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—— Abstract

We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency
lists as input. Our algorithms make degree and neighbor queries to the input graph and work with
a specified fraction of adversarial erasures in adjacency entries. We focus on two computational
tasks: testing if a graph is connected or e-far from connected and estimating the average degree.
For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is
less than ¢, this property can be tested efficiently (in time independent of the size of the graph);
when the fraction of erasures is at least €, then a number of queries linear in the size of the graph
representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is
an improvement over the previously known algorithm for connectedness in the standard property
testing model and has optimal dependence on the proximity parameter . For estimating the average
degree, our results provide an “interpolation” between the query complexity for this computational
task in the model with no erasures in two different settings: with only degree queries, investigated
by Feige (STAM J. Comput. ‘06), and with degree queries and neighbor queries, investigated by
Goldreich and Ron (Random Struct. Algorithms ‘08) and Eden et al. (ICALP ‘17). We conclude
with a discussion of our model and open questions raised by our work.

2012 ACM Subject Classification Theory of computation — Streaming, sublinear and near linear
time algorithms; Mathematics of computing — Approximation algorithms

Keywords and phrases Graph property testing, Computing with incomplete information, Approxi-
mating graph parameters

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.80

Related Version The full version of this article is available at https://arxiv.org/abs/2011.
14291 [20].

Funding Amit Levi: Part of this work was done while the author was visiting Boston University.
Ramesh Krishnan S. Pallavoor: The work of this author was partially supported by NSF award
CCF-1909612 and was done in part while the author was visiting the Simons Institute for the Theory
of Computing.

Sofya Raskhodnikova: The work of this author was partially supported by NSF award CCF-1909612
and was done in part while the author was visiting the Simons Institute for the Theory of Computing.
Nithin Varma: The work of this author was partially supported by ISF grant 497/17 and Israel PBC
Fellowship for Outstanding Postdoctoral Researchers from India and China. This work was done in
part while the author was a student at Boston University.

Acknowledgements We thank Talya Eden for useful discussions that led to simplification of analysis
in Section 3.1.

© Amit Levi, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma;
37 licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).

Editor: James R. Lee; Article No. 80; pp. 80:1-80:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:amit.levi@uwaterloo.ca
https://orcid.org/0000-0003-1060-7466
mailto:rameshkp@bu.edu
mailto:sofya@bu.edu
https://orcid.org/0000-0002-1211-2566
mailto:nvarma@bu.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.80
https://arxiv.org/abs/2011.14291
https://arxiv.org/abs/2011.14291
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2

Erasure-Resilient Sublinear-Time Graph Algorithms

1 Introduction

The goal of this work is to model and investigate sublinear-time algorithms that run on graphs
with incomplete information. Typically, sublinear-time models assume that algorithms have
query or sample access to an input graph. However, this assumption does not accurately
reflect reality in some situations. Consider, for example, the case of a social network where
vertices represent individuals and edges represent friendships. Individuals might want to hide
their friendship relations for privacy reasons. When input graphs are represented by their
adjacency lists, such missing information can be modeled as erased entries in the lists. In
this work, we initiate an investigation of sublinear-time algorithms whose inputs are graphs
represented by the adjacency lists with some of the entries adversarially erased.

In our erasure-resilient model of sublinear-time graph algorithms, an algorithm gets a
parameter « € [0,1] and query access to the adjacency lists of a graph with at most an «
fraction of the entries in the adjacency lists erased. We call such a graph a-erased or, when
« is clear from the context, partially erased. Algorithms access partially erased graphs via
degree and neighbor queries. The answer to a degree query v is the degree of the vertex v. A
neighbor query is of the form (v,4), and the answer is the i entry in the adjacency list of v.
If the i*? entry is erased’, the answer is a special symbol L. A completion of a partially erased
graph G is a valid graph represented by adjacency lists (with no erasures) that coincide with
the adjacency lists of G on all nonerased entries. We formulate our computational tasks in
terms of valid completions of partially erased input graphs and analyze the performance of
our erasure-resilient algorithms in the worst case over all a-erased graphs. We investigate
representative problems from two fundamental classes of computational tasks in our model:
graph property testing and estimating a graph parameter.

In the context of graph property testing [15], we study the problem of testing whether a
partially erased graph is connected. Our model is a generalization of the general graph model
of Parnas and Ron [23] (which is in turn a generalization of the bounded degree model of
Goldreich and Ron [16]) to the setting with erasures. A partially erased graph G has property
P (in our case, is connected) if there exists a completion of G that has the property. For
e € (0,1), such a graph with m edges (more precisely, 2m entries in its adjacency lists) is e-far
from P (in our case, from being connected) if every completion of G is different in at least em
edges from every graph with the property. The goal of a testing algorithms is to distinguish,
with high probability, a-erased graphs that have the property from those that are e-far. For
testing connectedness in our erasure-resilient model, we discover a threshold phenomenon:
when the fraction of erasures is less than ¢, this property can be tested efficiently (in time
independent of the size of the graph); when the fraction of erasures is at least €, then a number
of queries linear in the size of the graph is required to test connectedness. Additionally, when
there are no erasures, our tester has better query complexity than the best previously known
standard tester for connectedness [23, 5], also mentioned in the book on property testing
by Goldreich [14]. Our tester has optimal dependence on ¢, as evidenced by a recent lower
bound in [21] for this fundamental property.

Next, we study erasure-resilient algorithms for estimating the average degree of a graph.
The problem of estimating the average degree of a graph, in the case with no erasures,
was studied by Feige [13], Goldreich and Ron [17], and Eden et al. [9, 10]. Feige designed
an algorithm that, for all ¢ > 0, makes O(y/n/e) degree queries to an n-node graph and
outputs, with high probability, an estimate that is within a factor of 2 4+ ¢ of the average

L One can consider a more general model where the degrees of some vertices can also be erased. Our
algorithms continue to work in this model, since one can determine the degree of a vertex using O(logn)
neighbor queries (irrespective of whether these queries are made to erased adjacency entries).
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degree. He also showed that to get a 2-approximation, one needs 2(n) degree queries.
Goldreich and Ron proved that if an algorithm can make uniformly random neighbor queries
(that is, obtain a uniformly random neighbor of a specified vertex) then, for all € > 0, the
average degree can be estimated to within a factor of 1 + ¢ using O(y/n - poly(logn, 1/¢))
queries. Eden et al. proved a tighter bound of O(y/n - loglogn - poly(1/¢)) on the query
complexity of this problem and provided a simpler analysis. We describe an algorithm that
estimates the average degree of a-erased graphs to within a factor of 1 + min(2a,1) + ¢
using O(y/n - loglogn - poly(1/e)) queries. Our result can be thought of as an interpolation
between the results in [13] and [17, 9, 10]. In particular, when there are no erasures, that is,
when o = 0, we get a (1 + €)-approximation; when all adjacency entries are erased, and only
the degree queries are useful, that is, when « = 1, we obtain a (2 + ¢)-approximation. We
also show that our result cannot be improved significantly: to get a (1 4+ «)-approximation,
Q(n) queries are necessary.

