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ARTICLE INFO ABSTRACT

Keywords: Climate change affects species and their interactions, resulting in novel communities and modified ecosystem
Distribution processes. Through shifts in phenology and distribution, climatic change can disrupt interactions, including those
ngher—o.rder interaction between mutualists. Mutualisms influence the structure and stability of communities and can link species to a
PMgmrlrhlzae common fate. However, research on climate change has focused on pairwise mutualisms, neglecting the higher-
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Rhizobi‘fy order interactions that can arise when species interact with multiple mutualists. We explore the effects of climate
Tripartite change on tripartite interactions involving belowground mutualists, namely soil bacteria and fungi, flowering

plants, and pollinators. We outline how climate change is predicted to affect the phenology and distribution of
these belowground mutualists, emphasizing the consequent effects on host plant floral traits, plant-pollinator
interactions, and bee behavior. We find evidence that warming, advanced snowmelt, and drought are likely to
cause phenological and distributional shifts in soil microbes, leading to diminished mutualistic interactions with
plants and symbiont switching. Consequently, shifts in flowering phenology, smaller floral displays, and lower
quality floral rewards are expected, increasing foraging time and energy demands for bees and altering their floral
preferences. Such costs could translate into reduced fitness and novel selection pressures for bees and flowering
plants in the short term. We highlight knowledge gaps and ways forward, urging studies on microbe dispersal
and phenological cues, experiments that manipulate soil microbe-host plant interactions under simulated climate
change conditions, and large-scale field studies across environmental gradients, all with the goal of understanding
how climate change will affect soil microbe-plant-pollinator mutualisms.

1. Introduction ical to the stability and functioning of communities and the provisioning

of ecosystem services, such as pollination.

Mutualisms are ubiquitous in nature, and most species interact with
multiple mutualists simultaneously [1-3]. Mutualistic interactions pro-
foundly influence the structure and stability of ecological communities,
in part because they can link species to a common fate, initiating ex-
tinction cascades that can follow directly or indirectly from the loss of
interdependent species [4-12]. Environmental change can directly af-
fect mutualistic networks by leading to changes in abundances of mu-
tualistic partners. It can also indirectly affect mutualisms by altering
traits that structure interactions [13]. For example, temporary removal
of dominant bumble bee pollinators from natural communities caused
behavioral changes in the remaining pollinator community, resulting in
reduced foraging specialization and likely reduced plant reproduction
[10]. Mutualistic interactions, and biodiversity in general, are thus crit-
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Anthropogenic global climate change is altering the phenology, dis-
tribution, trait expression, and, ultimately, evolution of species [14-22].
These climate change-driven effects can in turn alter the incidence and
strength of mutualistic interactions [2,23-27]. Because mutualistic part-
ners vary in quality, species are not equivalently effective, with func-
tional roles that depend on the broader community context [10]. As po-
tential partners may respond differently to changing climatic cues and
because receptive partners must overlap in both phenology and distri-
bution, the effects of climate change on mutualisms are complex and
difficult to predict, even for pairwise mutualistic interactions [25,28-
32].

Adding to this complexity is the fact that climate change-induced
shifts in phenology, distribution, or trait expression that affect one mu-
tualism can alter the strength and persistence of a second mutualism
involving a common focal partner. Higher-order mutualists can interact
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Fig. 1. Links among belowground microbial symbionts rhizobia and arbuscular mycorrhizal fungi (AMF), host plant traits and fitness, and bee behavior and fitness.
Mutualistic interactions with microbes affect plant vegetative growth, floral display, floral resources, and plant reproductive output. The affected plant traits in turn

affect bee behavior and fitness. Bee behavior affects plant reproductive output.

indirectly with the other partners of a mutualist via a shared partner, and
these indirect mutualists can benefit each other [33,34]. Though com-
mon, these higher-order interactions, which in this case are mutualistic
interactions that are affected by the presence and strength of another
mutualism, are greatly understudied relative to pairwise mutualistic in-
teractions [35-37]. To understand the complex ecological implications
of climate change on mutualisms, we must move beyond pairwise inter-
actions and incorporate higher-order mutualisms [38-40].

Multiple mutualist effects and emergent higher-order interactions
may be particularly important for mutualisms involving soil microbes,
flowering plants, and pollinators, as these mutualistic partners span
multiple trophic levels that are likely to respond differently to climate
change [41]. Whereas mutualisms between plants and pollinators have
been relatively well-studied, those between plants and soil microbes
have received less attention until recently [e.g., 42-45]. Plant-soil mi-
croorganism interactions strongly affect plant survival, phenology, and
landscape-scale patterns of floral and faunal diversity [8,46-54; Fig. 1].
Similarly, soil microbial mutualists affect the production of flowers and
floral rewards, including nectar and pollen, which in turn affects pollina-
tor foraging behavior [55-59; Fig. 1]. Thus, by studying how the tripar-
tite mutualistic interactions among soil microbes, flowering plants, and
pollinators, such as bees, are affected by climate change, we can gain
valuable insight into the higher-order interactions that may modify the
direct effects of environmental change on species.

