation, citations that the originating patent received. In the model, the

citation distributions for both public and private patents are directly sensitive to the underlying step

sizes. The larger the step size, the more citations a patent receives, on average. We find that, on

average, a public patent obtains 1.12 more citations than corporate patents.

To estimate the cooldown parameter, we proceed in several steps. First, we again consider whether

the originating patent is public or private. Second, for the estimation of the cooldown parameter,

instead of computing the 1st generation direct citations (middle panel of Figure 6) received by the

original patents, we measure the importance of these 1st generation patents through the number

of patent citations they received in turn from 2nd generation patents (bottom panel of Figure 6).21

We do so for each year since the granting date of the original patent. Panel B reports the mean

19Table 21 in Appendix B further addresses concerns about the measurement of the cross-industry spillover. Column (1)
presents the benchmark specification. In column (2), we recompute multi-industry presence and size by excluding links
to banks, insurance companies, and asset management companies. In addition, we explicitly control for the presence of
financial activities within the group (either as a subsidiary or as the head of the group). Column (3) recomputes multi-
industry presence and size by considering only activities with at least ten employees. We also add two variables in the
specification that should capture the possibility of spurious industry presence. The first is a dummy variable on whether
the headquarters are foreign. The second is a Herfindahl index related to the concentration of employment within a given
industry of the firm’s portfolio. Column (4) uses the data on the population of French firms and measures the frequency of
each distinct activity pair. We then inversely weight the distinct bilateral links of our innovative firms. All estimates remain
robust.

20The use of US patent data was linked to the availability of a long time horizon of publicly available data on patents
granted, depositor classification, and the associated citations. The analysis of our final dataset will focus exclusively on
French patenters, but the construction of the different variables will use information from the entire dataset. While our
proxy is simple to measure in the data, it potentially misclassifies the contribution of private basic patents. However, given
that our interest lies in the relative difference between those two groups of patents across time, time-invariant errors in the
classification should not impact our conclusions. Appendix C provides additional robustness checks for the estimates on
the cooldown rate of patents originating from basic and applied research.

21All citation measures are based on cumulative 10-year citation horizons to avoid truncation effects.
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Figure 6: Construction of Citation Information
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difference of this measure between patents originated in the public sector, and patents originated in

the private sector. We find that the data display a pattern whereby owners of patents following/citing

a public-sector-originated patent within a few years are of higher quality than those citing private-

sector-originated patents. The difference in the quality of follow-up patents oscillates between 0.3 to

0.6 citations in the early years. However, it drops significantly in the 8th year. The results are similar

when using the Wilcoxon-Mann-Whitney test. The second row adjusts for the fact that patents from

basic research have a broader applicability. Therefore, we use the concordance table developed by

Silverman (1996), linking the International Patent Classification (IPC) system to the U.S. Standard

Industrial Classification (SIC) system. This concordance enables us to condition citations on being

within the same SIC code and qualitatively confirms the previous pattern.22

4 Quantitative Analysis

4.1 Estimation

In this section, we describe the estimation strategy used. We assume that the idiosyncratic fixed-cost

component of basic research is drawn from a lognormal distribution with log(φ) ∼ N (φ̄, σ2). As a

result, the set of parameters of the model is

θ = {δ, γ, ε, p, η, λ, E, U, νa, νb, ξa, ξb, κ, φ̄, σ, ζ, ς} ∈ Θ.

In our dataset, for each firm f and each time period t, we have a vector of N observables from

the actual data y f t ≡
[
y1

f t . . . yN
f t

]′
N×1

that includes the number of industries in which the firm is

present, sales, profits, and labor costs. Let the entire dataset be denoted by y.

We use the simulated method of moments (SMM) for the estimation.23 Define Λ (y) and Λ(θ) to

be, respectively, the vectors of real data moments (generated from y) and equilibrium model moments
22It is likely that the use of concordance tables introduces some degree of measurement error, and explains why the

citation patterns is more noisy relative to the previous row.
23See Bloom (2009) and Lentz and Mortensen (2008) for further description and usage information on SMM.
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Table 4: Patent Citations Across Public and Private Patents

Panel A: 1st Generation Patents
Mean 25th Median 75th St. Dev. Min Max N

Private Citations 5.88 1.00 4.00 7.00 8.01 0.00 179.00 28247.00
Public Citations 7.01 2.00 4.00 8.00 11.86 0.00 351.00 2806.00

Panel B: 2nd Generation Patents
Age Cohort 1 2 3 4 5 6 7 8 9 10

Mean Difference .3** .3** .62*** .28** .41** .23 .71*** .08 .39 .14
(0.15) (0.15) (0.17) (0.14) (0.18) (0.17) (0.25) (0.16) (0.25) (0.24)

Adjusted .3** .23* .55*** .26* .46** .18 .58** .06 .47* .22
(0.15) (0.14) (0.17) (0.17) (0.17) (0.17) (0.24) (0.15) (0.26) (0.28)

Notes: Citation patterns of patents granted by the USPTO to French private and public depositors. Panel
A computes direct 1st generation citations across public and private patents. Panel B reports the average
difference in citations of 2nd generation patents for the period 1975-1990. Adjusted citations are conditioned
on being within the same 1-digit industry of use, as indicated by the concordance table in Silverman (2004).
Two sample t-tests with unequal variances were used. One star denotes significance at the 10% level; two
stars denote significance at the 5% level; and three stars denote significance at the 1% level.

(generated for some vector of parameters θ). Since certain moments require knowledge of the joint

distribution of firms over the number of products and industries (m, n) and the portfolio of product

qualities q, which has no apparent analytic form, we simulate a large panel of firms to calculate Λ(θ)

to a high degree of accuracy.24

Our proposed estimator minimizes a quadratic form of the difference between these two vectors

θ̂ = arg min
θ∈Θ

[Λ(θ)−Λ(y)] ·W · [Λ(θ)−Λ(y)], (23)

where W is the weighting matrix. We use a diagonal weighting matrix with entries equal to the

inverse square of the data moment value, or, in notational terms, Wii = 1/Λi(y)2 and Wij = 0 for

i 6= j. In our estimation, we use 30 moments, which we denote as Λ(1)−Λ(30). We pick moments

that are most informative for identification of the unique features of our model.

Status Quo Policies We also take into account that, during the period we consider, there was ex-

isting government support for R&D activities in France. In our dataset 10% of corporate R&D is, on

average, publicly funded. Therefore, in our estimation, we introduce a uniform subsidy to the total

R&D spending of the firm ψ = 0.10. The government has a balanced budget every period, so that the

sum of total subsidies (S) and public research funding (R) must be equal to tax revenues; that is,

T = S + R = ψ

[
M

∑
m=1

µmCb(bm | φ) + Ca(a)

]
+ UCb(u | φ̄),

where T is a lump-sum tax on consumers. In France, during 2000-2006, the fraction of GDP devoted

to public research labs and academic institutions was approximately 0.5%. Therefore, we pick R/Z,

which is the share of GDP devoted to public basic research, to be 0.5%.

24For our results, we simulate 32K firms with a burn-in time of 100 years and 100 time steps per year.
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Figure 7: Citation Model Diagram
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Basic innovations are represented by “B”, while applied innovations are represented by “A”. Each arrow represents the pos-
sibility of a citation. An actual citation will occur with probability ηx for basic innovations and λx for applied innovations.

4.2 Identification

Ultimately, the parameters of the model are identified jointly by their optimality with respect to the

estimation objective function defined above. Nonetheless, there is a clear sense in which certain

parameters are identified mainly through certain moments. In this section, we provide an account

of such relations with special focus on those parameters that are either novel to our model or are

particularly important for the ensuing policy exercises. Additionally, we provide the full Jacobian

matrix of the moment vector Λ with respect to the parameter vector θ. This provides precise numerical

values for the direction and magnitude of moment-parameter dependence in the neighborhood of our

estimated parameter values.

4.2.1 Step Sizes: Citation Model

The innovation step sizes for basic and applied research are two of the most critical parameters in the

model, as they fix the scale of innovation sizes against which input costs are weighed. Though these

values are important in determining the overall growth rate, profitability of firms, and the firm-size

distribution, the distribution of patent citations provides the most direct evidence. In the model, the

citation distributions for both public and private patents are directly sensitive to the underlying step

sizes. The larger the step size, the more citations a patent receives, on average.

The distinction between basic and applied research has a very natural interpretation in this setting.

We interpret each basic innovation as starting a new line of research that is cited by subsequent

applied innovations that build off of it. When a subsequent basic innovation is generated, the original

basic patent receives no more citations, and the new line of research prevails. Similarly, applied

innovations also build off of one another, and we allow them to cite prior patents both from basic

and applied research. We model the probability of being cited by subsequent innovations as some

parameter x times the step size of the innovation. This encapsulates the notion that patents with a

high immediate impact on productivity are also generally more highly cited.

Recall that the two step sizes in our model are η and λ, and that we have applied and basic

innovation rates τb and τa. We show in Appendix A that under the dynamics described above, the

total number of citations a patent receives will follow a geometric distribution. In particular, the
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probability of a patent with step size s receiving n citations will be

ps(n) = (1− cs)cn
s where cs =

τaxs
τaxs + τb

.

Additionally, we know that basic innovations always have step size η, while applied innovations have

step size η when they land on “hot” product lines (with probability α) and step size λ otherwise.

Thus, we find that

pb(n) = pη(n)

pa(n) = αpη(n) + (1− α)pλ(n).

This structure has the advantage that it not only generates average citation rates and counts for

basic and applied research, but also generates an entire predicted distribution of citation counts across

patents. Importantly, these distributions are directly sensitive to the underlying step sizes. The larger

the step size, the more citations a patent receives, on average. Since the scale parameter x is essentially

setting units, this soaks up one degree of freedom. But the remaining difference between basic and

applied citations is informative about the difference between the respective step sizes. Meanwhile, τb

and τa are constrained through equilibrium by the firm’s dynamics moments, while the absolute step

size is constrained by the aggregate growth rate.

While we don’t observe patents as being basic or applied directly in the data, we can proxy these

differences through the public/private origin of the assignee. Our model yields predictions for mean

and root-mean-squared (RMS) citations for both public and private patents separately. We use these

four moments in the main estimation. Even though they are not targeted directly, we also find that

the the distributions of patent citations for both private and public patents match those seen in the

data quite well. As seen in Figures 8 and 9, this close match gives us confidence that the way in which

we model citations is, indeed, appropriate for this setting.

Figure 8: Private Citation Distributions
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Figure 9: Public Citation Distributions
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Since our estimated basic step size is larger than that of an applied step size, this also means basic

patents will be more highly cited in our setting. In our baseline estimation, the implied probability

that an innovation will be cited by a given subsequent applied innovation is xλ = 15% for an under-

lying applied innovation and xη = 24% for an underlying basic innovation. Finally, note that “basic

step size” here can apply both to pure basic innovations and to applied innovations that happen to

fall on “hot” product lines. Both the mean and variance moments for public and applied citations

match quite well. Since the geometric distribution is a single parameter family, the mean and variance

values are quite closely linked. Thus, the fact that we hit both well is evidence that this specification

is valid for modeling the distribution of patent citations.

It is useful to consider precisely how these four additional moments aid us in identifying the

underlying structural parameters of the model. One degree of freedom is soaked up by the base

scale of citations rates. The most informative factor is the differential between the public and applied

moments, which inform the differential between the basic and applied step sizes. The fact that we use

both mean and variance moments also serves as a kind of insurance for the case in which modeling

citations as a geometric process is less than perfect (though, ex post, it seems to be quite reasonable

in this case). We can see numerical evidence of this argument by inspecting particular elements of

the Jacobian matrix of the simulated moments with respect to the model parameters.

Table 5: Jacobian For Citation Step Size Block

Parameter η λ

Moment

Public Mean - Private Mean 3 -4
Public RMS - Private RMS 3 -4

Consider the matrix in Table 5. Here, we generated two pseudo-moments, which are the differ-

ences between public and private values for both mean and RMS (their calculations assume approxi-

mate local linearity). Here, we can see that for both orders, increasing the basic step size η increases

the difference between public and applied citations values, and, conversely, increasing the applied

step size λ decreases these differentials. Combining the results from the two columns above, we can

infer that increasing the differential between basic and applied step sizes by 5% increases the gap

between public and private citation rates by approximately 3.5%.25

4.2.2 Across-industry Spillovers

We define basic research intensity as the ratio of spending on basic research to spending on applied

research. Since the effect of multi-industry presence on this quantity is of critical importance to our

model, we have one moment for each m̂ ∈ {1, . . . , M}. Given a set of parameters and an equilibrium

25Note that the direct effect of increasing the basic step size η is negative, as this increases the rate at which new lines of
research are created, thus reducing the average number of backwards citations (as patents cite only patents from the latest
line of research).
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Figure 10: Basic Research Intensity vs Spillover Parameter p
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of the model, this moment’s value for a given m̂ is

Λ(1− 8) = Em

[
h̄m

b
hm

a

∣∣∣∣∣ m̂

]
.

In our estimation, we use M = 10. However, in the data, there are only a handful of firms with

m̂ > 8, so we have one moment for each m̂ ∈ {1, . . . , 7} and a final moment that is averaged over

m̂ ∈ {8, 9, 10}. The way in which this moment increases with m̂ identifies the cross-industry spillover

parameter p in our model. Additionally, the overall level provides us with some identification power

for the basic research cost parameters (ξb,νb).

Figure 10 plots the empirical (red line) and model counterparts for these moments for different

spillover parameter p = {0.00, 0.05, 0.10, 0.15}. The figure makes it clear that our cross-industry

spillover parameter p is identified by matching the basic research intensity of multi-industry firms.

The slope of the analogous graph for the extensive margin of basic research is also sensitive to the

magnitude of cross-industry spillovers. Thus, we use the share of positive basic research spending

by each m̂ to provide additional information on p. The overall level of positive basic research is also

directly informative about the mean φ̄ and variance σ2 of the fixed-cost component of basic research.

Analytically, the probability that a firm with a certain industry presence m̂ undertakes basic research

is simply the probability that the idiosyncratic fixed-cost draw is less than the cutoff for that value of

m̂

Λ(9− 16) = Em,φ

[
1(φ<φ∗m)

∣∣∣ m̂
]

.

Though not plotted here, one can see in the Jacobian matrix in Table 23 that the average fixed-cost

parameter φ̄ strongly influences the level of this moment for all values of m̂. Furthermore, the fixed-

cost variance parameter σ induces a tilt in these moments across different m̂ values. That is to say,

increasing σ raises the probability of performing basic research for low m̂ firms and lowers it for high

m̂ firms. This is consistent with the intuition of the model and with the properties of the lognormal
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distribution.

4.2.3 Within-industry Spillovers

As discussed in Section 3.3, we use patent citation data to quantify the within-industry spillovers

associated with basic research. The model predicts that innovations that build off of previous basic

research should have, on average, a larger step size. In this setting, innovations with a larger step

size also see more citations. Thus, patents that cite basic innovations should themselves have more

citations. We empirically confirmed that the magnitude of this effect diminishes with the age of the

patent due to product line cooldown ζ.