Discussion of our model

For the case of graph property testing, our model is an adaptation of the erasure-resilient
model for testing properties of functions by Dixit et al. [7]. Dixit et al. designed erasure-
resilient testers for many properties of functions, including monotonicity, the Lipschitz
property, and convexity. The conceptual difference between the two models is that the
adjacency lists representation of a graph cannot be viewed as a function. (This is not the
case for the adjacency matrix representation.) For a function, erased entries can be filled
in arbitrarily and, as a result, they never contribute to the distance to the property. For
the adjacency lists representation, this is not the case: erasures have to be filled so that the
resulting completion is a valid graph. The restrictions on how they can be filled may result
in some contribution to the distance coming from the erased entries?. For example, consider
the property of bipartiteness. Let B be a complete balanced bipartite graph (U, V; E), and
let B’ be obtained from B by adding an erased entry to the adjacency list of every vertex in
U. Then, in every completion of B’, all formerly erased entries have to be changed to make
the graph bipartite.

Furthermore, Dixit et al. [7] gave results only on property testing in the erasure-resilient
model. We go beyond property testing in our exploration of erasure-resilient algorithms by
considering more general computational tasks.

Finally, our model opens up many new research directions, some of which are discussed
in Section 4.

1.1 The Model

We consider simple undirected graphs G = (V, E) represented by adjacency lists, where some
entries in the adjacency lists could be adversarially erased (these entries are denoted by L).

» Definition 1.1 («-erased graph; completion). Let « € [0,1] be a parameter. An a-erased
graph on a vertex set V is a concatenation of the adjacency lists of a simple undirected graph
(V, E) with at most an « fraction of all entries (that is, at most 2a|E| entries) in the lists
erased. A completion of an a-erased graph G is the adjacency lists representation of a simple
undirected graph G’ that coincides with G on all nonerased entries.

2 Because of this, we make an adjustment to the model of Dixit et al. [7]: we measure the distance to the
property as a fraction of the completion representation that needs to be changed, as opposed to the
fraction of the nonerased representation that needs to be changed.
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By definition, every partially erased graph has a completion, because it was obtained by
erasing entries in a valid graph.

Given a partially erased graph G over a vertex set V, we use n to denote |V| and m to
denote the number of edges in any completion of G, that is, half the sum of lengths of the
adjacency lists of all the vertices in G. The average degree, that is, 2m/n, is denoted by d.
For u € V, we use Adj(u) to denote the adjacency list of u. The degree u, denoted deg(u), is
the length of Adj(u).

» Definition 1.2 (Nonerased and half-erased edges). Let G be a partially erased graph over a
vertex set V. For vertices u,v € V, the set {u,v} is a nonerased edge in G if u is present in
Adj(v) and vice versa. The set {u,v} is a half-erased edge if u is in Adj(v) but v is not in
Adj(u), or vice versa.

Our algorithms make two types of queries: degree queries and neighbor queries. A degree
query specifies a vertex v, and the answer is deg(v). A neighbor query specifies (v,4), and
the answer is the i*® entry in Adj(v).

» Definition 1.3 (Distance to a property; erasure-resilient property tester). Let o € [0,1],
e € (0,1) be parameters. An «-erased graph G satisfies a property P if there exists a
completion of G that satisfies P. An a-erased graph G is e-far from a property P if every
completion G’ of G is different in at least em edges from every graph that satisfies P.

An a-erasure-resilient e-tester for a property P gets parameters o € [0,1],¢ € (0,1) and
query access to an a-erased graph G. The tester accepts, with probability at least 2/3, if G
satisfies P. The tester rejects, with probability at least 2/3, if G is e-far from P.

1.2 Our Results

In this section, we state our main results for the erasure-resilient model of sublinear-time
algorithms.

1.2.1 Testing Connectedness

The problem of testing connectedness in the general graph model (that we further generalize
to the erasure-resilient setting) was studied by Parnas and Ron [23]. The results on this
fundamental problem are described in Section 10.2.1 in [14]. The best tester for this problem
to date, due to [5], had query complexity O( (55)2)'

We give two erasure-resilient testers for connectedness: one for small values of a and

another for intermediate values of a. Both testers work for all® values of the proximity
parameter, e. We first give a tester that works for all o < /2. (This tester is presented in
Section 2.1.)

» Theorem 1.4. There exists an a-erasure-resilient e-tester for connectedness of graphs

with the average degree d that has O(min { ((5721603)2, 8_12a log (sféa)ﬁ}) query and time

complexity and works for every ¢ € (0,2/d) and a € [0,/2). The tester has 1-sided error.
When the average degree d of the input graph is unknown, a-erasure-resilient e-testing of

connectedness (with 1-sided error) has query and time complezity O(—5=log —5-).

3 For € > 2/d, we have em > n. Then testing connectedness is trivial, since every graph can be made
connected by adding at most n — 1 edges.
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Importantly, when the input adjacency lists have no erasures (i.e., when o = 0), our
tester has better query complexity than the previously known best (standard) tester for
connectedness, which was due to [5]. We present a standalone algorithm for this important
special case in the full version of this article [20]. By substituting o = 0 in Theorem 1.4, we

get O( min { (55)2 , % log E% }) query complexity for the case when d is known and O(% log %)

query complexity when d is unknown. For the case with no erasures, the improvement in
query complexity as a function of € is from O(E%) to O(é log %) The latter is optimal, as

evidenced by an Q(2 log 1) lower bound for testing connectedness of graphs of degree 2 in [21].

We note that Berman et al. [5] already proved that testing connectedness of graphs (with
no erasures) in the bounded degree graph model of [16] has query complexity O(2 log )
where D denotes the degree bound. Our result shows that the same query complexity (with
D replaced by d) is attainable in the general graph model.

Our first tester looks for small connected components that do not have any erasures.
When « € [¢/2,¢), some a-erased graphs that are e-far from connected may not have any
connected component that is free of erasures. Consequently, our first tester fails to reject such
graphs. We give a different algorithm (presented in Section 2.2) which works by looking for
a subset of vertices that has at most one erasure and gets completed to a unique connected
component in every completion of the partially erased graph. (In the beginning of Section 2.2,
we give an explanation, illustrated by Figure 1, of why two erasures in a witness may render
it not detectable from a local view obtained by a sublinear algorithm.)