Pollinators and soil microbial symbionts, such as rhizobia and myc-
orrhizal fungi, provide very different benefits to plants, but both guilds
of mutualists receive carbon resources (photosynthate) from plants and
therefore potentially compete for shared resources or mutually benefit
via positive effects on host plants [3,55,56,60]. Though we focus here on
mutualistic interactions among rhizobia, arbuscular mycorrhizal fungi
(AMF), plants, and pollinators, we note that context-dependent compe-
tition between mutualists can also shape these interactions [61]. Inter-
actions with one mutualist guild (e.g., soil microbes) are likely associ-
ated with increased investment in another mutualist guild (e.g., pollina-
tors). Leguminous (Fabaceae) plants in particular can form mutualistic
interactions with both rhizobial bacteria and AMF. Many legumes form

specialized root structures called nodules that house rhizobial bacteria.
Within the nodule, rhizobia fix atmospheric nitrogen (N) to biologically
available forms [62]. Increased N benefits the plant in terms of increased
growth, photosynthetic capacity, pollen and nectar quality, and flower
production [63-69]. Often simultaneously, AMF colonize legume roots.
AMF form symbioses with around 80% of all terrestrial plants and de-
velop structures (e.g., hyphae, arbuscules) that increase plant access to
resources, namely phosphorus and water [70], especially in dry condi-
tions [71,72], thus increasing plant growth, flower production, and fruit
production [55,73]. However, some species of AMF are parasitic and
can negatively affect plant growth [2]. Weakening or disruption of soil
microbe-plant mutualisms may shift flowering phenology, reduce floral
abundances, and decrease plant nutrient content, lowering the quality
of nectar and pollen floral rewards, consequently affecting pollinator
foraging behavior and fitness [74]. However, few studies bridge the ef-
fects of soil microbe-plant mutualistic interactions on plant-pollinator
mutualisms [75].

Here, we explore how global climate change can affect higher-order
mutualisms by altering the strength and/or outcome of interactions
(e.g., those between soil microbes and plants) that in turn affect higher-
order partners (e.g., bees). We synthesize what is known about the ef-
fects of climate change on the phenology and distribution of soil mi-
crobes that interact mutualistically with plants, namely symbiotic N-
fixing bacteria and AMF, and how these effects are in turn predicted
to alter floral traits and bee behavior and fitness, thereby reshaping
plant-pollinator interactions. We conclude by discussing profitable fu-
ture research areas that will be critical for furthering our understanding
of higher-order mutualistic interactions in a rapidly changing world.

2. Known and predicted effects of climate change

The phenologies of flowering plants and pollinating insects are shift-
ing in response to changing climatic cues, including precipitation and
temperature [31]. These shifts have been widely documented, and nu-
merous studies have investigated the consequences for plant-pollinator
interactions [e.g., 26,76-82]. Similarly, it is well-understood that the
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Fig. 2. Potential outcomes of microbe phenological shifts. Climate change may induce shifts in the seasonal timing of microbial activity and dormancy. Active periods
may be shifted earlier (yellow microbes), lengthened (blue microbes), or shortened (purple microbes). Dormant periods may be lengthened (purple microbes) or

shortened (blue microbes).

distributions of plants and pollinating insects are shifting in response
to climate change [83-86]. In contrast, phenological and distributional
responses of soil microbes and how these responses will affect interac-
tions with plants have received little attention. In this section, we focus
on known and predicted effects of climate change on the phenology and
distribution of soil bacteria and fungi. We then consider how phenolog-
ical and distributional shifts in these belowground mutualists may scale
up to influence floral traits and bee foraging behavior.

2.1. Phenological responses of soil bacteria and fungi

The phenology of microbes can be defined as periodic life cy-
cle events driven by abiotic or biotic factors [87]. To date, studies
on microbe phenology have examined temporal shifts in microbial
metabolism, plant root infection, reproductive events, and production
of growth structures [87-93]. For example, the warmer temperatures,
longer day lengths, and increased soil moisture levels associated with
the onset of spring in temperate environments initiate phenological tran-
sitions in the metabolic states of soil microbial species [94,95; Fig. 2].
Soil microbial biomass can increase or decrease with snowmelt [96,97],
and microbial community composition exhibits seasonality, differing
in winter, during snowmelt, and after snowmelt in spring [95,98,99].
Many soil microbes face ecophysiological challenges in drying soils that
shape their phenology. In dry conditions, soil microbes are expected
to allocate fewer resources to reproduction and more to survival [100-
102], thereby shifting the timing of reproduction.

Initial work has indicated that soil bacterial phenology is driven by
both stochastic, neutral processes and by niche-driven processes, and
that the relative influence of these drivers changes seasonally [103]. Soil
carbon availability, itself seasonally variable, may shape soil bacterial
phenology [104,105]. For example, low soil carbon availability appears
to limit rhizobial growth [106]. Additionally, strigolactones, plant hor-
mones responsible for several plant growth processes, are released un-
der resource limitation and can stimulate rhizobial motility, increasing
the chance of infection and potentially also regulating nodule number
[107-111]. These seasonally-variable root exudates may provide a link
between the phenologies of plants and soil bacteria [112]. At the same
time, soil bacteria shape host plant phenology. Numerous agricultural
studies have demonstrated that bacteria are able to promote seed germi-
nation by excreting phytohormones [113-118], thereby advancing flow-
ering and fruiting [119]. If bacteria are dormant or unable to interact
with a host seed, there will be little to no germination stimulation from
the bacteria [120,121], delaying downstream plant phenology. Bacteria,

in particular, are susceptible to desiccation and cell death in dry condi-
tions [100,122-124]. To avoid losing water to their environment, many
cells become dormant [102,125]. For example, drought leads to dor-
mancy in free-living rhizobia, the rapid inhibition of N-fixation in sym-
biotic bacteroid cells, and denodulation in legumes [126-130]. As a re-
sult, the mutualism between legumes and N-fixing bacteria can weaken
or break down in the short term due to soil drying. Active cells in dry
soils will have difficulty forming interactions with plant roots because
decreases in soil moisture negatively affect the signaling abilities of soil
bacteria and plants [102,131].

