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ABSTRACT

To explain the consonance of octaves, music psychologists represent
pitch as a helix where azimuth and axial coordinate correspond to
pitch class and pitch height respectively. This article addresses the
problem of discovering this helical structure from unlabeled audio
data. We measure Pearson correlations in the constant-Q transform
(CQT) domain to build a K-nearest neighbor graph between fre-
quency subbands. Then, we run the Isomap manifold learning algo-
rithm to represent this graph in a three-dimensional space in which
straight lines approximate graph geodesics. Experiments on isolated
musical notes demonstrate that the resulting manifold resembles a
helix which makes a full turn at every octave. A circular shape is also
found in English speech, but not in urban noise. We discuss the im-
pact of various design choices on the visualization: instrumentarium,
loudness mapping function, and number of neighbors K.

Index Terms— Continuous wavelet transforms, distance learn-
ing, music, pitch control (audio), shortest path problem.

1. INTRODUCTION

Listening to a sequence of two pure tones elicits a sensation of pitch
going “up” or “down”, correlating with changes in fundamental fre-
quency (f0). However, contrary to pure tones, natural pitched sounds
contain a rich spectrum of components in addition to f0. Neglecting
inharmonicity, these components are tuned to an ideal Fourier series
whose modes resonate at integer multiples of the fundamental: 2f0,
3f0, and so forth. By the change of variable f ′0 = 2f0, it appears
that all even-numbered partials 2f0 = f ′0, 4f0 = 2f ′0, 6f0 = 3f ′0,
and so forth make up the whole Fourier series of a periodic signal
whose fundamental frequency is f ′0. Figure 1 illustrates, in the case
of a synthetic signal with perfect harmonicity, that filtering out all
odd-numbered partials (2p + 1)f0 for integer p ≥ 0 results in a
perceived pitch that morphs from f0 to 2f0, i.e., up one octave [1].

Such ambivalence brings about well-known auditory paradoxes:
tones that have a definite pitch class but lack a pitch register [2];
glissandi that seem to ascend or descend endlessly [3]; and tritone
intervals whose pitch directionality depends on prior context [4]. To
explain them, one may roll up the frequency axis onto a spiral or helix
which makes a full turn at each octave, thereby aligning power-of-two
harmonics onto the same radii.

The consonance of octaves has implications in several disciplines.
In music theory, it allows for pitches to be grouped into pitch classes:
e.g., in European solfège, do re mi etc. eventually “circle back” to do.
In ethnomusicology, it transcends the boundaries between cultures, to
the point of being held as a nearly universal attribute of music [5]. In
neurophysiology, it explains the functional organization of the central
auditory cortex [6]. In music information research, it motivates the
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Fig. 1. Two continuous trajectories in pitch space, either by octave
glissando (left) or by attenuation of odd-numbered partials (right).
Darker shades indicate larger magnitudes of the constant-Q transform.
Vertical ticks denote octaves. See Section 1 for details.

design of chroma features, i.e., a representation of harmonic content
that is meant to be equivariant to parallel chord progressions but
invariant to chord inversions [7, chapter 5].

Despite the wealth of evidence for the crucial role of octaves
in music, there is, to this day, no data-driven criterion for assessing
whether a given audio corpus exhibits a property of octave equiva-
lence. Rather, the disentanglement of pitch chroma and pitch height in
time–frequency representations relies on domain-specific knowledge
about music [8]. More generally, although the induction of priors on
the topology of pitch is widespread in symbolic music analysis [9],
few of them directly apply to audio signal processing [10].

Yet, in recent years, the systematic use of machine learning meth-
ods has progressively reduced the need for domain-specific knowl-
edge in several other aspects of auditory perception, including mel-
frequency spectrum [11] and adaptive gain control [12]. It remains
to be known whether octave equivalence can, in turn, be discovered
by a machine learning algorithm, instead of being engineered ad hoc.
Furthermore, it is unclear whether octave equivalence is an exclusive
characteristic of music or whether it may extend to other kinds of
sounds, such as speech or environmental soundscapes.

In this article, we conduct an unsupervised manifold learning
experiment, inspired by the protocol of “learning the 2-D topology
of images” [13], to visualize the helix topology of constant-Q spec-
tra. Starting from a dataset of isolated notes from various musical
instruments, we run the Isomap algorithm to represent each of these
frequency subbands as a dot in a 3-D space, wherein spatial neigh-
borhoods denote high correlation in loudness. Contrary to natural
images, we find a mismatch between the physical dimensionality of
natural acoustic spectra (i.e., 1-D) and their statistical dimensionality
(i.e., 3-D or greater).