Consider a public innovation in the model: this will generate a public patent and make a particular

private product line hot for some time. During this time, any subsequent (citing) innovations, whether

basic or applied, will yield a basic innovation step size η, just as all public patents do. This step size

will determine how many citations these citing patents garner down the line. Then, at some point in

time, the product line will cool down and again begin yielding step sizes determined by the research

type, either λ or η. Thus, the average cooldown time is also the average time after which a public

innovation is indistinguishable from a private innovation, which is given by

Λ(24) =
1
ζ

(τa

τ

)
.

The first term arises due to the standard properties of a Poisson process with rate ζ, while the second

term arises from the fact that another basic innovation may hit the product line before cooldown

ocurrs, in which case the original line would receive no further citations. This yields direct informa-

tion on the value of the cooldown rate ζ, as seen in the Jacobian matrix.

4.2.4 Industry Expansion

We track two moments relating to the distribution of m̂, the mean and mean squared. They are given

by

Λ(17) = Em̂ [m̂] and Λ(18) = Em̂
[
m̂2] .

Looking at the Jacobian matrix, one can see that the mean m value and the mass of potential entrants

are closely linked, as successful entrants start with the lowest working knowledge value m = 1. Simi-

larly, the mean of m2 is strongly influenced by the entrant buyout probability parameter ς. Intuitively,

when entrants are more likely to be bought out by incumbents, which results in industry expan-

sion with probability z, this will concentrate industry expertise in existing firms, thus increasing the

dispersion of m.

Empirically, we match the distribution of firms across industry classes, as shown previously in

the left panel of Figure 4.26

26As discussed in Section 3.2, there are both costs and benefits to multi-industry presence. In our setting, a broad
economic scope allows firms to better internalize spillovers from research. At the same time, the corporate finance literature
has highlighted the difficulty of capital allocation in diversified firms. Thus, the empirical distribution that we target reflects
the net trade-off between these forces.
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4.2.5 Remaining Moments and Parameters

Profitability, Λ(19): Firm profitability is defined as the ratio of profits to sales. For a given panel of

firms, this moment is given by

Λ(19) =
1
ε
−Em,n,q̂

[
w̃
[
hm

a + h̄m
b

]
1
n ∑i q̂ε−1

i

]
.

Notice that there is one fixed component from the static production side that yields information on

the value of ε and another from dynamic R&D expenditures that yields information on R&D cost

and step-size parameters. Consistent with this, though this moment value arises from a multitude of

factors, the major determinants are ε and the various fixed and variable R&D cost parameters.

Exit Rate, Λ(20): As exit occurs when firms either receive the exogenous destruction shock or lose

their last product, the predicted exit rate will be

Λ(20) = κ + τ ·∑
m

Γm,1.

However, for consistency, we simply use the value from the simulated firm sample. This moment

serves primarily to determine the value of the rate of exogenous destruction κ. Additionally, as the

bulk of equilibrium creative destruction τ arises from applied research, this also provides information

on the applied R&D cost parameters νa and ξa.

Total Research Intensity, Λ(21): We have one moment to track the level of R&D overall: the ratio

of total research labor expenditures spending to total production labor expenditures. Since research

spending is proportional to n, R&D expenditures per product will be the same across firms with the

same m, while employment will be a function of the portfolio of product qualities. Because the wage

is common to both types of labor, this will simply be the ratio of R&D employment to production

employment given by

Λ(21) = Em,n,q̂

[
w̃
[
hm

a + h̄m
b

](
ε−1

ε

) 1
n ∑i q̂ε−1

i

]
.

This moment gives us primarily information on the cost side of R&D–namely, the research production

function parameters. It will also be influenced by the benefit side, in the form of innovation step sizes

for basic and applied research, η and λ (see Table 23). However, these step-size parameters are largely

determined by the citation evidence.

Firm Growth, Λ(22): We have a moment for the employment growth of firms. This is calculated

conditional on the firm not exiting, as we do not observe the last period’s growth rate for exiting

firms. The moment is calculated by looking at the one-year growth rate of a firm’s total employment.

This moment is sensitive to the overall rates of exit and creative destruction and, as such, yields

information on a broad array of parameters.
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As seen in the Jacobian matrix in Table 23, one parameter for which firm growth shows particular

distinction is the CRRA parameter γ. Loosely speaking, one function of this parameter is to govern

the differential between the interest rate r and the growth rate g, which forms the basis of a firm’s

effective discount rate. As this identification is somewhat indirect, in the sense that it does not

deal with consumer choice directly, we also perform a robustness check in which we fix the CRRA

parameter to the standard value of γ = 2 and re-estimate the model.

Aggregate Growth, Λ(23): The aggregate growth rate gives information on the effectiveness of re-

search spending, absent effects coming from the distribution of firm size and its relation to firm

growth, particularly on innovation step sizes.

In our model, the household’s welfare depends crucially on the level of aggregate growth, and

hitting that moment is of particular importance. For that purpose, we boost the weighting on the

aggregate growth moment.27

Firm Age, Λ(25-26): Firm age is highly correlated with firm size. We track the average age of firms

for those above and below the median firm size. This yields information on entry and exit patterns,

as well as on the rate of creative destruction. Moment Λ(25) is the average age of firms below the

median firm size, while moment Λ(26) is the average age for those firms above it.

4.3 Estimation Results

Table 6 reports the values of the estimated structural parameters. The estimated values of the discount

rate and CRRA utility parameters are within their standard macro ranges. The elasticity of substi-

tution parameter generates 17%(= 1/ε) gross profits, resulting in 7.9% net profits after subtracting

R&D expenses as a share of sales.

Table 6: Parameter Estimates

# Description Sym Value # Description Sym Value
1. Discount Rate δ 0.039 10. Applied Cost Curvature νa 1.367
2. CRRA Utility Parameter γ 3.020 11. Basic Cost Curvature νb 1.539
3. Elasticity of Substitution ε 5.863 12. Applied Cost Scale ξa 1.230
4. Cross-industry Spillover p 0.116 13. Basic Cost Scale ξb 5.445
5. Buyout Rate ς 0.456 14. Exogenous Exit Rate κ 0.006
6. Basic Step Size η 0.079 15. Basic Fixed Mean φ̄ -4.759
7. Applied Step Size λ 0.050 16. Basic Fixed Std. Dev. σ 0.329
8. Mass of Entrants E 0.495 17. Product Cooldown Rate ζ 0.117
9. Mass of Academic Labs U 0.493 18. Citation Rate x 2.984

One of the most important parameters of our model is the cross-industry spillover parameter

p = 0.12, which measures the probability that a basic innovation will have any additional imme-

diate applications (it may have many). This estimate affects the extent to which basic innovations

27Increasing the weighting factor to 3 was sufficient to align the aggregate growth rate in the data and the model.
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contribute to cross-sectional growth. In equilibrium, firms operate in two industries out of ten on

average. Therefore, any given spillover is not embodied with probability 89%(= 8/9). Given that

the probability of having a spillover is 12%, the probability of having a disembodied spillover is

10%(= 0.12 ∗ 0.89).

The estimated innovation size of basic research is η = 7.9%, and the innovation size of each new

applied innovation is λ = 5.0%. This implies that basic research (hot product lines) makes applied

innovation 58%(= 7.9/5.0− 1) more productive.

Additionally, each basic innovation has a within-industry spillover. The cooldown rate of hot

product lines is estimated to be ζ = 0.12, which indicates that a basic innovation affects the subse-

quent innovations in the same product line for almost 8.5(= 1/0.12) years, on average.

The elasticity of applied innovation counts with respect to the research dollars spent is estimated

to be 0.73 (= 1/νa), and, similarly, the elasticity of basic innovation with respect to the basic research

investment is 0.65 (= 1/νb). These values are close to the elasticity estimates in the literature, which

typically find a value of around 0.5 (Griliches, 1990; Pakes and Griliches, 1984; Kortum, 1992; Kortum,

1993).

4.4 Goodness of Fit

In this section, we will first focus on the moments that we targeted in our estimation and then turn

to the moments that we did not directly target but still find useful in understanding the model’s

performance.

Targeted Moments Table 7 contains the moments from the actual data and our estimated model.

Table 7: Moments Used in Estimation

# Description Model Data # Description Model Data
Λ(1-8) Basic Research Extensive See Figure 12 Λ(23) R&D/Labor 0.276 0.260
Λ(9-16) Basic Research Intensive See Figure 11 Λ(24) Employment Growth 0.103 0.103
Λ(17) Mean Industries 2.264 2.203 Λ(25) Aggregate Growth 0.013 0.015
Λ(18) Mean Square Industries 7.535 6.976 Λ(26) Spillover Differential 8.344 8.000
Λ(19) Return on Sales 0.033 0.033 Λ(27) Public Citations Mean 8.682 7.013
Λ(20) Exit Rate 0.092 0.092 Λ(28) Public Citations RMS 12.63 14.20
Λ(21) Age, Small Firms 11.77 15.00 Λ(29) Private Citations Mean 5.747 5.885
Λ(22) Age, Large Firms 19.22 24.87 Λ(30) Private Citations RMS 8.581 9.154

The results indicate that the model performs very well in generating firm and industry dynamics

similar to those in the data. Consistent with our data, a significant fraction of innovating firms invest

in basic research: in our model, In particular, 29% of firms invest in basic research, while, in the data,

27% invest. We also capture the positive relationship between the extensive margin of basic research

and multi-industry presence, as evidenced in Table 7 and Figures 11 and 12.

The positive correlation between a firm’s multi-industry presence and its basic research intensity

was one of the major predictions of our model. As explained previously, multi-industry presence
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Figure 11: Fraction Positive Basic By # Industries
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Figure 12: Basic Research Intensity By # Industries

1 2 3 4 5 6 7 8
Number of Industries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ba
sic

 R
es

ea
rc

h 
In

te
ns

ity Model
Data

plays an important role in increasing basic research incentives, by allowing a greater potential to

internalize the positive spillovers from basic research. In our reduced-form analysis, we confirmed the

significant and positive correlation between multi-industry presence and basic research intensity. This

has been the key moment to identify the cross-industry spillover parameter. Our model successfully

generates this positive correlation.

In the data, firms operate, on average, in 2.2 industries, and the same is roughly true in the model.

Furthermore, we find the mean squared in the model to be 7.5, compared to 7.0 observed in the data.

In addition, the mean profitability is 3.2% in the model and in the data. The prime determi-

nants of profitability are the step sizes for basic and applied innovation. However, these also affect

the investment levels for both types of research, since this increases the return to successful innova-

tion. Therefore, the step-size parameters are set to be a compromise between hitting the profitability

moment and the research investment and growth moments.

All of these components of the economy determine the aggregate growth rate. Our model matches

the observed growth rate closely. Our model economy grows at a rate of 1.3%, while the French

economy grew at an average rate of 1.5% during the period studied (2000-2006).

Untargeted Moments We now discuss our model’s prediction about some of the moments that we

did not directly target.

Interestingly, in the data, the correlation between profitability and basic research intensity is not

significantly different from zero. The same finding emerges from our model. In the baseline model,

the correlation between profitability and basic research intensity is only 0.033. This result emerges

because basic research investment is determined through the multi-industry presence of the firms,

whereas profitability is determined by the share of hot and cold product lines, the type of research

investment, and the productivity distribution F (q̂) in the economy.

Our model naturally generates a positive correlation between multi-industry presence and firm
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size, which is also empirically true in the data. This arises since both of these moments are strongly

correlated with firm survival. In the model, we find a correlation of 0.29 between the log employment

and multi-industry presence. In the data, this value is 0.76.

Another stylized fact in our data is that the firm-size distribution is highly skewed–a well-known

feature that is documented extensively in the literature. For detailed references, see Aghion, Akcigit,

and Howitt (2014). In our model, we capture this fact with a skewness of the firm-size distribution of

3.47. This value is 3.07 in the data.

Our estimates indicate that entrants play an important direct role in overall growth. The growth

rate contribution of entrants is 0.43%, whereas that number is 0.86% for incumbents. This implies that

entrants account for 32% of growth. Though our number is for the French economy, it is in line with

Foster, Haltiwanger, and Krizan (2001) who find that 25% of productivity growth in the US comes

from new entry.

We will now focus on the details of the equilibrium and the social planner’s problem in studying

the efficiency properties of this economy. Then, we will turn to various policies that could address

this inefficiency.

4.5 Status Quo: Baseline Economy

Table 8 provides equilibrium values for some of the important variables in the model:

Table 8: Decentralized Economy: Endogenous Variables (in percentages)

ψ R/Z τa τe
b τu Lp Lb Lu Le La α g β

subsidy public applied private public production labor in labor in entrant labor in share growth welfare
rate basic innovation basic basic labor private public labor private of hot rate

in GDP innovation innovation basic basic applied product lines

10 0.5 14.7 0.60 0.13 85.6 0.55 0.52 4.4 8.9 7.2 1.35 100.0

In this table, τa denotes the aggregate rate of applied innovation by incumbents and entrants,

whereas τe
b denotes basic innovation (embodied–i.e., internalized) by private firms, and τu denotes

basic innovation done by academic research labs. The next five columns report the labor allocations

into production, private basic, public basic, entry, and applied research. The remaining columns re-

port the fraction of hot product lines α, the growth rate g, and the welfare in consumption-equivalent

terms β.

In our benchmark economy, 85.6% of labor is used for production, and 14.4% for innovation

activities. Among researchers, roughly 7% are engaged in basic research activities. Note that this

composition within innovation activities will be the central focus of the policy analysis, as uninter-

nalized (potential) spillovers are one of the main sources of inefficiency. In order to study the welfare

properties of this economy, we normalize the benchmark welfare to β = 1.00 and compare it to the

social planner’s optimum, which we will analyze next.
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4.6 Quantifying the Social Planner’s Optimum

In this section, we provide the solution to the social planner’s problem. Recall that while basic

innovations made by the private sector turn into a consumer product immediately, those done by the

public sector (e.g., universities) come from the “Ivory Tower” and turn into a consumer product with

some delay. In order for this to happen, a private firm must do some applied innovation that builds

upon the basic knowledge, this happens, on average, five years (= 1/τa = 1/0.22) after the original

basic innovation.

Before going into the details of the solution, it may be useful to provide an overview of the

potential inefficiencies present in this economy, both static and dynamic:

1. monopoly distortions on the production side

2. (in)efficient applied research investment by private firms

3. (in)efficient basic research investment by private firms

4. (in)efficient basic research investment by public research labs

5. (in)efficient level of entry

Since our focus is on innovation policies, we consider a social planner who controls the R&D pro-

duction in the economy while being subject to the same monopoly distortions on the production side

(hence, we do not consider a production subsidy in our policy analysis either). Table 9 summarizes

these results.

Table 9: Social Planner’s Optimum (in percentages)

τa τe
b τu Lp Lb Lu Le La α g β

12.0 3.8 1.9 83.1 4.5 2.2 3.4 6.8 35.4 1.88 104.6
See Table 8 for variable definitions.