The phenology of belowground fungi, including AMF, is driven both
by the phenology of host plants [132,133] and by climatic variables
such as temperature and precipitation [93,134-139]. For example, the
number of AMF arbuscules peaks during host seed production [88,139],
when plants require more phosphorus and nitrogen. Seasonal patterns in
percent root colonization by AMF can differ greatly among plant species
within a single habitat [140,141], suggesting that phenophase-specific
nutritional demands of host plants influence the intensity of plant-AMF
interactions. Temperature significantly affects rates of root colonization
by AMF, and higher temperatures can have positive, neutral, or negative
effects depending on plant species studied [42,140,142,143]. Addition-
ally, in two arid grassland systems, AMF root colonization increased
with soil moisture [91,144] and was highest after rain events [89]. In
contrast, in two tropical systems, root colonization of AMF occurred
predominantly in the dry season [144,145]. The same was found in a
long-term experiment in a subalpine ecosystem where increased drought
stress led to increased AMF colonization in graminoids [146]. Increased
AMF colonization may reflect drought and rainfall-event driven sea-
sonal changes in strigolactone production [147,148], which initiates
AMF spore germination and hyphal branching to stimulate AMF-plant
interactions [149,150]. However, the variable effects of precipitation
on AMF-plant interactions indicate that geographic context may deter-
mine the relative strength of abiotic factors and host plant phenology
in shaping AMF phenology. Finally, because changing abiotic factors af-
fect the phenologies of fungal guilds differently, temporal reshuffling of
fungal symbionts may occur. For example, increasing global tempera-
tures have lengthened the fruiting seasons of fungi that produce above-
ground sporocarps [136]. However, among these fungi, the phenologies
of saprotrophs and fall-fruiting ectomycorrhizae were strongly linked
to temperature, whereas the phenologies of spring-fruiting ectomycor-
rhizae were linked to primary productivity and precipitation [93,136].
Differing phenological cues among fungal taxa may increase the likeli-
hood of mismatches and symbiont switching with host plants.
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Fig. 3. Potential outcomes of microbe and plant distributional shifts. (A) Climate change and microbe dispersal may interactively shape microbe distributional shifts,
such that some microbial taxa shift upward in elevation to a greater (yellow microbes) or lesser extent (blue microbes) and others constrict in distribution (purple
microbes). (B) Some plants may shift upward in elevation to a lesser extent than their historical microbial partners, resulting in reduced interaction strength (yellow
plant). Some plant taxa may shift upward in elevation to a greater extent than their historical microbial partners, resulting in novel interactions (blue plant) or
interaction loss (purple plant). However, vertically transmitted mutualists are less likely to experience partner mismatches than horizontally transmitted mutualists.

2.2. Distributional responses of soil bacteria and fungi

Generally, mutualistic interactions ameliorate abiotic stressors,
allowing partners to overcome limitations in novel environments
[151,152]. For this reason, mutualistic partners are often able to inhabit
a broader range of habitats [22-24,34,153]. For example, because rhi-
zobia increase plant N, the mutualism between legumes and rhizobia
can help plants expand their ranges to nutrient-poor habitats. Similarly,
because AMF associations improve plant water acquisition, host plants
may be better equipped to tolerate climate change-induced drought con-
ditions and thus less likely to contract in range [154,155]. In the event
that plants shift in distribution, microbes have been shown to improve
plant survival in higher-elevation habitats, likely due to improved nutri-
ent and water acquisition [156]. Conversely, the absence of mutualists
can negatively affect population persistence and limit species distribu-
tions [157-161].

Although the hypothesis that, for microbes, “everything is every-
where, and the environment selects” was universally accepted for many
years [162], recent work has shown that host plant range, soil prop-
erties, dispersal limitation, and chance are key factors determining the
distributions of soil microbial populations [70,163-170; Fig. 3]. Three
hypotheses have emerged to describe distributions of AMF: the driver
hypothesis, which states that AMF communities drive plant commu-
nity assembly; the passenger hypothesis, where AMF communities are
shaped by changes in plant communities; and the habitat hypothesis,
which states that habitat selects for both plant and AMF taxa, causing
covariation [171,172]. In any of these scenarios, it will be important to
understand how climate change is modifying microbe distributions.

Despite the important role of dispersal in shaping soil microbe distri-
butions, we know very little about the dispersal abilities of soil microor-
ganisms [173,174]. A partnership that lacks co-dispersal is more likely

to become spatially mismatched than a symbiosis that is vertically trans-
mitted, as co-dispersal may ensure the spatial co-occurrence of partners
[32; Fig. 3]. Non-co-dispersed symbionts, including legumes and rhizo-
bia as well as mycotrophic plants and AMF, may be at higher risk of
becoming spatially mismatched as they may track climate differently.
Moreover, because AMF reproduce underground [70], they are likely to
be dispersal-limited and at a greater risk of spatial mismatch with former
interaction partners [45]. Some plant-AMF interactions may, however,
be buffered from distributional mismatches by the similar dispersal pat-
terns of host seeds and the spores of their associated AMF taxa, known
as “pseudo-vertical transmission” [175,176]. Additionally, in horizon-
tally transmitted mutualisms, cell motility can alter root infection rates
[177], such that increased motility could increase competitive ability
and thus likelihood of root infection.