» Theorem 1.5. There exists an a-erasure-resilient e-tester for connectedness of graphs with

the average degree d that has O((E 1)2 = min {( Yk
—a)?- e—a)-

works for every € € (0,2/d) and o € [0,€). The tester has 1-sided error.

1}) query and time complexity and

Finally, we show that when « > ¢, the task of a-erasure-resilient e-testing of connectedness
requires examining a linear portion of the graph representation. That is, we discover a phase
transition in the complexity of this problem when the fraction of erasures « reaches the
proximity parameter €.

» Theorem 1.6. For all e € (0,1/7], every e-erasure-resilient e-tester for connectedness that
makes only degree and neighbor queries requires a number of queries linear in the size of the
graph representation.

To prove this theorem, we construct (in Section 2.3) a family of partially erased graphs

for which it is hard to distinguish connected graphs from graphs that are far from connected.

The average degree of the graphs in our constructions is constant. So, the lower bound for
this graph family is Q(n) = Q(m).

1.2.2 Estimating the Average Degree

In Section 3.1, we give an erasure-resilient algorithm for estimating the average degree by
generalizing the algorithm of Eden et al. [9, 10] to work for the case with erasures.

» Theorem 1.7. Let a € [0,1] and € € (0,1/2). There exists an algorithm that makes
O(y/n - loglogn - poly(1/¢)) degree queries and uniformly random neighbor queries to an
a-erased input graph of average degree d > 1 and outputs, with probability at least 2/3, an
estimate d satisfying (1 — ) -d < d < (1 4 2min(a, 3) +¢€)-d. The running time of the
algorithm is the same as its query complexity.

80:5
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For graphs with no erasures, a good estimate of the number of edges gives a good estimate
of the average degree. Feige’s algorithm [13] (that has access only to degree queries) counts
some edges twice and gets an estimate of the average degree that is within a factor of 2 + ¢.
Goldreich and Ron [17] and Eden et al. [9, 10] avoid the issue of double-counting by ranking
vertices according to their degrees and estimating, within a factor of 1 + &, the number of
edges going from lower-ranked to higher-ranked vertices. These algorithms use degree queries
and uniformly random neighbor queries. Having erasures in the adjacency lists is, in a rough
sense, equivalent to not having access to some of the neighbor queries. This results in the
additional 2« error term in the approximation guarantee. Consequently, when the fraction of
erasures approaches 1/2; all the “relevant” entries in the adjacency lists of the input graph
could be erased, and we enter the regime of having access only to degree queries.

In Section 3.2, we show that, for any fraction « € (0, 1], estimating the average degree
of an a-erased graph to within a factor of (1 + «) requires Q(n) queries. In other words,
the approximation ratio of our erasure-resilient algorithm for estimating the average degree
cannot be improved significantly.

» Theorem 1.8. Let « € (0,1] be rational. For all v < «, at least Q(n) queries are necessary
for every algorithm that makes degree and neighbor queries to an a-erased graph with the
average degree d and outputs, with probability at least 2/3, an estimate d € [d, (1 +~)d].

1.3 Research Directions and Further Observations

There are numerous research questions that arise from our work. In Section 4, we discuss
some of them and also give additional observations about variants of our model. We mention
open questions about another (weaker) threshold in erasure-resilient testing of connectedness,
about erasure-resilient testing of monotone graph properties, about the relationship between
testing with erasures and testing with errors, and about the variant of our model that allows
only symmetric erasures. We show that some of the questions we discuss are open in our
model, but easy in the bounded-degree version of our model.

1.4 Related Work

Erasure-resilient sublinear-time algorithms, in the context of testing properties of functions,
were first investigated by Dixit et al. [7], and further studied by Raskhodnikova et al. [25],
Pallavoor et al. [22], and Ben-Eliezer et al. [3].

Property testing in the general graph model was first studied by Parnas and Ron [23],
who considered a relaxed version of the problem of testing whether the input graph has small
diameter. Kaufman et al. [19] studied the problem of testing bipartiteness in the general
graph model and obtained tight upper and lower bounds on its complexity.

Sublinear-time algorithms for estimating various graph parameters have also received
significant attention. There are sublinear-time algorithms for estimating the weight of a
minimum weight spanning tree [6], the number of connected components [6, 4], the average
degree [13, 17], the average pairwise distance [17], moments of the degree distribution [18, 9],
and subgraph counts [18, 8, 11, 12, 1, 2].
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2  Erasure-Resilient Testing of Connectedness

In this section, we present our results on erasure-resilient testing of connectedness in graphs.

2.1 An Erasure-Resilient Connectedness Tester for o < €/2

In this section, we present our connectedness tester for small o and prove Theorem 1.4. The
tester looks for witnesses to disconnectedness in the form of connected components with no
erasures. It repeatedly performs a breadth first search (BFS) from a random vertex until it
finds a witness to disconnectedness or exceeds a specified query budget.

A simple counting argument shows that if a partially erased graph is far from connected
then it has many small witnesses to disconnectedness. Moreover, the size of the average
witness among them is at most some bound b (that we calculate later). Our tester uses BFS
to detect a witness to disconnectedness of size at most b.

The best tester for connectedness to date, by Berman et al. [5], uses a technique called
the work investment strategy. Specifically, their algorithm repeatedly samples a uniformly
random vertex v, guesses the size of the witness to disconnectedness C(, containing v, and
then performs a BFS from v for |C’(U)|2 queries. Clearly, |C'(U)|2 queries are enough to detect
C(v)- Using the fact that the expected size of a witness is b, they argue that their algorithm
has complexity O(b?).

The new idea in our connectedness tester is to perform the BFS from a uniformly random
vertex v for |C,| - deg(v)/2 queries. The expected value of the latter quantity is bounded by
E(y), where E,) denotes the number of edges in the witness containing v, and the expectation
is over the choice of a uniformly random vertex from C(,). That is, in expectation, the
number of queries that we invest into the BF'S from v is enough to detect C(,). We show
that, overall, the expected complexity of this algorithm is 6(b -d), which is smaller than
O(b?) when b > d.

Our erasure-resilient tester is Algorithm 1, with a small standard modification to ensure
that the stated complexity bounds hold in the worst case (not just in expectation). It is
obtained by running the algorithm of Berman et al. (generalized to handle erasures) when
b < d and running the above algorithm otherwise.

Before stating the algorithm, we formalize the notion of the witness to disconnectedness
and argue that partially erased graphs that are far from being connected have many witnesses
to disconnectedness.

