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Abstract

Seasonal water storage in high-elevation alpine catchments are critical sources of
water for mountainous regions like the westem ULS. The spatial distribution of snow
in these topographically complex catchments is primarily govemed by orography,
solar radiation, and wind redistribution. While the effect of solar shading is relatively
consistent from year-to-year, the redistribution of snow due to wind is more variable
- capable of produdng snowpacks that have varying degrees of uniformity across
these hydrologically-important catchments. A reasonable hypothesis is that a warmer
climate will cause snowfall to become more dense (Le. wetter and heavier), possibly
leading to less wind redistribution and thus produce a more uniformly distributed
snowpack across the landscape. In this study, we investigate the role of increasingly
uniform spatial snowpack distributions on streamflow generation in the Green Lakes
Valley Miwot Ridge Long Term Ecological Research station, within the headwaters of
the Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation
experiments driven by reconstructed snowpacks spanning 2001-2014 show that
more a more uniform spatial snowpack distribution leads to an earlier melt-out of
31 days on average and tends to produce less total streamflow, with maximum
decreases as large as 7.5%. |solating the role of snowpack heterogeneity from melt-
season predpitation, we find that snowpack uniformity reduces total streamflow by
as much as 13.2%. Reductions in streamflow are largely explained by greater expo-
sure to solar radiation in the uniformly distributed case relative to a more heteroge-
neous snowpack, with this exposure driving shifts towards earlier snowmelt and
changes in soil water storage. Overall, we find that the runoff effidency from
shallower snowpadks is more sensitive to the effects of uniformity than deeper
snowpacks, which has potential implications for a warming dimate where shallower
snowpacks and enhanced sensitivities may be present.
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1 | INTRODUCTION

Mountain regions can be understood as the world’s “water towers'
(Immerzeel et al, 2010) as more water disproportionately originates
from these regions than adjacent lowlands (Vivircl et al., 2007) with
water largely exported as snowmelt. Observed regional warming in
the last several decades endangers this vital natural reservoir of sur-
face water storage by alterding the timing and rate of smowmelt
(Clow, 2010; Stewart, 2009), but changes to the efficiency of snow-
melt runoff production is dependent on more complex water-energy
flues at the regional and catchment scales (Barnhart et al, 2016;
Hartrman et al, 199%; Knowles et al., 2015; Luce et al, 19%9E). A spe-
cific inowledge gap is how the impacts of waming driven changes in
snowpack spatial heterogeneity will affect runoff generation from
these important areas. In this respect, future warming and increases in
snowfall density may increase spatial uniformity of snowpacks due to
less wind redistribution. In this manuscript, we investigate the impact
of greater spatial snowpack uniformity on snowmelt-driven runoff
efficiency in the high alpine Green Lakes Valley catchrment part of the
Miwot Ridge Long-Term Ecological Research (LTER) site.

In the western United States, observed changes in alpine snow-
pack and snowmelt timing associated with warming climate
(Cayan, 1996; Clow, 2010; Hamlet et al., 2005; Mote et al, 2005;
Stewart, 2009) have implications for the future of water resources
systems that depend on snow as a natural reservoir for storage
(Rajagopalan et al, 2009; Vano, 2020). Alpine environments, such as
the Green Lakes Valley in the headwaters of Boulder Creek watershed
in Colorado, have been described as among the most vulnerable to cli-
mate change (Field et al, 2014; Jones et al., 2017). The Green Lakes
Valley is already experencing shifts towards earlier peak snowmelt
(Greenland, 198%; Kittel et al, 2015; Knowles et al, 2015 McGuire
et al, 2017) consistent with the snowmelt timing trends of the west-
ern US more broadly, though temperature increase s not the sole
driver of changes to snowmelt and subsequent runoff (Hartman
et al., 1999; Luce et al, 19%E). The timing and volume of snowmelt
within an ablation season is dependent on a number of physical fac-
tors, in addition to increasing temperatures, incleding rain on snow
events (Marks et al., 2001; McCabe et al, 2007), dust on snow events
(Deems et al, 2013; Livneh et al., 2015), and the spafial distribution of
snow (Luce et al, 1998, 199%). Critically, these drivers of snowmelt
also modulate the runoff efficiency of alpine catchments by altering
the tirming and spatial distribution of catchment water inputs

After snow is deposited on the ground, the distribution of snow-
pack across alpine catchments is primarily dependent on wind trans-
port (Elder et al, 1991; Essery et al, 1999 Kane et al, 1991
Pomeroy, 1991), solar radiation (Pomeroy et al, 2003), topographic
organization (Elder et al, 1991), orographic effects (Barms &
Lettenmaier, 1994: Fontaine et al, 2002), and gravitational transport
(Freudiger et al, 2017). Of the physical mechanisms that control the
distribution of snowpack, wind-driven redistribution is unigue in both
its interannual variability and its sensitivity to the composition of the
existing snowpack (Li & Pomeray, 1997). Higher temperatures have
potential to decrease the lateral fransport and redistribution of snow