Little is known about how and if soil microbial species are shift-
ing spatially in response to climate change [44,178]. Climate change-
driven increases in temperature and interannual rainfall variability will
likely cause the distributions of some soil-based fungal taxa to move up
in elevation, whereas the plants they interact with may shift at a dis-
similar rate [179], leading to spatial mismatches between former part-
ners and novel interactions (Fig. 3). For example, Helianthella quinquen-
ervis formed interactions with dark septate endophytes, beneficial, fac-
ultative fungal plant symbionts [180], more so than with AMF when
near Festuca thurberi, a dark septate endophyte host [181], indicating
symbiont switching in H. quinquenervis. Similarly, range-shifting plant
species were found to have root symbionts more similar to plants in their
new range compared to plants in their native range [182,183]. A gener-
alist strategy may be important for establishing in new ranges. Specialist
legumes may be less likely to find a compatible rhizobial partner in novel
habitats and thus may fail to establish [22,184], although legumes in
novel habitats without coevolved rhizobial partners often have relaxed
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Fig. 4. Potential outcomes of microbe distributional shifts in soil horizons. Higher temperatures and drier conditions near the soil surface (indicated by yellow lines
and blue drops, respectively), driven by climate change, may cause soil microbes to shift downward, thereby disrupting interactions with host plants. This could

potentially affect floral display or floral resource production.

partner choice mechanisms [185]. Although plants may form interac-
tions with different partners, those partners may not confer equivalent
benefits to the host plant, affecting flowering and ultimately plant fit-
ness [180,186-188]. Indeed, some AMF species have been shown to be
parasitic [189]. Additionally, some soil microbes may decrease in abun-
dance near the soil surface due to climate change-driven increases in
temperature, potentially affecting the overlap of plant roots and mi-
crobes and the outcomes of interactions [190,191; Fig. 4]. For exam-
ple, thawing of permafrost led to a shift in fungal communities from
beneficial to pathogenic groups [192]; warming could expose plants to
different, possibly less beneficial, partners.

2.3. Effects of soil bacterial and fungal responses on floral traits

In considering how shifts in the phenology and distribution of soil
bacteria and fungi will affect floral traits, we note that obligate mu-
tualisms are expected to have lower risk of mismatch than facultative
mutualisms, partly because selection is stronger for partners to main-
tain obligate interactions [32]. As AMF are obligate symbionts [193],
we predict there will be strong pressure to maintain phenological and
spatial overlap with host plants, and therefore host plant floral traits
that are strongly influenced by AMF mutualisms are less likely to be al-
tered. Conversely, N-fixing bacteria and several other plant-associated
soil microbes able to survive as free-living cells can interact with host
plants facultatively and are therefore more likely to become mismatched
in a changing climate.

Just as floral traits such as nectar quality can be directly related
to soil nutrient availability [194], weakening or loss of the interac-
tion between plants and mutualistic soil bacteria due to phenological or
distributional mismatches will indirectly affect floral traits by altering
host plant nutrient acquisition [119]. Supplemental N increases vegeta-
tive growth rates, herbivore defenses, photosynthetic rates, flower pro-
duction, floral reward quality, pollinator visitation, pollen germination
success, and plant reproductive success [63-69,74,195-197]. Increased
plant-available N from the interaction between rhizobial bacteria and
legumes is expected to have effects similar to supplemental N [58], as
nodulating bacteria directly increase the N content of the host plant
[198-200]. Indeed, mutualistic rhizobia have been found to affect some
of these same traits [119,200-205]. Nectar sugar content [glucose, fruc-

tose, and sucrose; 206], volume [65], amino acid diversity [207], and
pollen mass [63] vary with plant N and are also altered by the floral
microbial community and other plant mutualists [200,208-210]. Dis-
ruption of the interaction between N-fixing bacteria and legumes could
strongly influence host-plant functional traits, such as flowering phenol-
ogy and floral reward quantity and quality.

Though drought may decrease interaction strengths between
legumes and previously competitively dominant rhizobia as a result
of prolonged dormancy, drought-tolerant rhizobia may experience in-
creased nodulation success [211]. Symbiont switching in stressful con-
ditions has been found to negatively affect some host species [212]. For
example, seedlings grown without their “home” microbial symbionts ex-
perienced decreased growth rates compared to seedlings grown with co-
evolved root symbionts, with growth benefitting when these plants were
later inoculated with coevolved microbes [213]. Similarly, novel soil
microbial symbionts may confer lower-quality rewards for the same in-
vestment, reducing the net benefit of the mutualism for host plants, and
altering floral traits that affect higher-order interactions [214]. Though
host plants may impose sanctions on cheating strains of rhizobia in
the long-term [215,216], symbiont switching in stressful conditions can
cause novel, sometimes negative, effects in the short-term.

Most work linking belowground symbionts to floral traits has been
focused on AMF. While it has long been understood that AMF play an
important role in plant productivity and nutrient cycling [217-219],
more-recent work has established that plant-AMF interactions also af-
fect the production of flowers and floral resources [58,220]. AMF col-
onization of plants can increase flower number in some plant species
and flower size in others [55], potentially a result of increased water
availability [221]. While this effect may in some cases be linked to the
positive effect of AMF on plant biomass, some plants colonized by AMF
preferentially allocate resources to reproductive rather than vegetative
structures [222]. Interactions with AMF on the parasitic end of the con-
tinuum may decrease floral display size [2,186,223-225]. By using ex-
traradical hyphae to hydrolyze organic phosphates and transporting the
resultant inorganic phosphorus to plants [226], AMF increase pollen
production, pollen grain size, nectar volume, and nectar sugar content
[55,227,228]. AMF also decrease concentrations of the alkaloid nicotine
in pollen [229]. Although the effects of AMF on floral micronutrients
have received little study, AMF-colonized plants have higher levels of
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foliar potassium [230], indicating that micronutrients in floral resources
may indeed be affected by AMF.