One striking feature of the solution to the social planner’s problem under both scenarios is that

the fraction of labor devoted to research activities is not substantially greater than in the decentralized

equilibrium. In particular, the total labor allocated to production activities is 85.6% in the decentral-

ized economy, while it is 83.1% when set by the social planner. Hence, there is a slight overinvestment

in production labor relative to research labor, but this misallocation is quantitatively quite small.

Indeed, the dominant misallocation here is not between production and research, as is common

in this class of models, but among the various types of research activities–in this case, applied and

basic innovation. In the decentralized economy, only 1.07% of the total labor force is devoted to basic

research, whereas in the social planner’s economy, this number rises to 6.7%. In other words, the

social planner devotes 40% of research labor to basic research, whereas this fraction is only 7% in

the decentralized economy. This happens on both the intensive and the extensive margins of basic

research. In fact, the planner finds it optimal to employ nearly all private research labs, regardless of

their fixed-cost draw.
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Another interesting and important finding is that, in the case of applied innovation, there is

actually an overinvestment in the baseline economy. The applied research labor utilization (including

entrants) is 13.3% in the decentralized case. This figure drops to 10.2% in the social planner’s solution.

This is in spite of the fact that the fraction of hot product lines rises from 7% to 35%, meaning that

the average step size of an applied innovation rises by almost a third.

The net result of the above changes is that growth rises from 1.35% to 1.88%. Overall, the decen-

tralized economy’s welfare corresponds to a decrease of 4.6% in consumption-equivalent terms from

the social planner’s optimum. The following policy experiments will try to bridge this gap.

5 Policy Analysis

In this section, we analyze the impact of various types of research subsidies. Section 5.1 considers

a uniform research subsidy that currently exists in many OECD economies. Given our distinction

between basic and applied research, we propose in Section 5.2 a hypothetical policy that subsidizes

the two types of research differently. This could potentially generate a measurement problem since

firms would have an incentive to misreport the type of research they undertake. In Section 5.3, we

explore how the scope for misclassification affects optimal policies and welfare. Finally, Section 5.4

focuses on the financing and role of the public sector in economic growth.

5.1 Uniform Private Research Subsidy

Consider the case in which the government subsidizes a fraction ψ of each firm’s total research invest-

ment. Note that such a policy subsidizes both basic and applied research, similar to the current R&D

subsidy policy in the U.S. and around the world. Funding of academic research is kept unchanged.

Table 10 summarizes the results of the optimal uniform subsidy rate.

Table 10: Uniform Research Subsidy (in percentages)

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.5 14.7 0.6 0.13 85.6 0.6 0.52 4.4 8.9 7.2 1.35 100.00
Uniform 29.7 29.7 0.5 16.7 1.5 0.10 82.1 1.5 0.49 5.3 10.7 13.4 1.68 100.64
Soc Plan - - - 12.0 3.8 1.89 83.1 4.5 2.22 3.4 6.8 35.4 1.88 104.61

See Table 8 for variable definitions.

Our analysis of the baseline economy and the planner’s economy documented a slight under-

investment in research overall and a large misallocation between the different types of research. A

uniform subsidy is, therefore, ill-suited to address these issues, as it cannot directly affect the al-

location between research types, and any attempt to subsidize basic research will only worsen the

overinvestment in applied research.

Under this policy, we allocate a larger fraction of the labor force to research relative to the social

planner’s economy. Overall, the researcher’s share goes up to 18% from 14%. This new level is quite

close to the corresponding level of 17% seen in the social planner’s optimum, but the allocation of
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research labor between basic and applied research is still suboptimal. As a result, the economy grows

at a lower rate (1.7%) than the social planner’s economy does (1.9%). The welfare gain from this

policy is 0.6 percentage points, which is only 13%(= 0.6/4.6) as large as the gains associated with

moving to the social planner’s optimum.

Although the underinvestment in basic research is sizable, the uniform policy partially makes

up for this, at the cost of worsening the overinvestment in applied research. The main lesson to be

drawn from this is that when considering a uniform research subsidy, one should take into account

the negative welfare effects associated with oversubsidization of applied research. Finding a feasible

method to differentiate between basic and applied research is essential to better innovation policies.

5.2 Type-Dependent Research Subsidy

Now consider the case in which the policymaker sets different subsidy rates for the different types of

private research efforts. Let ψa and ψb denote the applied research and basic research subsidy rates,

respectively. The share of GDP allocated to public research (R/Z) is kept constant by the policymaker.

Table 11 reports the optimal subsidy rates and resulting equilibrium variables.

Table 11: Type-Dependent Research Subsidy (in percentages)

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.5 14.7 0.6 0.13 85.6 0.6 0.52 4.4 8.9 7.2 1.35 100.00
Targeted 11.1 48.6 0.5 12.7 4.4 0.11 83.5 5.1 0.50 3.5 7.3 29.9 1.71 102.81
Soc Plan - - - 12.0 3.8 1.89 83.1 4.5 2.22 3.4 6.8 35.4 1.88 104.61

See Table 8 for variable definitions.

Since the underinvestment is mainly in basic research, the optimal type-dependent subsidy dic-

tates a much larger subsidy rate for it–namely, ψb = 49% and ψa = 11%. Here, the major component

of policy is a more than fivefold increase in the subsidy rate for basic research, whereas the subsidy

rate for applied innovation is virtually unchanged.

The large value for the basic research subsidy is straightforward to understand. There are spillovers

associated with basic innovation that are not internalized by firms. By subsidizing this type of in-

novation, we can mitigate this effect. Contrary to the results seen in the uniform policy case, this

policy can achieve a large fraction of the welfare gains seen in the social planner’s optimum: 61%

(= 2.8/4.6). Still, there is a good deal of room left for improvement, and in the next section, we

investigate the sources of these remaining inefficiencies.

5.3 Misclassification of Research Type

The previous discussion highlights that the most promising policy tool to increase welfare is based

on a type-dependent subsidy. One concern, however, is that it is not always clear whether or not

a specific undertaking should be considered basic research. This might lead firms to misclassify

research investment in order to exploit the differential subsidy rates. In this section, we quantify how
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optimal policies and welfare depend on the degree of misclassification of research.

In this setting, some portion of applied research spending might be misclassified as basic research

and, therefore, obtain a more favorable subsidy rate. We can capture this theoretically by assuming

that some fraction z ∈ [0, 1] of applied research is misclassified as basic research. Letting va and

vb stand for the total present value associated with successful innovation of the respective type, this

results in the modified product-line level optimization

Π = max
xa,xb

xava + xbvb − (1− [(1− z)sa + zsb]) w̃ca(xa)− (1− sb)w̃cb(xb) (24)

Thus, setting real subsidy rates sa and sb in this modified regime (characterized by the level of mis-

classification z) is equivalent to setting subsidy rates s̃a and s̃b in the regime without misclassification

(z = 0), where these effective rates are given by

s̃a = (1− z)sa + zsb (25)

s̃b = sb. (26)

Given an optimal type-dependent subsidy scheme ŝa and ŝb from the case with no misclassification of

research, we can exactly implement this by setting s̃a = ŝa and s̃b = ŝb, which, in terms of real subsidy

rates means

sa =
ŝa − zŝb

1− z
and sb = ŝb (27)

As this expression makes clear, in the region where the desired sa and sb are both positive, we can

replicate the optimal policy. However, if we are constrained to set positive subsidy rates, the full

optimum cannot be implemented. This will be the case when the misclassification parameter exceeds

a certain threshold–i.e.,

z > z∗ ≡ ŝa

ŝb
. (28)

The optimal policies are illustrated in the left panel of Figure 13, where the red line indicates the

true applied subsidy rate (sa); the green line is the effective applied subsidy rate (s̃a); and the blue

line is the true basic subsidy rate that also corresponds to the effective one (sb = s̃b). The dashed

vertical line represents the threshold at z∗. When the scope for misclassification is small (i.e., z < z∗),

we can implement the optimal policy by setting the basic subsidy to the exact targeted rate (sb = ŝb)

and imposing some reduction on the applied research subsidy rate. When the misclassification level

exceeds the threshold and a tax on applied research is not possible, we cannot restore the optimal

policy (ŝa, ŝb) but can maximize welfare by setting the applied subsidy to 0 and finding a second-best

policy level for sb.

The welfare level achieved for each level of misclassification is plotted in the right panel of Figure

13. Importantly for policymakers, the welfare gains arising from a type-dependent subsidy are robust

to a substantial amount of misclassification before falling. Loosely speaking, the welfare gains asso-

ciated with a type-dependent research subsidy are roughly the same for any level of misclassification

below 50%.28

28Chen, Liu, Suárez Serrato, and Xu (2018) analyze the effects of a Chinese policy that awards substantial corporate
tax cuts to firms that increase R&D investment over a given threshold. They find, amongst others, that about 30% in the
resulting increase of R&D is due to relabeling of administrative expenses.
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Figure 13: Optimal Policies & Welfare with Misclassification of Research
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5.4 Academic Policy

An important question is whether and how the presence of a public research sector affects the optimal

policy choices of the social planner. One possibility is that the public sector provides a more targeted

policy tool and is, therefore, a substitute for incentivizing private basic research efforts. Tables 12 and

13 explore these policy choices in several steps.

Table 12: Optimal Academic Policies (in percentages)

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.50 14.7 0.60 0.13 85.6 0.55 0.52 4.4 8.9 7.2 1.35 100.00
Unif Acad 29.8 29.8 0.68 16.7 1.46 0.27 81.9 1.47 0.67 5.3 10.7 15.4 1.70 100.70
Unif Acad+ 24.3 24.3 3.24 15.5 0.89 2.80 81.7 0.86 3.19 4.7 9.6 24.4 1.88 102.88
Soc Plan - - - 12.0 3.84 1.89 83.1 4.51 2.22 3.4 6.8 35.4 1.88 104.61

In the second row of Table 12, we allow the social planner to optimize not only on the uniform

research subsidy to firms, but also on funding for the academic sector. The optimal funding for the

academic sector calls for an increase in public investment by 0.25% of GDP, or a 50% increase with

respect to the observed levels. Importantly, the optimal uniform subsidy to firms remains unchanged

and suggests a potential complementary role for research policies targeted towards the public sector.

Table 13 relaxes the assumption that the private and public research sectors have the same pro-

duction functions. Unfortunately, we do not have data for our setting on the breakdown of costs

of public and private research. However, the fact that there is a linkage between private and public

research wages is a key insight that we exploit in this robustness check.29 Consequently we simulate

the model with different levels of public research productivity, with cost parity as a lower bound on

the productivity of public researchers relative to private sector researchers. For each level of the pro-

29The literature models the distinction between private and public research in terms of creative control (Lacetera, 2009;
Howitt, 2000; Aghion and Tirole, 1997). The public sector, due to its non-profit nature, can essentially commit to leave
scientists to pursue their own interests. Consequently if scientists value creative control they will have to be paid a wage
premium in order to give it up. This feature has received empirical support in work by Stern (2004), who studies the job
market for recent PhDs in biology. By using information on multiple job offers, he shows that wages are substantially lower
in jobs that promise scientists a greater degree of freedom and disclosure of research.
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ductivity multiplier, we recompute the optimal uniform subsidy plus the academic spending-level

policy, keeping other parameters the same as in the baseline estimation. Table 13 summarizes the

results of this exercise.

Table 13: Optimal Subsidies With Various Academic Productivities

Academic Multiplier Optimal Uniform Subsidy Optimal Academic Spending Welfare Gain

1x 29.8 0.68 0.7
2x 29.2 1.01 1.0
5x 27.6 1.54 1.9

Increasing the productivity of public research increases the optimal level of funding given to

public research in the form of academic spending and substantially increases the associated welfare

gains. The optimal uniform subsidy remains nearly constant, decreasing only slightly. There are

two primary and countervailing forces at play. The first is that more academic basic research will

increase the number of “hot” product lines, thus increasing the returns to applied research by private

firms. The second is that more academic spending on researchers will increase the wage in general

equilibrium, thus increasing the costs of applied research. Our estimates suggest, therefore, that the

optimal uniform subsidy remains a robust complementary tool with respect to policies focusing on

the public research sector.

Finally, the third row of Table 12 relaxes the “Ivory Tower” assumption in the applicability of

academic research. In our model, academic research is assumed not to be immediately applicable

to production. Its effects are borne out only through the effects of within-industry spillovers, with

larger step sizes for applied innovations that build on it. Thus, there is a sense in which academic

research is less immediately effective than private basic research, where innovations are directly used

in production and spillovers are internalized when they fall within a firm’s industrial scope. So

we also include the results of an additional counterfactual exercise in which academic innovation is

immediately applicable (Unif Acad+), putting it more on par with private basic research. However,

here we can see that the optimal level of academic funding goes up substantially, as do the associated

welfare gains.

6 Extensions and Robustness Checks

In this section, we illustrate the robustness of our estimation results and policy analysis to a number

of variations on our sample and model. In each case, the implied parameter estimates and the match

between the model and the data moments are depicted in online Appendix H, while, in the text, we

report the social planner’s allocation and the allocations that result from the different policy tools.

6.1 Heterogeneous Firm Types

Our baseline estimation identifies the degree of cross-industry spillovers associated with basic re-

search by using information on the correlation between firms’ multi-industry presence and their
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share of basic research spending. One concern is that this correlation could be also accounted for in

an extended model in which firms have a differential comparative advantage in applied versus basic

research. To explore this possibility, we formulate and re-estimate a version of the model featuring

multiple, persistent firm types.

In this extended model, upon successful entry, firms randomly realize a type, denoted by k, that is

fully persistent and that determines their basic research cost structure. In particular, we consider the

case in which, a certain parameterized probability χ, firms are of a type that does no basic research (or

has an infinitely or prohibitively high fixed cost of basic research); and with the remaining probability,

they are of a type that can undertake basic research but must still pay a fixed and variable cost to do

so, as in the baseline model.

Formally, χ enters into the flow equations characterizing the steady-state distributions over firms

Γ and products F (see Appendix D). The effect on incentives can be seen most directly in the modified

value function below, in which a firm’s production function for basic research (and, hence, overall

value function) is dependent on firm type.

(r− g)Vk
m = max

a,b


−w̃ha(a)− w̃Ek

φ

[
hk

b(b) + 1(b>0)φ
]

+a
[
αVk

H + (1− α)Vk
C + Vk

m
]
+ b(1 + p m

M )
[
Vk

H + Vk
m
]

+x
(
1− m

M

) [
Vk

m+1 −Vk
m
]
− τVk

m + κEq̂V(q̂)


It is worth noting that adding firm types creates a substantially more complex problem due to the

need to track and simulate the joint distribution of firm type and industry presence, as well as

productivity.

