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Abstract

Diel vertical migration of zooplankton profoundly impacts the transport of nutrients and carbon
through the water column. Despite the acknowledged importance of this active flux to ocean
biogeochemistry, these contributions remain poorly constrained, in part because daily variations
in metabolic rates are not considered or are modeled as simple functions of temperature. To
address this uncertainty, we sampled the subtropical copepod Pleuromamma xiphias at 4- to 7-
hour intervals throughout the daily migration and measured rates of oxygen consumption,
ammonium excretion, fecal pellet production and metabolic enzyme activity. No significant
patterns were detected in rates of oxygen consumption or ammonium excretion for freshly
caught animals over the diel cycle. Fecal pellet production was highest during mid-night,
consistent with several hours of feeding near the surface. Surface feeding resulted in fecal pellet
production at depth in the morning, providing direct evidence that active flux of particulate
organic carbon occurs in this region. Electron transport system activity was highest during the
afternoon, contrary to our prediction of reduced daytime metabolism. Activity of both glutamate
dehydrogenase and citrate synthase increased during early night, reflecting higher capacity for
excretion and aerobic respiration, respectively. Overall, these results show that activities of
metabolic enzymes vary during diel vertical migration. The surprising observation of elevated
afternoon enzyme activity coupled with daytime fecal pellet and ammonium production suggests

that additional characterization of the daytime activity of migratory zooplankton is warranted.
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1. Introduction

Diel vertical migration (DVM) of zooplankton is typified by the presence of migrators in the
photic epipelagic during the night followed by their movement into deeper water during the day.
These daily migrations, during which individuals of a few millimeters in length or less travel
hundreds of meters in a few hours, are thought to be energetically expensive. Although costly,
this typical pattern of migration is primarily driven by avoidance of predators, particularly visual
predators at shallow depths during daytime, and the pursuit of prey (Antezana 2009; Gliwicz

1986; Hays 2003; Pinti et al. 2019).

DVM is a key component of the biological pump (Siegel et al. 2016). Migrators release surface-
derived carbon and nutrients as respiratory CO; and other excretory waste products (e.g., urea,
ammonium, fecal matter, and dissolved organic compounds) below the thermocline (Longhurst
et al. 1990; Longhurst and Harrison 1988; Maas et al. 2020; Zhang and Dam 1997). This process,
known as active flux, has been estimated to account for 15 - 40% of the total global organic
carbon export from the surface to the mesopelagic (Aumont et al. 2018; Bianchi et al. 2013;
Steinberg et al. 2000). Through the excretion of nitrogenous compounds at depth, DVM also
reduces the availability of this limiting nutrient to phytoplankton in surface waters, influencing
the potential for new production (Longhurst and Harrison 1988). In many cases, this daily
shuttling of material meets or exceeds the vertical transport associated with passively sinking
particles (Hernandez-Leon et al. 2019b; Kobari et al. 2013; Steinberg et al. 2008). At depth,
some zooplankton species also consume particles, aggregates, and one another, significantly
modifying the availability and export of nutrients and carbon from the mixed layer (Robinson et
al. 2010; Schnetzer and Steinberg 2002a). The magnitude and relative importance of active

transport varies regionally and seasonally, but the factors driving this variation are poorly
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understood (Burd et al. 2010; Steinberg and Landry 2017) and have been identified as a priority

for future research on the biological pump (Burd et al. 2016).

Estimates of active flux are typically made by measuring biomass of the migratory community
then applying mass-specific and temperature scaling factors (i.e., Q1o relationships) to
experimentally calculated O2 consumption rates, as well as organismal nitrogen and carbon
excretion rates (e.g., Kiko et al. 2020; Le Borgne and Rodier 1997). However, depth-dependent
metabolic rates are driven not only by temperature differences, but also by differences in
swimming activity and oxygen availability (Bianchi et al. 2013; Hernandez-Leon et al. 2019a;
Herrera et al. 2019). Daily cycles in feeding activity would also be expected to affect metabolic
rates through specific dynamic action, the metabolic costs of assimilating nutrients and
incorporating them into biomass (Kierboe et al. 1985). In addition, a few studies in krill and
copepods have identified circadian cycles in respiration rate, swimming behavior and the
expression of metabolic genes (Héfker et al. 2017; Maas et al. 2018; Teschke et al. 2011). If
these patterns are widespread and there are cycles in other major physiological processes, like
fecal pellet production and ammonium excretion, they may cause substantial errors in the

estimations of organismal contributions to biogeochemical flux during daytime at depth.

In addition to direct metabolic measurements of oxygen consumption, nitrogen excretion and
fecal pellet production, aspects of active flux have been estimated by measuring the activity of
key enzymes including the electron transport system (ETS) for respiration or glutamate
dehydrogenase (GDH) for ammonium excretion (Bidigare 1983; Fernandez-Urruzola et al. 2011;
Hernandez-Leon et al. 2019a; Packard and Gomez 2013). Such measurements have the
advantage that they avoid artifacts associated with bottle incubations, but it is unclear over what

time scale the fluctuations in enzymatic activity correspond to changes in organismal metabolic
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rates. Predictions of organismal metabolic rates from enzymatic activity measurements of field-
collected zooplankton typically have large uncertainties, e.g., 31-38% for O2 consumption and
ETS (Packard and Gémez 2013; Packard et al. 1988) and 42.5% for ammonium excretion GDH
(Fernandez-Urruzola et al. 2016). Part of this uncertainty can be explained by variation in
physiological activity and metabolic rates as a percentage of the maximum rate that could be
supported by a given enzyme. For example, food availability and quality affect substrate
availability, and contribute to decoupling between measurements of oxygen consumption and

ETS activity (Hernandez-Le6n and Gémez 1996; Osma et al. 2016).