by wind due to the associated increase in snowpack density and wet-
ness (Judson & Doesken, 2000). Mechanically, Doorschot et al. (2004)
and Clifton et al. (2006) find that liquid water enables snow grains to
adhere to one another more easily, increasing the wind speed needed
to transport increasingly wet and dense snow. Li and Pomeroy (1997)
further explain that wet snow needs significantly higher wind speeds
for transport because of the viscous forces corresponding to the liguid
water adhering the snow grains. This decrease in lateral transport of
snow is one of the potential changes to mountain snowpack within a
changing climate (Guyomarc'h & Mérindol, 1998; Li & Pomeroy, 1997)
and s of primary interest for this analysis. Specifically, reduction of
wind transport of snow across the landscape may result in more uni-
formily distributed snowpacks across alpine catchrments, which has the
potential to alter the amount of runoff produced during the snowmelt
season (Hartman et al., 199%; Liston, 199%; Luce et al,, 1998).

Previous imvestigations into the effect of snowpack spatial vari-
ability have used observations (Kane et al, 1991) and hydrologic
models (Hartman et al, 1999, showing a positive relationship
between the spatial variability of snowpack and the runoff ratio. How-
ever, complexity in the process-based simulations of wind redistribu-
tion of snow (Essery et al, 199%; Essery & Etchevers, 2004; Li &
Pomeroy, 1997; Pomeroy, 1991; Winstral et al,, 2002) leads to simula-
tions of snow distribution that do not accurately predict observed
snowpack distribution, particularly in complex alpine terrain (Fontaine
et al, 2002; Winstral et al, 2002). So, while there is value in modelling
the redistribution of snow, adding such a complex element may not
be necessary to study hydrologic impacts of snowpack distribution;
regardless of model complexity, the ability to accurateby simulate wind
distribution of snow s a difficult task in such mountainous and com-
plex topography. Howewver, through the manual redistribution of
snow, the effects of reduced wind redistribution can be seen in a
hydmologic model with more experimental control and fewer uncer-
tainties introduced.

In this paper, we use the Distributed Hydrology Soil Vegetation
Model (DHSVM) to investigate the sensitivity of streamflow produc-
tion to snowpack spatial variability in the Green Lakes Valley (GLV),
Colorado. We initialize melt-season model simulations with spatial
snow distributions of increasingly uniform snowpacks relative to a
control case that is reflective of historical conditions at the time of
peak snow water equivalent (SWEL The runoff efficiency - the
amount of runoff generated from a unit of water input - is evaluated
as a way to guantify the effects of spatial snowpack uniformity on
subsequent snowmelt generated runoff. Simulations with and without
warm season precipitation are generated in order to further isoclate
the effects of the initial snow distribution on surface water generation
from confounding processes that modulate snowmelt rate during the
ablation season. This fills an important knowledge gap by directly
evaluating the role of the initial state of the snowpack distribution
uniformity on melt-season streamflow generaion, an important topic
for a broad audience of water resource managers and hydrologists,
given the projected increases in regional temperatures over the west-
ern US in the coming decades that could potentially alter snow redis-
tribution due to wind.
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2 | MATERIALS AND METHODS

We begin by describing the study domain (Section 2.1), followed by
model inputs and parameter settings (Section 2.2). The experimental
design (Section 2.3) is constructed with the goal of evaluating how
increasingly uniform snow distribuions affect runoff efficiency rela-
tive to an observation-based historical control simulation.

21 | Studydomain

This study focuses on the GLV, located within the U.S. Mational Sci-
ence Foundation Miwot Ridge LTER site (Figure 1). The GLV is located
approximately 35 km west of Boulder, Colorado, bounded on the
western-side by the Continental Divide, with the eastward outflow
representing a primary water source for the city of Boulder, CO. The
GLV is a relatively small alpine catchment with an area of 2.3 km?, but
with topographic relief spanning elevations of 3250-3798m. The
annual mean temperature of the region is —3.8°C (Williams
et al, 1996) and Caine (1996) notes that the region receives approxi-
mately 1000 mm of precipitation annually, nearly 80% of which falls
as snow that accumulates from October to April. Being a snowmelt
dominated basin, runoff derived from snowmnelt accounts for approoi-
mately 70% of the total annual minoff at the basin gauge (40.04% N,
—105.617 E), peaking between late-April and mid-July {Caine, 1996).

22 | Model description

The Distributed Hydrology Soil and Vegetation Model (DHSWVM;
Wigmosta et al, 1994) was chosen given its development towards

simulating hydrology in steep mountain catchments. DHSVM's treat-
ment of relatively fine scale hydrologic processes, eg. dynamic lateral
routing, makes the mode uniguely suited for simulating streamflow in
topographically complex domains (Brooks et al, 2004; LUvneh
et al, 2014, 2015; Whitaker et al., 2003). The model has an intermedi-
ate complexity snow model (Raleigh et al., 2016) that resolves a two-
layer energy balance model for snow accumulation and snowmelt. Soil
moisture and surface runoff are computed via a multilayer unsatu-
rated soil model and a saturated subsurface flow model. Energy trans-
fer and evapotranspiration (ET) are computed via a two-layer canopy
representation. The model considers the influences of slope and
aspect on incoming radiation (shortwave and longwave) within the
surface energy budget.

