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which galleries were observed on 78% of dead
trees; Bleiker et al. 2003, McMillin et al. 2003), as
well as Armillaria sp., which commonly was
observed on trees with WBBB galleries (Worrall
et al. 2004). This finding is consistent with a
stand-scale study of SFD in the southern Rockies
(Lalande et al. 2020) and dynamics in other bark
beetle outbreaks (Furniss et al. 1979, Amman and
Cole 1983, Powers et al. 1999, Simard et al. 2012,
Hart et al. 2014h, Seidl et al. 2016), where the
availability of large diameter host trees is a key
stand-scale predictor of disturbance severity
(proportion of trees that die).

Although not selected in the regression model
for Q3, the individual relationships between SFD
and each of the candidate predictor variables at
the stand scale support the finding that mesic
locations with greater host abundance are impor-
tant for local SFD dynamics (Appendix 51:
Fig. 51). First, based on relationships between
inter-annual climate variation (Q1), SFD could be
expected to be greatest in xeric sites. Yet, topocli-
matic factors were either unrelated to SFD (e.g.,
elevation) or related with SFD in ways that
demonstrate a positive relationship with cool/
wet conditions (e.g., SFD declined with increas-
ing heat load index and SFD increased with
increasing TEMI). Second, the increase in SFD
with factors that relate to high-productivity sites
for subalpine fir (total basal area and proportion
basal area composed of subalpine fir) suggests
that abundant large subalpine fir trees were most
important for SFD. The density of subalpine fir
trees was unrelated to SFD at the stand scale,
indicating that the total number of trees, regard-
less of tree size, mattered less. This finding is
consistent with the availability of large host trees
for biotic disturbance agent being a key requisite
for biotic causes of mortality (Furniss et al. 1979,
Amman and Cole 1983, Powers et al. 1999,
Simard et al. 2012, Hart et al. 2014b, Seidl et al.
2016, Lalande et al. 2020). Finally, factors that
correspond to stand-scale structural complexity
(e.g. stand age) and heterogeneity (e.g., CV of
subalpine fir dbh) were unrelated to SFD, indi-
cating that the amount of large host trees, rather
than stand-level heterogeneity, was more impor-
tant at the stand scale.

Local-scale (tree and tree-neighborhood scale)
variability in mortality probability was strongly
related to tree size and distance to nearest dead
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neighbor, highlighting the importance of biotic
factors at fine scales. Between high-severity and
low-severity plots that were stem-mapped, there
was no difference in stem density and corre-
sponding average distance to nearest neighbor-
ing tree for subalpine fir (P = 0.91) or all species
combined (P = 0.46)—indicating that among-tree
competition was similar for trees in these plots.
As such, if drought stress and competition-re-
lated mortality was the primary factor driving
mortality, for a given tree, mortality would be
expected to be less likely if a neighboring tree
died and resources are released. However, we
found the opposite, which can be a strong indica-
tor of the key role of contagious biotic agents of
mortality such as poorly dispersing insects or
fungal pathogens (Larson et al. 2015). In plots
with low severity SFD, we found little support
for a relationship between tree mortality and tree
size and no evidence that distance to nearest
dead neighbor was important. Although density
did not differ between high- and low-severity
SFD plots, subalpine fir QMD was marginally
(P =0.08) greater in high-severity than low-
severity plots (222 and 155 cm, respectively),
corresponding to a greater number of host trees
for biotic agents such as WBBB (Bleiker et al.
2003, McMillin et al. 2003, Lalande et al. 2020).
Collectively, this suggests that connectivity
among large trees that serve as hosts for biotic
disturbance agents was greater in high-severity
5FD plots, even though connectivity among host
trees irrespective of size was similar. This pro-
vides further evidence pointing to the mortality
in the recent SFD episode being locally mediated
by spatially contagious processes involving
WBBB, Armillaria sp. fungus, or both, rather than
from abiotic-driven stress alone (Lalande et al.
2020).

Collectively, our finding that broad-scale tem-
poral variability in SFD corresponds to periods
of drought and that spatial variation in SFD
extent and severity corresponds to mesic loca-
tions with greater host-tree abundance suggest
implications for mechanisms that could be tested
in future research. Xeric sites, while more
exposed to the direct effects of drought, may be
serving as topographic refugia from SFD as the
relative scarcity of subalpine fir could drive less
exposure to biotic agents of mortality. This mech-
anism has been suggested in other conifer-
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dominated systems experiencing recent drought-
related mortality and warrants further explo-
ration (McDowell et al. 2019). Additionally, our
data could mean that locally moist and cool sites,
which may be better for rapid tree growth, could
be also areas of high mortality and rapid popula-
tion turnover (Bigler and Veblen 2009, Redmond
and Kelsey 2018). Trees in drier sites could poten-
Hally allocate more carbon to root development
than trees in moister sites and therefore be more
buffered from the effects of severe drought peri-
ods such as those that occurred from 2001 to
2004 in the Rocky Mountains. As such, whether
subalpine fir is actually experiencing greater
drought stress in xeric sites than mesic sites is
unknown. Radial growth of subalpine fir may be
more sensitive to climatic fluctuations than other
co-occurring species in mesic sites, even when
responses to climate are similar in xeric sites (Vil-
lalba et al. 199%4). This sensitivity may lead to
preater susceptibility to drought-driven mortality
for subalpine fir than for co-occurring tree spe-
cies (Bigler et al. 2007). To address these uncer-
tainties, future studies could measure tree
ecophysiological responses across a moisture
gradient and/or populations of biotic agents of
mortality across a host-abundance gradient.
Research at the stand and tree scale on the mech-
anisms of SFD remains a research priority.

ConNCcLUsIONS

By integrating data across scales spanning
several orders of magnitude, we uncover key
insights about the factors associated with SFD
—a widespread, but poorly understood forest
disturbance. Specifically, broad (e.g., subconti-
nental) scale temporal patterns in S5FD extent
were associated with temporal patterns in
drought. However, regional-, stand-, and local-
scale spatial patterns of SFD extent, severity,
and individual tree mortality were associated
with mesic topographic positions, greater host
abundance, and connectivity for biotic agents
of mortality. This positive temporal association
with drought at broad scales and negative spa-
tial association with xeric sites at local scales
highlights the role of scale in understanding
the mechanisms driving ecological disturbance.
That is, inferences drawn from broad-scale
trends about the importance of drought over
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time could be midleading if applied to spatial
variability at local scales, where SFD severity
was greatest on mesic sites and where the host
tree was abundant. Conversely, trees in xeric
sites were the least susceptible to SFD and
suggest that life-history trade-offs or refuge
from biotic agents of mortality may be impor-
tant for persistence in a warming climate.
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