To identify the parameter χ, we use information from the subsample of firms that appear multiple

times in the R&D survey. Specifically, we match the overall fraction of firms performing basic research,

as well as the persistence of the performance of basic research from year to year. In this sample, the

unconditional probability of doing basic research is 30%, while the persistence is 74%. Intuitively,

the more that basic research is driven by fixed firm types, rather than by ephemeral, idiosyncratic

draws from a fixed cost distribution, the more persistent basic research should be. Thus, the firm-

type parameter and the idiosyncratic fixed-cost distribution parameters will be jointly determined

by the persistence and basic research extensive margin moments. Note that we re-estimate all of

the parameters of this model, not just the firm-type parameter alone. The matched moments appear

in Tables 24 and 25 of online Appendix H. We match both moments relatively well: the simulated

persistence is exactly matched to the empirical one at 60%, while the unconditional share of firms

investing in basic research is 36%.

Table 14 checks whether the policy conclusions of the baseline model change with the inclusion

of persistent types. While we see less-aggressive optimal policies across the board, the same essential

message holds: a limited uniform policy can produce some welfare gains but is hampered by over-

subsidization of applied research actually harming the incentives for basic research. The targeted

research subsidy, which calls for a much higher basic research subsidy, can still produce substantial

welfare gains. These results are largely consistent with our intuition for the implications for intro-

ducing persistent firm types. The core inefficiency present in the baseline model remains, that is,
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Table 14: Policy results for the case of persistent firm types.

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.5 14.2 0.5 0.2 86.1 0.5 0.5 4.1 8.8 7.6 1.3 100.00
Soc Plan 11.9 1.5 2.2 85.1 2.2 2.5 3.2 6.9 26.0 1.5 101.98
Uniform 16.0 16.0 0.5 14.8 0.7 0.2 85.2 0.6 0.5 4.3 9.4 8.6 1.3 100.04
Targeted 3.8 41.7 0.5 12.5 3.5 0.2 85.4 3.9 0.5 2.7 7.4 25.6 1.4 101.48
Unif Acad 16.0 16.0 0.5 14.8 0.7 0.2 85.1 0.6 0.5 4.3 9.4 9.1 1.3 100.04

Type Dep ψnobasic ψbasic
Uniform 2.5 17.0 0.5 15.6 1.7 0.2 85.2 1.6 0.5 2.5 10.2 15.6 1.4 100.72

See Table 8 for variable definitions.

firms in a limited number of industries are not fully appropriating the fruits of their basic research

investments. The fact that this is now true for only a subset of firms dampens the impact of this

inefficiency, leading to lower optimal policy levels (in the uniform case, 30% vs 16%).

Interestingly, the presence of firm heterogeneity opens up the possibility for new policy instru-

ments. In the last row of table 14, we present the case in which the policymaker can set the uniform

subsidy according to the identified firm type. The resulting optimal policy favors high-type firms and

delivers welfare gains of roughly half those of the targeted policy, which has differential subsidies for

applied and basic research. It is natural that we cannot achieve parity here because within high type

firms, we still have the issue of oversubsidizing applied research. Yet the problem is mitigated by the

presence of some (low-type) firms that are unable to do basic research, meaning that firm type is a

strong proxy for research type.

6.2 Heterogeneous Industries

To address the concern that there is heterogeneity across industries in the average intensity of basic

research, we also formulate and re-estimate a version of the model with such a feature built in. In

particular, starting from the baseline of ten symmetric industries, we split the economy into two

groups of industries that we call sectors. Each sector comprises five industries that are differentiated

by their parameters governing basic research costs and benefits. In the implementation, we allow the

spillover probability and the basic research fixed and variable cost parameters to vary between these

two sectors. We then estimate these parameters using moments similar to those from the baseline

estimation but split by sector.

To accommodate this extension, the necessary changes to the model and the estimation are quite

substantial. The value function relevant state is now no longer just the number of industries in which

the firm has working knowledge, m, but, rather, the respective numbers for sectors 1 and 2, (m1, m2),

as firms’ operations can span the two sectors simultaneously. The following modified value function
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encapsulates this logic, wherein k ∈ {1, 2} now denotes the sector

(r− g)Vk
m1,m2

= max
a,b



−w̃ha(a)− w̃Ek
φ

[
hk

b(b) + 1(b>0)φ
]

+a
[
αVk

H + (1− α)Vk
C + Vk

m1,m2

]
+b(1 + p mk

M )
[
Vk

H + Vk
m1,m2

]
+ p m−k

M

[
V−k

H + V−k
m1,m2

]
+x1

(
1− m1

M1

) [
Vk

m1+1,m2
−Vk

m1,m2

]
+x2

(
1− m2

M2

) [
Vk

m1,m2+1 −Vk
m1,m2

]
−τVk

m1,m2
+ κEk

q̂Vk(q̂)


Notice that industry expansion in sector 2 is still relevant for the value in sector 1, as this affects the

probability of being able to internalize spillovers from sector 1 into sector 2, and vice versa. Similarly,

in order to compute aggregates, the distribution Γ now spans not just total industries and products,

(m, n), but also those split by sector, (m1, m2, n1, n2). For our particular algorithmic parameters, this

renders the computational burden larger by an order of magnitude.

To match these sectors to the data, we use Figure 18 in the online Appendix to group those indus-

tries with above-median average basic research intensity into a “high basic” sector and the remainder

in a “low basic” sector. Basic research intensity in most industries lies between 3% and 8− 9%. It is

highest for firms in manufacturing activities (such as “manufacture of chemicals, metals and machin-

ery”) and scientific activities (“Professional, scientific and technical activities”). The latter industry

is dominated by information technology firms. These industries are also the largest contributors to

basic research expenditures in aggregate terms. Basic research intensity is lowest for agriculture and

finance activities. Finally, the figure suggests an outlier in terms of basic research investment, which

is the sector of “Education and Human Health Activities.” A closer inspection of the data reveals

that most of the firms within that category are pharmaceutical/biotech companies. At the same time,

their importance within the French economy seems to be rather limited in aggregate terms. The spike

represents only 23 out of a total sample of 6,763 firms (representing less than 1% of aggregate basic

research investment).30

While the industries were classified on the basis of their basic research intensity, it is interesting to

note that the sensitivity of basic research to multi-industry presence changes. That is, the high basic

sector displays a strong relationship between industry presence and basic research intensity along

both the extensive and intensive margins, while the low basic sector shows a weaker relationship that

is nearly flat. In the new estimation, some of the existing parameters naturally adjust slightly due to

the new model specification. However, there are no major changes to the parameters common across

sectors, such as the discount rate, the CRRA parameter, or the applied cost level. As for the parameters

that do vary across sectors, we see a substantial difference in the rate of cross-industry spillovers

(ph
b = 33% and pl

b = 6%). Additionally, the basic research variable costs are about 20% higher, and

the fixed costs are roughly 25% higher in the basic intensive sector. Thus, both the benefits and costs

are larger in the basic intensive sector, but, on net, they reproduce the cross-industry patterns seen in

the data.
30In Section 3.2, we mentioned that these observations have no impact on our results.
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Table 15: Policy results for the case of heterogeneity across industries.

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.5 12.7 0.4 0.1 86.2 0.7 0.5 5.0 15.9 7.4 0.8 100.0
Uniform 30.7 30.7 0.5 14.7 1.1 0.1 82.6 2.3 0.5 6.0 19.4 12.3 1.1 100.5
Academic 10.0 10.0 0.8 12.7 0.4 0.2 85.9 0.7 0.8 5.0 15.9 9.7 0.8 100.1
Unif Acad 30.5 30.5 0.7 14.7 1.1 0.2 82.5 2.2 0.7 6.0 19.4 13.5 1.1 100.5
Targeted 6.2 49.1 0.5 10.2 4.5 0.1 84.2 11.6 0.5 3.6 11.8 30.7 1.1 103.8

Per Sector ψlow ψhigh
Uniform 26.0 34.6 0.5 14.7 1.1 0.1 82.7 2.3 0.5 6.0 19.5 12.3 1.1 100.5
Note: For the per-sector policy, ψhigh refers to the high basic intensive industry policy, while ψlow refers to
the low basic intensive industry policy. See Table 8 for variable definitions.

Table 15 reports the planner’s problem and associated policies. Our intuition going in was that,

as with the model extension with persistent firm types, the precise implications on a per-sector basis

would be different (and would, in fact, be different if one were to consider sector-specific policies), but

that, in the aggregate, approximate linearity of welfare and policy optima render implications similar

to those seen in the baseline. This intuition was largely confirmed upon re-estimation of parameters

and calculation of optimal policies. In the case of both the targeted policy and the uniform policy,

the results are extremely similar to those of the baseline. Interestingly, a sector-dependent uniform

subsidy (reported in the last row) does not significantly improve outcomes in this economy. The full

results are summarized in Tables 26 and 27 in online Appendix H.

6.3 Importance of Research Types & Institutions

In this section, we entertain various simplifications of the model in order to sharpen the intuition

about the mechanisms at play. First, we eliminate basic research by both the public and private

sectors and, discuss the changes in the main results. To better understand which of these two factors

(research types or sectors) is leading to these effects, we then remove only private basic research while

maintaining public basic research.

6.3.1 Eliminating Private and Public Basic Research

Consider a model in which basic research investment by both private and public labs is eliminated.

Because there is now only one type of uniform research investment, this setup closely resembles

that of Klette and Kortum (2004). The model features only eight parameters–as opposed to the 19

seen in the baseline model–which we fully re-estimate. We report the policy results in Table 16.

The estimation results are contained in Appendix H, and we focus our discussion on the associated

policies. The baseline for this economy takes as given the 10% subsidy rate.

The first row reports the baseline economy, while the second row reports the optimal research

subsidy. The most important result is that the optimal policy is negative, which means that the

baseline economy features overinvestment in research. Qualitatively, this is the opposite of our full-

fledged economy with two types of research efforts. This result has two important implications: first,

as showed earlier, our model can generate over- or underinvestment depending on parameter values;
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Table 16: Policy Analysis Without Private and Public Basic Research

Policy ψa τa Lp Le La g β

Baseline 10.0 15.28 86.88 3.75 9.37 1.27 100.00
Uniform -4.47 13.78 88.64 3.24 8.11 1.14 100.10

See Table 8 for variable definitions.

second, and more important, the distinction between the two types of research and the associated

spillovers turn out to be crucial for policy conclusions.

Thus, this model, in addition to being unable to make positive predictions regarding basic re-

search, yields misleading policy conclusions. This is a byproduct of the elimination of basic research,

in the form of both public and private research labs. In the next section, we reintroduce basic re-

search by public labs in order to understand how much of the final result is due to the removal of

basic research from the private sector alone.

6.3.2 Eliminating Private Basic Research Only

We now eliminate private basic research from the model but still maintain public research labs. Thus,

private investment focuses on applied research, but there are still potential spillovers from academic

research. One important implication is that we can no longer use moments relative to private basic

research intensity in the estimation. We allow the social planner to optimally choose a uniform

research subsidy to the private sector and, additionally, we consider a joint policy over a private

research subsidy and the level of funding given to public research labs.

Table 17: Policy Analysis Without Private Basic Research

Policy ψa ψb R/Z τa τe
b Lp Lu Le La α g β

Baseline 10.0 10.0 0.50 14.4 0.13 86.5 0.5 4.2 8.8 2.14 1.24 100.00
Uniform 1.33 1.33 0.50 13.5 0.13 87.6 0.5 3.9 8.1 2.26 1.16 100.04
Unif Acad 5.41 5.41 0.87 13.9 0.43 86.7 0.9 4.0 8.3 6.91 1.23 100.19

See Table 8 for variable definitions.

The policy implications generated by this simplified model are, again, striking. First, a comparison

between the baseline economy and the uniform research subsidy reveals over-investment in private

applied research. The social planner increases welfare by reducing the subsidy to the private sector

from 10% to a mere 1.33%. While this reduces firms’ research investment and the rate of applied

research, it increases resources for production and slightly increases welfare. Second, when jointly

determining the research subsidy and the funding of the public sector labs, we see evidence of com-

plementarity between private and public research policies. That is, we simultaneously see a rise in

the optimal academic spending (from 0.5% to 0.87%), and an increase in the applied subsidy rate

(from 1.33% to 5.41%).

Taking the models in this section together, it is evident that the existence of investment in basic

research by the private and public sectors is necessary for baseline policy conclusions. Without

these distinctions in research investments and their associated spillovers, optimum policy discourages
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research relative to the baseline economy.

6.4 Limited Diffusion of Private Basic Research

Another potential concern relates to the appropriability of public and private basic research. An

important feature of research produced in the public sector is that it is a public good, while private

research may be kept secret by firms. To address this concern, we start by considering a version

of the model in which private basic research benefits the investing firm but makes only a limited

contribution to economic growth. We parameterize this by letting only a fraction d ∈ [0, 1] of private

basic research diffuse and contribute to economic growth. This changes the growth rate as follows:

g =
τa

[
αEH

q̂ (q̂ + η)ε−1 + (1− α)EC
q̂ (q̂ + λ)ε−1 − 1

]
+ dτe

b

[
Eq̂ (q̂ + η)ε−1 − 1

]
ε− 1

.

Note that the last term in the numerator is multiplied by d, which captures the fact that only a

fraction of private basic research contributes to growth. A second implication of this modification is

that the equilibrium fraction of hot product lines is also reduced.

The policy implications of the new model are illustrated in Figure 14. Note that our baseline

model lies at the right-hand side of the graphs, where the level of diffusion is maximal. As the

fraction of diffused private basic research declines, the optimal policy provides less support to private

basic research. Since a smaller fraction of private basic research is spilling over to applied research

effectiveness, the optimal policy also reduces its support to applied research.

Figure 14: Optimal Policies & Welfare with Limited Diffusion of Private Basic Research
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Hence, while the qualitative implications of the optimal policy remain the same–i.e., relatively

more support for basic research–the magnitudes of the subsidy rates are lower. Nonetheless, for

diffusion levels above roughly 60%, the optimal policy results are relatively similar to the baseline.
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6.5 Applied Research Spillovers

A final question is whether applied research is necessarily targeted to specific product lines/industries.

In other words, within a Schumpeterian framework, applied research might also generate multiple

cross-industry spillovers. We address this concern both theoretically and empirically.

First, we generalize the structure of the spillovers by allowing for the possibility of applied cross-

industry spillovers. Thus, instead of having one parameter p that specifies the probability of a basic

spillover occurring, we have now parameters pa and pb that specify that probability for applied and

basic research, respectively. The following equation defines the newly augmented value function of a

firm

(r− g)Vm = max
a,b


−w̃ha(a)− w̃Eφ

[
hb(b) + 1(b>0)φ

]
+a(1 + pa

m
M ) [αVH + (1− α)VC + Vm] + b(1 + pb

m
M ) [VH + Vm]

+x
(
1− m

M

)
[Vm+1 −Vm]− τVm + κEq̂V(q̂)


Empirically, we estimate the correlation between the applied research investment of firms and

their multi-industry presence. To disentangle the relative research incentives in basic and applied

research from their level effect, we compute the amount of each research investment relative to total

sales. As with our previous benchmark specification, we also control for firm size. Table 18 reports

the results.