For organisms that undergo DVM, daily cycles in food availability are somewhat predictable, so
they might modulate their enzymatic capacity in anticipation of this variability. Daily
physiological and behavioral cycles can be directly triggered by environmental conditions, and
can also be regulated through endogenous circadian clocks. In nature, these two mechanisms are
interrelated because circadian clocks are entrained by environmental cues, such as light,
temperature and food availability. Conserved components of the circadian clock have been
identified in a few planktonic crustaceans, including the euphausiids Euphausia superba
(Teschke et al. 2011, De Pitta et al. 2013) and Meganyctiphanes norvegica (Blanco-Bercial and
Maas 2018), and the copepods Calanus finmarchicus (Christie et al. 2013, Hifker et al. 2017)
and Pleuromamma xiphias (Maas et al. 2018). In E. superba and C. finmarchicus, circadian
cycles in expression of circadian regulatory genes, metabolic enzymes (e.g., citrate synthase),
and oxygen (O2) consumption have been described, and similar daily cycles have been detected
in field populations (Teschke et al. 2011, De Pitta et al. 2013, Héfker et al. 2017). While external
environmental cues have a large direct influence on DVM, laboratory experiments with krill

(Gaten et al. 2008), copepods (Hiippe 2016) and nereid worm larvae (Tosches et al. 2014)
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suggest that circadian pathways can also contribute to this behavior. Regardless of the relative
importance of circadian regulation versus direct responses to the environment, knowing when
particular metabolic pathways are activated would allow prediction of when and where their end
products are released into the water column, contributing to active flux transport and providing

important nutrients to the midwater.

To address these knowledge gaps, we investigated daily physiological changes in the copepod
Pleuromamma xiphias (Giesbrecht, 1889), which is abundant, occurs throughout the tropical and
subtropical oceans, and exhibits a strong diel vertical migration (Goetze 2011 and references
therein). The contributions of P. xiphias to nitrogen and carbon flux have previously been
characterized using classical bottle sampling methods and abundance estimates (i.e. Steinberg et
al. 2000; Steinberg et al. 2002; Teuber et al. 2013). At the Bermuda Atlantic Time-series (BATS)
site, near the sampling site of our study, seasonal measurements have indicated that P. xiphias is
the most biogeochemically relevant of the Pleuromamma copepods in the region. Together these
copepods and the euphausiid Thysanopoda aequalis make up 23% of the surface zooplankton
biomass on average, suggesting that they are the most important contributors to active flux
(range 4-70%; Figure 3 within Steinberg et al. 2000). We have previously shown that P. xiphias
exhibits a circadian pattern in oxygen consumption when held under constant laboratory
conditions, with a peak during dawn and lowest levels during the evening (Maas et al. 2018). In
the present study, diel metabolic variation of P. xiphias was examined in the natural context of
its daily migration using organismal metabolic measurements, as well as enzymatic activity
assays. We hypothesized that the combined influences of the circadian machinery and the
environment would create emergent molecular and physiological cycles that cannot be accounted

for solely by Q1o relationships. Specifically, we expected that excretion rates would be elevated
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during the night and that oxygen consumption rates would be highest at dawn, as we had
previously observed. Finally, we predicted that patterns in glutamate hydrogenase activity would
mirror ammonium excretion rates and that patterns in citrate synthase and the electron transport

system activity would reflect oxygen consumption rates.

2. Materials and Methods

2.1 Sample Collection

Pleuromamma xiphias were collected offshore from the Bermuda Institute of Ocean Sciences
(BIOS) during a cruise aboard the R/V Atlantic Explorer from May 20-22, 2019 (Figure 1). All
times were reported as solar times. On May 21, sunrise occurred at 5:02 and sunset at 18:59;
solar noon corresponded to 13:15 Bermuda local time (UTC -3 during Daylight Saving Time).
Net tows were conducted at 12 time points, spaced 4-7 hours apart to target afternoon, early
night, mid-night and morning (Table 1). The timing of morning and early night tows was
selected to target recently arrived migrants based on empirical observations from previous tows
and the first day of sampling. Nighttime tows (early- and mid-night) were conducted using a 1-
m? Reeve net (Reeve 1981) deployed to 200 m depth, with 150 pum mesh, a 20-L cod end, and a
miniSTAR-ODDI pressure and depth sensor. Daytime tows (morning and afternoon) were
conducted using a 1-m?> MOCNESS with 150 um mesh and a custom-built thermally-insulated
closing cod end. The thermally-insulated cod end was used because copepods were also sampled
for transcriptomic and proteomic analyses that will be presented elsewhere. Because the goal of
the MOCNESS sampling was to collect copepods from a single depth stratum, only one closing
net was used each time to sample from 400-600 m depth. To obtain temperature profiles, CTD

rosette casts were conducted prior to six of the net tows using a Seabird 911 CTD equipped with
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additional oxygen, fluorescence, turbidity and backscatter sensors. After each tow, copepods
were examined under a Leica M205 C stereomicroscope to identify adult P. xiphias and
determine their sex. Copepods were either used immediately for respirometry and excretion

measurements or flash-frozen for subsequent enzyme activity measurements.