The companion website of this paper1 contains a Python package
to visualize octave equivalence in audio data.

1Companion website: https://github.com/BirdVox/lostanlen2020icassp
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Fig. 2. Functional diagram of the proposed method, comprising: constant-Q transform W, data matrix X, extraction of Pearson correlations
ρ2, shortest path distance matrix DG , and Isomap eigenbasis e for the set of vertices V . Darker shades in ρ2 and DG indicate larger absolute
values of the Pearson correlation and distance respectively. The hue of colored dots and the solid grey line respectively denote pitch chroma
and pitch height. The first three dimensions in the Isomap embedding explain 36%, 35%, and 9% of the total variance in DG respectively. Note
that our method is unsupervised: neither pitch chroma nor pitch height are directly supplied to the Isomap manifold learning algorithm. See
Section 2 for details.

2. ISOMAP EMBEDDING OF SUBBAND CORRELATIONS

2.1. Constant-Q transform and loudness mapping

Given a corpus of audio signals x1 . . .xN ∈ L2(R) in arbitrary or-
der, we define their constant-Q transforms (CQT) as the convolutions
with wavelets t 7→ 2γψ(2γt), where 2−γ is a scale parameter:

Wxn : (t, γ) 7→ 2γ
∫ +∞

−∞
xn(t′)ψ(2γ(t− t′)) dt. (1)

The wavelet filterbank in the operator W covers a range of J octaves.
In the case of musical notes, we define a region of interest tn in each
xn as the frame of highest short-term energy at a scale of 93 ms. We
compute their scalogram representation as the vector of CQT modulus
responses at some t = tn, for discretized values u = 1 +Qγ:

X[n, u] =

∣∣∣∣Wxn

(
tn,

u− 1

Q

)∣∣∣∣ , (2)

where the integer u ranges from 1 to QJ . Then, we apply a point-
wise logarithmic compression Λ to map each magnitude coefficient
X[n, u] onto a decibel-like scale, and clip it to −100 dB:

Λ(X)[n, u] = max(−100, 10 log10 X[n, u]). (3)

Unless stated otherwise, we set |ψ| to a Hann window, the quality
factor Q to 24, and the number of octaves J to 3 in the following. We
compute constant-Q transforms with librosa v0.6.1 [14]. Section 3.4
will discuss the effect of alternative choices for Λ.

2.2. Pearson autocorrelation of log-magnitude spectra

In accordance with [13], we express the similarity between two fea-
tures u and v in terms of their squared Pearson correlation ρ2[u, v].
We begin by recentering each feature to null mean, yielding the matrix

Y[n, u] = Λ(X)[n, u]− 1

N

N∑
n=1

Λ(X)[n, u], (4)

and then compute squared cosine similarities on all pairs (u, v):

ρ2[u, v] =
(
∑N
n=1 Y[n, u]Y[n, v])2

(
∑N
n=1 Y

2[n, u])× (
∑N
n=1 Y

2[n, v])
. (5)

Let V be the set of all QJ features u in Y. Adopting a manifold
learning perspective, we may regard ρ2 as the values of a standard
Gaussian kernel κ : V × V −→ R. Inverting the identity ρ2[u, v] =
κ(u, v) = exp(−2D2

ρ2 [u, v]) leads to a pseudo-Euclidean distance

Dρ2 [u, v] =

√
−1

2
log ρ2[u, v]. (6)

2.3. Shortest path distance on the K-nearest neighbor graph

Following the Isomap manifold learning algorithm [15], we compute
theK nearest neighbors of each feature u ∈ V as the setNK(u) ofK
features v 6= u that minimize the distance Dρ2 [u, v], i.e., maximize
the squared Pearson correlation ρ2[u, v]. We construct a K-nearest
graph G whose vertices are V and whose adjacency matrix A[u, v]
is equal to Dρ[u, v] if v ∈ NK(u) or if u ∈ NK(v), and infinity
otherwise. We run Dijkstra’s algorithm on G to measure geodesics
on the manifold induced by A. These geodesics yield a shortest path
distance function over V2:

DG [u, v] =

{
Dρ2 [u, v] if v ∈ NK(u) or u ∈ NK(v)
min
z

(DG [u, z] + DG [z, v]) otherwise. (7)

If G has more than one connected component, then DG is infinite
over pairs of mutually unreachable vertices. On some datasets, ρ may
lead to a disconnected K-nearest neighbor graph G, especially for
small K, thereby causing numerical aberrations in Isomap. However,
we make sure that the effective bandwidth of the wavelet ψ̂ is large
enough in comparison with Q to yield strong correlations ρ[u, u+ 1]
for all u, and thus u ∈ NK(u + 1). With this caveat in mind, we
postulate that DG is finite in all of the following. We set K = 3 in
the following unless stated otherwise.