» Definition 2.1 (Witness to disconnectedness). A set C' of vertices is a witness to disconnect-
edness in a partially erased graph G if the adjacency lists of vertices in C have no erasures,
and C' forms a connected component in every completion of G.

» Observation 2.2. Let ¢ € (0,2/d) and G’ be an m-edge graph (with no erasures) that is
e-far from connected. Then G' has at least em + 1 connected components.

Next, in Claim 2.3, we argue that if the fraction of erasures is small, many of the connected
components present in a completion G’ are also present as witnesses to disconnectedness

in G.

> Claim 2.3. Let ¢ € (0,2/d) and « € [0,£/2). The number of witnesses to disconnectedness
in an a-erased graph G that is e-far from connected is at least (¢ — 2a)m.

Proof. By Observation 2.2, every completion G’ of G has at least em+1 connected components.
The number of connected components in G’ with at least one erased entry in the union of
its adjacency lists (with respect to G) is at most 2am. Hence, the number of connected
components in G’ that do not have any erased entry in the union of its adjacency lists (with
respect to G) is at least em — 2am = (¢ — 2a)m. The claim follows. <
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Let b =2/((e — 2a) - d). By Claim 2.3, the size of the average witness to disconnectedness
is at most b. Now we are ready to state Algorithm 1.

Algorithm 1 Erasure-Resilient Connectedness Tester for a < £/2.

input :The average degree d, parameters ¢ € (0,2/d),a € [0,&/2); query access to
an a-erased graph G.

1 Let b < 2/((e — 2c) - d). // the average size of a witness is at most b
2 for i € [[log(4b)]] do
3 repeat (%] times
4 Sample a vertex v uniformly and independently at random.
5 if b < glogb then
6 Run a BFS from v until it encounters an erased entry or (2¢ + 1) vertices.
else
7 Query deg(v);
8 Run a BFS from v until it encounters an erased entry or (2°=1 - deg(v) + 1)
edges.
9 if the BFS explored an entire connected component and didn’t encounter an
erasure then reject.
10 Accept.

Clearly, Algorithm 1 accepts all connected partially erased graphs.

» Lemma 2.4. Lete € (0,2/d) and o € [0,£/2). Let G be an a-erased graph that is e-far
from connected. Then Algorithm 1 rejects G with probability at least 5/6.

Proof. Let V be the vertex set of G. We start by defining the quality of a vertex v € V.
The definition is different for the two cases, corresponding to the two stopping conditions

Algorithm 1 uses for BFS. First, we consider the case when b < d - logb, that is, when
Algorithm 1 runs the version of BFS specified in Step 6.

» Definition 2.5 (Quality of a vertex when b < d-logb). The quality of a vertez v, denoted q(v),
is defined as follows. If v belongs to a witness to disconnectedness in G then q(v) = 1/|C,|,
where C(,) denotes the witness to disconnectedness that v belongs to. Otherwise, q(v) = 0.

The important feature of ¢(v) is that, for a witness C' to disconnectedness, ) - q(v) = 1.
Next, we define the quality of a vertex for the case when b > d - logb, that is, when
Algorithm 1 runs the version of BFS specified in Step 8.

» Definition 2.6 (Quality of a vertex when b > d - logb). Fir a completion G’ of G. For a
vertex v € V, let C(,, denote the connected component (in G') containing v, and let E,)
denote the number of edges in C(,y. The quality of a vertex v, denoted q(v), is defined as

0 if Crvy contains at least one erased entry in G,
deg(v .

q(v) =GB if By > 0,
1 if By = 0.

Like for g(v) from Definition 2.5, for a witness C' to disconnectedness, > .~ q(v) = 1.
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The rest of the proof of Lemma 2.4 is the same for both cases. We analyze the expected
quality of a uniformly random vertex v € V.. Since ) .~ q(v) = 1, by Claim 2.3,

ELw]=1Y =1 3 1xEZm_l

n
veV C:C is a witness
to disconnectedness

Finally, we apply the following work investment strategy lemma [5, Lemma 2.5].

» Lemma 2.7 ([5]). Let X be a random wvariable that takes values in [0,1]. Suppose
E[X] > B3, and let t = [log(4/B)]. For alli € [t], let p; = Pr[X > 27| and k; = 421}1ﬁ6. Then
H§:1(1 _pi)ki’ < %-

We apply Lemma 2.7 with X equal to ¢(v) for a uniformly random v € V. Set 5 =1/b
and ¢ = [log(4/8)]. For i € [t], set p; to be the probability that a vertex v sampled uniformly
at random belongs to a witness to disconnectedness of G that has at most (i) 2¢ vertices,
when b < d-logb; (ii) 2°~! - deg(v) edges, otherwise. That is, p; = Pr[X > 27¢]. Similarly,
for i € [t], let k; = 421}‘56. Then the probability that Step 9 of the tester does not reject is
H§=1(1 — p;)*. By Lemma 2.7, this step rejects with probability at least 5/6. <

Proof of Theorem 1.4. We start by analyzing the query and time complexity of Algorithm 1.
Case 1: When b < d - logb, the query and time complexity of Algorithm 1 is

Z rﬂ)ln 6-‘ 92 _ (bQ) — O(min{b27b8.log b}).

i€[[log(4d)]]

Case 2: When b > d - logb, the expected query and time complexity of Algorithm 1 is

4b1 . _ _
3y [ b nﬂ 2"+ E [deg(s)] = O(bdlogb) = O(min{b?,bd - log b}).
i€[[log 4b]] ?

Substituting the value of b, we get

O(min{b? bd - logb}) = O(min { = ;a)d)f . 71201 log = 12a)d}>.

The final tester is obtained by running Algorithm 1 and then aborting and accepting if the
number of queries exceeds six times its expectation. The final tester then has the query
complexity and the running time stated in Theorem 1.4.

The final tester never rejects a connected partially erased graph. However, a partially
erased graph that is e-far from connected can get accepted incorrectly if Algorithm 1 accepts
it or if the final algorithm aborts. The probability of the former event is at most 1/6, by
Lemma 2.4. The probability of aborting is also at most 1/6, by Markov’s inequality. By a
union bound, the final algorithm accepts incorrectly with probability at most 1/3, completing
the proof of the theorem for the case when d is given to the algorithm.

We can adjust the algorithm to work without access to the average degree at a small cost
in query and time complexity. The details appear in the full version [20]. |

2.2 Our Erasure-Resilient Connectedness Tester for a € [e/2,¢)

In this section, we prove Theorem 1.5. We describe and analyze a 1-sided error a-erasure-
resilient e-tester for connectedness that can work with more erasures in the input graph than
Algorithm 1 can handle. Specifically, the tester works for all a < €. However, it has better
performance than Algorithm 1 only for « € [£/2,¢).
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U1 (%) U3 V4 ’U5 Vg

Figure 1 An example of a component with
two erasures, where a BFS from any vertex fails
to detect that this component is disconnected
from the rest of the graph.