2.2 Organismal Metabolic Measurements

Water for physiological experiments was obtained daily from 120 m depth using the rosette on
the CTD. It was gravity filtered past a 0.2 pm Supor filter in a Georig 142 mm filter holder and
equilibrated to 20°C in an upright incubator. Two types of experiments were conducted. In the
first, rates of oxygen consumption, ammonium excretion and fecal pellet production were
measured at four time points per day (discrete incubations). In the second, ammonium, urea and

DOC excretion were measured from individual copepods over time (time-course measurements).

2.2.1 Discrete incubations over a daily cycle

At each time point (four per day), up to six copepods were transferred into individual respiration
chambers (i.e., one animal per chamber) that consisted of 50-mL glass syringes containing an
optically sensitive oxygen sensor (OXFOIL: PyroScience, Aachen Germany) and 30 mL of 0.2
um filtered seawater. A glass bead was placed at the bottom of each syringe to avoid trapping the
copepod in the small region of the syringe outlet, and all air bubbles were purged from the
chamber. To control for bacterial respiration, two chambers were filled with water but were left
without a copepod. Chambers were placed upright (plunger facing upward) in a dark 20°C
incubator, and the oxygen concentration in each chamber was measured non-invasively and
continuously (every 60 seconds) for approximately 3 hours using two FireSting optical oxygen
meters (PyroScience, Aachen Germany), initialized with a 2-point calibration procedure (100%

9
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air-saturated water and 0% oxygen-free water by sodium sulfite reaction) on May 19, 2020. At
the end of the experiment, the chambers were visually inspected to ensure that the copepods were
still swimming. A 15-mL subsample of water was filtered at a 30° upward angle (to avoid
damaging copepods or fecal pellets) through 0.7 um GFF filters into 15-mL conical vials that
had been pre-treated with o-phthalaldehyde (OPA) working reagent (21 mM sodium tetraborate,
0.063 mM sodium sulfite, 50 mL L' o-phthalaldehyde in ethanol). This filtered water was
refrigerated (4°C) for less than 24 h and then ammonium concentration was assayed at sea, as
described below. The copepod and any fecal pellets from each chamber were rinsed into a petri
dish. Fecal pellets were counted and photographed under a stereomicroscope. Copepods were
rinsed once in deionized water and frozen at -80°C. Frozen copepods were subsequently weighed

on a Mettler-Toledo XPR microbalance, dried, and reweighed.

Individual respiration rates were corrected for bacterial respiration by plotting the oxygen
concentration (umol Oz L) in each chamber over time then subtracting the mean slope
(reduction in oxygen per hour) of the controls from those of each organismal chamber to provide
the respiration rates. Rates were corrected for chamber volume and copepod dry mass (umol O>

ngM'l h-l).

Ammonium was measured using the OPA method (Holmes et al. 1999). Each day, a standard
curve (0-3 umol L") was created in duplicate, and refrigerated samples were equilibrated to
room temperature. Samples and standards were then spiked with the working reagent and were
maintained in the dark for 3 h prior to analysis on a Turner fluorometer with the ammonium
module (1 cm path length cuvette). Ammonium concentration was calculated based on the linear

equation generated by the standards and corrected for background fluorescence. This value was

10
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11

adjusted by chamber volume, experimental duration, and copepod dry mass (umol NH4" mgpm!

hh).

Oxygen consumption rate, ammonium excretion rate, and dry mass were measured for 60
copepods (n= 10-18 per time point, 40 females, 19 males, and 1 juvenile CV female). Log-
transformed rates of oxygen consumption and ammonium excretion were compared across
timepoints (i.e., 4 times, pooled across days) using ANCOVA with log-transformed mass as a
covariate (SPSS version 22). Equality of variances was confirmed with Levene’s test.
Differences in fecal pellet production between timepoints was assessed using the nonparametric

independent-samples median test. Significance of all analyses was assessed at p < 0.05.

2.2.2 Time-course excretion measurements

Two experiments were conducted to measure ammonium excretion by P. xiphias over time. For
the first, copepods were collected from repeated Reeve tows from 19:45 to 22:45, and for the
second copepods were collected from a single Reeve tow at 19:45. Copepods were placed into
individual pre-filled ~115-mL pre-combusted glass jars at 23:15 for both experiments, which
were incubated in the dark at 20°C. Every six hours, five experimental jars and one control jar
(with the same water but no copepod) were sampled using a positive pressure system past a 0.2
micron polytetrafluoroethylene (PTFE) filter. The 10-mL samples were stored in 15-mL conical
vials that were pre-treated with OPA working reagent, and ammonium concentration was
measured daily in the samples, as described in section 2.2.1. Changes in ammonium

concentrations and excretion rates were analyzed via linear regression.

2.3 Enzyme Assays

11
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For enzyme activity measurements, copepods were thawed on ice, blotted on a tissue, and
quickly weighed on a Cahn C-33 microbalance. Groups of 2-5 copepods were pooled into 300
uL of ice-cold enzyme-specific buffer in a 5-mL Potter-Elvehjem homogenizer. Copepod tissue
was homogenized using a motorized PTFE pestle for two 30-second bursts with 30 seconds of
ice cooling between bursts. Homogenates were centrifuged at 14,000¢g for 20 minutes at 4°C, and
the supernatant was retained. Protein concentration was measured in the supernatant using the
Bradford protocol (Bradford 1976). Except where noted, enzyme activity measurements were
made with 20 uL homogenate per well in triplicate wells of a 96-well plate. Measurements were
made at 26°C using a SpectraMax plate reader. The automix function was used prior to each set

of measurements.