Switching of AMF symbionts in response to climate change-driven
phenological or spatial shifts may affect host plants in various ways, as
the effects of plant-AMF symbioses on floral traits appear to depend on
both the species and strain of AMF [222,228,230]. For example, among
plants inoculated with either Glomus hoi or G. claroideum, plants inocu-
lated with G. claroideum were more likely to produce flowers than those
inoculated with G. hoi [228]. As distributions shift, plant species that are
more positively affected by interactions with novel AMF can increase in
abundance, leading to shifts in floral evenness [56]. Habitat type and
soil fertility may also be important predictors of how floral traits will be
affected by altered plant-AMF interactions. For example, fungicide ap-
plication increased nectar sugar content in an alpine krummbholz habitat
but had no effect on floral rewards in a tundra habitat. As plants and
AMF shift in distribution, they are likely to experience novel soil fertility
regimes that similarly alter their dynamics [231].

Although we focus here on nodulating rhizobial bacteria and AMF,
other soil microbes are known to influence floral traits. For example,
soil Streptomyces bacteria, when in the rhizosphere, have been found
to protect both flowers and honey bees from pathogens [232]. Natural
soil microbes, including fungal, bacterial, and archaeal operational tax-
onomic units (OTUs), affect the mean flowering time of Boechera stricta
[53]. Endophytic Pseudomonas bacteria enhanced the drought tolerance
of host plants in serpentine soils [233], which could increase flower pro-
duction and longevity under stressful conditions. Low-abundance strains
of Pseudomonas increased root biomass and leaf chlorophyll content in
host plants [181], which could affect floral traits. Dark septate endo-
phytic fungi increased flower and fruit density in tomato plants [234],
and exhibited increased host plant colonization rates after 20 years of
experimental soil warming [146]. Ericoid mycorrhizae, which associate
only with plants in the order Ericales, increased the number of Vac-
cinium inflorescences and flowers per plant, though this response was
dependent on host plant genotype [235]. Additionally, plants grown
in soils with experimentally simplified bacterial communities produced
fewer flowers than those grown with more complex soil communities
[48].

2.4. Consequences for bee behavior and plant-pollinator interactions

Altered resources for leaf, flower, fruit, and seed growth will medi-
ate species interactions, including those with pollinators [43,58,65,236—
240]. The quality and quantity of floral resources have dramatic effects
on bee energetics, fitness, and population sizes [66,241-245]. Pollen
and nectar provide carbohydrates, lipids, protein, and micronutrients
that bees [246-248] and other pollinating insects [249] rely upon to
maintain existing populations and establish new broods [250]. Dietary
protein content is crucial for reproduction, growth, and survival of bees
and other insects [64,242,244,251-254]. Diets deficient in protein (e.g.,
a lack of essential amino acids) can negatively affect larval bee de-
velopment and shorten adult lifespan [64,255,256]. Both nectar and
pollen quality have been shown to alter feeding preferences of pollina-
tors [207,252,257,258]. Most bees and many other insect pollinators
prefer floral rewards with higher protein content [207,252,259-263].
In nectar, the concentrations of sugars influence the thoracic tempera-
tures of social bees [264,265] and thus foraging energetics and behavior
[266,267].

Though many studies have assessed the effects of altered soil N on
plant fitness and floral functional traits, none to our knowledge have
directly tested the effects of N-fixing bacteria on plant-pollinator inter-
actions. Under severe abiotic stress, bacteria will become dormant, af-
fecting interaction outcomes with legumes and influencing higher-order
interactions with pollinators [268]. A reduction in or loss of germination
stimulation by soil bacteria will delay host plant germination phenol-
ogy and alter downstream phenophases, such as flowering onset [119],
which will alter phenological overlap and interaction strengths between
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host plants and pollinators [269]. A shift in flowering phenology with-
out a corresponding shift in pollinator phenology could decrease the
fitness of both mutualists [79,82,269,270]. In the long-term absence of
pollinators, traits that facilitate selfing may be selected for [271].

N-fixing bacteria may also allow plants to produce higher quality
rewards, increasing pollinator visitation. A reduction in the strength of
the interaction between legumes and rhizobia will affect plant N and
negatively affect bee feeding preference via decreased flower number
and nectar and pollen quality, which may affect bee fitness [272-274].
A change in reward quality and quantity would be especially important
for oligolectic bees which feed on just one genus or species of plant.
For example, Osmia iridis are Fabaceae-specialists which forage almost
exclusively on Lathyrus lanszwertii var. leucanthus and Vicia americana
flowers in parts of their range [275,276]. Reduced floral reward qual-
ity, caused by a mismatch between these legumes and N-fixing bacteria,
could alter the foraging behavior of O. iridis and lead to fitness costs
for both adults and larvae [274-276]. If flowers offer lower-quality re-
wards, more time and energy will be required to provision brood cells
[277] increasing time and energy allocated to foraging and decreasing
reproductive output of oligolectic bees.

The increased size and number of flowers produced by AMF-
colonized plants [55,222], as well as effects on inflorescence structure
[278], are likely to influence the behavior of bees and other pollinating
insects. Indeed, plants colonized by AMF tend to receive higher rates
of visitation [55] and are visited by different assemblages of pollina-
tors [56]. In particular, floral visitation patterns of Hymenoptera were
strongly affected by plant AMF colonization [55]. The mechanism for
increased visitation differed among plant species: one species produced
larger flowers, one produced more flowers, and one produced more nec-
tar [55]. Additionally, suppression of AMF induced a shift in the insect
visitor community from larger-bodied bees to smaller-bodied bees and
flies, which was attributed to altered patch-level display [56]. Long-term
loss of AMF may lead to selection for nutrient absorption traits, such as
cluster roots or carnivory [212,279,280] and exert selection on pollina-
tor foraging behavior in response to altered floral reward availability
[281].