In this analysis, DHSVM was configured to run at an hourdy time
step from 2001 to 2014 at a 20 m horizontal resolution. These set-
tings were chosen based on the availability of model input data
DHSVM inputs include spatial fields of vegetation and monthly phe-
nology, soil depth and texture, geology, and topography. Here, these
gridded model fields reflect a combination of local observations from
the Miwot Ridge LTER network and regional-to-national scale datasets
(see Table 1L DHSVM i additionally provided dynamic observations
for solar shading as well as a gridded estimate of the mean diurnal
cycle of cloud free incoming solar radiation each month, derived from
a digital elevation model (DEM) used in the model simulations.

Hourly time-series of meteorological information used to force
DHSVM were derived from five observation locations within the
Miwot Ridge domain (see Figure 1 and Table 2). The prescribed mete-
orological inputs for the model include downwelling shortwave and
longwave radiation, humidity, wind speed, precipitation, air tempera-
ture, and soil temperature. Data continuity issues associated with
power and instrument failures are a common issue with surface
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L5 Geological Survey, 2017, 1/3rd arc-second Digital Elevation Models (DEMs) -
USGS Mational Map 3DEP Downloadable Dats Collection: ULS. Geological Survey.

Soil Survey Staff, Matural Resources Conservation Service, United States Department
of Agrculture. Web Soil Survey. Available online at https:/ fwebsoilsurvey nros.usda.

Cline, D. 2019. Green Lakes Valley land cover dassification, Miwot Ridge LTER,
Colorado ver 2 Ervironmental Data Inifiative. hitps:/ /dol.org/ 10,6073/ pasta/’

a585afes1 7269 06652c 559 de2 688

TABLE 1 Description and sources of static model inputs

Data Motes Solrce
DEM Sampled 10-m resolution domain to

produce 20-m DEM for DHSVM
Soil Types Mearest neighbour interpolation from native

20-m SSURSGO data

Bov /.

Vegetation Mearest neighbour interpolation from native

10-m grid
Geology Resampled to match 20-m DHSVM grid

Cole, 1.C., and Braddod:, WA, 2009, Geologic map of the Estes Park 307 x &0

quadrangle, north-central Colorado: LS. Geological Survey Sdentific Investigations

Map 303%

TABLE 2 The five Miwot Ridge LTER observation stafions and
streamflow gage used in this study with their respective latitude,
longitede and elevation

Name Latitude ()  Longitude (")  Elevation (mj
Arkaree 40.049 —105.640 1798
D1 40.059 —105.616 3743
GL4 40.056 ~105.617 3560
Saddle 40.049 ~105.592 1525
TVan 40.053 —105.586 3480
Streamflow Gage  40.049 ~105.617 3560

Abbreviatior: LTER, Long-Term Ecological Research.

observations in extreme climates. To address data gaps associated
with these issues, an infilling procedure similar to the normal ratio
method (MRM; Xia et al, 199%) was performed on the basis of
weighting station-to-station correlations to derive daily mean values
for insertion of missing data. Meteorological variables are interpolated
to all grid cells automatically within DHSVM using a Cressman schemne
(Westrick & Mass, 2001) that can be informed by additional spafial
covarates to distribute the local meteorology. A simulation period of
water years 2001-2014 was chosen given the greatest number
of high-quality metecrological observations available to drive DHSVM
during the timeframe. It should be noted that DHSVM does not
explicitly simulate changes to the prevailing climate, but rather the
meteorological information used to force DHSVM can impose a
changing climate. This study does not impose any changes to the
climate signal (Le., detrending, increased temperture) in the meteoro-
logical forcing, but observable trends in the climate may be present in
the meteorological forcing.

The melt-season experiments are initialized to an observationalby-
based estimate of peak SWE targeted on May 1 (Figure Za), which
represents the climatological time of peak SWE for the GLV. The
Jepsen et al. (2012) SWE reconstruction provides an estimate of
the yearly maximurm SWE by integrating modelled snowmelt from the
date of maximum SWE to the date of observed disappearance using
observed meteorology to estimate energy balance calculations. The

12-year climatological mean of the SWE reconstruction, 1996-2007,
was used to aid in informing the Cressman scheme for interpolation
of meteorological variables, such that the dynamic hydrologic simula-
tions closely match the spatial pattern of the reconstruction on May
1 of each year, while allowing for interanmual variability in the magni-
tude of total SWE and other hydrologic states like soil moisture
each year.

While the Jepsen et al. (2012) SWE reconstruction implicithy
accounts for wind redistribution based on the date of snow disappear-
ance and energy inputs into the snowpack, DHSVM does not explic-
itly model wind redistribution processes Given the numerous
uncertainties associated with snowpack wind-redistribution, we chose
not to model wind redistribution, but instead to initialize melt-season
simulations to a realistic pattern of spatial variability. Specifically, the
model experiments (described in Section 2.3) assume a given spatial
distribution derived from Jepsen et al. (2012) with the focus on
modelling melt-season snowmelt and associated runoff flies under
prescribed levels of spatial snowpack uniformity.