The assay for glutamate dehydrogenase (GDH) is based on the rate of oxidation of NADH
(Willett and Burton 2003). Copepods were homogenized in buffer (100 mM Tris pH 8, 50 mM
NH4Cl, 10 mM EDTA, 0.0025% Tween-80), as described above. Then 180 pL of GDH assay
buffer (200 uM ADP, 100 uM NADH in GDH homogenization buffer, made fresh daily) was
added to the homogenate. Baseline absorbance was monitored for 8 minutes at 340 nm to ensure
depletion of endogenous substrates. To measure enzymatic activity, 20 pL of substrate (5 mM o-
ketoglutarate) was added to each well, and the change in absorbance at 340 nm was recorded

over & minutes.

Citrate synthase (CS) activity was measured modifying the protocol of Hawkins et al. (2016).
Copepods were homogenized in buffer (25 mM Tris, pH 7.8, ImM EDTA, 10% glycerol). 170
pL of CS assay buffer (0.11% Triton X-100, 294 uM 5,5’-dithiobis-[2-nitrobenzoic acid]
[DTNB], 588 uM acetyl-coenzyme A in CS homogenization buffer, made fresh daily) was added

to the homogenate. After taking baseline absorbance measurements for 3 minutes at 405 nm, 10

12
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uL of 10 mM oxaloacetate was added to each well, and the change in absorbance at 405 nm was

recorded over 3 minutes.

Electron transport system (ETS) activity was measured modifying the protocol of Owens and
King (1975). Aliquots of the same homogenates from the CS assay were diluted 1:3 in ETS
phosphate buffer (0.1 M, pH 8.5, NaxHPO4, KH2PO4, Triton X-100). 40 uL of each diluted
sample was added in triplicate along with a fourth aliquot used as a no-substrate control,
followed by 120 pL of ETS assay buffer (1.25 mM NADH and 0.22 mM NADPH in phosphate
buffer, made fresh daily) to the samples or 120 puL of phosphate buffer alone to the control wells.
After taking baseline absorbance measurements for 8 minutes at 490 nm, 40 pL of 0.2% 3-(4-
iodophenyl)-2-(4-nitrophenyl)-5-phenyl-2H-tetrazol-3-ium chloride (INT), pH 8.5 was added to

each well, and the change in absorbance at 490 nm was recorded over 8 minutes.

Citrate synthase activity was determined by comparing measurements of copepod homogenates
with a standard curve derived from a dilution series of a pure enzyme standard (citrate synthase
from porcine heart, Sigma-Aldrich). Other enzymatic activities were calculated using the Beer-
Lambert Law with extinction coefficients of 6.22 mM™ cm™ for NADH (GDH, reported by
Sigma-Aldrich, the supplier) and 15.9 mM™ cm™ for INT (ETS assay, as in Owens and King
1975). The enzyme activity measurements were not conducted on the same copepods used in
individual measurements of oxygen consumption and ammonium excretion, so the values do not

represent calibrated activity rates.

Enzyme activity measurements were separately normalized to dry mass and to protein. Dry mass
was calculated as 0.0513 times wet mass, based on the average ratio from measurements in the

respirometry experiences (n = 61). Physiological and enzymatic measurements were log10-

13
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transformed prior to analysis. Differences in enzymatic activity of pooled copepod samples were
analyzed using a one-way ANOVA (using the oneway.test function in R, which does not assume
equal variances) with a Games-Howell post-hoc test to identify significantly different groups (p

<0.05).

3. Results

3.1 Site characteristics and sample description

Throughout the sampling period, a deep chlorophyll maximum (DCM) consistently occurred
around 130-160 m depth; thus, nighttime sampling (to 200 m depth) would have included
copepods feeding within this region (Figure 2). Temperature was 23-24°C at the surface, 20°C
at the DCM, and 17-18°C at 500 m depth. Oxygen levels decreased with depth, but were always
above 160 umol kg™! at the depths sampled. The exact timing of the tows and incubations varied
from day to day (Table 1). Timepoints were clustered into four groups sampled at the same depth
range and similar times of tow recovery (R) and incubation start (I): morning (R: 6:25-7:38; I:
7:35-8:30), afternoon (R: 12:52-13:27; I: 13:50-14:55), early night (R 17:31-19:04; I: 21:25-
21:45), mid-night (21:00-22:55; I: 1:15-2:45). The delay between each tow recovery and the start
of the corresponding incubation primarily represented the time required to identify sufficient

adult females for all study objectives.

3.2 Organismal Metabolic Measurements

There was no significant difference among time points in the mass-normalized rates of oxygen
consumption or ammonium excretion (Fig. 3A-B, oxygen consumption F(55,3) = 0.242, p =

0.867; ammonium excretion F(55,3) = 0.545, p = 0.653). Rates did not vary by sex, and the

14
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285 interpretation was not changed by limiting the analysis to adult females (not shown). Fecal pellet
286  production varied significantly over the course of the day with maximum values at mid-night that
287  were significantly higher than afternoon or early night (Fig. 3C, X?(3, N = 64) = 20.426, p

288  <0.001). The fecal pellets produced at mid-night appeared densely packed and were brown or
289  green in color. Some of the fecal pellets produced during daytime were similar in appearance;

290  however, others were light-colored and loosely packed (Fig. 4).