Climate change-driven switching of AMF symbionts may affect flo-
ral display and pollinator behavior and, because some pollinating in-
sects prioritize nectar rewards whereas others prioritize floral abun-
dance [282,283], shifts in plant-AMF interactions may lead to floral
patches that are more or less attractive to different groups of pollina-
tors. For example, AMF inoculation increased flower number and num-
ber of pollen grains, but bumble bees did not respond to these effects
while dipterans and other hymenopterans visited AMF-inoculated plants
more frequently [228]. Similarly, among plants inoculated with either
individual species and strains of AMF species or an assemblage of AMF
species, bumble bees visited plants inoculated with one AMF strain fre-
quently, but honey bees probed fewer flowers of plants inoculated with a
different AMF strain. Patterns of increased visitation by bumble bees and
decreased visitation by honey bees were not related to the number or
size of flowers; instead, the preferences may have been driven by unmea-
sured traits such as nectar quantity or floral volatile organic compounds
that varied among plants inoculated with different fungal assemblages,
species, and strains [230]. Similarly, AMF colonization increased insect
visitation rates across three plant species, but the mechanisms (flower
abundance, flower size, and nectar standing crop) driving this pattern
were species-specific [55]. Differences in attractiveness may be particu-
larly pronounced if some plants are colonized by AMF species on the par-
asitic end of the mutualism-parasitism continuum [186,189,224-227],
leading to decreased floral displays and resource production.

Further, mycorrhizal plants may also be able to provide pollinating
insects with higher quality floral rewards by increasing availability of
micronutrients and phosphorus. These micronutrients play an important
role in linking mycorrhizal fungi and pollinators. For example, by affect-
ing nutrients in pollen and nectar, AMF can in turn reduce parasitism
of bumble bees [229]. Likewise, by increasing plant potassium, which
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may be an important micronutrient for bee overwintering [284], AMF
symbioses can indirectly shape pollinator fitness.

3. Ways forward

In section 2, we highlighted the predicted effects of climate change
on the phenology and distribution of N-fixing bacteria and AMF, with an
emphasis on how these shifts may affect plant traits important to higher-
order mutualists, such as bee pollinators. Many of our predictions stem
from work on pairwise interactions, agricultural studies, and nutrient
supplementation or limitation studies. In this section, we outline lab-,
greenhouse-, and field-based studies that could advance our understand-
ing of higher-order interactions and multiple mutualist effects. We also
identify key gaps in our understanding of the bottom-up effects of soil
microbe-plant interactions on pollinator behavior and fitness.

3.1. Phenological responses of soil bacteria and fungi

As described in section 2.1, little is known about the phenology of
soil microbes. Most work has examined soil microbial phenology in the
context of plant phenology and does not address how climate change-
driven shifts in temperature and precipitation may affect soil micro-
bial phenology itself. To move forward, we first need to build on our
understanding of how temperature and soil moisture influence micro-
bial life history stages and transitions among them. This work could
be performed in a field setting by sequencing the active microbial soil
community throughout seasons [88,285]. Active communities could be
examined by direct microscopy, using RNA-based FISH (fluorescence
in-situ hybridization) [286,287] with complementary staining, and mi-
crobial growth approaches [285]. These methods may help to identify
species that are active at each time point and avoid underestimating
the abundance of microbes due to RNA decay in soil [285]. Quanti-
fying structures, such as AMF hyphae, spores, and arbuscules [139],
or comparing gas fluxes to identify functional groups that are active
in soils [288] may also offer insight into how microbial communities
change seasonally. To understand how plant phenology affects micro-
bial phenology, similar studies could be performed with sampling during
specific plant phenophases. Quantum dots, nanoparticles that fluoresce
under fluorescent light, could be used to track periods of nutrient and
water transport and inactivity in microbes [289]. It may also be im-
portant to identify how and when microbes form “seed banks”, or re-
serves of propagules that are resilient and last in soil for long periods of
time [125]. This work could be performed by collecting and identifying
spores of AMF [290] or by sequencing soil for inactive rhizobial species,
though relic DNA should be controlled for in analyses [291].

To more directly assess the effects of temperature and soil moisture
on microbial phenology, plants and microbes could be grown together
under different abiotic conditions representing different climate change
scenarios, and plant and microbial phenophases could be compared. It
is understood that changes in plant phenology alter the phenology of
AMF and rhizobia; the host plant life cycle shapes AMF phenophases
[139] and can alter the timing of nodule formation and bacterial re-
lease to the environment [292,293]. However, disentangling the effects
of microbial phenology on plant phenology from the effects of plant
phenology on microbial phenology presents a significant hurdle. Exam-
ining how the phenologies of plants and microbes respond to abiotic
treatments may provide a step forward. For example, greenhouse stud-
ies could compare the effects of an “extended summer” treatment on
duration of flowering versus AMF arbuscule formation. If the treatment
causes plants to flower longer but does not extend periods of arbuscule
formation, this would suggest that AMF and plants respond differently
to climatic cues.

To assess the effects of potential phenological mismatches between
plants and soil microbes, experimental studies could simulate novel part-
ner interactions, weakened interaction strength, and mutualism break-
down. These studies could be performed in a greenhouse setting, by
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growing plants of the same genotype with partners they would be ex-
pected to interact with given a phenological shift, with current mutu-
alistic partners in dormant stages, and without any mutualists present.
Antibiotics could be applied to soil [231] to decrease bacterial or fungal
growth at certain plant phenophases to simulate the potential effects of
partner mismatch and loss. Then, functional traits of these plants and
microbes could be measured under different climate change scenarios.