U] V9 U3 V4 (% U6

Figure 2 An example of a generalized witness
to disconnectedness, where only a BFS from
v1 (but not from any other vertex) detects the
generalized witness.

A dotted line represents an erasure in the adjacency list of the corresponding vertex. An arrow

pointing from a vertex a in the direction of a vertex b represents that b € Adj(a), but a ¢ Adj(b).

When « > ¢/2, an a-erased graph that is e-far from being connected may not contain
any witnesses to disconnectedness as defined in Section 2.1. Specifically, every set C' of nodes
that gets completed to a connected component could have an erasure in the union of the
adjacency lists of the nodes in C'. To get around this issue, our tester looks for a generalized
witness to disconnectedness, which is, intuitively, a connected component with at most one
erasure. Observe that a component with two erasures could have a unique completion, but
impossible to certify as a separate connected component from the local view from any of its
vertices. Figure 1 shows an example of a small component, where a BFS from any vertex
will be unable to certify that the graph is disconnected.

Our tester repeatedly performs a BFS from a random vertex until it detects a generalized
witness to disconnectedness, or exceeds a specified query budget. We show, by a counting
argument, that every partially erased graph that is far from connected has several small
generalized witnesses to disconnectedness. The correctness of the tester is ensured by the
observation that each such witness C' contains at least one vertex from which all the other
vertices in C' are reachable. (It is possible to have ezactly one vertex in C' from which all the
other vertices are reachable. Figure 2 shows an example of a connected component, where a
BE'S can detect the generalized witness to disconnectedness only if started at vertex vy, but
will fail to do so from all other vertices.)

Before we state our tester, we formalize the notion of generalized witnesses.

» Definition 2.8 (Generalized witness to disconnectedness). Given a partially erased graph G

over a vertex set V, a set C C V is a generalized witness to disconnectedness of G if

1. there is at most one erased entry (L) in |J,co Adj(v),

2. every nonerased entry in | J,co Adj(v) is a vertex from C,

3. if L e Adj(u) for some u € C then u € Adj(v) but v ¢ Adj(u) for some v € C; moreover,
each node in C is reachable via a BFS from v.

Definition 2.8 implies that the only erasure, if any, in the union of the adjacency lists
of the nodes in C' is part of a half-erased edge within C, and that C forms a connected
component in every completion of G.

Let b =4/((e — a)d). Our tester is presented in Algorithm 2. In the rest of the section,
we analyze the correctness and complexity of the tester.

» Definition 2.9 (Small and big sets). Let G be a partially erased graph and let e* € (0,2/d)
be a parameter. The representation length of a set C' of nodes is the sum of lengths of the
adjacency lists of nodes in C. The set C is e*-small if either

e* > 4/32 and C contains at most 4/(e* - d) vertices, or

er < 4/82 and C has representation length at most 4/e*.
The set C' is €*-big otherwise.

Claim 2.10 shows that a partially erased graph that is far from connected has sufficiently
many small generalized witnesses to disconnectedness.
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Algorithm 2 Erasure-Resilient Connectedness Tester for a € [/2, €).

input :The average degree d, parameters ¢ € (0,2/d), a € [0,¢); query access to an
a-erased graph G.

1 Let b+ 4/((e — a)d).
2 repeat [bIn 3] times
Sample a vertex s uniformly and independently at random.

w

4 Run a BFS starting from s using at most min{b?,b - d} neighbor queries.
5 if Step 4 detected a generalized witness to disconnectedness then

6 Reject.

7 Accept.

> Claim 2.10. Let € € (0,2/d),a € [0,¢). Let G be an a-erased graph that is e-far from
connected. The number of (¢ — a)-small generalized witnesses to disconnectedness of G is at
least (e — a)m/2.

Proof. We first argue that there are many small connected components in every completion
G’ of G and then prove that many of these are generalized witnesses in G.

Consider a completion G’ of G. If e —a > 4/82, the number of (¢ — «)-big connected
components in G’ is at most n/b= (e —a)m/2. If e —a < 4/82, the number of (¢ — «a)-big
connected components in G’ is at most 2m/(b-d) = (¢ — a)m/2, since the representation
length of the vertex set V of G is 2m. By Observation 2.2, the total number of connected
components in G’ is at least em+1. Hence, the number of (¢ —a)-small connected components
in G’ is at least (¢ + a)m/2.

Let C C V denote the set of vertices corresponding to an (¢ — «)-small connected
component in G'. If U,ec Adj(v) has no erasures, then C' is a generalized witness to
disconnectedness of G. Next, assume that (J,c~ Adj(v) has exactly one erasure. We show
that the set C is a generalized witness to disconnectedness of G. Condition 1 is satisfied
by definition. Condition 2 is true since C forms a connected component in G’. To see
that Condition 3 holds, let u € C' be the vertex with L € Adj(u). Since C is a connected

component in G’, this erased entry was completed with the label of another vertex v € C.

Moreover, every vertex in C' is reachable by a BFS from v, since C' forms a connected
component in G’, and the erased entry is not needed for these searches because it would lead
back to v. Therefore, C' is a generalized witness to disconnectedness of G if | J, o Adj(v) has
exactly one erasure.

Among the (e — «)-small connected components in G’, at most am have at least 2 erased
entries in the union of their adjacency lists. Hence, the number of (¢ — «)-small generalized
witnesses to disconnectedness of G is at least ((¢ + a)m/2) —am = (¢ — a)m/2. <

Lemma 2.11 below implies Theorem 1.5.

» Lemma 2.11. For every e € (0,2/d) and « € [0,¢), Algorithm 2 is an a-erasure-resilient
e-tester for connectedness of graphs with the average degree d. It has O(b*d - min{b/d, 1})
query and time complexity.

Proof. Consider an a-erased graph G over a vertex set V. Assume that G is connected,
that is, there exists a connected completion G’ of G. Consider an arbitrary C' C V. There
exist vertices u € C and v € V' \ C such that Adj(u) in G’ contains v. Hence, C' is not a
generalized witness to disconnectedness of G. Therefore, the tester accepts G.
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Q"" % - Q Q"" .'U* " Q
¢ (OO e OO
Figure 3 The partially erased graphs G and G~ described in the proof of Theorem 1.6. The

dotted lines represent erased entries in the adjacency lists of the corresponding vertices. In GV, the
directed edges from v* point to the vertices in its adjacency list. The circles represent cycles.