291  In the time-course studies, ammonium concentrations increased over time, indicating some
292 continued excretion over the 18-hour incubation (Fig. 5A). There was not a statistically
293  significant change in the integrated rate of excretion measured at each sampling point (Fig. 5B),

294  but mean ammonium excretion rates decreased with each sampling interval (Fig 5C).
295 3.3 Engyme Activity Measurements

296  Patterns of enzyme activity were broadly similar whether the data were normalized to wet mass
297  (Fig. 6) or protein concentration (Supplemental Figure 1); however, the statistical significance
298  varied with the method of normalization (Table 2). ETS and CS both exhibited significant

299  differences in activity over time when normalized to mass, though the patterns were different

300 (Figs. 6A and 6B, respectively). Within the deep water, ETS activity was higher during the

301  afternoon than during the morning; this was contrary to our hypothesis that rates would be

302  highest during morning. CS was highest at night, with significant differences between early night
303  and both the daytime points. GDH activity also tended to be higher at night, with a significant
304  increase between afternoon and early night when normalized to protein (Table 2, Supplemental
305  Fig. 1). Mean activity at night was approximately twice the afternoon activity at depth, and this

306 difference would be magnified in the field due to differences in temperature with depth.
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4. Discussion

Over a three-day period, Pleuromamma xiphias copepods were sampled from depths that
corresponded to their typical diel vertical migration. Fecal pellet production and ammonium
excretion during daytime at depth were consistent with both active transport and some degree of
midwater feeding. Daily patterns in enzymatic activity suggest that the copepods respond to or
anticipate differences in food availability, temperature and/or other environmental conditions

over the course of the migratory cycle.

We did not observe significant variation in oxygen consumption rate during our discrete
measurements of respiration. Our failure to detect a diel rhythm in oxygen consumption in wild-
caught animals was initially surprising, given previous reports of circadian rhythms in copepod
respiration (Hafker et al. 2017; Maas et al. 2018); however, the present study was very different
in design and goals than the previous circadian studies. The previous circadian studies consisted
of continuous longitudinal measurements of oxygen utilization, whereas the present eco-
physiological study consisted of independent samples collected directly from the field. Thus,
rates measured in the current study reflect the combined influences of circadian patterns in
physiology, as well as the variable feeding and swimming history of the individuals over their

vertical migration.

Unexpectedly high inter-individual variability among samples in the current study may have
prevented detection of a diel cycle in oxygen consumption rate. To provide context, the
amplitude of the circadian cycle we previously reported in P. xiphias oxygen consumption rates
(initially 173 pmol g'pm h! with rapid dampening; Maas et al. 2018) is similar in magnitude to

the difference (non-significant) in means between morning and afternoon observed in the present

16
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study (128 pmol g'pm h'). To detect a difference of this magnitude (128-173 umol g''pm h)
given the observed variability of the field-collected samples (mean standard deviation of time
points 140 umol g''pm h') we approximate a required sample size of 21-29 (o= 0.05, f=0.80;
based on ANOVA of mass-normalized samples with 6 pairwise comparisons, Chow et al. 2007),
a substantial increase from our actual sample size of 10-18 per time point. Our results also
contrast previous observations by Pavlova (1994), who conducted endpoint measurements that
were similar to those used in the present study, and who observed greatly increased respiration
rates by P. xiphias around dawn and dusk. However, the oxygen consumption rates measured at
dawn and dusk by Pavlova (1994) are an order of magnitude greater than any respiration rates
observed for P. xiphias adults in several subsequent studies (Maas et al. 2018; Steinberg et al.
2000; Teuber et al. 2013). While we cannot provide a definitive explanation for this discrepancy,
possible explanations could be unique physiology of the populations sampled by Pavlova (e.g.,
sampling was done from individuals captured at 5 m depth in the Indian Ocean, where there is a
strong oxygen minimum zone), a failure of this study to make measurements during ephemeral

periods of peak respiration, or methodological artifacts (e.g., differences in handling stress).

Fecal pellet production rates were highest during mid-night, but there was also some evidence of
daytime feeding with occasional pellets even in the afternoon. Our results suggest a 50%
decrease in production rate of fecal pellets when comparing mid-night (0-200 m depth) and early
morning (400-600 m depth). This is consistent with the estimates made by Schnetzer and
Steinberg (2002b) who estimated 57% production of surface-derived fecal pellets by P. xiphias
at 300 m depth using gut evacuation rate experiments and migration speed. Pleuromamma
xiphias has been demonstrated to commonly have > 50% of their gut contents consisting of

material suspected to be of detrital origin (Schnetzer and Steinberg 2002a), which might imply
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that substantial feeding activity could occur continuously throughout the water column and over
the full diel cycle. However, the observed reduction in fecal pellet production at depth during the
day suggests that midwater feeding is substantially less than surface nighttime consumption.
Although validation of the origin of these pellets would require isotopic, microscopic or
molecular analysis of their content, the similarity in the morphology of many of the mid-night
(surface) and early morning (deep) fecal pellets suggests instead that at least some of these
pellets are derived from surface feeding. These would then contribute to particulate organic

carbon active flux, as predicted by Schnetzer and Steinberg (2002b).