3.2. Distributional responses of soil bacteria and fungi

To form a predictive framework for how climate change will affect
the distributions of soil microbes, it will be crucial to better understand
how microbial distributions are affected by the current climate. This
could be achieved by sampling soils across large environmental gradi-
ents, identifying and quantifying the abundances of microbes such as
rhizobia and AMF in these samples, and combining microbe abundance
with climatic data to produce species distribution models [294]. Joint
species distribution models and co-occurrence networks could also be
used to assess how the distributions of microbes and plants are affected
by one another and by the environment [295,296]. Recent work using
species distribution modeling to compare plant and bacterial ranges re-
vealed that the presence of one group of bacteria explained absence of
one plant species [297] and that soil microbe distribution can determine
competitive outcomes in plants [298]. To improve our understanding
of how distributional shifts may affect tripartite interactions among mi-
crobes, plants, and pollinators, future species distribution models could
focus on microbial taxa that are known to affect flowering [such as Rhi-
zophagus irregularis; 230]. However, our knowledge of soil microbe dis-
persal, a component critical to accurate species distribution modelling
[299], is currently limited.

As little is known about how soil microbial species disperse, it is
difficult to predict how microbial ranges will expand and contract in
a changing climate. Foundational studies on the dispersal mechanisms
and limitations of important fungal and bacterial clades would be an im-
portant start. For example, regular soil coring along elevational gradi-
ents will reveal if isotopically labeled microbes are dispersing to higher
elevations or moving down in the soil profile to track cooler, wetter
conditions [44,300,301]. Similarly, greenhouse and growth chamber ex-
periments that manipulate soil moisture and temperature, among other
factors, would help us understand if soil microbial communities will un-
dergo reshuffling in the soil profile under different climatic conditions.
If soil microbes that were previously at a soil position where they could
interact with host plant roots subsequently move down in the soil pro-
file to access cooler temperatures, soil microbe-plant interactions, and
thus plant traits, will be affected (Fig. 4). Additionally, some species
of AMF are dispersed by animals, including small insects [302]. Next-
generation sequencing could be used to identify the particles carried
by belowground insects, and based on their life histories, inferences
could be made about how far AMF spores are able to travel. Finally,
by sampling across environmental gradients and performing a distance-
based redundancy analysis, it may be possible to infer the importance
of dispersal versus environmental processes in shaping AMF distribution
[303].

Field experiments could be used to assess how plant traits important
to pollinators may be affected by interactions with novel soil microbial
communities. For example, sterile seeds from a single source population
could be planted at various elevations, including beyond the current
elevational range of an upward range-expanding plant. The floral traits
of these plants could be quantified, then plant roots could be stained and
sequenced to assess which microbial symbionts are present and to what
extent they associate with plants across elevational gradients. This could
give insight into how floral resources may be affected as seeds disperse
into novel ranges with potentially novel soil symbionts. Similar work has
been performed successfully in alpine systems with a focus on vegetative
growth [156].
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3.3. Effects of soil bacterial and fungal responses on plant-pollinator
interactions

We know of no studies that have examined how the effects of climate
change on soil microbe-plant interactions will affect plant-pollinator in-
teractions. Profitable areas of research in this field include the use of
experimental studies that manipulate the incidence and strength of in-
teractions among N-fixing bacteria, AMF mutualists, and host plants un-
der simulated climate change conditions. Treatments involving elevated
temperatures and more frequent, intense periods of drying could be ap-
plied to determine the effects of stressful environmental conditions not
only on bacterial and fungal performance (e.g., hyphal growth, nodu-
lation capacity, spore formation) but also on floral traits important to
bees, and plant-pollinator interactions. Floral functional traits, such as
flowering phenology, floral abundance, nectar and pollen protein con-
tent and amino acid diversity, volatile organic compound production,
and nectar sugar content, could be quantified and pollinator foraging
behavior measured. Field studies in sites that differ in mycorrhizal and
rhizobial community composition can relate floral functional traits to se-
quenced root symbionts and pollinator foraging behavior. Additionally,
in systems where snowmelt timing can be experimentally manipulated,
the abundances and OTUs of N-fixing bacteria and AMF could be com-
pared between advanced snowmelt and control plots and linked to floral
functional traits and bee behavior.

To better understand what factors influence pollinator visitation to
flowers of soil microbe-symbiotic plants, choice trials, wherein pol-
linators of different taxonomic and functional groups are given the
choice to forage on plants inoculated with or without rhizobial bacteria
and/or AMF could provide insight into pollinator preferences. Multi-
generational studies measuring pollinator fitness could then be used to
understand how N-fixing bacteria and AMF indirectly affect pollinator
behavior, survival, and reproduction. To date, most work has ignored
the effects of mutualistic soil microbes on insect pollinator fecundity
[but see 229].

To elucidate the pathways through which rhizobia and mycorrhizae
affect flowering and pollination, it may be useful to examine the gene
functions of these microbes. Transposon insertion sequencing allows
high-throughput gene functional analysis of microbes [304,305] and
has been used to identify the functions of genes driving basic physiolog-
ical processes in Rhizobium leguminosarum under different growth me-
dia [306]. By identifying genes in microbial taxa that affect mutualistic
interactions and those that affect responses to changing climatic condi-
tions, we may be able to determine which microbes are most likely to
positively affect flowering and how they will respond to climate change.
Additionally, the use of quantum dots may help inform which micro-
bial genes are responsible for nutrient transport from soils to pollen
and nectar [289]. A genome-wide association study or coexpression net-
work approach could be implemented to identify loci that connect plant-
microbial association with plant flowering [60,307,308].

