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Worldwide, ecological communities are rapidly changing 
due to various anthropogenic activities1–5. This biodiver-
sity change is non-random, and the functional traits of 

organisms driving their growth, survival and reproduction are key 
in determining which species thrive and which perish under global 
change6–9. This may have important implications, because traits not 
only affect individual plant performance but they may also drive 

various ecosystem properties such as biomass production and the 
services these properties provide to human well-being7,8,10.

Predicting levels of ecosystem properties, such as biomass pro-
duction, pollination, litter decomposition or nutrient leaching from 
the composition or diversity of traits in plant communities, is a key 
challenge in the field of functional ecology, and different perspec-
tives exist on how this can be done. On the one hand, some papers 

Plant traits alone are poor predictors of ecosystem 
properties and long-term ecosystem functioning
Fons van der Plas   1,30 ✉, Thomas Schröder-Georgi1,30, Alexandra Weigelt   1,2, Kathryn Barry   1,2, 
Sebastian Meyer   3, Adriana Alzate2, Romain L. Barnard4, Nina Buchmann   5, Hans de Kroon   6, 
Anne Ebeling7, Nico Eisenhauer   2,8, Christof Engels9, Markus Fischer10, Gerd Gleixner   11, 
Anke Hildebrandt   2,12,13, Eva Koller-France14, Sophia Leimer15, Alexandru Milcu   16,17, Liesje Mommer18, 
Pascal A. Niklaus   19, Yvonne Oelmann   14, Christiane Roscher   2,20, Christoph Scherber   21,22, 
Michael Scherer-Lorenzen   23, Stefan Scheu   24,25, Bernhard Schmid   26,27, Ernst-Detlef Schulze11, 
Vicky Temperton28, Teja Tscharntke29, Winfried Voigt7, Wolfgang Weisser   3, Wolfgang Wilcke   15 
and Christian Wirth1,2,11

Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to pre-
dict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species 
drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to 
which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots 
over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem proper-
ties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most 
other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits 
in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. 
Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a 
small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are 
specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so 
that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem prop-
erty levels.
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primarily emphasize traits as direct drivers of ecosystem processes, 
with the influence of environmental conditions being less empha-
sized or mostly discussed as indirect drivers through their effects 
on plant traits7. On the other hand, others emphasize the simul-
taneous importance of environmental conditions, including soil 
factors, topography, climate, succession, disturbances and weather 
conditions, in addition to traits as direct drivers of ecosystem pro-
cesses11,12. While none of the above studies denies the importance 
of environmental factors in influencing ecosystem properties, the 
practice of using traits per se (thus ignoring environmental driv-
ers) as predictors of ecosystem properties is widely embraced 
in ecological studies13–15. In this study we aim to test the general 
hypothesis that plant traits per se can be sufficient for predicting 
levels of ecosystem-level properties within and across years, using 
a field experiment in which the diversity and composition of plant 
communities were manipulated but in which spatial variation in 
environmental conditions is minimal. Importantly, in this study we 
focus on the general capacity of plant trait data to predict levels of 
ecosystem properties. Hence, we are not primarily interested in rela-
tionships between particular traits and ecosystem properties, or in 
the mechanisms underlying relationships, but rather in the overall 
ability of multiple traits to explain a large proportion of variance in 
levels of ecosystem properties.

Various studies have shown links between plant traits and 
species-level variation in photosynthetic rate, growth and reproduc-
tive output present in the plant kingdom16–18. In natural communi-
ties, plants interact with individuals from other species so that the 
identity, abundance and diversity of traits may be of importance for 
ecosystem-level properties. Despite this, some field studies found 
only relatively weak links between the identity and diversity of plant 
traits and ecosystem-level properties8,19. Furthermore, while many 
other studies did find strong links between traits and ecosystem 
properties12–14,20,21, these were typically carried out within a single 
year. However, because links between traits and ecosystem proper-
ties are often highly context dependent11,22,23, the capacity of traits 
to predict the long-term consequences of global change may be 
much more limited than that suggested by studies based on single 
years. Alternatively, strong and consistent links between plant traits 

and ecosystem properties may exist, but higher numbers and more 
appropriate traits than those assessed in previous studies may be 
needed to demonstrate strong links with long-term levels of ecosys-
tem properties.