Table 18: Basic and Applied Research to Sales

Applied/Sales Basic/Sales
(1) (2)

Log # of 1 Digit Product Markets 0.0008 0.0024***
(0.0025) (0.0004)

Log Employment -0.0120*** -0.0001
(0.0007) (0.0001)

Year & Organization FE Yes Yes

N 13708 13708
Notes: Pooled data for the period 2000-2006. Estimates are obtained using Tobit
models and relate to the marginal effect of the variables at the sample mean.
Basic/Sales is defined as the ratio of total firm investment in basic research
divided by total firm sales. Applied/Sales is defined as the ratio of total firm
investment in applied research divided by total firm sales. Log # of Industries
is the number of distinct SIC codes in which a firm is present. Log Employment
is the total employment of firms. Year FE denotes year fixed effects, and Orga-
nization FE denotes whether the firm operates its activity as a conglomerate or
as a business group. See the Appendix for the definition of variables. Robust
standard errors clustered at the firm level are in parentheses. One star denotes
significance at the 10% level; two stars denote significance at the 5% level; and
three stars denote significance at the 1% level.

In column 1, the dependent variable is applied research to total sales, and the correlation with

firm scope is economically and statistically close to 0. Note that this is not an artifact of the variable
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definition since basic research investment to sales in column 2 is increasing with the multi-industry

presence of a firm.

In addition to our reduced-form analysis, we quantitatively assess how the introduction of the

applied spillover would affect the model fit. To this end, we evaluate the estimation objective function

for different positive values of the applied spillover parameter, while keeping the other parameters

fixed. The results of this exercise are plotted in Figure 15.

Figure 15: Loss Function for Values of Applied Spillover pa

0.00 0.02 0.04 0.06 0.08
Applied Spillover

0.4

0.6

0.8

1.0

Es
tim

at
io

n 
Ob

je
ct

iv
e

As is apparent from the graph, the objective function (wherein lower is better) is sharply increasing

from the lower bound of pa = 0. There is a small region around pa ∈ [0, 2%] where the objective might

be interpreted as flat. We also verified quantitatively that none of the values in that region has any

impact on our policy results.

6.6 External CRRA Parameter

In the benchmark estimation, the CRRA parameter (γ) in the utility function is sensitive to data on

firm growth. While the resulting estimate for risk aversion of 3.0 is consistent with estimates from

the asset pricing literature (Gormsen and Jensen, 2017), we check the robustness of our conclusion

by bringing in other estimates from the literature. Barro (2006) finds that a parameter value between

2 and 4 is necessary to match data on both overall savings rates and the change in the savings rate

with income. Thus, our value lies in the middle of this range. To investigate the robustness of our

estimated value, we also consider the case of a CRRA parameter equal to 2. In this exercise, we fix the

value of the CRRA parameter to 2 and re-estimate all other parameters to match the same moments

as in the baseline estimation. Table 19 shows that all of our policy implications remain robust.
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Table 19: Policy Analysis in Case of γ = 2

Policy ψa ψb R/Z τa τe
b τu Lp Lb Lu Le La α g β

Baseline 10.0 10.0 0.5 15.1 0.6 0.1 84.7 0.6 0.5 4.7 9.5 6.8 1.4 100.0
Uniform 41.3 41.3 0.5 19.2 2.0 0.0 77.8 2.1 0.5 6.5 13.1 15.6 2.0 102.2
Targeted 10.5 46.3 0.5 13.2 4.3 0.1 82.7 5.0 0.5 3.9 7.9 28.8 1.7 104.0
Unif Acad 42.9 42.9 0.8 19.5 2.0 0.3 77.1 2.1 0.8 6.6 13.4 19.5 2.1 102.4

See Table 8 for variable definitions.

7 Broader Implications: Are Ideas Getting “More Expensive” to Find?

In this section, we will discuss the role of federal support for scientific research and its implications

for research productivity. Our analysis has shown that public spending on research makes private

firms more productive by increasing the opportunities for them to build on (by creating hot product

lines). More specifically, the average applied research productivity can be expressed as

Applied Research Productivity =
aq̄[αη + (1− α)λ]

wtha(a)
.

This expression divides the average improvement that results from applied innovation by the applied

R&D expenses. Note that the return to applied R&D investment increases if there are more hot

product lines–i.e., if α is bigger. Expressions (16) and (17) showed that more public spending in basic

research increases α. Hence, our model predicts that increasing the share of GDP that goes to public

research improves research productivity in the private sector, as illustrated in Figure 16.

Figure 16: Academic Spending and Research Productivity (Theory)
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This important observation about the link between federal funding and private firms’ research

productivity could explain some salient trends in the U.S. economy. Over the past 35 years, federal

funding for research as a share of GDP has decreased from 1.25% to 0.65%, as illustrated by the blue

line in Figure 17.

Through the lens of our model, this massive reduction in federal funding would generate less
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Figure 17: Academic Spending and Research Productivity (Predicted)
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basic knowledge and, as a consequence, fewer hot product lines. Since private firms’ applied research

effort is affected by the number of hot product lines, this reduction would make private firms less

productive in generating new applied ideas. In other words, ideas would be getting more expensive

to find in the U.S. over time. When we introduce the exact empirical time-path of federal funding

in the U.S. between 1978 and 2016 (the blue line in Figure 17), our model predicts that researcher

productivity–i.e., ideas per researcher–would fall by roughly 26% (=0.8/1.1-1). This model-based

prediction is supported empirically by Bloom, Jones, Van Reenen, and Webb (2017). Their important

paper, entitled “Are Ideas Getting Harder to Find?”, shows that research productivity in the U.S.

decreased by 40% between 1980 and 2000.31 Restricting to their sample period, a simple back-of-the-

envelope calculation implies that through the lens of our model, the reduction in federal funding for

research can explain almost 50% (=20%/40%) of the measured decline in research productivity.

An important take-away from these findings is that effective macroeconomic policy-design must

take into account the complementarity between public and private research investment. Focusing

only on private research investment might be ineffective and make the aggregate economy under-

perform.

8 Conclusion

In this paper, we distinguished between basic and applied research investment and identified the

spillovers associated with each. We built a new micro-founded model of endogenous growth with

two types of research investment (basic and applied) and two types of entities (private firms and pub-

lic research labs). Our quantitative analysis highlighted the importance of these distinctions. First, in

the competitive equilibrium, applied research is overinvested in and basic research is underinvested

31Similarly, Akcigit and Liu (2015) show that research productivity in the U.S. Pharmaceuticals sector decreased dramat-
ically between 1980 and 2005.
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in. As a result, imposing a uniform research subsidy does not generate the expected welfare im-

provement due to inefficient cross-subsidization of applied research. A key message of our paper is,

therefore, that standard R&D policies can accentuate the dynamic misallocation in the economy.

Second, there are important complementarities between public and private research investments.

When public research labs produce more basic knowledge, private firms build on this and produce

more impactful applied innovations. Indeed, we showed that the decrease in public research invest-

ment in the U.S. could potentially explain 50% of the decline in research productivity, as it was shown

by Bloom, Jones, Van Reenen, and Webb (2017).

Overall, our analysis relative to the uniform research subsidy resembles a reform of the French

R&D policy. In 2008, the French government introduced a 30% tax credit for all of firm’s R&D related

expenditures. While the new system represented a significant subsidy to private R&D, with an

annual budget of five billion Euros, its effectiveness in boosting innovation has been widely criticized

(Larousserie, 2015).

Our findings can account for the limited impact of such policies and, to the need for targeting basic

research more directly. Our paper took a first step in trying to quantify the inefficiencies regarding

different types of research and innovation efforts. There are still important open questions awaiting

further study. In particular, the effect of university licensing and the collaboration opportunities

between universities and the private sector are two examples. We hope that further structural work

will be undertaken to enhance our understanding of the aforementioned issues, which can then guide

the relevant innovation policies.
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Appendix

A Data Organization

Data Organization

We first identify the ownership status of each firm in the economy and the head of the group with
which the firm is affiliated. Indeed, our data source (LIFI) defines a group as a set of firms controlled,
directly or indirectly, by the same entity (the head of the group). We rely on a formal definition of
control, requiring that a firm holds directly or through cross-ownership at least 50% of the voting
rights in another firm’s general assembly. We do not expect this to be a major source of bias in our
sample as most French firms are private and ownership concentration is strong even among listed
firms. Firms that do not conform to this definition are classified as stand-alone firms.

We then match the ownership information to our balance-sheet data and to our survey on lines
of business within firms. We drop firms that appear in the ownership data but for which we cannot
find balance-sheet information. We also delete as outliers firm-year observations whose ROA falls
outside a multiple of five of the interquartile range and firms that report 0 employment or which
have negative sales. Based on our two sources of information we identify the main line of business
from the balance sheets and the different segments of the firm from the survey on lines of business.
For computational convenience we create a new firm-group identifier that allows us to aggregate
at the same time business groups, business groups with multi-divisional firms, exclusively multi-
divisional firms and true stand-alone firms. We then define four measures of multi-market activity.
The first measure counts each market in which the firm-group is present either via its ownership links
or its multi-divisional structure. The second measure counts each market in which the firm-group
is present with at least 9 employees via its ownership links or its multi-divisional structure. The
third measure counts each market in which the firm-group is present exclusively via its ownership
links. The final measure counts each market in which the firm-group is present exclusively via its
ownership links and excluding financial activities.

We then define firm characteristics from balance-sheet data. There are three possible organiza-
tional types and comparison issues might arise. Taking the firm as the economic unit of interest has
the advantage of simplicity since information is directly available in the balance sheets. However,
this method has the disadvantage of not being comparable across organizational types. Indeed, most
information for multi-divisional firms is aggregated across lines of segment, whereas firms belonging
to business groups have market-specific information. Similar to existing studies by the Ministry of
Research (Dhont-Peltrault and Pfister, 2011), we decided to aggregate the information to the economic
unit at the highest level of control: the firm level for stand-alone and multi-divisional firms, and the
business group level for firms affiliated through majority ownership.32

In a final step we match the firms’ balance-sheet and patent information to information contained
in the R&D Survey. We focus on firms for which we have R&D information. Again we aggregate at
the highest level of control. As before, one has to be cautious in aggregating on the basis of variables
that might be prone to double-counting. When constructing information on the basic R&D intensity
of a firm this is not the case as we are focusing exclusively on “internal” research expenditures. There-
fore, if a member of the group contracts out research with another member of the group, then one
will be counted as “external” research expenditures and the other one as “internal” expenditures. To
correct for outliers in the dependent variable, we drop firm-year observations whose basic research
intensity, conditional on positive basic research, falls outside a multiple of five of the interquartile
range. In addition we exclude firm-year observations whose total R&D to sales ratio falls outside a
multiple of five of the interquartile range.33

32In addition to the economic rationale for constructing the data at the highest level of control there is also a legal
argument. Indeed most public administrations and tribunals define the eligibility of firms for subsidy programs with
respect to the business groups to which they belong.

33Alternatively, we exclude firm-year observations whose basic to applied R&D ratio falls above the 99th percentile of the
distribution. The results are qualitatively similar.
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Policy Environment

It is useful to describe the policy environment in France during the period of our data. The share
of GDP devoted R&D expenditures in France was on average 2.2% between 2000 and 2006. Inno-
vation policy during the sample period featured a mix of measures to support R&D investment of
firms through public financing. The main instrument to stimulate private innovation activity during
that period consisted of approximately 2.5 billion euros of yearly subsidies allocated to firms either
through ministries or government agencies such as OSEO-ANVAR. Note that our R&D survey allows
us to directly measure this form of public financing in our sample. Finally, the R&D tax credit sys-
tem was seen by the government as a secondary policy measure until a major reform in 2008 that
increased the base and the rate of the the tax credit.

Variable List

All variables are organized and computed according to the method set out in the previous section.
To summarize, we decided to aggregate the information to the economic unit at the highest level of
control: the firm level for stand-alone and multi-divisional firms, and the business group level for
firms affiliated through majority ownership. In the remainder of the document we will, for the sake
of notational convenience, refer generically to firms.

• Basic Research Intensity: total basic research by firm i in year t divided by total applied research
of firm i in year t. The formulation of the survey questions related to the type of research
undertaken is directly derived from the definitions provided by the Frascati Manual;

• # of Industries: sum of all distinct SIC codes within firm i in year t irrespective of organizational
form (business group or multi-divisional structure). Industries are successively defined at the
4-,3-,2- and 1-digit SIC levels;

• # of Industries - Weighted Sum: weighted sum of all distinct bilateral 1-digit SIC links within firm
i in year t. Weights are computed on the basis of the empirical frequency of each bilateral SIC
link in each year t;

• # of Patent Classes Applied: sum of cumulated distinct patent-class applications within firm i in
year t. Cumulated patent-class applications are computed for the period leading from 1993 to
year t. Patent classes are successively defined at the 5,4,3,2 and 1-digit levels (EPO Classifica-
tion);

• # of Patent Classes Granted: sum of cumulated distinct patent-class grants within firm i in year t.
Cumulated patent-class grants are computed for the period leading from 1993 to year t. Patent
classes are successively defined at the 5-,4-,3-,2- and 1-digit levels (EPO Classification);

• Financial Int.: binary indicator equal to 1 if firm i in year t is present in a financial industry, 0
otherwise;

• Foreign HQ: binary indicator equal to 1 if the headquarters of firm i in year t are located outside
France, 0 otherwise;

• Market Share: weighted average of total sales of firm i, year t in industry k divided by total
industry sales in year t. Weights are computed on the basis of the industry share of employment
within firm i in year t;

• Outsourcing to Univ.: binary indicator equal to 1 if firm i in year t has outsourced R&D to French
universities, 0 otherwise;

• Profitability - ROA: weighted average of EBIDTA divided by total fixed assets of all subsidiaries
within firm i in year t. Weights are computed on the basis of the subsidiaries’ share of employ-
ment within firm i in year t;
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• Profitability - ROS: weighted average of EBIDTA divided by total sales of all subsidiaries within
firm i in year t. Weights are computed on the basis of the subsidiaries’ share of employment
within firm i in year t;

• Public R&D Funds: binary indicator equal to 1 if firm i in year t has received French public
funds, 0 otherwise;

• Research Area: weighted average of the share of respectively biotech / software / environmental
research in research expenditures in firm i in year t. Weights are computed on the basis of the
subsidiaries’ share of total R&D within firm i in year t;

• Total Employment: total employment of firm i in year t;

• IV - State Present in 1986: binary indicator equal to 1 if the French state had a non-zero equity
stake in firm i in 1986;

• IV - SOE in 1986: binary indicator equal to 1 if the French state had a controlling equity stake
in firm i in 1986.

Descriptive Statistics

Table 20 provides the descriptive statistics of the key variables.