It is also important to note that AMF and rhizobia interact to affect
plant traits. Co-inoculation of rhizobia and mycorrhizae positively af-
fects plant biomass and fitness [309,310], and harboring both N-fixing
bacteria and AMF has been shown to synergistically increase legume
fitness in particular [39,60,307,311]. How co-inoculation affects floral
traits is an important area to explore. For example, co-inoculation with
rhizobia and AMF increased legume photosynthetic rates by 51% [67],
which could alter nectar quality and quantity [312]. Work on multiple
belowground mutualists has found that N-fixing rhizobia increased col-
onization and sporulation of AMF on plant roots [313-315], whereas
other lab studies have found that rhizobia inhibit or have no effect on
AMF colonization [39]. AMF inoculation also affects bacterial commu-
nities. AMF increased the number and biomass of nodules, traits cor-
related with the presence and strength of rhizobia-legume mutualism
[316,317], likely due to increased host phosphorus [313-315]. AMF-
inoculated treatments had greater total bacterial biomass and a lower
ratio of soil fungal biomass to bacterial biomass [318]. All in all, pro-
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motion of co-inoculation by both symbionts will increase plant fitness
and may positively affect floral traits that shape plant-pollinator inter-
actions.

4. Conclusions

Based on current understanding, we have generated predictions
about how climate change will affect the phenologies and distributions
of mutualistic soil bacteria and fungi, projecting how those shifts will
affect the floral traits of host plants, and ultimately bee foraging behav-
ior and plant-pollinator interactions. In part because the effects of cli-
mate change on soil microbes are inconspicuous relative to phenological
and distributional responses of plants and pollinators, fewer data exist
on how these mutualists will shift temporally and spatially in response
to changing climatic conditions. Despite the paucity of data, we pre-
dict that elevated mean temperatures and prolonged drought will cause
rhizobia and AMF to exhibit shifts in the timing of metabolic activity,
dormancy, root colonization, and reproductive events, though the di-
rection and magnitude of shifts will likely be shaped by environmental
context. Phenological shifts are expected to alter the timing of interac-
tions with host plants and the costs and benefits of these mutualisms. We
further predict that these climatic changes will cause belowground mu-
tualists to shift in distribution, both laterally and vertically, reshuffling
soil microbial communities and leading to symbiont switching by host
plants [180-183]. Consequently, we predict that changes in interaction
timing or symbiont identity will alter host plant flowering phenology
and generally reduce floral display sizes and the quality of nectar and
pollen floral rewards [58,220]. These shifts in flowering time, driven by
altered interactions with microbial mutualists rather than by altered abi-
otic cues, are predicted to reduce phenological overlap with some pol-
linators, particularly oligolectic solitary bees that have specialized diets
and relatively short foraging seasons. Similarly, reduced floral resource
availability will decrease pollinator foraging efficiency, potentially re-
ducing reproductive output, and alter visitation patterns for bees with
labile preferences. Finally, because pollinators differ in their effective-
ness [e.g., 269,319], these changes in bee foraging behavior will likely
affect pollination success and plant reproductive output.

To improve our ability to predict how climate change will affect the
tripartite mutualism among soil microbes, flowering plants, and pollina-
tors, we recommend three major research avenues. First, foundational
studies are needed to determine the drivers of rhizobia and AMF phe-
nology and to document the dispersal abilities of these microbes. These
studies will enable us to better anticipate how climate change will af-
fect microbial phenology and distribution. Second, we urge greater use
of experiments that manipulate soil microbe-host plant interactions to
isolate the effects of reduced interaction strengths, novel partners, and
complete mismatches on plant functional traits, particularly floral traits
that structure interactions with pollinators. Third, we advocate for large-
scale field studies, both observational and experimental, on communi-
ties of soil microbes and flowering plants across environmental gradi-
ents. Observational studies would serve to characterize the relationships
between soil microbial community composition and abiotic factors, par-
ticularly factors such as temperature and precipitation that are affected
by climate change. Experimental studies, such as reciprocal transplants
of seeds and/or microbes, would yield data on the outcomes of novel
interactions and environmental contexts that accompany distributional
shifts. By incorporating data on floral traits and pollinator visitation,
such studies could also shed light on the consequences of novel soil
microbe-plant interactions for plant-pollinator mutualisms.

Beyond the fundamental importance of these multipartite mutu-
alisms for community stability and ecosystem services, such as pollina-
tion and nutrient cycling, our understanding of the ecology of rhizobia
and AMF has implications for native plant conservation and restora-
tion. For example, there are advantages to inoculating restoration sites
with soils from the home range of the focal plant species. Coevolved
microbial symbionts increase plant germination success, growth, and
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fitness [320-324], whereas commercially available microbial inoculum
containing AMF and/or rhizobia that are not coevolved with the fo-
cal plants have been found to negatively affect plant establishment and
growth in restoration sites [325]. In addition, conserving and restor-
ing soil microbe-plant mutualisms in natural communities will benefit
native bee populations, many of which are declining [326,327], by im-
proving the quantity and quality of floral resources.

The study of multiple mutualists offers key insights into how cli-
mate change will reshape communities, yet these multipartite interac-
tions have received little attention relative to bipartite interactions. In
neglecting the potential higher-order interactions that can arise from
multipartite mutualisms, we risk mischaracterizing how species and the
ecosystem services they provide will be affected by climate change. For
example, studies on plant-pollinator phenological synchrony that focus
on abiotic drivers, without considering the influence of belowground
mutualists on flowering time, may misjudge the risk of mismatch. We
therefore advocate for greater study of the effects of changing climatic
conditions on tripartite mutualisms involving soil microbes, flowering
plants, and pollinators. With the advent of more-sophisticated sequenc-
ing technologies to characterize soil microbial communities, there is
much opportunity to push forward our understanding of how these mu-
tualisms will fare in a changing climate.
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