2.4. Classical multidimensional scaling and 3-D embedding

Let SG [u, v] = DG [u, v]2. Classical multidimensional scal-
ing (MDS) diagonalizes τG = − 1

2
(HSGH) where H[u, v] =

δ(u − v) − 1
QJ

[16]. We denote by em and λm the respective
eigenvectors and eigenvalues of τG , satisfying τGem = λmem.
We rank eigenvalues in decreasing order, without loss of generality.
Lastly, we display the Isomap embedding as a 3-D scatter plot with
Cartesian coordinates e[u] = (e1[u], e2[u], e3[u]) for every vertex
u ∈ V . We compute Isomap using scikit-learn v0.21.3 [17].
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Fig. 3. Pearson correlation matrices ρ2 (left) and Isomap embeddings
(right) for two instruments in the SOL dataset: Trumpet in C (a) and
Harp (b). In both cases, the number of neighbors is set to K = 3 and
the loudness mapping Λ is logarithmic. See Section 3.2 for details.

3. EXPERIMENTS WITH MUSICAL SOUNDS

3.1. Main protocol

We extract X from the isolated musical notes played by eight instru-
ments in the SOL dataset [18]: accordion, alto saxophone, bassoon,
flute, harp, trumpet in C, and cello. For each of these instruments,
we include three levels of intensity dynamics: pp, mf, and ff. We in-
clude all available pitches in the tessitura (min = B0, median = E4,
max = C\8). We exclude extended playing techniques, because
some of them may lack a discernible pitch class [19]; thus resulting
in a total of N = 1212 audio recordings for the ordinario technique.
We hypothesize that cross-correlations across octaves are weaker than
cross-correlations along the log-frequency axis. Because the helix
topology of musical pitch relies on both kinds of correlation, we set
the number of neighbors to K = 3.

Figure 2 illustrates our protocol and main finding. Isomap pro-
duces a quasi-perfect cylindrical manifold in dimension three. We
color each dot e[u] according to a hue of θ(u) = 2π

Q
(u mod Q)

radians. Furthermore, we draw a segment between each e[u] and
its upper adjacent subband e[u + 1]. Once these visual elements
are included in the display of the scatter plot (e[u])u, the cylindrical
manifold appears to coincide with the Drobisch-Shepard helix in
music psychology [20, 21]. Indeed, hues θ[u] appear to align on the
same radii, whereas the grey line γ grows monotonically with e3.
This result demonstrates that, even without prior knowledge about the
perception of musical pitch, it is possible to discover octave equiv-
alence in a purely data-driven fashion, by computing the graph of
greatest cross-correlations between CQT magnitudes in a corpus of
isolated musical notes.

(a) K = 2 neighbors. (b) K = 5 neighbors.

Fig. 4. Isomap embeddings for varying K-nearest neighbor graphs:
K = 2 (left) and K = 5 (right). In both cases, the Pearson correla-
tion matrix ρ2 results from all instruments in the SOL dataset and the
loudness mapping Λ is logarithmic. See Section 3.3 for details.

3.2. Varying the instrumentarium

We reproduce the main protocol on subsets of the SOL dataset, involv-
ing a single instrument at once. The bright timbre of brass instruments
correlates with relatively loud high-order partials [22], resulting in
large octave equivalence and a helical topology (see Figure 3 (a)).
In contrast, harp tones carry little energy at twice the fundamental;
yet, they induce sympathetic resonance along the soundboard, which
affects nearby strings predominantly [23]. These two phenomena
in combination favor semitone correlations over octave correlations,
resulting in a rectilinear topology (see Figure 3 (a)).

3.3. Varying the number of neighbors K

We reproduce the main protocol with varying K-nearest neighbor
graphs. Setting K = 2 results in multiple lobes, each corresponding
to an octave, and connected at a single pitch class (see Figure 4). This
confirms our hypothesis that large semitone correlations outnumber
large octave correlations. Conversely, setting K = 5 results in
a topology that is more intricate than the Drobisch-Shepard helix,
involving correlations across perfect fourths and fifths..