Table 20: Descriptive Statistics

25th 75th Standard
Variable Mean Percentile Median Percentile Deviation Min Max N

R&D Investment
R&D To Sales 0.11 0.01 0.04 0.14 0.17 0.00 0.86 13708
Basic Research Intensity 0.06 0.00 0.00 0.02 0.19 0.00 1.57 13708
Number of Industries
1-Digit SIC 2.21 1 2 3 1.48 1 10 13708
4-Digit SIC 4.97 1 2 5 8.87 1 130 13708
Balance Sheet
Total Employment 1497.88 24 93 506 8445.93 1 195746 13708
Return on Sales 0.032 0.02 0.07 0.13 0.63 -39.39 7.36 13708
Age 21.17 8.79 18.92 30.55 14.97 0 86 13708
Ownership Structure
Financial Intermediary 0.05 0 0 0 0.22 0 1 13708
Foreign HQ 0.23 0 0 0 0.41 0 1 13708
Public and Private R&D
Public Subsidy to Private Investment 0.09 0 0 0.04 0.4 0 30.9 13708
Collaboration with Universities .15 0 0 0 0.36 0 1 13708
Note: Pooled data for the period 2000-2006. R&D To Sales is defined as the ratio of total firm research and development
expernditures to total firm sales. Basic Research Intensity is defined as the ratio of total firm investment in basic research to
total firm investment in applied research. Number of Industries is the sum of all distinct SIC codes within the firm. Return on
Sales is the ratio of earnings before interest, taxes, depreciation and amortization to total firm sales. Total Employment total
employment of the firm. Age is the difference between the current year and the year of the firm’s incorporation. Financial
Intermediary binary indicator equal to 1 if the firm is present in a financial industry, 0 otherwise. Foreign HQ: binary indicator
equal to 1 if the headquarters of the firm are located outside France, 0 otherwise. Public Subsidy to Private Investment binary
indicator equal to 1 if the firm has received French public funds for innovation expenditures, 0 otherwise. Collaboration with
Universities binary indicator equal to 1 if the firm has received French public funds for innovation expenditures, 0 otherwise.

Figure 18 provides a description of industry patterns in basic research investment. The horizontal
axis on the left measures average basic research intensity within an industry (bars) and is defined
as the ratio of basic to applied research investment. The right-axis reports the number of firm-year
observations within an industry, and is plotted through the connected line.
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Figure 18: Basic Research Intensity Across Industries
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The figure plots the number of innovative firms (right axis, black line), and their average basic research intensity across industries (left

axis, blue bars). Activity classification: 1 "Agriculture", 2 "Food and Textile Industries", 3 "Manufacture of chemicals, metals and machin-

ery", 4 "Manufacture of electrical and transport equipment", 5 "Construction and Utilities", 6 "Wholesale and retail trade", 7 "Transport,

Communication and Financial Activities", 8 "Professional, scientific and technical activities", 9 "Education and Human Health Activities",

10 "Arts, entertainment and others"’.

Across firms average basic research intensity is 6.5%, and the share of firms with positive basic
research investment is 25%. At the same time, the Figure shows that there is heterogeneity in research
investment across industries. Basic research intensity in most industries lies between 3% to 8-9%. It
is highest for firms in manufacturing activities such as “Manufacture of chemicals, metals and ma-
chinery" and scientific activities (“Professional, scientific and technical activities"). The latter industry
is dominated by information technology firms. These industries are also the largest contributors
to basic research expenditures in aggregate terms. Basic research intensity is lowest for agriculture
and finance activities. Finally, the figure suggests an outlier in terms of basic research investment
is constituted by the sector of “Education and Human Health Activities." A closer inspection of the
data reveals that most of these firms within that category are pharmaceutical/biotech companies. At
the same time, their importance within the French economy seems to be rather limited in aggregate
terms. The spike represents only 23 firms out of a total sample of 6,763 firms (representing less than
1% of aggregate basic research investment). In the empirical analysis we show that our estimates for
the cross-industry spillover are robust to industry heterogeneity in basic research investment. First,
our estimate is unaffected by the exclusion of the 23 firms in the biotech sector. Second, we control for
other types of industry heterogeneity by including industry fixed effects as well as controls related to
the field of research investment. Finally, we extend our model to allow for industries with differing
basic research technologies.

B Robustness Check Related to Across Industry Spillover

Table 21 further addresses concerns about the measurement of the cross-industry spillover. We focus
our discussion on the economic interpretation of the links between industries. One concern is that
industries are not necessarily symmetric in their innovation incentives and their network links. An-
other concern is that the measurement of multi-industry presence could be complicated by artificial
links either due to links with financial services, or due to shell companies.

Column (2) addresses the concern that the link between research investment and multi-industry
presence is driven by financial activities. To do so, we recompute multi-industry presence and size
by excluding links to banks, insurance companies, and asset management companies. In addition,
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Table 21: Basic Research and Multi-Market Activity - Measurement

(1) (2) (3) (4)

Log # of Industries 0.032*** 0.032***
(0.006) (0.006)

Log # of Industries (Size Condition) 0.026***
(0.007)

Log # of Industries (Weighted Links) 0.007***
(0.001)

Log Employment 0.003** 0.004*** 0.003***
(0.001) (0.001) (0.001)

Log Employment (Excluding Financials) 0.003**
(0.001)

Financial Activities -0.004
(0.009)

HQ Financial 0.011
(0.017)

HQ Foreign -0.013***
(0.005)

Employment Concentration Across Industries (HHI) 0.002
(0.015)

Year & Organization FE Yes Yes Yes Yes

N 13708 13693 13708 13708
Notes: Pooled data for the period 2000-2006. Estimates are obtained using Tobit models and relate to the
marginal effect of the variables at the sample mean. Basic Research Intensity is defined as the ratio of total
firm investment in basic research divided by total firm investment in applied research. Log # of Industries
is the number of distinct SIC codes in which a firm is present. Log # of Industries (Size Condition) excludes
activities with less than 10 employees from the count of distinct SIC codes. Log # of Industries (Weighted Links)
inversely weights the bilateral links of each firm by the frequency of the link in the population of French
firms. Log Employment is the total employment of firms. Log Employment (Excluding Financials) excludes
2 digit SIC codes associated to financial activities from the total employment of firms. Financial Activities
is a binary variable equal to 1 if the firm is active in 2 digit SIC codes associated to financial activities.
HQ Financial is a binary variable equal to 1 if the head of the group is a financial holding company. HQ
Foreign is a binary variable equal to 1 if the head of the group is a foreign holding company. Employment
Concentration Across Industries (HHI) is the Herfindahl index of within firm employment across 1 digit SIC
activities. Share in Software/Biotech/Materials is the share of R&D investment into the respective areas of
research. Industry fixed denote 1 digit SIC activities. Year FE denotes year fixed effects, and Organization FE
denotes whether the firm operates its activity as a conglomerate or as a business group. See the Appendix
for the definition of variables. Robust standard errors clustered at the firm level are in parentheses. One
star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars
denote significance at the 1% level.

we explicitly control for the presence of financial activities within the group (either as a subsidiary
or as the head of the group). The estimates are unaffected.34 Column (3) tests whether links in
our data are over-estimated due to artificial companies with no real economic activity. To do so, we
recompute multi-industry presence and size by considering only activities with at least 10 employees.
We also add two variables in the specification that should capture the possibility of spurious industry
presence. The first is a dummy variable on whether the headquarters are foreign. The second is a
Herfindahl index related to the concentration of employment within a given industry of the firm’s

34Note that this result is not surprising given that the positive correlation also existed for more granular decompositions
at the 3 and 4 digit SIC levels.
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portfolio. Again we find that our estimates are very similar in magnitude and precision. Column
(4) tries to address concerns about the symmetric treatment of industry links in our analysis. This
could be problematic if our multi-industry measure captures for instance integrated supply chains,
rather than a larger breadth of a firm’s activities. We go back to our data on the population of
French firms and measure the frequency of each distinct activity pair. We then inversely weight the
distinct bilateral links of our innovative firms. Intuitively, this measure will give less weight to a
bilateral industry link if it is very frequent, and a higher weight if it is relatively rare. Computations
and estimates are robust across all industry definitions but we only report the benchmark 1 digit
case. The estimate suggests that this alternative measure of multi-industry presence is still positively
correlated to basic research intensity. The difference in the point estimate is due to the difference in
the support of the weighted industry variable, but the magnitude of a standard deviation increase on
basic research incentives remains comparable (.019 increase in basic research intensity for the estimate
using the weighted measure as opposed to .022 for the estimate using the count measure).

C Robustness Check Related to Patent Citation Patterns

Table 22 provides additional robustness checks for the estimates on the cool-down rate of patents
originating from basic and applied research. We not only relax the restriction of same industry of
use, but also change the time horizon in which we measure patent quality.

The top panel of the table measures quality of follow-up patents by computing the 5-years-forward
citations of the citing patents and is measured for patents granted in the period 1975-1985. The bottom
panel re-classifies university patents that were defined as private depositors. In both cases results are
unchanged, with a citation difference between public and private patents that becomes statistically
non-significant at year 8. Indeed, in France, most of the academic patents are accounted for in
the “public” category. French universities generally manage their patents through public research
institutions with which academics are typically affiliated, one example being the CNRS.

Table 22: 2nd Generation Citation Patterns for Public and Private Patents

Age 1 2 3 4 5 6 7 8 9 10

5-Yr-Forward Citations .15** .16** .28*** .16** .22** .15** .33*** .08 .18 .15
(0.07) (0.07) (0.08) (0.06) (0.07) (0.07) (0.11) (0.08) (0.11) (0.12)

10-Yr-Forward Citations .3** .3** .62*** .28** .42** .23 .71*** .08 .39 .15
Including Univ. (0.15) (0.15) (0.17) (0.14) (0.18) (0.17) (0.25) (0.16) (0.25) (0.24)

Note:The table computes Average Citations of Citing Patents computing the 5-years-forward citations of the citing patents and
re-classifying university patents as public patents. The table reports differences in citation patterns using two sample t-tests with
unequal variances. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars
denote significance at the 1% level

D Theoretical Proofs

Spillovers Recall that the distribution of the number of spillovers is given by the geometric distri-
bution

Fn = (1− s)sn where s =
p

1 + p
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Thus by the properties of the geometric distribution, the expected number of spillovers overall is

E[n] = ∑
n≥0

n · Fn =
s

1− s
= p

For a firm operating in m (out of M) industries that gets n spillovers, the probability of getting k
utilized spillovers is

Bk|n
m =

(
n
k

)( m
M

)k
(

M−m
M

)n−k

=

(
n
k

)(
M−m

M

)n ( m
M−m

)k

It is useful to know the following binomial sum

∑
n≥k

(
n
k

)
yn =

yk

(1− y)k+1

Combining these, we find the the utilized spillover (k) distribution for a firm operating in m industries

Fk
m = ∑

n≥k
Bk|n

m · Fn = ∑
n≥k

(
n
k

)(
M−m

M

)n ( m
M−m

)k

(1− s)sn

= (1− s)
(

m
M−m

)k

∑
n≥k

(
n
k

) [
s
(

M−m
M

)]n

= (1− s)sk
( m

M

)k
(

M
sm + (1− s)M

)k+1

=

(
(1− s)M

sm + (1− s)M

)(
sm

sm + (1− s)M

)k

Then we can summarize these results with

Fk
m = (1− sm)sk

m where sm =
sm

sm + (1− s)M

The mean of this distribution is

Em[k] =
sm

1− sm
=

s
1− s

m
M

= p
m
M

Finally, in terms of p only, we get

Fk
m =

(
M

pm + M

)(
pm

pm + M

)k

where sm =
pm

pm + M

Production As the downstream production technology is unchanged in the generalized model and
we continue to impose symmetry across the industries. This implies that

Pi = P =
1
M

and Yi = Y = Z. (29)

Henceforth, we can drop the industry index i. The perfectly competitive firm that produces mid-
stream good Yi takes equilibrium prices P and pj as given while maximizing its profit

max
yj

{
P
[∫ 1

0
y

ε−1
ε

j dj
] ε

ε−1

−
∫ 1

0
pjyjdj

}
.

66



Back to Basics

This maximization leads to the following inverse demand for upstream good j

pj = P
(

Y
yj

) 1
ε

.

Monopolist in product line j, j has productivity qj. The firm takes the demand function for its product
as given and solves the following maximization problem

πj = max
yj

{
PY

1
ε y

ε−1
ε

j − w
qj

yj

}
This delivers the following optimal quantity

yj =

[
1
M

(
ε− 1

ε

)(
qj

w

)]ε

Z

Plugging this into the production function for midstream goods, we find a relationship between wage

w and aggregated productivity q̄ ≡
(∫

qε−1
j dj

) 1
ε−1

w =
1
M

(
ε− 1

ε

)
q̄ (30)

With this, we can greatly simplify the expression of the firm’s quantity and price choices as a function
of its normalized productivity q̂j = qj/q̄

yj = q̂ε
j Z and pj =

1
Mq̂j

Denote variables normalized by Z/M with a “∼”. Then the normalized profit and labor are given by

π̃j =
q̂ε−1

j

ε
and lj =

q̂ε−1
j

w̃

(
ε− 1

ε

)
. (31)

where w̃ is the normalized wage. Note that by construction
∫

q̂ε−1
j dj = 1. As a result, we integrate 31

over j to find profit share and production labor share as

M
∫ 1

0 πjdj
Z

=
1
ε

and
wLP

Z
=

ε− 1
ε

. (32)

Finally, we combine 30 and 32 to find the final output as a function of aggregate productivity q̄ and
total production labor LP :

Z = q̄LP/M.