Results and Discussion
To test these ideas, we first performed a literature review to investi-
gate which and how many traits were measured by 100 recent stud-
ies13–15,21,24–119 when attempting to link the diversity or composition 
of traits within terrestrial plant communities to ecosystem proper-
ties. We found that most studies analysed six traits, and only two 
studies88,90 assessed more than 15 (Fig. 1b). Nine of the ten most 
frequently studied traits (Fig. 1a) described above-ground plant 
parts, with six describing leaf characteristics. Only one frequently 
measured trait was related to plant roots, even though these provide 
important plant functions (for example, anchoring, resource uptake 
and interface with symbionts) and represent approximately 50% of 
total plant biomass120. Thus, most previous studies assessed a sparse 
set of traits with a strong bias towards leaf traits. We also found that 
a large fraction (44%) of the studies assessed linked traits or other 
biotic predictors only to ecosystem properties, without addition-
ally testing for the independent effects of environmental conditions 
or their interactive effects with traits. This fraction was somewhat 
lower, although still substantial (24%), among those 55 studies with 
a non-experimental design, which typically have strong gradients in 
environmental conditions.

We then investigated to what extent a much higher number of 
traits could explain variation in ecosystem properties. We did this 
using a dataset containing 10 years of measurements of 42 ecosystem 
properties, assessed in 78 experimentally established grassland com-
munities in Germany. The 42 ecosystem properties described vari-
ous above- and below-ground stocks and rates of plant, faunal and 
abiotic properties including, for example, above- and below-ground 
plant biomass, pollination and herbivory rates, soil respiration and 
moisture content and carbon stocks (Supplementary Information 
provides a full list). Both the diversity and functional composition 
of the plant communities studied were experimentally manipu-
lated, by sowing different combinations of a pool of 60 species121,122.  
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Fig. 1 | Overview of which and how many traits were typically analysed in other ecosystem functioning-related studies. a, Percentage of studies in which 
the ten most frequently measured traits were investigated, according to a review of 100 recently published articles. The two lighter blue bars show the only 
functions not measured in this study. b, Number of measured traits among studies.
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At the same time, because all plots were in close proximity within 
the same experimental field, spatial variation in environmental 
conditions was relatively minor, making this study particularly suit-
able for testing the effects of plant communities (and their traits) 
on levels of ecosystem properties. For 59 of the 60 plant species we 
measured 41 traits (more than any of the studies assessed in our 
review) related to structural, morphological, chemical and physi-
ological properties of all main plant parts, including leaves, stems, 
flowers, seeds and roots. Traits included, for example, specific leaf 
area (SLA), leaf and root nutrient concentrations, plant height, 
seed mass, flowering duration and nutrient uptake efficiency. For 
a complete list of the traits refer to Supplementary Methods. By 
combining these trait data with plant community data, we quanti-
fied both the functional identity (FI) and functional diversity (FD) 
for each plot in each year. Functional identity was calculated as 
the abundance-weighted mean of a trait within a community, and 
drives ecosystem properties if the contributions of species to ecosys-
tem properties are proportional to their relative abundance10,12,123. 
Functional diversity was calculated as Rao’s quadratic entropy124, 
and can drive ecosystem properties if species contribute differently 
to functioning when co-occurring with plant species with different 
traits—for example, due to trait-driven resource complementarity 
or facilitation20,122,124,125.

We used linear mixed models (LMMs) to analyse how much of 
the variation of each of the 42 ecosystem properties was explained 
by FI and FD metrics of all 41 traits, as well as by random year 
and plot differences. We used a forward model selection proce-
dure in which, during each step, a trait was added if it significantly 
improved model fit and did not strongly correlate with the traits 
already present in the model. We chose a forward model selec-
tion procedure to overcome problems related to multicollinearity, 

because many FI and FD metrics were correlated (Supplementary 
Table 2.2). Despite the high number of traits included in our analy-
sis, and even though each ecosystem property was on average driven 
by the FI and/or FD of 4.8 traits (Fig. 2b), the average marginal R2 of 
the final models was 0.127, indicating that traits explained on aver-
age only 12.7% (0–40.0%) of the variation in ecosystem properties 
(Fig. 2c). Marginal R2 values were even lower (mean, 0.078) when 
we used a more conservative model selection procedure, correcting 
for false discovery rates. Conditional R2 values, which also account 
for the variance explained by random factors (plot and year differ-
ences) were much higher, with an average value of 0.632. Our find-
ing that traits per se explained a very low proportion of variance in 
ecosystem properties may seem surprising, as various other studies 
explained more variance with fewer predictors8,12–14,21,126. However, 
it is possible that there has been a publication bias against studies 
showing no or only weak links between traits and ecosystem prop-
erties, which may have increased the perceived strength of the rela-
tionship between traits and ecosystem properties. In addition, these 
studies typically used data for single years only and it is possible that 
links between traits and ‘ecosystem functions’ are strong only within 
years. To test this, we also analysed links between ecosystem func-
tions and traits for each year separately. This showed that, within 
years, marginal R2 values were much higher, with an average value 
of 0.326. Thus, while traits per se were poorly linked to ecosystem 
properties across years, they explained much more variation within 
years, indicating that links between traits and ecosystem properties 
are strongly context dependent.