Next, assume that G is e-far from connected. Let W denote the family of all (¢ — «)-
small generalized witnesses to disconnectedness of G. Let C' C V be an element of W. If
E—a > 4/82, the representation length of C is at most > < b-d. If ¢ —a < 4/82, the
representation length of C'is at most b-d < b%. Hence, the representation length of C is at most
min{b?,b- d}. If |J,c Adj(v) has no erasures then every vertex in C' is reachable from every
other vertex in C'. Otherwise, the vertex v in Condition 3 of Definition 2.8 is such a vertex. If
Algorithm 2 performs a BFS from v, it will detect a generalized witness to disconnectedness
after at most min{b?,b- d} queries and reject. Since |W| > (¢ — a)m/2 and each generalized
witness in W has at least one vertex from which the generalized witness is detectable by a
BFS, a single iteration of Algorithm 2 rejects with probability at least |[W|/n = 1/b. Hence,
Algorithm 2 rejects with probability at least 1 — (1 — (1/b))[*™3] > 1 — exp(—1In3) = 2/3.

Step 4 of Algorithm 2 makes at most min{b? bd} queries. Thus, the query complexity
of Algorithm 2 is O(b - min{b?, bd}), which simplifies to the claimed expression. Checking
(in Step 5) whether a set C' is a generalized witness to disconnectedness can be done with a
constant number of passes over the adjacency lists of vertices in C'. Since the algorithm queried
all entries in them, its running time is asymptotically equal to its query complexity. <

2.3 A Lower Bound for Erasure-Resilient Connectedness Testing

In this section, we prove Theorem 1.6. We note that hard graphs in our construction have
constant average degree. That is, for those graphs, our lower bound is Q(n) = Q(m).

Proof of Theorem 1.6. We apply Yao’s minimax principle, as stated in [26]. Specifically,
we construct distributions DT and D, the former over connected graphs and the latter
over graphs that are e-far from connected, such that every deterministic e-erasure-resilient
e-tester for connectedness makes Q(m) queries to distinguish the two distributions.

Without loss of generality, assume that ¢t = (1 —¢)/(2¢) is an integer. Observe that ¢ > 3
as € < 1/7. Let k be an even number and n = kt + 1. We first construct two partially erased
n-node graphs G* and G, depicted in Figure 3. The vertices of G are partitioned into
k + 1 sets. Each of the first k sets induces a t-node cycle. Exactly one node in each cycle
has degree 3 and has an erasure in its adjacency list, in addition to its two neighbors on
the cycle. The last set contains a single node v* of degree k. Its adjacency list contains the
labels of the degree-3 vertices in the cycles. The graph G~ is the same as G, except that in
G, we have that Adj(v*) is empty, that is, v* is isolated.
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We can obtain a connected completion of G by connecting the vertex v* to all the degree-3
vertices. In contrast, at least k/2 edges need to be added to every completion of G~ to make it

connected. Hence, the distance from G~ to connectedness is (k/2)/(kt+k/2) = 1/(2t+1) = e.

The fraction of erased entries in the adjacency lists of G and G~ are 1/(2t 4 2) and

1/(2t+1), respectively. That is, G* and G~ are both a-erased graphs for a = 1/(2t+1) = e.

The distributions DT and D~ are uniform over the sets of all partially erased graphs
isomorphic to G and G, respectively. Each partially erased graph sampled from D7 is
connected. Each partially erased graph sampled from D~ is e-far from connected.

> Claim 2.12. Every deterministic algorithm A has to make Q(n) queries to distinguish D
and D~ with probability at least 2/3.

Proof. Let ¢ denote the number of queries made by A and assume ¢ < n/6. In this proof,
we use v* as a shorthand for the vertex from the singleton set in the construction of DV
and D, as opposed to the label of that vertex. Since DT and D~ differ only on v*, it is
important to understand when A gets any information about v*.

» Definition 2.13 (Node status). Given a sequence of queries made by A and answers it has
received so far, a node v is known if it has been queried (via a degree or neighbor query) or
received as an answer to a (neighbor) query; otherwise, it is unknown.

The node v* is unknown before A makes its first query. Since v* cannot be received as an
answer to a query for the graphs in the support of D+ and D, it can become known only if
A queries an unknown node that happens to be v*. At most two new nodes become known
per query. So, the probability (over the distribution D or D~) that a specific unknown
node queried by A turns out to be v* is at most 1/(n — 2¢). Let p denote the probability

that v* becomes known by the end of an execution of A. By a union bound over all queries
q n/6  _ 1

n—2q¢ — n—-n/3 ~ 4°

If v* is unknown by the end of a particular execution then the view of the partially

erased graph obtained by A in that execution arises with the same probability under D and

made by A, we have, p <

under D~. Such an execution of A can distinguish D" and D~ with probability at most 1/2.
Therefore, the probability that A distinguishes D™ and D~ is at most p+(1—p)-1 = £ +5 < 2.

<

In our construction, m = O(n). Thus, every e-erasure-resilient e-tester for connectedness
that uses only degree and neighbor queries must make €(m) queries in the worst case over
the input graph, completing the proof of Theorem 1.6. <

3 Estimating the Average Degree of a Graph

In this section, we present our results on erasure-resilient estimation of the average degree of
graphs.

3.1 An Algorithm for Estimating the Average Degree

In this section, we describe and analyze the algorithm (claimed in Theorem 1.7) for estimating
the average degree of (or, equivalently, the number of edges in) a partially erased graph. Our
algorithm is a generalization of the algorithm for counting the number of edges in graphs
by Eden et al. [9, 10] to the case of partially erased graphs. We first give an algorithm
(Algorithm 3) that takes a crude estimate of the average degree as input and outputs a
more accurate estimate. Using a standard technique similar to the binary search, our final
algorithm uses Algorithm 3 as a subroutine to gradually refine its estimate of the average

degree. The final algorithm and the complete proof of Theorem 1.7 appear in the full version.
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Algorithm 3, like the algorithm of Eden et al. [9, 10], works by empirically estimating
a random variable whose expectation is close to the number of edges in the graph. We
first rank vertices according to their degrees, breaking ties arbitrarily. Then we orient the
nonerased edges of the graph from lower-ranked to higher-ranked endpoints. This orientation
allows us to attribute each nonerased edge to its lower-ranked endpoint in order to avoid
double-counting the edge. Since the number of edges between high-degree vertices is small,
we ignore such edges. Algorithm 3 samples low-degree vertices uniformly at random and
estimates, via sampling, the number of edges “credited” to them.