Proof of Lemma 1 Let FH(·, t) and FC(·, t) be the aggregate product cumulative measures by type
(hot or hold) at time t. For a small time step ∆, hot distribution FH(·, t) will satisfy

FH(q̂, t + ∆) =FH(q̂/(1 + ∆g), t)− ∆τ [FH(q̂/(1 + ∆g), t)−FH(q̂/(1 + ∆g)− η, t)]

+ ∆τe
bFC(q̂/(1 + ∆g)− η, t)− ∆ζFH(q̂/(1 + ∆g), t) + ∆τd

bFC(q̂/(1 + ∆g), t)

Similarly, the cold distribution FC(·, t) will satisfy

FC(q̂, t + ∆) =FC(q̂/(1 + ∆g), t)− ∆τa [FC(q̂/(1 + ∆g), t)−FC(q̂/(1 + ∆g)− λ, t)]

− ∆τbFC(q̂/(1 + ∆g), t) + ∆ζFH(q̂/(1 + ∆g), t)
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Finally, for i ∈ {H, C}, calculating

Ḟi(q̂) =
Fi(q̂, t + ∆)−Fi(q̂, t)

∆

and taking the limit as ∆→ 0 yields the desired flow equations. Note that for this we use

Fi(q̂/(1 + ∆g), t)−Fi(q̂, t)
∆

= −gq̂[∂Fi(q̂)/∂q̂]

Proof of Proposition 2. Let F (·, t) be the distribution over q at time t. Similarly, let FH(·, t)
and FC(·, t) be the product type (hot/cold) conditional distributions. Thus, we will have F (q, t) =
αFH(q, t) + (1− α)FC(q, t). The evolution of the aggregated productivity index q̄ is then given by

q̄ε−1(t + ∆t) =
∫ ∞

0
qε−1dF (q, t + ∆t)

=α
∫ ∞

0
qε−1dFH(q, t + ∆t) + (1− α)

∫ ∞

0
qε−1dFC(q, t + ∆t)

=α
∫ ∞

0

[
∆τ (q + ηq̄)ε−1 + (1− ∆τ)qε−1

]
dFH(q, t)

+ (1− α)
∫ ∞

0

[
∆τa (q + λq̄)ε−1 + ∆τe

b (q + ηq̄)ε−1 + (1− ∆τ)qε−1
]

dFC(q, t)

Thus the differential is

q̄ε−1(t + ∆t)− q̄ε−1(t)
∆

=α
∫ ∞

0
τ
[
(q + ηq̄)ε−1 − qε−1

]
dFH(q, t)

+ (1− α)
∫ ∞

0

(
τa

[
(q + λ)ε−1 − qε−1

]
+ τe

b

[
(q + η)ε−1 − qε−1

])
dFC(q, t)

and the normalized differential is

q̄ε−1(t + ∆t)− q̄ε−1(t)
∆q̄ε−1(t)

=α
∫ ∞

0
τ
[
(q̂ + η)ε−1 − q̂ε−1

]
dFH(q̂, t)

+ (1− α)
∫ ∞

0

(
τa

[
(q̂ + λ)ε−1 − q̂ε−1

]
+ τe

b

[
(q̂ + η)ε−1 − q̂ε−1

])
dFC(q̂, t)

Finally, the growth can be expressed compactly as

g =
ατEH

q̂

[
(q̂ + η)ε−1 − q̂ε−1

]
+ (1− α)

(
τaEC

q̂

[
(q̂ + λ)ε−1 − q̂ε−1

]
+ τe

b EC
q̂

[
(q̂ + η)ε−1 − q̂ε−1

])
ε− 1

This can also be rearranged into

g =
τa

(
αEH

q̂

[
(q̂ + η)ε−1 − q̂ε−1

]
+ (1− α)EC

q̂

[
(q̂ + λ)ε−1 − q̂ε−1

])
+ τe

b Eq̂

[
(q̂ + η)ε−1 − q̂ε−1

]
ε− 1
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Proof of Proposition 1. The firm value, in general form, can be expressed as

rVt(q̂, m)− V̇t(q̂, m)

= max
a,b



∑q̂∈q̂
1
ε q̂ε−1 Zt

M − nwt

[
ha(a) + hb(b) + 1(b>0)φ]

]
+na

[
αEH

q̂ Vt (q̂∪ {q̂ + η} , m) + (1− α)EC
q̂ Vt (q̂∪ {q̂ + λ} , m)− Vt (q̂, m)

]
+nb ∑k≥0 Fk

m

[
Vt

(
q̂∪ {q̂ + η}1+k , m

)
− Vt (q̂, m)

]
+∑q̂∈q̂ τ

[
∑q̂∈q̂ [Vt (q̂\ {q̂} , m)− Vt (q̂, m)]

]
+x m

M

[
αEH

q̂ Vt (q̂∪ {q̂ + η} , m) + (1− α)EC
q̂ Vt (q̂∪ {q̂ + λ} , m)−P ′m − Vt (q̂, m)

]
+x
(
1− m

M

) [
αEH

q̂ Vt (q̂∪ {q̂ + η} , m + 1) + (1− α)EC
q̂ Vt (q̂∪ {q̂ + λ} , m + 1)−Pm − Vt (q̂, m)

]
+nκ

[
Eq̂Vt (q̂ ∪ {q̂} , m)− Vt (q̂, m)

]
+κ [−Vt (q̂, m)]



.

Now, conjecture Vt(q̂) = Zt
M

[
∑q̂∈q̂ V(q̂t) + nVm

]
. When we substitute the conjecture into the the

above expression and using the prices

Pm = Vm+1 + Eq̂,sV (q̂t+∆t + ŝ)
P ′m = Vm + Eq̂,sV (q̂t+∆t + ŝ)

we find

(r− g)Vm = max
a,b


−w̃

[
ha(a) + hb(b) + 1(b>0)φ]

]
+a
[
αVH + (1− α)VC + Vm

]
+b
(
1 + p m

M

) [
VH + Vm

]
+x
(
1− m

M

)
[Vm+1 −Vm]

−τVm + κEq̂V(q̂t)


.

and

V ′(q̂t)gq̂ + [τ + κ + r− g]V(q̂t) =
1
ε

q̂ε−1.

Note that the last expression is a differential equation as a function of q̂. Then

V(q̂t) =
q̂ε−1

t
ε [r + τ + κ + g (ε− 2)]

.

This completes the proof.

Derivation of Multi-industry Distribution Γm,n.
We assume that when a firm loses its last product in a particular industry, it maintains a foothold
there, in the sense that it still receives buy-out offers and can still directly use basic research relevant
to that industry. When a firm loses all of its products or receives a destructive shock, it ceases to
exist. We wish to find the joint distribution over the number of industries a firm is in and how many
product lines it owns. For notational convenience, let us denote the basic research flow from m-
industry firms by b̂m = B(φm)bm. Let us also denote the expansion rate of a firm into a new industry
by em. Here the expansion rate comes purely from buy-out offers by entrants. So given a per firm
buy-out offer rate of x, a firm in m industries will expand at rate

em = x
(

M−m
M

)
=

(
ςEae

F

)(
M−m

M

)
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Additionally, let the unconditional expected number of spillovers be denoted by ρm = p · m
M . Then

the flow equation for firms in m industries with n products is

Outflow Inflow[
a1 + b̂1 + τ + κ

+e1 + κ

]
Γ1,1 = ae + 2τΓ1,2[

am + b̂m + τ + κ
+em + κ

]
Γm,1 = 2τΓm,2 + em−1Γm−1,1 for m ≥ 2[

n
(

am + b̂m + τ + κ
)

+em + κ

]
Γm,2 =

{ (
am + b̂m (1− ρm) + κ

)
Γm,n−1

+3τΓm,n+1 + em−1Γm−1,n

}
for m ≥ 1

[
n
(

am + b̂m + τ + κ
)

+em + κ

]
Γm,n =


(n− 1)

(
am + b̂m (1− ρm) + κ

)
Γm,n−1

+(n− 2)ρmb̂mΓm,n−2
+(n + 1)τΓm,n+1 + em−1Γm−1,n

 for n ≥ 3, m ≥ 1

where we use the convention Γm,−1 = Γm,0 = 0 and e0 = 0. The first line equates the outflows from
(m = 1, n = 1) that happen once the firm loses its product at the rate τ + κ, acquires a new product
line at the rate κ, innovates a new good at the rate a1 + b̂1 on average or expands into a new industry
at the rate e1. On the other hand, inflow happens from outsiders at the rate ae and from the firms with
2 products that lose one of their products at the rate 2τ. Similar reasoning applies to the subsequent
lines.

Using values for the Γm,n distribution gives us the mass of firms in a given (m, n) state. The total
mass of firms is then F = ∑M

m=1 ∑∞
n=1 Γm,n. We ultimately want the mass of products in given industry

state m. To get this we simply evaluate

µm =
∞

∑
n=1

n · Γm,n

Note that this derivation is for the case in which a single spillover arrives with probability p. It is
straightforward to generalize this to our baseline setting in which a random number of spillovers is
realized.

E Simplified Model

In this section, we show that the policy implications of our model are far from obvious and strongly
depend on the size of various opposing forces. To see this, consider a simplified version of our main
model.

Market Economy. Household preferences are now logarithmic rather than the more general
CRRA form used in the main model (parametrically, this would be γ = 1):

U =
∫ ∞

0
exp(−ρt) log C(t)dt

We assume that there is only one sector, and that it consists of a continuum of product lines. In other
words, we set M = 1 in equation (1) and preserve equation (2):

Y =

[∫ 1

0
y

ε−1
ε

j dj
] ε

ε−1

.

Production in each product line is as in (3):

yj = qjlj.
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We shut down incumbent innovation by setting Ωa → 0 and Ωb → 0, and we shut down public
research labs as well. The only source of innovation is entrant innovation that happens according to
the following production function:

τ = ψLe (33)

Each innovation improves the latest technology by a multiplicative factor (1 + λ).
In this simplifies model, the static equilibrium looks very much like our benchmark economy

pj = q̂−1
j , yj = q̂ε

jY , lj = q̂ε−1
j LP , w =

ε− 1
ε

q̄ , Y = q̄Lp

and

πj =
q̂ε−1

j

ε
Y

where q̄ ≡
[∫ 1

0 qε−1
j dj

] 1
ε−1

and q̂j ≡ qj/q̄. Note that we also have

Lp + Le = 1. (34)

In this environment, the value of a single product line is

V (q̂) =
q̂ε−1

ε [ρ + τ + g (ε− 1)]
Y.

Note that free entry implies

EV [q̂ (1 + λ)] =
w
ψ

(35)

Note that the growth rate is

q̄∗(t + ∆t) =
∫ [

τ∆t (1 + λ)ε−1 q̂ε−1
j + (1− τ∆t) q̂ε−1

j

]
dj

=
∫ [

τ∆t
[
(1 + λ)ε−1 − 1

]
+ 1
]

q̂ε−1
j dj

= τ∆t
[
(1 + λ)ε−1 − 1

]
q̄∗t + q̄∗t

where q̄∗t ≡ q̄ε−1
t . Therefore

g = τ

[
(1 + λ)ε−1 − 1

ε− 1

]
(36)

Note that

E[q̂ε−1] =
∫

q̂ε−1
j dj =

1
q̄ε−1

∫
qε−1

j dj =
1

q̄ε−1 q̄ε−1

= 1. (37)

Then using (35), we find
(1 + λ)ε−1

ε [ρ + τ + g (ε− 1)]
Lp =

ε−1
ε

ψ
(38)

Using (33), (34), (36), and (38), we get

L∗e =
1
ε

[
1− (ε− 1) ρ

ψ (1 + λ)ε−1

]
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Social Planner. We now consider the social planner’s problem who is subject to the same pricing
and labor allocation rule. Then the social planner’s problem is simply

max
Le,Lp

∫ ∞

0
exp(−ρt) log C(t)dt

subject to
g = λψLe , Y = QLp , Le + Lp = 1.

This problem can be written as

max
Lp

{
g
ρ2 +

log Lp

ρ
+

log Q0

ρ

}
(39)

subject to

g =

[
(1 + λ)ε−1 − 1

ε− 1

]
ψ
(
1− Lp

)
This problem delivers the following R&D labor

Lsp
e = 1− ρ[

(1+λ)ε−1−1
ε−1

]
ψ

(40)

Note that in the decentralized economy, there will be overinvestment in R&D, L∗e > Lsp
e , if and

only if
ε

(1 + λ)ε−1 − 1
− 1

(1 + λ)ε−1 >
ψ

ρ

Note the competing forces present in equation (40): the social planner will want to invest more
resources in R&D if

1. she cares about the future, ρ ↓,

2. spillovers are large, λ ↑, and

3. R&D is productive, ψ ↑.

Competing firms, on the other hand, only care about the profit that they are making. Hence,
when spillovers are too small (λ → 0), the social planner does not care about the future (ρ →
∞), or R&D is too unproductive (ψ → 0), the market overinvests in R&D. Our model is a greatly
embellished version of this model, featuring multiple, addition spillovers. However, these spillovers
can be arbitrarily small, depending on parameter values, and thus it also has the capacity to generate
both overinvestment or underinvestment in R&D investment.

Optimal Basic vs Applied Research Mixture. In this above analysis, we showed that the mix
between production and R&D can be greater than or less than the socially optimal level. Now, in
the same simplified framework, we can also derive further intuition about the optimal mix of basic
versus applied research for any given level of aggregate R&D. Let us fix the overall production level
Lp and R&D level Le, and solve for the optimal mix between basic (Lb) and applied (La) R&D such
that

La + Lb = Le. (41)

Recall that in the model, basic research leads to the larger step size η > λ. The fraction of hot
product lines is simply

α =
τb

ζ + τb
. (42)

Let us also assume a linear production technology for basic research

τb = ψbLb (43)
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and applied research
τa = ψaLa. (44)

Furthermore, let us focus on the case where ε = 2. Note that the growth rate in this case is simply

g = [αη + (1− α) λ] τa.

To maximize the welfare expression in (39), we need to maximize the growth rate taking the produc-
tion level as fixed. Then the objective is

max
La,Lb
{[αη + (1− α) λ] τa}

subject to (41), (42), (43), and (44). This is equivalent to

max
Lb

[(
1− ζ

ζ + ψbLb

)
η +

ζ

ζ + ψbLb
λ

]
ψa (Le − Lb)

This implies that the optimal basic research labor share is

Lsp
b =

ζ

ψb

(√[
ψb

ζ
Le + 1

] (
1− λ

η

)
− 1

)
In the generalized model, the government has a direct impact on the level of basic research through

public research spending. If the government chooses a level greater than Lsp
b , this will mean that the

overall basic research investment is too high relative to the socially optimal level. Hence, optimal
policy might dictate that one lower basic research investment in the economy.

F Computer Algorithm Outline

Here we present the solution algorithm for a slightly simplified version of the baseline model. An
equilibrium of this model is described by a system of five equations in the five variables (τa, τe

b , τd
b , w̃, g).

This system can be evaluated using the following procedure:

1. Calculate α and the distribution of q̂ using τa, τe
b , τd

b , and g according to equations (1) and (17).

2. Calculate g using, τa, τe
b , α, and the distribution over q̂ with equation (22).

3. Calculate VH = EH
q̂,ηV(q̂ + η) and VC = EC

q̂,λV(q̂ + λ) using the relevant step size distribution
and the type-specific productivity distributions.

4. Solve for the industry-specific value components Vm using the expression in equation (15).
Using these, find am and bm using the relevant first-order conditions and w̃.

5. Impose an upper bound on n and find the steady state product distribution Γm,n using the flow
equations in Online Appendix D.

6. Compute the updated values of τa, τe
b , and τd

b using equations (18) and (16).

7. The difference between the conjectured and updated values of τa, τe
b , τd

b , and g in conjunc-
tion with the labor market clearing differential from equation (20) constitute the five desired
equations.

