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Abstract— In this paper, we present a new locomotion control
method for soft robot snakes. Inspired by biological snakes,
our control architecture is composed of two key modules: A
reinforcement learning (RL) module for achieving adaptive
goal-tracking behaviors with changing goals, and a central
pattern generator (CPG) system with Matsuoka oscillators for
generating stable and diverse locomotion patterns. The two
modules are interconnected into a closed-loop system: The
RL module, analogizing the locomotion region located in the
midbrain of vertebrate animals, regulates the input to the
CPG system given state feedback from the robot. The output
of the CPG system is then translated into pressure inputs
to pneumatic actuators of the soft snake robot. Based on
the fact that the oscillation frequency and wave amplitude
of the Matsuoka oscillator can be independently controlled
under different time scales, we further adapt the option-critic
framework to improve the learning performance measured by
optimality and data efficiency. The performance of the proposed
controller is experimentally validated with both simulated and
real soft snake robots.

I. INTRODUCTION

Due to their flexible geometric shapes and deformable
materials, soft continuum robots have great potentials in
performing tasks under dangerous and cluttered environments
[1]. However, planning and control of such type of robots
remains a challenging problem, as these robots have infinitely
many degrees of freedom in their body links, and soft
actuators with hard-to-identify dynamics.

We are motivated to develop an intelligent control frame-
work to achieve serpentine locomotion for goal tracking
in a soft snake robot, designed and fabricated by [2]. The
crucial observation from nature is that most animals with
soft bodies and elastic actuators can learn and adapt to
various new motion skills with only a few trials. These
mechanisms have been studied for decades, and proposed
as Central Pattern Generators (CPGs) or neural oscillators.
As a special group of neural circuits located in the spinal
cord of most animals, CPGs are able to generate rhythmic
and non-rhythmic activities for organ contractions and body
movements in animals. Such activities can be activated,
modulated, and reset by neuronal signals mainly from two
directions: bottom-up ascendant feedback information from
afferent sensory neurons, or top-down descendant signals
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from high-level modules including mesencephalic locomotor
region (MLR) [3] and motor cortex [4], [5].

Fig. 1: Schematic view of learning based CPG controller.

In literature, bio-inspired control methods have been studied
for the control design of locomotion control of rigid robots,
including bipedal [6]–[9] and serpentine locomotion [10]–[15].
The general approach is to generate motion patterns mimick-
ing animals’ behaviors and then to track these trajectories with
a closed-loop control design. In [3], the authors developed
a trajectory generator for a rigid salamander robot using
Kuramoto CPGs and used low-level PD controllers to track
the desired motion trajectories generated by the oscillator. In
[12], the authors improved the synchronization property of
the CPG by adapting its frequency parameter with additional
linear dynamics. In [14], the authors introduced a control loop
that adjusts the frequency and amplitude of the oscillation
for adapting to the changes of the terrain. Another recent
work [15] employed Spiking Neural Net (SNN) under the
regulation of Reward-Modulated Spike-Timing-Dependent
Plasticity (R-STDP) to map visual information into wave
parameters of a phase-amplitude CPG net, which generates
desired oscillating patterns to locomote a rigid snake robot
chasing a red ball.

Despite the success of bio-inspired control with rigid robots,
it may be impossible to expect good performance if we apply
the same control scheme to soft robots. This is mainly because
that in these approaches, the trajectories generated by CPG
require high-performance low-level controllers for tracking.
The tracking performance cannot be reproduced with soft
snake robots due to the nonlinear, delayed and stochastic
dynamical responses from the soft actuators. In addition,
most of these approaches only focus on improving locomotion
performance under certain scenario, with a fixed goal position,
or limited terrain types. To the best of our knowledge, none of
the investigated work can track a randomly generated target
with soft snake robot system.

To this end, we develop a bio-inspired intelligent controller
for soft snake robots with two key components: To achieve
intelligent and robust goal tracking with changing goals, we
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use model-free reinforcement learning [16], [17] to map the
feedback of soft actuators and the goal location, into control
commands of a CPG network. The CPG network consists
of coupled Matsuoka oscillators [18]. It acts as a low-level
motion controller to generate actuation inputs directly to the
soft snake robots for achieving smooth and diverse motion
patterns. The two networks form a variant of cascade control
with only one outer-loop, as illustrated in Fig. 1.

To reduce the time and samples required for learning-
based control, we leverages dynamic properties of Matsuoka
oscillators in designing the interconnection between two
networks. The reinforcement learning (RL) module learns to
control neural stimuli inputs and frequency ratio to a CPG
network given state feedback from the soft snake robot and
the control objective. In analogy to autonomous driving, the
neural stimuli inputs play the role of steering control, by
modulate the amplitudes and phases of the outputs of the
CPG net in real-time. The frequency ratio plays the role of
velocity control as the changes the oscillating frequency of
the CPG net result in changes in the locomotion velocity,
measured at the head of the soft snake robot.

To conclude, the contributions of this work include:
• A novel bio-inspired tracking controller for soft snake

robots, that combines robust and optimality in reinforce-
ment learning and stability and diversity in behavior
patterns in the CPG system.