We then assessed the dependence of our ability to explain levels 
of ecosystem properties across years on how many and which traits 
are included in analyses. We found that those traits most frequently 
assessed in other studies did not drive more ecosystem properties 
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Fig. 2 | The relative importance of different and multiple traits regarding ecosystem properties across years. a, Number of analysed properties 
significantly driven by each trait, according to final models. Traits analysed in >10% of the papers included in the review are shown in yellow. b, Number of 
significant predictors in final models for each ecosystem property. c, Marginal R2 values in final models for each ecosystem property.

NATuRE ECOLOGY & EVOLuTION | VOL 4 | DECEMBER 2020 | 1602–1611 | www.nature.com/natecolevol1604

http://www.nature.com/natecolevol


ArticlesNature ecology & evolutioN

than traits less frequently studied (Fig. 2a). One trait (SLA) signifi-
cantly drove only a single ecosystem property (evapotranspiration 
from the upper soil layer) while others (for example, individual leaf 
area) drove many more ecosystem properties (for example, drought 
resilience and abundance of soil layer fauna), but no overall pattern 
was detectable (Fig. 2a). We investigated more formally how our 
ability to explain variation in ecosystem properties would change if 
we had (1) measured either a random subset of six (corresponding 
to the number of traits assessed in most other studies) of the 41 traits 
(based on 100 random draws), (2) measured only the six traits most 
frequently assessed in other studies or (3) analysed species richness 
(the most commonly used biodiversity indicator) instead as a pre-
dictor of ecosystem properties. Irrespective of whether six random 
traits or those most frequently investigated in other studies were ana-
lysed, on average only 4.8% (95th percentile, 3.8–6.5%) of variation 
in ecosystem properties could be explained (Fig. 3a,b) while species 
richness could explain only 1.7% of variation in levels of ecosystem 
properties. This represents a strong decrease compared to the 12.7% 
of variation explained when all 41 traits were assessed (Fig. 2b).  
We also assessed to what extent analysis of subsets of fewer or more 
than six traits influenced the proportion of explained variance in 
ecosystem properties. This showed that there was an asymptotic  
relationship between the number of traits analysed and the average 
proportion of explained variation in ecosystem properties. While 
such an asymptotic relationship is statistically inevitable, it was a sur-
prise that as many as 9 and 24 traits were required to explain 5 and 
10% of the variation in ecosystem properties, respectively (Fig. 4a).

Thus, while each ecosystem property per se was, on average, 
explained by fewer than five traits (Fig. 2b), many more traits were 
needed to explain multiple ecosystem properties (Fig. 4). While 
seemingly a paradox, this happens if different ecosystem proper-
ties are driven by different traits. We demonstrated this by calcu-
lating the overlap (o) in the traits significantly driving each pair of 
ecosystem functions, using Sørenson’s index127. The average overlap 
indicated that pairs of ecosystem properties had, on average, only 
12.2% significant trait drivers in common. Thus, while traits are 
commonly advertised as conveying more general information than 
does a species' identity9,10,12,125, a small set of key traits able to explain 
variation in multiple ecosystem properties does not exist in Central 
European grasslands, just as ‘superspecies’ providing multiple eco-
system functions do not exist128.

While across-year levels of many ecosystem properties were 
relatively poorly explained by traits, strong links between plant 
traits and certain ecosystem properties did exist, because the pro-
portion of explained variance of certain ecosystem properties (for 
example, above-ground plant biomass and the cover of invasive spe-
cies) exceeded 30%. This begs the question as to whether generali-
ties exist between the type of ecosystem property and the extent to 
which its variation can be explained by plant traits. We hypothesized 
that (1) plant traits should be more strongly linked to plant-based 
ecosystem properties than those related to higher trophic levels or 
abiotic conditions, and that (2) above- and below-ground ecosys-
tem properties should have equally strong links with plant traits, as 
both above- and below-ground plant traits were well represented 
in our study. Partly in line with our first hypothesis, we found 
that vegetation-based ecosystem properties were most strongly 
predicted by plant traits (average marginal R2 = 0.23), while the 
variation explained in heterotroph-related ecosystem properties 
was on average slightly, but non-significantly, lower (average mar-
ginal R2 = 0.17) and the proportion of explained variation in abi-
otic ecosystem properties was substantially and significantly lower 
(average marginal R2 = 0.04). Regarding our second hypothesis, we 
found that ecosystem properties related to above-ground stocks or 
processes were, on average, much better predicted (average mar-
ginal R2 = 0.21) than those related to below-ground stocks or pro-
cesses (average marginal R2 = 0.07). However, this difference was 
non-significant and resulted from the fact that, above ground a 
higher fraction of plant-related ecosystem properties and a lower 
fraction of abiotic ecosystem properties were studied than those 
below ground (Supplementary Table 1). Despite the finding that 
variation in some ecosystem properties could be better explained 
than variation in other ecosystem properties, it is important to note 
that even the proportion of explained variance in plant-related eco-
system properties was, at 21%, still relatively moderate.