The majority of the DHSVM soill and snow parameters were
obtained from a previous application over the Boulder Creek water-
ched (Livneh et al, 2014, 2015), since the Green Lakes Valley lies
within this basin. Those past analyses demonstrated realistic sirmula-
tion of snowmelt and streamflow dynamics. The Livieh et al. (2014,
2015) model set up is used here to provide initial settings for soil and
vegetation parameters.

To optimize our calibration procedure, we used a two-step
method for calibrating paraments We initially determine the “direc-
tional sensitivity” of six DHSVM parameters - lateral conductivity
(Kh), exponential decrease in Kh (Kexp), vertical conductivity (Kv),
minimum resistance (MinRes), snow roughness (SnowR), and snow
water content (SnowWOC) - by multiplying the original parameter
values by 0.25, 0.5, 2 and 4. Based on the results from the first step,
we determined that Kh, Kexp and Kv were the most sensitive when
reproducing streamflow. The next step was to use a set of Monte
Carlo simulations for the multi-variate calibration with a Latin
Hypercube (McKay et al, 197%) sampling method to get 256 combi-
nations of parameters across a range of distributions for the
selected parameters, with the selection criteria for the parameter
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FIGURE 2 Mapsof (a) the mean snow water equivalent (SWE)
reconstruction product for the Green Lakes Valley catchment (lepsen
et al, 2012), (b-f) increasing iterafions of redistributed mean SWE,
and (g) mean SWE distributed uniformly over the catchment

settings being a maximum ranked correlation. Following a Monte
Carlo search for the selected parameters, our chosen simulation
provided a correlation of 0.B38 and Spearman ranked correlation of
0521 for all daily streamflow with the daily mean annual cycle
(Figure A1) being 0.969 and 0.964 respectively, with the grey area
in Figure Al representing the series of Monte Carlo simulations for
calibration. Due to potential errors in streamflow observation during
the winter months when the gauge is covered by snow and ice, per-
cent bias calculated during the melt-season (MUJ) and full warm-
season  (MJJAS) were —12.14% and —21.84%, respectively,
sugpgesting satisfactory portrayal of daily streamflow estimates fol-
lowing the guidance of Moriasi et al. (2007). While the given biases
do show some deficiencies in the model under simulating total
streamflow, this study does not aim to replicate observed
streamflow but rather to understand the sensitivity to streamflow
as snowpack distributions are altered.

23 | Designof model experiments

For every year in the simulation period, six variations of initial May
1 SWE distributions were developed (Figure ). Each variation had a
progressively more uniformly distributed snowpack while conserv-
ing the same total basin mean SWE as in the control In each
smoothing increment, 1/6th of SWE depth was transferred from
locations with greater SWE than in the control, to areas with below
average SWE, while conserving the total basin mean SWE in all
cases. It is of note that as SWE is redistributed, areas that were
once barren (Le., no snow) will now be snow-covered, which not
only creates a more spatially uniform SWE, but increased the snow
coverage in the catchment. This method ultimately produced a spa-
tially uniform snowpack by the sixth iteration. Table 3 provides a
simple measure of uniformity, U, computed for each snowpack
distribution:

U=—= (1)

where sowe I8 the spatial standard deviation of SWE and psye is the
basin mean SWE. Smaller values of U correspond with increasing spa-
tial uniformity for the initial snow conditions. The value of U scales lin-
early with the changing spatial standard deviation, given that the
mean SWE remains constant in all cases.

Transferring snow from wetter areas to drier areas while con-
serving total catchment-wide SWE in this way enables the experi-
ment to investigate the effects of wind redistribution on the
resulting hydrology in a controlled way. MNotably, this framework
allows for a straightforward method to isolate the effects of the
spatial snowpack distribution, while not introducing additional
uncertainties associated with complex parameterizations that would
be evident in a snow distribution model. Despite being motivated
by first order principles of increased snow density from increased
temperatures and subsequent reduction in wind redistribution,
these are still primarily ‘idealized’ experiments of snow distribution
impacts on hydrology, thus changes to snow density are not
accounted for. This design was chosen in order to isolate the role
snowpack distribution uniformity and not introduce ancillary factors
that could confound the basin response and complicate isolating the
role of snowpack uniformity,

For each simulation year, model simulations were initialized to
the seven May 1 SWE distributions (one control distribution and six
modified distributions) and forced with the observed meteorological
forcing for thelr respective water-year, that is from May 1 through
Septernber 30. This experimental design provides an ensemble
(iLe., variations of respective smoothing for each initial condition) of
hydrologic model simulations initialized with the control and altered
snowpacks for each year, while driven by identical forcing. Because
this approach was applied for multiple years, 2001-2014, it lets us
analyse different amounts of total SWE and different amounts of
water year precipitation for each year (Figure 3} Ultimately, this inter-
annual variability in SWE and precipitation leads to interanmual
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Scenario U {unitless) Standard deviation of SWE (m)
Control 1.137 0.651
1/ 0.947 0.543
2/ 0.758 0.434
36 0.568 0.326
4/ 0.37% 0.217
5/6 0.18% 0.10%
Uniform 0.000 0.000

Abbreviation: SWE, snow water equivalent.