Ammonium excretion rates dropped over an eighteen-hour incubation (time-course
measurements) but exhibited no variation over the course of the day (discrete incubations). The
decreasing rate in the time-course measurements likely reflects reduced excretion as food in the
gut is cleared, suggesting that feeding only at the surface during night would not be sufficient to
sustain continued excretion over the full daily cycle. Thus, when taken in conjunction with the
time series results, the lack in diel variation is intriguing and would be consistent with continued

feeding at depth to support continued ammonium excretion in the field-caught samples.

While we did not detect diel changes in organismal-level measurements of oxygen consumption
and ammonium excretion rates, there were diel changes in the activity levels of the three
metabolic enzymes measured. This discrepancy could reflect the interplay between enzyme
activity measurements and substrate availability that resulted in consistent metabolism despite
variations in enzymatic capacity. Alternatively, the enzymatic measurements, which were made
on rapidly flash-frozen individuals, may have been less impacted by the effects of handling or
captivity that were associated with the experimental incubations needed to measure organismal

rates.
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ETS activity is generally considered to reflect the value of oxygen consumption if all enzymes in
the electron transport chain were functioning at maximum activity, whereas in vivo respiration
rate may be constrained by substrate limitation or the presence of inhibitors. While oxygen
consumption rates and ETS activity are often concordant (e.g., Bidigare 1983; Maldonado et al.
2012; Packard 1985), they can respond differently to changes in food availability, temperature
and other factors (Herndndez-Leon and Goémez 1996; Osma et al. 2016). Unlike respiration rate,
which was consistent throughout the diel cycle, ETS activity in our study was significantly
higher in the afternoon than in the morning. The increase in ETS activity between morning and
afternoon is puzzling, as our previous work with this species demonstrated a circadian peak in
oxygen consumption rates in the morning (6-12 h) and the lowest respiration rate in the early
evening (18-24 h) under constant conditions in the laboratory. Multiple additional environmental
factors could be influencing the in situ ETS expression, but the patterns cannot be clearly
explained by predicted changes in swimming activity or metabolic changes due to specific
dynamic action associated with food processing. Experimental studies with the copepod Acartia
tonsa demonstrated that copepods maintained high rates of metabolism for about 8 hours after
removal for food (Kierboe et al. 1985). While this timing may be expected to vary among
copepod species, a metabolic pattern driven solely by feeding activity and postprandial metabolic
processes would be expected to have the lowest rates during the afternoon sampling period.
Alternatively, the higher ETS capacity may be a strategy used to offset the Q1o temperature
effect, allowing for sustained aerobic metabolism despite lower midwater temperatures. While
such a compensatory effect is consistent with elevated ETS activity observed during afternoon, it
does not explain the low expression in the morning period. A third possibility is that the

copepods are upregulating their metabolic capacity in preparation for their nighttime ascent.
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Analogous anticipatory rhythms have been characterized in model organisms, such as
mammalian food anticipatory behavior (increased actiivity 1-3 hours before meal time; reviewed
by Silver et al. 2011) and anticipatory upregulation of catabolic liver enzymes (Diaz-Muiioz et
al. 2000).

When comparing studies of diel metabolism of migratory zooplankton, there is a consistent
disconnect between observed patterns in respiratory peaks, which are often coincident with
sunrise and sunset (Hatker et al. 2017; Maas et al. 2018; Pavlova 1994), and the period of highest
ETS expression. Although the precise peak in ETS activity differs among the migrating species
that have been examined, it is consistently during the daytime portion of the diel cycle. For
example, a study of euphausiid physiology in an area with a pronounced oxygen minimum zone
found peak ETS activity levels during early morning in animals caught at depth (400-500 m
depth; Hernandez-Leon et al. 2019b). A pattern more similar to that detected in our study was
observed in a laboratory-based study of krill by Biscontin et al. (2019), who report peak late-
afternoon expression of genes associated with the electron transport chain and Krebs cycle. The
discordance between ETS and respiration measurements and the variation in peak timing
observed in studies conducted in different species and ecosystems together suggest a need for
greater coordinated study, particularly since ETS measurements are used as a proxy for
respiration in biogeochemical studies (Belcher et al. 2020; Hernandez-Leodn et al. 2019b;
Hernandez-Leon et al. 2019c¢; Packard and Gomez 2013).

Alternate enzymatic proxies for respiration include individual enzymes within the citric acid
cycle, the reactions which provide high-energy electrons to the ETS. Of these, citrate synthase
(CS) is the first enzyme of the citric acid cycle that performs the irreversible condensation of

acetyl-CoA with OA to create citrate. Unlike the ETS machinery, the activity of CS in our study
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was elevated during nighttime, when P. xiphias is expected to be feeding most actively. High
rates of nighttime feeding are consistent with observed increases in fecal pellet production during
the mid-night period. Citrate synthase has been used to indicate aerobic metabolic potential but
does not always correlate well with oxygen consumption rates in invertebrates (Thuesen et al.
1998 and references therein). In copepods, previous studies have correlated CS activity with
food availability on multiday timescales (e.g., 2-3 day lab incubations, Clarke and Walsh 1993;
pre-/post-bloom Geiger et al. 2001). Daily patterns in CS (i.e., cycles within days) have not been
previously described in copepods, but are well-documented in mammalian tissues through
measurements of both transcript expression and enzymatic activity (Crumbley et al. 2012; Glatz
et al. 1984). Among other zooplankton, both circadian and ultradian patterns of CS expression
have been observed in krill (Biscontin et al. 2019; De Pitta et al. 2013; Teschke et al. 2011).
Meyer and colleagues (2010) suggested that malate dehydrogenase (MDH), another enzyme in
the citric acid cycle that additionally shunts electrons between cytosolic and mitochondrial
compartments, might better correspond to oxygen consumption rates. Diel patterns in copepod
MDH expression have not yet been investigated and would be useful to include in future studies;
however, seasonal studies in both copepods and euphausiids have indicated a general
correspondence of both CS and MDH activity with oxygen consumption rates (Freese et al.