We highlight five possible, and not mutually exclusive, expla-
nations for our overall finding that plant traits per se are generally 
rather poorly linked to ecosystem properties. First, the plots in our 
study were relatively large (10 × 10 m2) so that, even within plots, 
variation in plant community composition and levels of ecosystem 
properties exist. Therefore, spatial mismatches between within-plot 
locations of ecosystem property measurements and vegetation 
surveys could have weakened links between traits and ecosystem 
properties.

Second, traits can vary substantially among individuals within 
species129. While in this study, we did not take intraspecific trait 
variation into account (which would have required the repeated 
measurement of 41 traits of 60 species in 78 plots over a 10-year 
period), other studies have shown that the inclusion of intraspe-
cific variation can improve links with ecosystem properties130,131. 
On the other hand, in our own system, interspecific trait varia-
tion is much more important than intraspecific trait variation for 
community-wide trait variation132, and therefore it is likely that the 
interspecific trait variation on which we focused is also key regard-
ing levels of ecosystem properties.

Third, there is always the possibility that important traits are 
being overlooked when trying to understand drivers of ecosystem 
properties. For example, unmeasured traits related to litter qual-
ity or mycorrhizal associations could have links to functions such 
as soil respiration or carbon cycling133. Our analysis supports the 
idea that, with more trait data, links between traits and ecosystem 
properties become stronger (Fig. 4). While this is probably a major 
issue for the many studies that investigate comparatively few traits 
(for example, the inclusion of six traits only, which is the median of 
other studies, would have decreased our explanatory variance by a 
factor of >2.5), our analyses, which were based on a large number of 
traits, show that this is not a major issue in our study. Extrapolation 
of the observed relationships between model R2 and the number of 
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traits analysed suggests that 87 traits are needed to increase the pro-
portion of variance explained to 15%, and that there is a (surpris-
ingly low) upper limit of around 18% in the proportion of variance 
that can be explained by traits per se, even if an unlimited number 
of traits is analysed (Fig. 4b). Hence, the inclusion of more trait data 
would have yielded only limited gains in our ability to explain eco-
system functioning.

Fourth, it is important to note that while our study focused on 
temperate, Central European grasslands, it is possible that links 
between traits and levels of ecosystem properties are stronger across 
systems. For example, there are major differences in carbon stocks 
and fluxes between grasslands and forests134, and these differences 
in ecosystem properties probably coincide with major differences in 
the traits (for example, plant height and seed mass) of the dominant 
plant species135.

Last, if the effects of traits on ecosystem properties are context 
dependent, then the inclusion of interaction effects in statistical 
models between plant traits and other factors, such as soil factors, 
topography, weather conditions or disturbances, should improve our 
predictive capacity of ecosystem properties. For example, while we 
found that SLA was linked only to across-year levels of one ecosys-
tem property, it is well established that this trait reflects a trade-off 
between photosynthetic capacity and leaf longevity136. Due to this 
trade-off, both positive and negative relationships between SLA and 
biomass production could be expected, depending on whether high 
photosynthetic rates (for example, in productive environments) 
or conservative strategies (for example, in dry environments) are 
most adaptive. In line with this, observed relationships between 
community-weighted mean SLA values and biomass production 
are highly variable among other studies, with both positive13,26,49 and 
negative40,64,68,80 relationships. In our study it is possible that, in wet 
years, species with high SLA became more abundant and promoted 
biomass production in these years, while in dry years the opposite 
happened. While explicit testing for context dependency (which 
would require annual data on, for example, various soil and weather 
conditions) was outside the scope of our study, our finding that links 
between traits and ecosystem properties were much stronger within 
years than across years does indicate that taking into account spatial 
or temporal environmental contexts may be essential to improving 
our understanding of how traits drive ecosystem properties.

Using one of the most comprehensive studies to date, we showed 
that while traits can be strongly linked to ecosystem properties 
within years, our capacity to predict levels of multiple ecosystem 
properties across years (differing in, for example, weather condi-
tions) is strongly limited. This indicates that additional data, such as 
information on abiotic conditions (for example, soil factors, topog-
raphy, climate/weather and disturbances) and their interactions with 
plant traits, should be considered to improve links with ecosystem 
properties. While consideration of environmental contexts has pre-
viously been emphasized as being important to understanding driv-
ers of ecosystem properties7,11, we also found that many studies did 
not follow this recommendation. This may have strong implications. 
The functional composition and diversity of plant communities are 
rapidly changing1–4, and researchers are employing increasingly 
complex models to predict the consequences of these changes for 
worldwide biogeochemical and hydrological cycles137,138. While we 
encourage the use of such models and their inclusion of increasingly 
accurate trait information, our work also highlights that, providing 
we do not understand the context dependency of links between 
plant traits and ecosystem properties and that, providing these 
context dependencies are not taken into account, there are strong 
limitations in our predictive capacity of the ecosystem-level conse-
quences of ongoing biodiversity change. Human well-being relies 
on ecosystem services that are underpinned by various ecosystem 
properties139,140, and ensuring that these properties are provided at 
desirable levels is extremely challenging if future environments are 
dominated by plant communities differing from those observed 
today. Hence, policies halting the rapid current-day changes in 
biodiversity are the safest bet to guarantee nature’s contributions to 
future generations of people.