The crucial difference in the behavior of the algorithm in the case of partially erased
graphs is the following. When we sample an erased entry from the adjacency list of a
low-degree vertex u, we assume that it gets completed to a vertex ranked higher than w
and, therefore, attribute the corresponding edge to u. Consequently, some erased edges get
counted twice. This results in the additional term depending on the fraction of erasures in
the approximation guarantee.

The ranking of (or the total ordering on) the vertices of a graph is defined below.

» Definition 3.1 (Total ordering <). In a partially erased graph G, for any two vertices
u, v, we write u < v if either deg(u) < deg(v), or deg(u) = deg(v) and u is lexicographically
smaller than v.

Algorithm 3 Erasure-Resilient Algorithm for Improving an Estimate of Average Degree.

input :Parameters € € (0,1/2),0 € (0,1/3); query access to a partially erased
graph G on n nodes; a crude estimate d of the average degree of G.

1 Set s+ [660111(2/6)\/%:‘.

for i =1 to s do
Sample a node u from V uniformly at random and query its degree, deg(u).
Query a uniformly random entry from Adj(u) and let v be the answer.
If v # L then query its degree, deg(v).

6 if deg(u) < 4y/nd/e and either v= 1 or u < v then

7 Xi < deg(u)

else

8 Xi<_0

. s
9 returnd:%%z:lx?;.
iz

» Lemma 3.2. Let G be an a-erased n-node graph with the average degree d > 1. Let d be a
crude estimate of the average degree, given as an input to Algorithm 3. Then the output Jof
Algorithm 3 satisfies the following:

1. If d> % then, with probability at least 3/4, we have d < 8d.

2. Furthermore, if% < Jg 8d then with probability at least 1 — §,

(1—¢)-d<d<(1+e+2min(a,l)) d.

The query complexity of the algorithm is © ( /SLd\. log (1;)



A. Levi, R. K. S. Pallavoor, S. Raskhodnikova, and N. Varma

Proof. The algorithm makes at most two degree queries and one neighbor query in each
iteration, and it runs for @( Ef'ﬁ'd-log %) iterations. Hence, the bound on its query complexity
A/ <5

is as claimed in the lemma.

To prove the guarantees on the output estimate (Z we first show that for all ¢ € [s],
the expected value of x; is a good estimate to the average degree of the partially erased
graph, where s is the number of samples taken by Algorithm 3. We then apply Markov’s
inequality and Chernoff bound to prove parts 1 and 2 of the lemma, respectively. For all
i € [s], the random variables x; set by the algorithm are mutually independent and identically
distributed. Hence, it suffices to bound E[x1].

> Claim 33. Ifd > ¢ then

(1—%)-§<E[x1] < (1+2min (a;» g.

Proof. Let m = nd/2 denote the total number of edges in the graph, and
H= {u eV ‘ deg(u) >4 nc?/s}

denote the set of high degree vertices. Let m = m?/ 2 be the number of edges in the graph
estimated from the input parameter d. Since d > d/8, we have m > m/8. Hence,
2m m m
H] < =

e 2mIE - Jmle

where the first inequality holds because the sum of degrees of high-degree vertices is at most
2m, and the second inequality follows from m > m/8.

The following quantity, d* (u), was defined in [10] for (standard) graphs. We extend their
definition to partially erased graphs.

Vem, (1)

» Definition 3.4. For a vertex u in a partially erased graph G, let N(u) denote the set
of (nonerased) neighbors present in Adj(u). Let d™(u) = [{v € N(u) | u < v}| denote the
number of nonerased neighbors of u that are higher than u w.r.t. the ordering on vertices (as
in Definition 3.1).

Roughly, d™(u) denotes the number of nonerased neighbors of u with the degree higher
than that of u. The following fact is based on an observation by [10].

dt(u) <m.

» Fact 3.5. For a partially erased graph G over a vertex set V., the sum )y, <

The inequality can be replaced with equality when G has no erasures.

The fact holds because each nonerased and half-erased edge in G is counted exactly once
and at most once, respectively, in the sum - ., d¥(u).

Let uy,uz,...,uy| be a labeling of the the high degree vertices such that u; < us <
... =< ujy. For each j € [[H]], observe that d*(u;) < |H|— j, as d*(u;) is at most the
number of vertices that are higher than u; in the ordering. Hence,

[H]| I#H| -1

St <Y -i) = 3 k< Lo, @)
j=1 k=0

ucH

where the last inequality follows from (1).
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Let d*(u) denote the number of erased entries in Adj(u). The expectation

1 dt (u) + d*(u) 1

E = — -_ . [ + 1

bl = D g e = o S () + - u) 3)
ueV\H weV\H

since the degree of the sampled vertex wu is assigned to x; if and only if

1. deg(u) < 4y/nd/e, ie., u € V \ H; and

2. the queried entry from Adj(u) is either a vertex v > u or L.

We now bound the quantity on the right hand side of (3) from below and above. Let G’
be an arbitrary completion of G, and let d,(-) denote the quantity defined in Definition 3.4
with respect to G’ (instead of G). For each u € V, observe that d*(u) + d*(u) > df, (u).
Note that the upper bound in (2) still holds if we replace d*(-) with d,(-). Hence, by (3),

E[x.] > % 3 db(u) = % <m -y d+,(u)> > (1 - g) % (4)

ueV\H uEH

On the other hand, by (3),

1
Elv] < - > (d" () +d*(u) < (1+2a0) 7, (5)
n n
ueV
where the last inequality uses Fact 3.5 and _, .\, d*(u) < 2am. Since d* (u)+d*(u) < deg(u)
for all u € V, by (3),
1 2m
E[x:1] < -~ Z deg(u) = - (6)

ueV

This completes the proof of Claim 3.3 because, using (4),(5) and (6), we get

(1—;)-7:<E[X1]§<1+2min<a,;>)-7§. 4

Let random variable y = %Zle x: denote the mean of x;’s calculated in Step 9 of
Algorithm 3. Since all x;’s are independent and identically distributed, E[x] = E[x1].
Furthermore, the output d of the algorithm is 2y and hence, IE[J] = 2E[x]. By Claim 3.3, if
d > d/8 then E[d] < 2d. By Markov’s inequality, Pr[d > 8d] < Pr[d > 4E[d]] < 1/4. This
completes the proof of part 1 of Lemma 3.2.