TABLE 3 Charmacteristics of each

Mean SWE (m)
level of uniformity analysed in this study,
0573 including the uniformity, U, the spatial
0573 standard deviation and spatial rmean SWE
0573 for each case. We note that smaller
0573 values of U correspond with greater
snowpack spatial uniformity
0573
0573
0573

Total Water (m)

2001

2007 2003 2004 Q5 2006 2007 X008

Year

200% 2010

variability in streamflow generation from the GLV. This varability in
the primary sources of streamflow (SWE and precipitation) is an arte-
fact of the natural variability present in the local climate, which can
have inherent impacts on the processes governing streamflow
generation.

This study relies on direct observations of guantities such as
streamflow and metecrology, as well as observationally based recon-
structions of peak SWE. Each of these contains observational uncer-
tainty that are entrained within comparsons with model simulations,
which also contain uncertainty. The observational products used in
this analysis were not consistently available with quantitative esti-
mates of their attendant uncertainties. Therefore, these uncertainties
are implicitly caried through into the results and discussion sections
which primarily focus on ensemble mean values to minimize the
potential role of model uncertainty on the overall results.

For each ensemble of snow distributions, confidence intervals
are calculated from an empirically bootstrapped, 1000-member
ensemble of daily SWE and runcff resampled from the simulations
at each time-step. Day-of-year mean SWE/runoff are calculated for
each of the 1000 ensemble members, and, for each day of the year,
the 2.5th and 97.5th percentiles of the distribution of daily. These
bootstrapped means are presented in the results as measure of
model uncertainty for the simulation ensembles of each spatial
snowpack distribution.

FIGURE 3 Basin averaged May
1st snow water equivalent (SWE;
biue) and total precipitation
accumulated from may to September
(grey) for each water year of the
period of analysis (2001 -2014).
Diashed lines of the coinciding colours
represent the median value for all of
the years of record for both SWE and
precipitation

2011 2012 13 2014

3 | RESULTS

The simulations of the various snowpack distributions highlight a few
notable findings. First, the seasonal snowmnelt pulse directly corre-
sponds with the seasonal rise in runoff as s expected for this snow-
melt dominated basin, however the increasingly uniformby distributed
snowpacks melt at a more rapid rate than the control, as is seen in
their sharper initial decline in Figure 4. In the control case, the melt-
out of the snowpack (defined here as the first instance of basin mean
SWE dropping to less than 5% of the respective May 1 SWE) occurs
an average of 93 days (August 2) after May 1 model initialization. In
contrast, the uniform snowpack melts out after 62 days (July 1) on
average, or 31 days earlier than the control simulation. Owverall, the
melt-out date was consistently earlier for increasing spatial unifomity
relative to the control simulation. Howewver, the response is highly
non-linear. For example, when redistributing half of the SWE from
deeper to shallow snowpacks, melt out was only 10 days earlier than
the control simulation, whereas transferfing the remaining half of the
snow mass caused an earlier melt out by an additional 21 days.

The largest differences in streamflow occurred during the period of
rapid snowmelt early in the melt-season (Figure 4c) Increased spatially
uniform snowpacks show greater early-season streamflow generation.
However, these streamflow anomalies importantly change sign towards
the end of August on average, ulimately producing less cumulative
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FIGURE 4 Results from the control and snow-redistribution simulations with May through September precipitation forcing incleded.

(a) Multi-annual mean of DHSVYM simulated cumulative runoff (red) and basin averaged SWE (blue) from the contral simulation are shown with
solid lines. Uncertainty bands show the 95% confidence interval for daily mean runoff and SWE for all years in the period of analysis (2001-
2014). For each time step, confidence intervals were calculated from an empirically bootstrapped, 1000-member ensemble of daily SWE and
runoff resampled from the simulations. Day-of-year mean SWE/runoff were calculated for each of the 1000 ensemble members, and, for each
day of the year, the 2.5th and 97 .5th percentiles of the distribution of daily, bootstrapped means are shown as the bounding lines of the
uncertainty bands. (b) Multi-annual mean SWE anomalies compared to the control simulations for each of the redistributed SWE simulations
(coloured lines) with uncertainty bands derfved using the method described above. Vertical dashed lines, consistently coloured by simulation,
indicate the mean date of snowpack melt out for all years. (c) Multi-annual mean cumulative runoff anomalies compared to the control
simulations for each of the redistributed simulations (coloured lines) with uncertainty bands derived using the method descibed above.
Horizontal lines along the right-hand vertical axis, consistently coloured by simulation, indicate mean cumulative runoff for all years of analysis
DHSWVM, Distributed Hydrology Soil Vegetation Model, SWE, snow water equivalent

streamflow as compared to the control distribution by the end of the
water-year. The date of peak streamflow was minimally changed across
snowpack distribuions, with the uniform snowpack peaking onby B days
prior to the contra. The uniformby distributed snowpack case results in
only 1.1% less cumulative streamflow than the control case on average,
with decreases as large as 7.5% in some years. It appears that the melt-
season predpitation (e, seen in Fig-3) provides uneven inputs of water
into the catchment from year-to-year, which masks the effects of snow-
pack spatial uniformity on total runoff.