Methods
Review. We performed a review to investigate which traits were most often 
analysed in recent years as predictors of ecosystem properties. We did this on the 
Clarivate Analytics Web of Science website in July 2018, using the search terms 
(functional-diversity or community-weighted-mean or CWM or trait-diversit*) 
and (ecosystem-function*) and (plant or vegetation). This initially yielded 
654 results. Among these, we searched for papers that analysed an ecosystem 
property (broadly defined as energy or trophic fluxes and biomass stocks, 
measured at the ecosystem or community level) as the response of the FD or FI (for 
example, mean values of the abundance-weighted trait) of one or more terrestrial 
plant traits. We focused on only the 100 most recently published articles that met 
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these criteria. The main objective of this mini-review was to get an overview of a 
representative sample of recent studies linking terrestrial plant traits to ecosystem 
properties, rather than to acquire an exhaustive overview of all published literature. 
For a PRISMA flowchart of our literature search, refer to Extended Data Fig. 1.

Among the 100 selected papers (Supplementary Data 1), we screened which 
plant traits were analysed as predictors of ecosystem properties. Some traits 
had different labels among different publications—for example, SLA versus leaf 
mass per area61,117. In those cases, we used our expert judgement and a plant trait 
thesaurus141 to relabel traits to obtain a common terminology. We then counted 
and ranked the frequencies (number of papers) by which each trait was analysed as 
a predictor of ecosystem properties and then identified the top ten traits analysed 
in most papers and the five most commonly analysed. In addition, for each paper 
we assessed whether its design corresponded to a ‘biodiversity experiment’ (that 
is, an experiment in which the biodiversity or community composition of plant 
communities was directly manipulated) and whether only biotic predictors 
(including plant traits), or also abiotic environmental conditions, were analysed as 
predictors of ecosystem properties.

Experimental design. We studied relationships between various ecosystem 
properties and plant traits using data from the Jena Main Biodiversity 
Experiment121,122, which is one of the biggest and longest-running biodiversity 
experiments worldwide. This grassland biodiversity experiment was set up in 
spring 2002 in the floodplain of the Saale river close to the city of Jena (Germany, 
50° 55' N, 11° 35' E, 130 m above sea level), at a field that was previously managed as 
a fertilized agricultural field for at least four decades. The experiment was designed 
to study the effects of species and functional group richness on various ecosystem 
properties.

In short, 78 plots were established, each measuring 20 × 20 m2. In these plots, 
different subsets of a species pool of 60 species were sown in spring 2002. The 
different species were selected to be representative of Molinio-Arrhenatheretea 
grasslands142 and were classified in four functional groups as ‘grass’ (including 
Poaceae and one Juncaceae species), small herb, tall herb or legume, with 16, 12, 20 
and 12 species in the species pool, respectively. In each plot, 1, 2, 4, 8 or 16 species 
were sown, with each richness level replicated 16 times. The 16-species mixture 
plots formed an exception and were replicated only 14 times. Total sowing density 
was 1,000 seeds m–2, irrespective of richness level. Each plot contained a unique 
species composition. In addition to a species richness gradient, a functional group 
richness gradient was established in such a way that sown species and functional 
group richness were as orthogonal as possible. Functional group richness ranged 
from 1, 2, 3 and 4, with 34, 20, 12 and 12 replicates, respectively. Due to this 
experimental design, variation in plant diversity and composition across plots 
was much larger than in equivalent, non-manipulated grasslands143, making this 
experiment particularly useful for linking traits to ecosystem properties. Plots were 
assigned to four blocks in parallel to the riverside, to account for differences in soil 
properties with increasing distance from the river (with, for example, sand content 
being higher in plots closer to the Saale river). Each block had a similar number 
of plots, and each block had all levels of species and functional group richness 
approximately equally represented.

Twice per growing season, plots were weeded to avoid species that were not 
sown in the plots following establishment. We refer to two other publications121,122 
for more details on the design of the Jena Main Biodiversity Experiment.