2017; Meyer et al. 2010).

Glutamate dehydrogenase (GDH), which mediates the production of ammonium waste during
amino acid catabolism and is associated with the urea cycle, exhibited peak activity at night. This
contrasts with direct measurements of ammonium excretion, which showed no pattern. A
possible explanation for the discrepancy between ammonium and GDH measurements could be

artifacts in the ammonium measurements due to stress of capture, handling, captivity (small
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chamber size) and acclimation to starved conditions (Ikeda et al. 2000; Kodama et al. 2015). In
addition, while GDH activity is used as a proxy for potential excretion rate, actual excretion rate
may be limited by substrate availability (Fernandez-Urruzola et al. 2016). We are not aware of
any other studies tracking GDH activity during diel vertical migration. Bidigare et al. (1983)
measured depth-stratified GDH activity of bulk zooplankton communities within the upper 200
m depth in the Gulf of Mexico. The highest activities occurred within the mixed layer and were
largely driven by zooplankton abundance. Protein-specific activity was only reported during the
daytime and was highest in the upper 100 m. Within the first 24-hours of laboratory incubations
with starved mysids, Fernandez-Urruzola et al. (2011) found an initial increase in ammonium
excretion, followed by a sharp decrease; however, they observed high variability in GDH activity
within time points and no consistent temporal patterns. The design of the mysid study was quite
different from the present study in that a single cohort of animals was brought into the laboratory
and sampled over time. Despite these differences, it supports the idea that zooplankton excretion

rates could change on a daily scale with feeding activity.

To date, the handful of previous studies that have characterized aspects of circadian metabolism
in zooplankton have been conducted using a limited range of taxa, primarily copepods (Héfker et
al. 2017; Maas et al. 2018; Pavlova 1994) and krill (Biscontin et al. 2019; De Pitta et al. 2013;
Teschke et al. 2011). Further, most of this work has been conducted in polar or sub-polar
environments. Consequently, assessing diel rhythms in multiple species across a range of
environments will be important as we seek to better understand the cycling of nutrients in the
euphotic and twilight zone. The studies cited above used a combination of methods including
organismal physiology (e.g., oxygen consumption, ammonium excretion), transcriptomics,

proteomics, and enzyme activity assays. Each of these approaches can provide insight into the
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physiological ecology of zooplankton and zooplankton contributions to biogeochemical cycling;
however, these types of measurements are subject to different sources of error and may indicate
variability over different time scales. Moving forward, disentangling which factors these
measurements are responding to (e.g., light, temperature, oxygen concentration, food
availability, endogenous circadian rhythms,) will help us to better apply these tools to quantify

zooplankton contributions to biogeochemical cycles.

5. Conclusions

This study demonstrates that the copepod Pleuromamma xiphias exhibits variation in fecal pellet
production and activity of metabolic enzymes as it undergoes diel vertical migration, supporting
our hypothesis that circadian rhythms and other environmental factors beyond temperature create
emergent patterns in zooplankton physiology. Observed production of fecal pellets in deep water
during morning indicates that surface feeding by migratory copepods contributes to active flux of
particulate organic matter. Occasional late afternoon fecal pellets and sustained levels of
ammonium excretion by copepods sampled during daytime suggests continued, although
reduced, levels of midwater feeding. Despite the diel patterns in enzyme activity, there were no
statistically significant variations in oxygen consumption or ammonium excretion over the diel
cycle. Studying diel rhythmicity in physiological rates (respiration, ammonium excretion)
remains difficult in field-caught organisms, yet further studies are needed both in P. xiphias and
in other migratory species. Enzyme activity assays can complement direct physiological
measurements, and the observed daily variation in metabolic enzymes indicates that copepods
adjust their metabolic capacity in response to or perhaps in anticipation of variation in
environmental conditions and metabolic demands. However, measurements of enzymatic activity

indicate peaks in metabolic potential that may lead or lag actual cycles in physiological rates;
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this decoupling can contribute to uncertainty in applying enzymatic measurements to estimate

zooplankton contributions to respiration and ammonium production.

Data Archiving

CTD profiles and physiological data are available through the Biological and Chemical
Oceanography Data Management Office (BCO-DMO); https://www.bco-

dmo.org/project/764114.
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Figure Legends

Figure 1: (Left) Map showing bathymetry of the sampling region. Black circles mark tow
locations. (Right) Regional map showing the position of Bermuda within the North Atlantic
Ocean.

Figure 2: Plots of hydrographic conditions on 20 May 2021 at 32° 10.435N, 64° 30.018W (i.e.,
prior to Tow 1, Table 1). Additional hydrographic data are available at https://www.bco-
dmo.org/project/764114.

Figure 3: Pleuromamma xiphias physiological rates. Distinct letters indicate statistically distinct
time points. Open boxes denote samples collected from depth (400-600 m) during daytime, and
solid boxes indicate samples collected from surface waters (<200 m) during night. Oxygen and
ammonium rates per gram dry mass (DM) per hour. (A) Oxygen consumption, N=10-19; (B)
Ammonium excretion, N=10-18; (C) Fecal pellet production (per 3-hour incubation period),
N=13-19.