31 | Model simulations in the absence of melt-
season precipitation

To isolate the relationship between snowpack distribution unifomity
and snowmelt from the confounding factor of wvariability in melt-
season precipitation, we performed a set of additional simulations in
an identical manner to the initial simulations, except precipitation
forcings are removed (i.e. set to zero) for the remainder of the post-
May 1 water-year. Teufel et al. (2017) note that rain-on-snow events
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in the presence of frozen and snow-covered ground can lead to
increased streamflow generation, a potential phenomenon that could
obfuscate the role of spatial snowpack uniformity. We hypothesize
that the subsequent delivery of precipitation (Figure 3) during the
melt-season (eg., amount, duration, intensity) is altering the manner in
which the snowpacks are producing streamflow on a year-to-year
basis.

The removal of melt-season precipitation forcing in Figure 5
shows the same hallmarks as in Figure 4 with more mpid snowmelt
for increasingly uniform snowpack distributions. Changes in the melt-
out date are similar for this new set of simulations, with a difference
of 32 days between the control and uniforn distribufions. The mean
snowpack melt-out date for all snow distributions s shifted roughly
2 weeks earlier (14-15 days) by the exclusion of melt-season precipi-
tation. Importantly, the initial spatial snowpack uniformity influence
on the timing of melt out, that is the difference melt out date between
the control and uniform cases, is shown to be independent of the
presence of melt-season precipitation.

w107

The shape of the cumulative streamflow anomaly graph in Figure 5
is comparable to Figure 4, with the exception of clearer separation
across experiments of increasingly uniform snowpack distributions
Compared with the 1.1% decline in Figure 4, in the absence of melt-
season precipitation, there is an average decrease of B.1% in total
streamflow generation for the uniform distribution relative to the con-
trol distribution, a 7% difference from the previous set of simulafions

When melt-season precipitation forcing is withheld, spatially uniform
snowpacks produce less cumulative streamflow for all cases relative to
the control simulation (Figure 5d. Reductions by as much as 13.2% in
total streamfiow generaion are computed when using the mean snow-
padk dstribution, a reduction that is 12% greater than the ensemble mean
of simulations that include meltseason predpitation.

The magnitude of the differences in cumulative runoff due to
increasing degrees of snowpack spatial uniformity is most apparent in
the simulations where the melt-season precipitation forcing is withheld.
That is, the melt-season precipitation dampens the signal of the spatially
uniform snowpack initial condition on cumulative runoff such that, when
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melt-season precipitation is applied as a forcing in the simulations, the
mean difference in cumulative runoff between cases of spatial unifor-
mity falls within the uncertinty of the interannual variability of runoff
The removal of melt-season precipitation allows us to identify a distinct
inverse relationship between the initial snowpack spatial uniformity con-
dition and the subsequent curmulative runoff that is generated.

In contrast to the simulations that withhold melt-season precipi-
tation, the previous simulations display instances when snowpacks
with greater areal mean SWE increased streamflow for more uniform
snowpack distribution. This finding suggests that deeper snowpack
years may have experienced enhanced melt-season precipitation that
confounded the role of spatial snowpack uniformity in the presence
of precipitation. While in the absence of melt-season precipitation,
the effect of snowpack uniformity in reducing streamflow displays a
dependency with the magnitude of smowpack for a given year
(Figure 6&). Years with lower mean SWE appear more sensitive to
increased snowpack uniformity and tend to produce larger percent
decreases in streamflow genermtion. The implications of this sensitiv-
ity are important in the context of climate warming, where smaller
future snowpacks may be more sensitive to increasingly uniform dis-
tributions than deeper historical snowpacks. While there does appear
to be a dight trend towards larger snowpacks showing resilience to
spatial snowpack uniformity, there is still variability from year-to-year.
These differences largely occurred due to interannual variability in
temperature and other forcings.

4 | DISCUSSION

Through the comparison of simulations with and without warm sea-
son  precipitation, we find distinct changes in the streamflow

0.981
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ais) compared to the simulated
annual cumulative runcff normalized
by the control experiment for the
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line of dots represents the control 0.901
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Values of normalized cumulative
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in the total simulated streamflow 0.3 0.4
compared to the control simulation

=
o
=

Naormalized Runoff
(=]
o
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generation for different levels of spatial snowpack uniformities. We
further analyse our results to highlight the role of snowpack distribu-
tions and to propose a potential physical mechanism as to why
changes in spatial uniformity impact streamflow generation.

41 | Randomized snowpack distributions

Additional experiments were constructed to investigate the role of
spatial uniformity on streamflow more generally. In this experiment,
we shuffled the spatial snow patterns for the control and the other six
redistributed snowpack initial conditions, to create 20 randomly gen-
erated distibutions for each level of uniformity (Table 3), excluding
the uniform case since all distributions would be the same. This
approach was chosen because it keeps the degree of uniformity, U,
constant for each set of 20 random samples, while altering the
elevational distribution of SWE, the position of different depths of
SWE relative to vegetation and topography, as well as the locations
of minimum and maximum SWE within the basin. On average, the ran-
dom distributions distribute snow more evenly throughout the basin,
which has the effect of increasing the amount of snow at higher ele-
vations (not shown) in comparison to the control-case, while also pro-
viding a wide-range of elevations for minimum and maximum SWE
Twenty random SWE distributions were generated at each level of
spatial uniformity, from which DHSVM was run in the same manner
as described in Section 2.3, to explore streamflow wariation in
response to this larger and more diverse sample of uniformity.