Plant community assessments. During the period 2003–2012, twice per year, 
during spring (May) and summer (August), cover of all target plant species was 
estimated in each plot within a 3 × 3-m2 subplot. For more details, we refer to 
Roscher et al.132.

Ecosystem property measurement. During the period 2003–2012, 42 different 
ecosystem variables (‘ecosystem properties’ hereafter) were measured, describing 
plant, faunal and abiotic pools and process rates, some of which were measured 
above ground and some below. We focused on ecosystem properties that met 
the criteria of being ecosystem functions according to the definition of de Groot 
et al.144: “the capacity of natural processes and components to provide goods and 
services that satisfy human needs, directly or indirectly”. This definition includes 
regulatory functions (for example, those related to biogeochemical cycles such 
as soil respiration and nutrient leaching), production functions (for example, 
plant above- or below-ground biomass, abundances of heterotrophic groups) and 
habitat functions (that is, the properties that indicate the capacity of ecosystems 
to provide habitat, such as diversity levels of invertebrate taxa)144. All ecosystem 
properties were measured in multiple seasons or years, always using standardized 
protocols. The ecosystem properties measured were: plant biomass consumed 
by herbivores, herbivory rate, frequency of pollinator visits, abundance of soil 
surface fauna, richness of soil surface fauna, abundance of vegetation layer 
fauna, richness of vegetation layer fauna, number of pollinator species, drought 
resilience, drought resistance, leaf area index, bare ground cover, above-ground 
plant biomass, dead plant biomass, cover of invasive plant species, richness of 
invasive plant species, rain throughfall, basal soil respiration, soil respiratory 
quotient, earthworm biomass, soil larvae abundance, soil mesofauna abundance, 
soil macrofauna abundance, biomass of soil microbes, biomass of plant roots, 

downward flux water in upper soil, downward flux water in deeper soil, upward 
flux water in upper soil, upward flux water in deeper soil, evapotranspiration in 
upper soil, evapotranspiration in deeper soil, upper soil water content, deep soil 
water content, inorganic carbon content, organic carbon content, soil bulk density, 
soil nitrogen content, soil δ15N values, soil NH4 content, soil NO3 content, nitrate 
leaching and soil phosphorus content (Supplementary Table 1 provides a more 
detailed overview). Some of the ecosystem properties were directly related to 
those mentioned in key papers on traits and ecosystem properties7 (for example, 
target plant biomass in grasslands that are mown at the end of each growing 
season represents net primary production), while others were more indirectly 
related. For example, soil microbial biomass and soil respiration are often linked 
to decomposition rates145,146 while soil NH4 content results from, and is often 
related to, N mineralization147. When ecosystem properties were measured multiple 
times within a year (for example, in both spring and summer) within the same 
plot, we used averages of those repeated measurements in further analyses. All 
ecosystem properties were Z-transformed before analyses. For detailed descriptions 
on the methodology of all ecosystem property measurements, please refer to 
Supplementary Information.

Trait measurements. In total, 41 plant traits were measured in 59 of the 60 plant 
species. These traits described whole-plant, leaf, stem, flower, seed (fine) and root 
characteristics and were structural, morphological, chemical, physiological and 
phenological. The measured traits included all terrestrial plant traits identified as 
‘most commonly assessed’ in our mini-review, except for leaf phosphorus content. 
For a complete overview of all measured traits, please refer to Supplementary Table 
2. The majority of the traits, including most leaf and root traits, were measured 
in mesocosms filled with Jena field soil mixed with sand in the Botanical Garden 
of Leipzig (Saxony, Germany) in 2011 and 2012. Mass fraction and number of 
inflorescences and seedling density were measured in monocultures at the Jena 
Experiment. Rooting depth and flower duration could not be reliably estimated 
in the 80-cm-high mesocosms and were therefore derived from earlier published 
measurements121. Detailed information on the individual trait measurements is 
provided in Supplementary Information.

Quantifying FD and FI. We combined the species-level abundance assessments 
for each plot with the trait measurements to quantify FD and FI in each plot, 
separately for each combination of year and season. Functional diversity was 
calculated for each trait (thus yielding 42 functional diversity measures in total) 
separately using Rao’s quadratic entropy metric124 (Q), which measures the sum 
of pairwise trait distances of co-occurring species whereby pairwise distances are 

weighted by the relative abundance of the species: Q ¼
PS�1

i¼1

PS
j¼iþ1

dijpipj

I

, where i 

and j are the two species forming a species pair, S is the species richness within 
a community, dij is the Euclidean trait distance and pi and pj are the relative 
abundance of species i and j, respectively. Here, relative abundances are measured 
as the species’ cover (estimated in subplots of 3 × 3 m2, see above) within a plot 
divided by the total community cover. Functional identity was measured for each 
trait (thus also yielding 41 measures in total) using the community-weighted mean 
(CWM) metric10, which measures the abundance-weighted average of trait values 

among species within a community as CWM ¼
PS
i¼1

piTi

I

, where Ti indicates the trait 

value of species i. We also recalculated FD and CWMs based on presence/absence 
data (thus ignoring differences in the relative abundance of species present in a 
plot) for sensitivity analyses.