• A detailed analysis of Matsuoka oscillators in relation
to steering and velocity control of soft snake robots.

• Experimental validation in a real soft snake robot.
The paper is structured as follows: Section II provides an

overview of the robotic system and the state space represen-
tation. Section III presents the design and configuration of
the CPG network. Section IV discusses key properties of the
CPG network and the relation to the design of artificial neural
network for the RL module. Section V introduces curriculum
and reward design for learning goal-reaching locomotion
with a soft snake robot. Section VI presents the experimental
validation and evaluation of the controller in both simulated
and real snake robots.

II. SYSTEM OVERVIEW

A full snake robot consists n pneumatically actuated soft
links. Each soft link of the robot is made of Ecoflex™ 00-
30 silicone rubber. The links are connected through rigid
bodies enclosing the electronic components that are necessary
to control the snake robot. In addition, the rigid body
components have a pair of one directional wheels to model
the anisotropic friction of real snakes. For each link with two
chambers, only one chamber is active (pressurized) at a time.

The configuration of the robot is shown in Figure 2. At
time t, state h(t) ∈ R2 is the planar Cartesian position of the
snake head, ρg(t) ∈ R is the distance from h(t) to the goal
position, dg(t) ∈ R is the distance travelled along the goal
direction from the initial head position h(0), v(t) ∈ R is the
instantaneous planar velocity of the robot, and vg(t) ∈ R is
the projection of this velocity vector to the goal direction,
θg(t) is the angular deviation between the goal direction and

the velocity direction of the snake robot. According to [19],
the bending curvature of each body link at time t is computed
by κi(t) =

δi(t)
li(t)

, for i = 1, . . . , 4, where δi(t) and li(t) are
the relative bending angle and the length of the middle line
of the i-th soft body link.

Fig. 2: Notation of the state space configuration of the robot.

In [20], we developed a physics-based simulator that
models the inflation and deflation of the air chamber and
the resulting deformation of the soft bodies with tetrahedral
finite elements. The simulator runs in real-time using GPU.
We use the simulator for learning the locomotion controller
in the soft snake robot, and then apply the learned controller
to the real robot.

III. DESIGN OF CPG NETWORK FOR A SOFT SNAKE
ROBOT

In this section, we introduce our CPG network design
consists of interconnected Matsuoka oscillators [21], [22].
Primitive Matsuoka CPG: A primitive Matsuoka CPG
consists a pair of mutually inhibited neuron models. The
dynanmical model of a primitive Matsuoka CPG is given as
follows,

Kfτrẋ
e
i = −xei − az

f
i − by

e
i −

N∑
j=1

wjiy
e
j + uei (1)

Kfτaẏ
e
i = zei − yei

Kfτrẋ
f
i = −xfi − az

e
i − by

f
i −

N∑
j=1

wjiy
f
j + ufi

Kfτaẏ
f
i = zfi − y

f
i ,

where the subscripts e and f represent variables related to
extensor neuron and flexor neuron, respectively, the tuple
(xqi , y

q
i ), q ∈ {e, f} represents the activation state and self-

inhibitory state of i-th neuron respectively, zqi = g(xqi ) =
max(0, xqi ) is the output of i-th neuron, b ∈ R is a weight
parameter, uei , u

f
i are the tonic inputs to the oscillator, and

Kf ∈ R is the frequency ratio. The set of parameters in the
system includes: the discharge rate τr ∈ R, the adaptation
rate τa ∈ R, the mutual inhibition weights between flexor
and extensor a ∈ R and the inhibition weight wji ∈ R
representing the coupling strength with neighboring primitive
oscillator. In our system, all coupled signals including
xqi , y

q
i and zqi (q ∈ {e, f}) are inhibiting signals (negatively
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Fig. 3: Illustrating the input-output connection of the PPOC-CPG net.

weighted), and only the tonic inputs are activating signals
(positively weighted).
Configurating the Matsuoka CPG network: The structure
of the proposed CPG network is shown in Fig. 3. The
network includes four linearly coupled primitive Matsuoka
oscillators. It is an inverted, double-sized version of Network
VIII introduced in Matsuoka’s paper [21]. The network
includes four pairs of nodes. Each pair of nodes (e.g., the two
nodes colored green/yellow) in a row represents a primitive
Matsuoka CPG (1). The edges are correspond to the coupling
relations among the nodes. In this graph, all the edges with
hollowed endpoints are positive activating signals, while the
others with solid endpoints are negative inhibiting signals.
The oscillators are numbered 1 to 4 from head to tail of the
robot. In order to build the connection between the CPG
network and robot actuators, we define the output of the i-th
primitive Matsuoka CPG as

ψi = A(zei − z
f
i ), (2)

where A represents the amplifying ratio of the difference
between zei and zfi of the i-th primitive oscillator. The CPG
outputs ψ = [ψ1, ψ2, ψ3, ψ4]