Figure 7 shows that each set of the randomized vardations gener-
ally produces comparable results to the initial analysis, that is, in
Figure 5. Importantly, the randomized simulations reflect a range of
altered elevation distributions of SWE, the amounts of SWE in shaded

- +  Control
* 1/6 SWE Redistributed
«  1/3 SWE Redistributed
«  1/2 SWE Redistributed
«  2/3 SWE Redistributed
« 5/6 SWE Redistributed
«  Uniform SWE

05 0.6 0.7 0.8 0.9 1.0
May 1st SWE
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regions, and the general prevailing meteorology (i.e., air temperatune)
for different SWE depths. By altering all of these aspects through the
randomization of SWE, the role of spatial uniformity is more robusthy
evaluated, which supports the finding that uniformity & driving
changes in melt and streamflow production.

Further highlighting this point are the results from Winstral
et al. (2002) in which a regression tree applied to model spatial snow
distribution found wind redistibution to be a more important factor
than elevation, solar radiation and slope of the terrain. The relative
agreement on the factors that impact smow distribution as well as
govern melt in our manuscript is generally consistent with our results
on the role snowpack uniformity.

42 | Discussion of physical mechanism

A comparison of water balance storage and surface flux terms
(Figure B) allows us to interpret physical mechanisms behind the

sensitivities in runoff production associated with snow distribution.
Here, we focus on differences between the control and completely
uniform simulations for periods before (e, when the uniform distri-
bution produces more streamflow) and after {L.e, when the control
distribution produces maore streamflow) the inflection point in
Figure 5.

A potential first-order explanation for why the uniformly distrib-
uted snowpack behaves differently is its larger surface area of snow
exposed to surface-atmosphere energy exchange;, eg. incident solar
and longwave radiation and sensible heat flux, leading to increased
atmospheric exposure per unit SWE, it is worth noting that snow cov-
erage increases due to redistribution (see Section 2.3). Given that
snowmelt is driven at the surface-atmosphere interface, it is intuitive
that a spatially uniform snowpack would generate more snowmelt
earlier in the snowmelt season and less in the late season. Conversely,
the control smowpack has both snow-free areas and areas of persis-
tent deeper snow accurnulated in snow drifts. Within these drifts a
significant volume of total snowpack water storage is buried beneath
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FIGURE &8 (Upper panel)
Difference in the multi-annwal mean
of snowmelt (depth) from the
uniformby distributed snow water
equivalent (SWE) simulation
compared to the control simulation.
The red dashed line shows the
inflection point where the difference
between the two simulations changes
signs. (lower panel) mean differences
in the snowmelt (rate), runoff (rate),
soil moisture (depth) and the water
table depth from the uniformly
distributed SWE simulation compared
to the control simulation. Periods for
which the means (and subsequent
differences) are derived are divided
by the location of the red dashed line

0.00a
0,006+
0,004
0.0024

0.000 p=====

Melt Difference (m)

=002 4
—0.004

May: 1st

0.010-
0.005 {
0,000 ===

=0.0054

Difference

=0.010+
—-0.015

—0.020 4

May 1st

surface layers of snow and is therefore not exposed to the ovedying
atmosphere. As the surface snowpack warms during the spring transi-
tion potential energy inputs to these deeper snowpack layers include
conduction from overlying layers, advection from liguid water percola-
tion, and latent heat exchange associated with re-freezdng of vertically
propagating liquid water. These energy sources are relatively small in
comparison to the aforementioned energy inputs that are available at
the surface-atmosphere interface. In addition, snowpack cold content
varies as a function of snowpack temperature and SWE Hence,
deeper drifts in the control smowpack would have greater cold con-
tent than thinner, more uniformly distributed snowpacks and there-
fore delayed snowmelt is expected with more heterogeneous
snowpacks. These differences are reflected in the increased snowmelt
in the eadier period of Figure 8 where energy inputs more efficienthy
overcome the cold content of the uniform snowpack and lead to a
larger early pulse of snowmelt.

In comparing the two time periods highlighted by Figure B, the
potential influence of the uniformly distibuted snowpack's greater
exposure to energy inputs per unit of SWE relative to the control case
can be seen in water flux and storage terms. The early pulse of snow-
melt in the uniform simulation leads to increases in soil moisture and
decreases in the water-table depth (Le., a water table closer to the
surface), allowing for increased runoff efficiency and greater storage
of water during the early season. While during the second time period
when the control distribution produces more snowmelt due to deeper
snow areas having longer melt times, there are opposite changes to all
fluxes and storage terms.