In addition to calculating CWM and FD values, we also calculated the realized 
species richness for each plot and each year based on species-level abundance 
assessments.

Statistical analyses. We first analysed how each ecosystem property was related 
to all 41 measured traits. This was done using a separate LMM for each ecosystem 
property, in which the CWM and Q values for each trait were treated as fixed 
factors (thus yielding 2 × 41 = 82 fixed factors) and year and plot were treated as 
random factors. We used a forward model selection procedure in which ‘empty’ 
models containing only random factors were first fitted, and then significant fixed 
factors were added step by step. We chose a forward model selection procedure 
to overcome problems related to multicollinearity (many traits, and hence FD 
and FI metrics, were correlated; Supplementary Table 3). During each step in 
our selection procedure, we first tested for the significance (based on two-sided 
tests and α = 0.05) of all n fixed factors (where n = the total number of 82 fixed 
factors minus the number of fixed factors already included at earlier steps of the 
model selection procedure) that could be added to the previous, less complex, 
model, using log-likelihood tests. We then investigated which factor was most 
significant, and added this factor to the previous model if it did not lead to any 
variance inflation factor (VIF) > 5. In case the most significant fixed factor resulted 
in multicollinearity (maximum VIF > 5), we investigated whether the next most 
significant factor could be added. This procedure was repeated until we ended up 
with a model containing only significant fixed factors with VIF ≤ 5, to which no 
significant (P ≤ 0.05) fixed factors could be added. LMM fitting was done with a 
restricted maximum-likelihood procedure, using the lmer function of the lme4 
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package148 in R v.3.5.1 (ref. 149). We calculated the marginal (proportion of variance 
exclusively explained by fixed factors—that is, traits) and conditional (proportion 
of variance explained by fixed factors and random factors combined) R2 values150 
using the r.squaredGLMM function of the MuMIn package151 in R v.3.5.1 (ref. 149).  
We also performed some sensitivity analyses in which we repeated the above 
analyses, with (1) the only difference being that we corrected for false discovery 
rates152, to reduce the risk of type I errors, (2) the only difference being that FD 
and CWM values based on presence/absence data were used as predictors and (3) 
replacement of FD and CWM predictor variables by realized species richness.

We then investigated to what extent the proportion of variance explained by 
traits per se (marginal R2 values) depended on (1) whether the ecosystem property 
was vegetation based, animal based or abiotic and (2) whether it described an 
above- or below-ground ecosystem stock or process. For this we categorized 
ecosystem properties (Supplementary Table 1) and used a linear model (with 
two-sided significance tests) to investigate how marginal R2 values from the final 
models described above depended on (1) the ‘trophic level’ of the ecosystem 
property (that is, primarily vegetation based, heterotroph based or an abiotic 
property) and (2) ‘stratum’ (above versus below ground).

We also investigated to what extent links between the FD and FI of traits and 
ecosystem properties changed if we analysed ecosystem properties for each year in 
which they were measured separately. We did this by running the same models and 
model selection procedure described above, except that the random factor ‘year’ 
was omitted from the models (because ecosystem properties were analysed for each 
year separately, this random factor had become obsolete). In addition, the random 
factor ‘plot’ was omitted from the models because we had only one measurement 
per plot within each year.

To quantify the overlap in significant predictors among different ecosystem 
properties, we created a binary matrix of 42 (number of ecosystem properties) × 41 
(number of traits), with cells containing a value of 1 when the FD and/or FI of 
the corresponding trait significantly drove the ecosystem property, and a value 
of 0 when neither FD nor FI significantly drove the ecosystem property. We 
then calculated the overlap (o) in the sets of traits significantly driving each pair 
of ecosystem properties, using Sørenson’s index127 as o ¼ Ti\Tjj j

0:5 Tij jþ Tjj jð Þ
I

 where |Ti| 

and |Tj| are the numbers of traits significantly driving respectively ecosystem 
properties i and j, respectively, and Ti \Tj

�� ��
I

 is the number of traits significantly 
driving both ecosystem properties i and j, and we then calculated the average 
overlap. Importantly, these overlap estimates could be conservative (that is, 
underestimated) due to strong correlations between traits. Therefore, we repeated 
the above-described LMMs (originally with 82 fixed factors, corresponding to the 
FD and FI values of 41 traits), but then using principal component analysis (PCA) 
axis values based on FD and FI values as explanatory variables. To this end, we 
first performed PCA and then selected the 15 PCA axes that explained >100/82 
(the number of input variables) = 1.22% of all FD and FI variation. Together, these 
15 PCA axes explained 92% of all FD and FI variation. The selection procedure of 
models linking ecosystem properties with PCA axes was the same as that for the 
main analyses linking ecosystem properties with FD and FI variables. We then 
repeated the overlap analysis in the way described above and found that, for FD 
and FI metrics based on PCA variables, the average overlap of 13.4%  
was somewhat, but not markedly, higher than that based on FD and FI metrics  
of raw traits.