3.4. Varying the loudness mapping function Λ

We reproduce the main protocol with varying loudness mappings Λ
(see Figure 5). On one hand, setting Λ to the identity function yields
a K-nearest neighbor graph in which octave correlations are numeri-
cally negligible, except in the lower register. This results in an Isomap
embedding which is circular in the bottommost octave and irregular
in the topmost octaves. On the other hand, setting Λ to the cubic root
function yields a helical topology. This experiment demonstrates the
need for nonlinear loudness compression in the protocol; in contrast
with [13], which relied on raw grayscale intensities in handwritten
digits.

4. EXTENSION TO SPEECH AND URBAN SOUNDS

4.1. Experiment with speech data

We analyze the North Texas vowel database (NTVOW), which con-
tains utterances of 12 English vowels from 50 American speakers,
including children aged three to seven as well as male and female
adults [24]; resulting in a total of N = 9570 audio recordings. As
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Fig. 5. Pearson correlation matrices ρ2 (left) and Isomap embeddings
(right) for cubic root (a) and linear (b) loudness mappings. In both
cases, ρ2 results from all instruments in the SOL dataset and the
number of neighbors is set to K = 3. See Section 3.4 for details.

seen in Figure 6 (a), which includes the data from all age groups, there
is some notion of pitch circularity seen in the mid-frequency range,
but not so in the low and high-frequency ranges. This is because the
distribution of f0 in human speech is polarized around certain pitch
classes, rather than uniform over the chromatic scale.

4.2. Experiment with environmental audio data

We analyze a portion of the SONYC Urban Sound Tagging dataset
(SONYC-UST v0.4), which contains a collection of 3068 acoustic
scenes from a network of autonomous sensors in various locations
of New York City [25]. We restrict this collection to the acoustic
scenes in which the consensus of expert annotators has confirmed
the absence of both human speech and music. As a result of this
preliminary curation step, we obtain N = 233 audio recordings from
eight different sensor locations. Each of these scenes contains one
or several sources of urban noise pollution, among which: engines,
machinery and non-machinery impacts, powered saws, alert signals,
and dog barks. Figure 6 (b) shows that no discernible correlations
across octaves are observed in this dataset. This finding confirms the
conclusions of a previous publication [26], which stated that “music
audio signal processing techniques must be informed by a deep and
thorough insight into the nature of music itself”.

5. CONCLUSION

The Isomap manifold learning algorithm offers an approximate vi-
sualization of nearest neighbor relationships in any non-Euclidean
metric space. Thus, a previous publication [13] proposed to apply
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(b) Urban sounds (SONYC-UST excluding speech and music).

Fig. 6. Extension of the proposed method to speech (a) and environ-
mental soundscapes (b). In both cases, the number of neighbors is set
to K = 3 and the loudness mapping Λ is logarithmic. See Section 4
for details.

Isomap onto cross-correlations between grayscale intensities in nat-
ural images. In this article, we have borrowed from the protocol of
this publication to apply it on music data.

Despite their methodological resemblance, the two studies lead
to different insights. While [13] recovered a quasi-uniform raster, we
do not recover a straight line from cross-correlations along the log-
frequency axis. Instead, we obtain a cylindrical lattice in dimension
three. Assigning pitch classes to subbands reveals that this lattice is
akin to a Drobisch-Shepard helix [20], which makes a full turn at each
octave. Thus, whereas [13] learned a 2-D topology from 2-D data, we
learned a 3-D topology from 1-D data. Furthermore, after benchmark-
ing several design choices, we deduce that the most regular helical
shape results from: a diverse instrumentarium; a graph of K = 3
nearest neighbors; and a logarithmic loudness mapping. Lastly, we
have discussed the limitations of our findings: although spoken vow-
els also exhibit a quasi-helical topology in subband neighborhoods,
the same cannot be said of urban noise.

Beyond the realm of manifold learning, the present article mo-
tivates the development of weight sharing architectures that foster
octave equivalence in deep representations of music data. Three ex-
amples of such architectures are: spiral scattering transform [27];
spiral convolutional networks [28]; and harmonic constant-Q trans-
form [29]. Future work will extend this protocol to bioacoustic data,
and comparing the influence of species-specific vocalizations onto
the empirical topology of the frequency domain.
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