Existing research has largely focused on broad-scale patterns in
runoff from snowmelt-dominated watersheds, in comparison to rain-
dominated watersheds (Berghuijs et al, 2014), as a function of time
throughout the snow season (Barnhart et al, 2016 Musselman
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et al, 2017), or in the context of seasonal flood (Berghuijs et al, 2014)
and drought prediction (Livneh & Badger, 2020) These studies gener-
ally rely upon large-scale models and data (~10 km scale), which are
too coarse to resolve some of the important energy, water, and topo-
graphical forcings considered here, and so they only hint at dominant
rec hanisms.

In sum, we hypothesize that spatially uniform snowpacks melt
more quickly due to greater energy exposure per unit of SWE, leading
to increased runoff and storage in the land surface early in the season,
while the slower melt rate from the control distibution provides a
more efficient runoff generation that extends later into the melt-
SEASOMN.

4.3 | Limitations and uncertainties
While the results in this study are based on use of a hydrologic model
in a single alpine catchrment, there could be elements of the results
that are model and/or catchment dependent; further highlighting the
need for comparable imvestigations into the streamflow changes due
to the spatial uniformity of the initial melt-season snowpack
Additionally, uncertainties due to meteomslogical forcing and
snowpack reconstruction are present. Through the use of observed
meteorology, there are inherent uncertainties associated with the col-
lection and transmission of these data from remote locations such as
the GLV; there s general confidence in the data but using an in-filling
method to address missing data periods can lead to observed features
not being captured correctly. While accounting for interannuwal vari-
ability in meteorclogy, there is a lack of interannual variability in the
pattern of the snowpack distributions, this s due to the lack of owver-
lapping years with the SWE reconstruction product. Notwithstanding
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previous works have highlighted that the pattems of SWE distribution
have some interannual consistencies (Erickson et al., 2005; Jepsen
et al, 2012).

Furthermore, remowval of melt-season precipitation does allow for
a more defined response to snowpack uniformity, but other elements
of the observed meteorology that would be associated with a
precipitation-free environment may be missed. Particularly, this study
did not take into account the associated changes to incoming short-
wave radiation, present wind speed, soil temperature and other
aspects that could alter snowmelt dynamics in the absence of melt-
season precipitation. Predicting associated changes to other meteoro-
logical variables in the absence of precipitation would have provided
additional uncertainties to this study. While May 1 was chosen to rep-
resent the date of peak SWE following historical conditions, other ini-
tialization dates were not examined. A future exploration into SWE
spatial uniformity across the melt season could be useful towards
understanding sensitivities of runoff to uniformity through time.

Lastly, these results suggest that the magnitude effect of the ini-
tial smowpack spatial uniformity on cumulative runoff generation is
comparable to the magnitude of interannual variability of melt-season
precipitation. This underscores the importance of spatial snowpack
uniformity in influencing total runoff. Furthermore, there is a strong
consensus  across  projections of future regional temperature
increases, that i, the physical mechanism that i likely to drive
increased spatial uniformity of snowpacks. In contrast, projecions of
spring and summer precipitation change are more uncertain, particu-
larly in western Morth America (Hayhoe et al, 2018} In addition,
these results indicate that initial spatial snowpack uniformity is
directly proporfional to the timing of melt out independent of the
presence melt-season precipitation. Therefore, spatial uniformity of
snowpacks will remain an important consideration for water resource
planning in snowpack dominated watersheds.

5 | CONCLUSIONS
This study has investigated the role of spatial snowpack variability
and potential uniformity in streamflow generation in the Green Lakes
Valley watershed of the Miwot Ridge LTER. The DHSVM hydrologic
simulations conducted here show that snowpacks with increased spa-
tial uniformity are expected to reduce total streamflow relative to the
control case, although melt-season meteorology can have con-
founding impacts on this signal. Snowpack uniformity leads to greater
exposure to incoming solar radiation at the snowpack surface and
enhances the rate of snowmelt for the catchment. More explicitly,
these simulations showed consistently earlier melt-out dates indepen-
dent of melt-out season precipitation, increased early season melt,
decreased late season melt, reduced efficiency and ultimatehy
decreased streamflow generation as a result of increasing snowpack
uniformity. Importantly, these sensitivities appear to be heightened
for shallower snowpacks, which has implications for climate change.
While these results are presented independent of a changing cli-
mate, the Niwot Ridge LTER is expected to experience such changes.

Kittel et al. (2015) notes that there is an observed precipitation trend
of 60 mm year' decade ! for our domain, there is also an observed
temperature trend of 0.8°C decade ' occurring simultanecushy. A
hypothesis worth addressing in future work could investigate the
degree to which continued increases in precipitation could potentially
offset the impact of increased temperature-driven evaporative
demands on streamflow. While this region is experiencing increases in
both precipitation and temperature, it is expected that other regions
may warm with differing precipitation changes, such that resulting
changes in streamflow generation could be imestigated following a
similar approach as was taken here.

Although this study investigated a single alpine catchment, the
principles of snowpack spatial uniformity and greater solar exposure
relative to more heterogeneous snowpacks are expected to influ-
ence the water yield of other catchments, although the magnitude
and sign of the sensitivities may vary under different prevailing cli-
mates. We believe that this research underscores a pressing need
for potential impacts of reduced spatial snowpack variability, partic-
ularly incorporating climate projection data and remotely sensed
snow retrievals.
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