We then analysed to what extent a subset of the six traits most commonly 
assessed in other studies—that is, SLA, plant height, leaf N concentration, leaf 
dry matter content, stem tissue density and leaf area—could explain variance in 
ecosystem properties. To this end we repeated the modelling procedure described 
above, except that only the six traits mentioned above were assessed in the model 
selection procedure rather than the full set of 41 traits. In addition, we also 
assessed how random subsets of n traits, with n ranging from 1 to 40, could explain 
ecosystem properties. To this end, we ran 100 simulations for each level of n. In 
each of these simulations, we first randomly selected a subset of n traits out of 
the total of 41. For these random subsets of n traits, we again ran the same model 
selection procedure described above for each ecosystem property to assess which of 
the traits significantly drove the levels of each property, and to assess the marginal 
R2 values of final models. For each simulation, we then calculated the mean (across 
all ecosystem properties) marginal R2 value and, for each n, we calculated the mode 
and 95% percentiles for the mean marginal R2 value across the 100 simulations (as 
reported in Fig. 4). Only for n = 1 and n = 40 traits was this procedure was slightly 
different, because for both of these levels of n there were only 41 traits or trait 
combinations possible. Thus, in those cases, we did not take 100 random draws 
of traits but instead systematically analysed all possible combinations. Based on 
the resulting relationship between the number of traits analysed and marginal R2 
values, we fitted a nonlinear model using the nls function in R 3.5.3, in the form 
R2 ¼ R2

max ´ n:trait
Kþn:trait

I
 in which R2 is the marginal R2 value, R2

max
I

 is the asymptote in 
marginal R2 value, n.trait the number of traits analysed and K describes the slope 
by which R2

max
I

 is reached. The resulting R2
max
I

 and K values were 0.184 and 19.21, 
respectively, and these were used to extrapolate the observed relationship between 
the number of traits analysed and marginal R2 values, to calculate how many traits 
were required to obtain marginal R2 values of 0.150 and above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets analysed for this study, are available at Figshare: https://figshare.com/
articles/dataset/Data_and_R_scripts_of_Plant_traits_alone_are_poor_predictors_
of_ecosystem_properties_and_long-term_ecosystem_functioning_/12834350.

Code availability
The R scripts used for this study are available at https://github.com/fonsvanderplas/
traits-and-ecosystem-properties/.
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Extended Data Fig. 1 | A PRISMA flowchart of the literature research. Our literature search yielded 654 publications, of which 476 were screened, and 
129 full-text articles were assessed for eligibility. Of these, 100 were eligible and included in our synthesis.
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functional trait diversity and identity data could be used to predict levels of ecosystem functions.

Research sample Original research data from the Jena Experiment, and published elsewhere (see citations in MS). Data collectors are involved as co-
authors.

Sampling strategy A statistical power analysis was used to chose the sample size (number of plots) of the Jena Main Biodiversity Experiment. For more 
details, we refer to Roscher et al, 2004, Basic and Applied Ecology

Data collection Data was collected by original data providers from the major projects involved, most of whom are now listed as co-authors on our 
manuscript.

Timing and spatial scale Timing: 2003-2012. Scale: 78 20x20 m plots within one field

Data exclusions not applicable

Reproducibility Large-scale and long-term biodiversity experiments observations are hard to replicate, so we have one single experiment only. Data 
and code are publicly available.

Randomization Diversity levels and the identity of plant species sown in plots were chosen to be independent from each other, by experimental 
design. The location of plots were randomized, so that covariation between plot location and plant species compositions or plant 
diversity levels was avoided. For more details, we refer to Roscher et al, 2004, Basic and Applied Ecology

Blinding Blinding was not possible, in the sense that when samples are taken from a plot, the observed could more or less see whether it was 
sown with many or few plant species.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions According to Roscher et al (2004, Basic and Applied Ecology): " Mean annual air temperature at the nearest meteorological station, 

3 km south of the field site, is 9.3 °C (1961–1990) and mean annual precipitation amounts to 587 mm (Kluge & Müller-Westermeier 
2000)". Plots were located in floodplain grasslands near the town of Jena (Germany)

Location 50°55`N, 11°35`E

Access & import/export According to project guidelines of the involved project (Jena Experiment).

Disturbance Plots had paths between them, so that they could be approached with minimal disturbance.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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