We a the trust-region dogleg method (the default in MATLAB) to solve this set of equations for
a given set of parameters. To minimize the SMM objective function, we perform a search over the
parameter space using a combination of a naive simulated annealing algorithm and a Nelder-Mead
simplex (Nelder and Mead, 1965) algorithm. See Zangwill and Garcia (1981) for more information on
solving systems of nonlinear equations.
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G Quantitative Tables

Table 23: Jacobian of Estimation Moments With Respect to Model Parameters

Parameter: δ γ ε p η λ E U νa νb ξa ξb κ φ̄ σ ζ ς

Moment:
Basic extensive m = 1 -1 -1 -6 0 13 -9 -4 1 -12 63 32 -26 -0 87 4 1 -0
Basic extensive m = 2 -1 -1 -5 1 13 -8 -4 1 -11 57 30 -25 -0 79 3 1 -0
Basic extensive m = 3 -1 -1 -5 1 12 -8 -4 1 -11 52 28 -23 -0 72 2 1 -0
Basic extensive m = 4 -1 -1 -5 2 11 -7 -3 1 -10 48 26 -22 -0 66 2 1 -0
Basic extensive m = 5 -1 -1 -5 2 10 -7 -3 0 -9 44 24 -21 -0 60 1 1 -0
Basic extensive m = 6 -1 -1 -4 2 10 -6 -3 0 -9 40 22 -20 -0 55 1 1 -0
Basic extensive m = 7 -1 -1 -4 3 9 -6 -3 0 -8 37 21 -19 -0 50 0 0 -0
Basic extensive m ≥ 8 -1 -1 -4 3 8 -6 -3 0 -8 33 18 -18 0 44 -0 0 -0
Basic intensive m = 1 -1 -1 -2 0 18 -11 -3 1 -15 86 45 -32 -0 80 3 1 -0
Basic intensive m = 2 -1 -1 -2 1 17 -10 -3 1 -14 80 42 -30 -0 73 3 1 -0
Basic intensive m = 3 -1 -1 -1 2 16 -10 -3 1 -13 74 40 -29 -0 66 2 1 -0
Basic intensive m = 4 -1 -1 -1 2 15 -9 -3 1 -13 68 38 -28 -0 59 1 1 -0
Basic intensive m = 5 -1 -1 -1 3 14 -9 -2 1 -12 63 35 -27 -0 53 1 1 -0
Basic intensive m = 6 -1 -1 -0 3 14 -9 -2 1 -12 58 34 -26 -0 48 0 1 -0
Basic intensive m = 7 -1 -1 -0 4 13 -8 -2 1 -11 54 32 -25 -0 43 -0 1 -0
Basic intensive m ≥ 8 -1 -1 -0 4 12 -8 -2 0 -11 49 29 -24 0 37 -1 1 -0
Mean m -0 -0 0 0 0 -0 -1 -0 -0 0 0 -0 -0 0 0 -0 4
Mean m2 -0 -0 0 0 0 -0 -1 -0 -1 1 1 -1 -0 1 0 -0 9
Return on sales 4 0 -23 -0 -14 3 7 -3 8 -16 -4 13 1 -18 -0 -3 -0
Exit Rate -1 -1 -4 -0 -0 -0 1 0 3 -0 -4 0 1 -0 -0 0 -2
R&D/labor 3 -3 0 -2 5 8 5 5 1 4 4 1 4 4 -5 7 7
Employment growth -1 -1 -3 0 2 4 0 -0 2 4 -2 -2 -0 4 0 -0 0
Aggregate growth 0 0 0 -0 -0 0 0 -0 0 -2 -1 1 0 -2 -0 -5 -0
Spillover differential 1 2 10 2 7 3 0 2 -1 10 6 -2 3 10 1 2 2
Age, small firms -0 1 3 -1 -1 -1 -3 -0 -3 -0 2 -2 -1 0 -1 -0 2
Age, large firms 0 -0 4 1 1 1 -3 0 -3 2 6 -0 0 2 1 0 3
Public Citations Mean 1 1 2 -2 -9 10 5 -1 17 -44 -29 42 0 -41 -2 -1 -2
Public Citations RMS 1 1 2 -2 -8 10 5 -1 17 -43 -28 41 0 -40 -2 -1 -2
Private Citations Mean 1 1 2 -2 -12 14 5 -1 17 -42 -28 41 0 -39 -2 -1 -2
Private Citations RMS 1 1 2 -2 -11 14 5 -1 16 -40 -27 39 0 -37 -2 -1 -2
Note: All values are in percentage terms.

74



Back to Basics

H Quantitative Robustness Checks

H.1 Persistent Types

Table 24: Parameters - Persistent Types

# Description Sym Value

1. Discount Rate δ 0.039
2. CRRA Utility Parameter γ 3.029
3. Elasticity of Subsitution ε 6.035
4. Cross-industry Spillover p 0.115
5. Basic Step Size η 0.070
6. Applied Step Size λ 0.050
7. Mass of Entrants E 0.467
8. Mass of Academic Labs U 0.514
9. Exogenous Exit Rate κ 0.006
10. Applied Cost Curvature νa 0.372
11. Basic Cost Curvature νb 0.550
12. Applied Cost Scale ξa 1.286
13. Basic Cost Scale ξb 5.396
14. Basic Fixed Mean φ̄ 4.930
15. Basic Fixed Std. Dev. σ 0.342
16. Product Cooldown Rate ζ 0.119
17. Buyout Rate ι 0.457
18. Citation Rate x 3.028
19. Basic Type Probabitity q 0.365
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Table 25: Moments - Persistent Types

Model Data Description

0.2741 0.2432 Basic extensive m = 1
0.2929 0.2308 Basic extensive m = 2
0.3251 0.2703 Basic extensive m = 3
0.3638 0.3483 Basic extensive m = 4
0.4174 0.4184 Basic extensive m = 5
0.4247 0.4518 Basic extensive m = 6
0.5079 0.5508 Basic extensive m = 7
0.4904 0.6803 Basic extensive m ≥ 8
0.0532 0.0666 Basic intensive m = 1
0.0585 0.0467 Basic intensive m = 2
0.0667 0.0617 Basic intensive m = 3
0.0767 0.0800 Basic intensive m = 4
0.0902 0.0763 Basic intensive m = 5
0.0940 0.0786 Basic intensive m = 6
0.1150 0.1224 Basic intensive m = 7
0.1142 0.1005 Basic intensive m ≥ 8
2.3036 2.2037 Mean m
7.8069 6.9756 Mean m2

0.0308 0.0326 Return on sales
0.0856 0.0919 Exit Rate
0.0993 0.1032 Employment growth
0.0125 0.0150 Aggregate growth
8.2149 8.0000 Spillover differential
0.2759 0.2603 R&D/labor

12.6309 14.9965 Age, small firms
21.6837 24.8733 Age, large firms

8.1458 7.0130 Public Citations Mean
11.8682 14.1970 Public Citations RMS

5.9896 5.8850 Private Citations Mean
8.8750 9.1540 Private Citations RMS
0.5932 0.7372 Persistence of Basic
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H.2 Industry Heterogeneity

Table 26: Parameters - Industry Heterogeneity

# Description Sym Value

1. Discount Rate δ 0.029
2. CRRA Utility Parameter γ 3.178
3. Elasticity of Subsitution ε 6.317
4. Cross-industry Spillover 1 p1

b 0.332
4. Cross-industry Spillover 1 p2

b 0.055
5. Basic Step Size η 0.064
6. Applied Step Size λ 0.033
7. Mass of Entrants E 0.624
8. Mass of Academic Labs U 0.263
9. Exogenous Exit Rate κ 0.007
10. Applied Cost Curvature νa 0.352
11. Basic Cost Curvature νb 0.513
12. Applied Cost Scale ξa 1.296
13. Basic Cost Scale 1 ξ1

b 6.007
13. Basic Cost Scale 2 ξ2

b 5.090
14. Basic Fixed Mean 1 φ̄1 4.839
14. Basic Fixed Mean 2 φ̄2 4.563
15. Basic Fixed Std. Dev. σ 0.424
16. Product Cooldown Rate ζ 0.128
17. Buyout Rate ι 0.468
18. Citation Rate x 2.331
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Table 27: Moments - Industry Heterogeneity

Model Data Description

0.1677 0.2379 1 Basic Extensive m = 1
0.2048 0.2175 1 Basic Extensive m = 2
0.2453 0.2256 1 Basic Extensive m = 3
0.2818 0.2969 1 Basic Extensive m = 4
0.3144 0.2751 1 Basic Extensive m = 5
0.3495 0.2901 1 Basic Extensive m = 6
0.3668 0.3162 1 Basic Extensive m = 7
0.3458 0.3119 1 Basic Extensive m ≥ 8
0.0279 0.0686 1 Basic Intensive m = 1
0.0363 0.0406 1 Basic Intensive m = 2
0.0461 0.0646 1 Basic Intensive m = 3
0.0555 0.0729 1 Basic Intensive m = 4
0.0641 0.0546 1 Basic Intensive m = 5
0.0737 0.0905 1 Basic Intensive m = 6
0.0791 0.0905 1 Basic Intensive m = 7
0.0724 0.0946 1 Basic Intensive m ≥ 8
0.1792 0.2519 2 Basic Extensive m = 1
0.1901 0.2208 2 Basic Extensive m = 2
0.1995 0.2509 2 Basic Extensive m = 3
0.2079 0.2519 2 Basic Extensive m = 4
0.2161 0.2520 2 Basic Extensive m = 5
0.2262 0.2303 2 Basic Extensive m = 6
0.2255 0.2500 2 Basic Extensive m = 7
0.2416 0.2329 2 Basic Extensive m ≥ 8
0.0415 0.0717 2 Basic Intensive m = 1
0.0466 0.0541 2 Basic Intensive m = 2
0.0512 0.0629 2 Basic Intensive m = 3
0.0553 0.0740 2 Basic Intensive m = 4
0.0591 0.0735 2 Basic Intensive m = 5
0.0634 0.0648 2 Basic Intensive m = 6
0.0633 0.0541 2 Basic Intensive m = 7
0.0669 0.0418 2 Basic Intensive m ≥ 8
2.2143 2.2037 Mean Industries
7.1571 6.9756 Mean Square Industries
0.0358 0.0326 Return on Sales
0.0933 0.0919 Exit Rate
0.0743 0.1032 Employment Growth
0.3323 0.2603 R&D/Labor

11.3894 14.9965 Age, Small Firms
17.6487 24.8733 Age, Large Firms

0.0083 0.0150 Aggregate Growth
7.6597 8.0000 Spillover Differential
8.1572 7.0130 Public Citations Mean

11.8880 14.1970 Public Citations RMS
4.5516 5.8850 Private Citations Mean
6.9719 9.1540 Private Citations RMS
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H.3 Eliminating Private and Public Basic Research

Table 28: Parameters - Eliminating Private and Public Basic Research

# Description Sym Value

1. Discount Rate δ 0.039
2. CRRA Utility Parameter γ 3.148
3. Elasticity of Subsitution ε 6.132
4. Applied Step Size λ 0.052
5. Mass of Entrants E 0.400
16. Exogenous Exit Rate κ 0.006
7. Applied Cost Curvature νa 0.398
8. Applied Cost Scale ξa 1.294
9. Buyout Rate ι 0.451
10. Citation Rate x 2.984

Table 29: Moments - Eliminating Private and Public Basic Research

Model Data Description

2.2612 2.2037 Mean Industries
7.4808 6.9756 Mean Square Industries
0.0328 0.0326 Return on Sales
0.0839 0.0919 Exit Rate
0.1043 0.1032 Employment Growth
0.0127 0.0150 Aggregate Growth
0.2665 0.2603 R&D/Labor

13.0568 14.9965 Age, Small Firms
21.7208 24.8733 Age, Large Firms
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H.4 Eliminating Private Basic Research Only

Table 30: Parameters - Eliminating Private Basic Research Only

# Description Sym Value

1. Discount Rate δ 0.039
2. CRRA Utility Parameter γ 3.018
3. Elasticity of Subsitution ε 6.213
4. Cross-industry Spillover p 0.117
5. Multi-spillover Distribution ν 0.101
6. Basic Step Size η 0.078
7. Applied Step Size λ 0.051
8. Mass of Entrants E 0.481
9. Mass of Academic Labs U 0.494
10. Exogenous Exit Rate κ 0.006
11. Applied Cost Curvature νa 0.361
12. Basic Cost Curvature νb 0.537
13. Applied Cost Scale ξa 1.226
14. Basic Cost Scale ξb 5.446
15. Basic Fixed Mean φ̄ 4.762
16. Basic Fixed Std. Dev. σ 0.329
17. Product Cooldown Rate ζ 0.118
18. Buyout Rate ι 0.456
19. Citation Rate x 1.301
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Table 31: Moments - Eliminating Private Basic Research Only

Model Data Description

2.2565 2.2037 Mean Industries
7.4503 6.9756 Mean Square Industries
0.0331 0.0326 Return on Sales
0.0865 0.0919 Exit Rate
0.1030 0.1032 Employment Growth
0.0124 0.0150 Aggregate Growth
8.5014 8.0000 Spillover Differential
0.2685 0.2603 R&D/Labor

12.5101 14.9965 Age, Small Firms
19.7508 24.8733 Age, Large Firms

8.4103 7.0130 Public Citations Mean
12.2424 14.1970 Public Citations RMS

5.5394 5.8850 Private Citations Mean
8.2017 9.1540 Private Citations RMS
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H.5 σ = 2

Table 32: Parameters - σ = 2

# Description Sym Value

1. Discount Rate δ 0.039
2. CRRA Utility Parameter γ 2.000
3. Elasticity of Subsitution ε 5.744
4. Cross-industry Spillover p 0.116
5. Multi-spillover Distribution ν 0.102
6. Basic Step Size η 0.079
7. Applied Step Size λ 0.050
8. Mass of Entrants E 0.499
9. Mass of Academic Labs U 0.497
10. Exogenous Exit Rate κ 0.006
11. Applied Cost Curvature νa 0.358
12. Basic Cost Curvature νb 0.538
13. Applied Cost Scale ξa 1.234
14. Basic Cost Scale ξb 5.459
15. Basic Fixed Mean φ̄ 4.721
16. Basic Fixed Std. Dev. σ 0.327
17. Product Cooldown Rate ζ 0.118
18. Buyout Rate ι 0.464
19. Citation Rate x 2.972
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Table 33: Moments - σ = 2

Model Data Description

0.2475 0.2432 Basic Extensive m = 1
0.2830 0.2308 Basic Extensive m = 2
0.3196 0.2703 Basic Extensive m = 3
0.3570 0.3483 Basic Extensive m = 4
0.3946 0.4184 Basic Extensive m = 5
0.4322 0.4518 Basic Extensive m = 6
0.4695 0.5508 Basic Extensive m = 7
0.5181 0.6803 Basic Extensive m >= 8
0.0446 0.0666 Basic Intensive m = 1
0.0527 0.0467 Basic Intensive m = 2
0.0613 0.0617 Basic Intensive m = 3
0.0705 0.0800 Basic Intensive m = 4
0.0802 0.0763 Basic Intensive m = 5
0.0903 0.0786 Basic Intensive m = 6
0.1007 0.1224 Basic Intensive m = 7
0.1149 0.1005 Basic Intensive m >= 8
2.2967 2.2037 Mean Industries
7.7515 6.9756 Mean Square Industries
0.0328 0.0326 Return on Sales
0.0949 0.0919 Exit Rate
0.1025 0.1032 Employment Growth
0.0140 0.0150 Aggregate Growth
8.2431 8.0000 Spillover Differential
0.2800 0.2603 R&D/Labor

11.4272 14.9965 Age, Small Firms
18.6032 24.8733 Age, Large Firms

8.6165 7.0130 Public Citations Mean
12.5342 14.1970 Public Citations RMS

5.8124 5.8850 Private Citations Mean
8.6591 9.1540 Private Citations RMS
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