Now consider the case when % < Jg 8d. Observe that 0 < y; < 4 m?/s for all i € [s]
by Step 6. Hence, by an application of the Hoeffding bound,

e2/4  sE[x] [e > 5

=~

_ > '
Pr [Jx — El| = 2+e2 4 \nd

% ~1E[x]] < 2exp (

where we used ¢ < 1/2 and d < 8d in the simplification. Hence, with probability at least
1 -0, we have, (1 — %) ‘Elxi] < x < (1 + %) -E[x1]. Since d = 2x, by Claim 3.3, we get that
with probability at least 1 — 4,

(1-5) (1-5)-a<d< (145) (1420 (a.3)) 2

proving part 2 of Lemma 3.2. <

The rest of the proof of Theorem 1.7 appears in the full version of this article [20].
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Figure 4 The partially erased graphs G and G2 described in the proof of Theorem 1.8. The
dotted lines represent erased entries in the adjacency lists of corresponding vertices. The lines with
arrows indicate that the entry corresponds to the vertex to which the arrow points to. The circles
represent the (1 — \)(n — 1)-cycles.

3.2 A Lower Bound for Estimating the Average Degree

In this section, we prove Theorem 1.8.

Proof of Theorem 1.8. Fix A = 12%& Note that A € (0,1] since a € (0,1]. Consider any
integer n such that A(n — 1) is an even integer. Since « is rational, there are infinitely many
such n. We define two n-node graphs, G; and G5 (see Figure 4). Both graphs contain a cycle
consisting of (1 — A)(n — 1) vertices. Of the remaining A\(n — 1) + 1 vertices, both graphs
have A(n — 1) vertices of degree 1, with the only entry in the adjacency list of each such
vertex erased. The last vertex, called v*, is where G; and G5 differ. In G1, we have that
Adj(v*) consists of the labels of the A(n — 1) degree-1 vertices. In contrast, in Go, the vertex

* is isolated.

v

The graph G; can only be completed to a graph consisting of two components: a cycle
of length (1 — A)(n — 1) and a star consisting of A(n — 1) edges. The graph G2 can only be
completed to a graph consisting of a cycle of length (1 — X)(n — 1), one isolated vertex, and
a matching of size A(n —1)/2. Hence, the total lengths of the adjacency lists of G; and Go
are 2(n — 1) and (2 — \)(n — 1), respectively. The number of entries erased in both graphs is

A(n —1). So, the fraction of erased entries in the adjacency lists of G and G5 are % and

ﬁ, respectively. Hence, both G; and G5 are a-erased, as ﬁ = «. The average degree

of G; and G4 are 2("71_1) and (2_)‘)75”_1), respectively. The ratio of the average degrees is
2

= =1+a.

2—X

The rest of the proof is similar to that of Theorem 1.6. We define two distributions D,
and Ds as the uniform distributions over the set of all graphs isomorphic to G; and Ga,
respectively. To differentiate between the two distributions, any tester must necessarily query
v* which requires Q(n) queries. The ratio of the average degrees of the two distributions is
1+ «. Hence, to approximate the average degree within a factor of (1 4 ), where v < a,
any tester must query Q(n) vertices. <
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4 Conclusion and Open Questions

In this work, we initiate the study of sublinear-time algorithms for problems on partially
erased graphs. Our investigation opens up a plethora of research directions and possibilities
for future work. Next, we discuss several specific open questions arising from our work.

Phase Transitions in the Complexity of Erasure-Resilient Connectedness Testing

As shown in Section 2, there is a phase transition in the complexity of connectedness testing
at o = ¢ from time independent of the size of the graph to Q(n). Our upper bound on the
complexity of this problem exhibits another, less drastic phase transition at « = /2, when
the asymptotic dependence of the running time on € and a changes. We conjecture that
this second phase transition is inherent (and not an artifact of our techniques). It would be
interesting to investigate whether connectedness testing when « € [¢/2,¢) is fundamentally
different from the same problem when « € [0,£/2).

Erasure-Resilient Testing of Monotone Properties in the Bounded-Degree Model

A property of a graph is monotone if it is preserved under deletion of edges and vertices. That
is, if G satisfies a monotone property then so does every subgraph of G. Many important
graph properties, including bipartiteness, 3-colorability, and triangle-freeness, are monotone.

In the bounded-degree property testing model [16], an n-node graph G with the degree
bound D is represented as a concatenation of n adjacency lists, each of length D. For a
vertex v € G and an index i € [D], a neighbor query (v, ¢) returns a valid vertex in the graph
if 1 < deg(v) and a special symbol, say ,, if i > deg(v). The graph G is e-far from satisfying
a property P if at least enD entries in the adjacency lists of G need to be modified to make
it satisfy P.

Bounded-degree property testing can be generalized in a natural way to account for
erased entries in adjacency lists. A bounded-degree graph is a-erased if at most anD entries
of its adjacency lists are erased. We observe that a tester for a monotone property of
bounded-degree graphs can be made erasure-resilient via a simple transformation.

» Observation 4.1. Let P be a monotone property of graphs. Suppose there exists an
e-tester for P in the bounded-degree model that makes q(e,n, D) queries. Then there exists
an a-erasure-resilient e-tester for P in the bounded-degree model that makes at most D? -
q(g — 2a,n, D) queries and works for all a € (0,e/2).

This transformation is not efficient for general graphs, as the maximum degree of a
graph can be n — 1. It is interesting to understand how much erasure-resilience affects query
complexity of testing monotone properties in our erasure-resilient model for general graphs.

Erasure-Resilient vs. Tolerant Testing of Graphs

For 0 < &1 < g2 < 1, an (e1,e2)-tolerant tester for a property P must accept, with high
probability, if the input is e;-close* to P and reject, with high probability, if the input is
go-far from P [24]. Dixit et al. [7] observed that, for properties of functions, erasure-resilient
testing is no harder than tolerant testing. Specifically, a tolerant tester for a property of
functions can be easily converted to an erasure-resilient tester with the same complexity.

4 An object is e1-close to a property P if it is not e1-far from P.
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The new tester can run the tolerant tester, filling in the queried erasures with arbitrary
values. However, this argument fails in the case of testing properties of graphs represented as
adjacency lists, since the erased entries have to be filled in so that the resulting completion
is a valid graph. In the bounded-degree model, we can use a (2o, e — 2a)-tolerant tester
for a property P to obtain an a-erasure-resilient e-tester for P with an overhead O(D?)
in query complexity via a transformation similar to the one explained in our discussion
of monotone properties. It is an important open question to understand the relationship
between erasure-resilient and tolerant testing in the general graph model.

Symmetric vs. Asymmetric Erasures

Our definition of partially erased graphs is general in the sense that erased entries may
be asymmetric: an edge (u,v) can be erased in Adj(u), but not in Adj(v). A partially
erased graph has only symmetric erasures if it has no half-erased edges, that is, u € Adj(v)
iff v € Adj(u) for any two nodes w,v. It is an interesting direction to investigate which
computational tasks are strictly easier in the model with symmetric erasures compared to
the model with asymmetric erasures.
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