Figure 4: Examples of fecal pellets produced by Pleuromamma xiphias during 3-hour
incubations over a three-day period, with sequential sampling points beginning in the upper left

and proceeding to the right and down over time.

Figure 5: Time series of Pleuromamma xiphias ammonium production from individual
copepods that had been captured between 19:45 and 22:45 on May 20" (solid symbols) or
between 19:45 and 20:45 on May 22" (open symbols). Both excretion experiments were set up
at ~23:15 and results are reported as time since the start of the experiment (x-axis) with (A) total
production; (B) production integrated over time on the y-axis; (C) production per 6-hour

sampling window calculated by excluding the average production of the prior time points to
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demonstrate the excretion rate over the duration of the experiment in relation to solar time. White

bars show the average production per time point.

Figure 6: Log-transformed enzymatic activity of electron transport system (ETS; A), citrate
synthase (CS, C) and glutamate dehydrogenase (GDH, C). Activity normalized to dry mass.
Time of sampling and sample size indicated on the x-axis. Open boxes indicate samples
collected from depth (400-600 m) during daytime, and shaded boxes indicate samples collected

from surface waters (<200 m) during night. Letters indicate statistically distinct time points.
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Table 1: Tow sampling data. All times are reported relative to solar noon (12:00).

28

Timepoint* | Type® Date Nominal Tow Tow Incubation | Lat (N) Long (W)
Time Start Stop Start®
1; CTD Reeve 05/20/19 | Early 16:38 | 17:31 | 21:25 32°10.435" | 64°30.018'
night
2 Reeve 05/20/19 | Mid-night | 19:50 | 21:00 | 1:15* 32°08.434" | 64°28.581"
3; CTD MOC 05/21/19 | Morning 5:10 6:25 7:35 32°10.689" | 64°30.293'
4 MOC 05/21/19 | Afternoon | 11:50 | 13:06 | 14:30 32°24.363" | 64°28.749'
5 Reeve 05/21/19 | Early 16:44 | 17:44 | 21:45 32°33.650" | 64°34.754'
(2 tows) night 18:07 | 19:04 32°33.707" | 64° 34.759'
6 Reeve 05/22/19 | Mid-night | 21:02 | 22:00 | 1:55* 32°33.387" | 64°33.609'
7 MOC 05/22/19 | Morning 6:19 7:38 8:30 32°31.592" | 64°30.307'
8; CTD MOC 05/22/19 | Afternoon | 12:09 | 13:27 | 14:55 32°30.127" | 64°33.194'
9; CTD Reeve 05/22/19 | Early 16:43 | 17:45 | 21:35 32°34.141'" | 64°38.701"
Night
10 Reeve 05/23/19 | Mid-night | 21:53 | 22:55 | 2:45%* 32°10.416' | 64°47.369'
11; CTD MOC 05/23/19 | Morning 5:57 7:15 8:30 32°08.950" | 64°47.354'
12; CTD MOC 05/23/19 | Afternoon | 11:50 | 12:52 | 13:50 32°13.948' | 64°40.649'

? “CTD” indicates that a tow was directly preceded by CTD profiling.

® Reeve net tows had a maximum depth of 159 + 12 m (mean + SD). MOCNESS (MOC) tows

sampled from 400-600 m depth.

¢ Asterisk (*) indicates that time corresponds to the day following the start of tow.
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Table 2: One-way Welch's ANOVA and significant post-hoc (Games-Howell) results from

enzyme activity assays

Assay Dry mass-normalized activity Protein-normalized activity

ETS F(3,7.94) =4.83; p=10.03 F(3, 6.88)=2.75; p=10.12
Morning vs. Afternoon p = 0.02

CS F(3,8.59) = 12.09; p < 0.01 F(3,7.80) =3.36; p = 0.08
Morning vs. Early Night p=0.01
Afternoon vs. Early Night p = 0.04

GDH F(3,8.35)=3.10; p=0.09 F(3,4.35)=9.19; p=0.02

Afternoon vs. Early Night p < 0.01
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559  Figure 1: (Left) Map showing bathymetry of the sampling region. Black circles mark tow
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Figure 4: Examples of fecal pellets produced by Pleuromamma xiphias during 3-hour
incubations over a three-day period, with sequential sampling points beginning in the upper left

and proceeding to the right and down over time.
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Figure 5: Time series of Pleuromamma xiphias ammonium production from individual
copepods that had been captured between 19:45 and 22:45 on May 20" (solid symbols) or
between 19:45 and 20:45 on May 22" (open symbols). Both excretion experiments were set up
at ~23:15 and results are reported as time since the start of the experiment (x-axis) with (A) total
production; (B) production integrated over time on the y-axis; (C) production per 6-hour
sampling window calculated by excluding the average production of the prior time points to
demonstrate the excretion rate over the duration of the experiment in relation to solar time. White

bars show the average production per time point.
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Figure 6: Log-transformed enzymatic activity per gram dry mass (DM). Time of sampling and
sample size indicated on the x-axis. Open boxes indicate samples collected from depth (400-600
m) during daytime, and shaded boxes indicate samples collected from surface waters (<200 m)
during night. Letters indicate statistically distinct time points. (A) Electron transport system, ETS

(B) Citrate synthase, CS; (C) glutamate dehydrogenase, GDH.
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