T from the primitive oscillators
are then normalized into the real region [−1, 1] through
ψ̂i(t) = ψi(t)/maxt |ψi(t)|. We let ψ̂i = 1 for the full
inflation of the i-th extensor actuator and zero inflation of
the i-th flexor actuator, and vice versa for ψ̂i = −1. The
actual pressure input to the i-th chamber is λi · ψ̂i, where λi
is the maximal pressure input of each actuator. The primitive
oscillator with green nodes controls the oscillation of the head
joint. This head oscillator also contributes as a rhythm initiator
in the oscillating system, followed by the rest parts oscillating
with different phase delays in sequence. Figure 3 shows all
activating signals to the CPG network. For simplicity, we’ll
use a vector

u = [ue1, u
f
1 , u

e
2, u

f
2 , u

e
3, u

f
3 , u

e
4, u

f
4 ]
T (3)

to represent all tonic inputs to the CPG net. To achieve
stable and synchronized oscillations of the whole system, the
following constraint must be satisfied [18]:

(τa − τr)2 < 4τrτab, (4)

where τa, τr, b > 0. To satisfy this constraint, we can set the
value of b much greater than both τr and τa, or make the
absolute difference |τr − τa| sufficiently small.

To determine the hyper-parameters in the CPG network
that generate more efficient locomotion pattern, we employed
a Genetic Programming (GP) algorithm similar to [23]. In
this step, all tonic inputs are set as constant integer 1 for the
simplicity of fitness evaluation.

We define the fitness function–the optimization criteria–
in GP as F (t) = a1|vg(t)| − a2|θg(t)| + a3|dg(t)|), with
a fixed goal always initiated on the heading direction of
the snake robot, and all coefficients a1, a2, a3, T ∈ R+ are
constants1. This fitness function is a weighted sum over
the robot’s instantaneous velocity, angular deviation, and
total traveled distance on a fixed straight line at termination
time t = T . A better fitted configuration is supposed to
maintain oscillating locomotion after a given period of time
T , with faster locomotion speed |vg(T )| along the original
heading direction. In addition, the locomotion pattern is also
required to have less angular deviation from the initial heading
direction (with a small |θg(T )|), and with overall a longer
travelled distance along the initial heading direction (|dg(T )|).

The desired parameter configuration found by GP is given
by Table. I in the Appendix.

IV. DESIGN OF LEARNING BASED CONTROLLER WITH
MATSUOKA CPG NETWORK

With constant tonic inputs, the designed Matsuoka CPG
net can generate stable symmetric oscillations to efficiently
drive the soft snake robot slithering straight forward, it does
not control the steering and velocity to achieve goal-reaching
behaviors with potentially time-varying goals. Towards in-
telligent navigation control, we employ a model-free RL
algorithm, proximal policy optimization (PPO) [17], as the
‘midbrain’ of the CPG network. The algorithm is to learn the
optimal policy that takes state feedback from the robot and
controls tonic inputs and frequency ratio of the CPG net to
generate proper oscillating waveform for reaching a goal. We

1In experiments, the following parameters are used: a1 = 40.0, a2 =
100.0, a3 = 50.0, and T = 6.4 sec.
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(a) (b) (c) (d)

Fig. 4: (a) Locomotion trajectory with biased amplitudes of tonic inputs u = [0.4, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]T (3) to the CPG net. (b) Locomotion
trajectory with biased duty cycles of tonic inputs. And plots of CPG outputs corresponding to tonic inputs with (c) biased amplitudes and (d) biased duty
cycles.

would like to reduce the data and computation required for
the learning to converge by leveraging crucial features of the
Matsuoka CPG. Next, we present our configuration of RL
guided by dynamical properties of Matsuoka CPG net.

A. Encoding tonic inputs for steering control

Steering and velocity control are key to goal-directed
locomotion. Existing methods realize steering by either
directly adding a displacement [3] to the output of the CPG
system, or using a secondary system such as a artificial neural
network to manipulate the output from multiple CPG systems
[6]. We show that the maneuverability of Matsuoka oscillator
provides us a different approach–tuning tonic inputs to realize
the desired wave properties for steering.

In this subsection, we show that two different combinations
of tonic inputs are capable of generating imbalanced output
trajectories, which result in steering of the robot. One way is
to apply biased values to each pair of tonic inputs. Another
way is to introduce different duty cycles between the actuation
of extensor and flexor.

Fig. 5: Relation between oscillation bias and activation amplitude of ue
from a single primitive oscillator when ue + uf = 1.

Figure 5 shows the bias in the output ψi given the input
uei changing from 0 to 0.5 and ufi = 1− uei in a primitive
Matsuoka oscillator. Here, we approximate the bias of the
steady-state output oscillation trajectory by taking the time-
average of the trajectory 2. From Fig. 5, we observe a linear
mapping between tonic input ue of a primitive oscillator and
the bias of output, given uf + ue = 1.

In other words, the steering bias of a primitive Matsuoka
oscillator is proportional to the amplitude of ue when ue and
uf are exclusive within [0, 1]. This key observation allows us
to introduce a dimension reduction on the input space of the

2Based on Fourier series analysis, given a continuous real-valued P -
periodic function ψi(t), the constant term of its Fourier series has the form
1
P

∫
P ψi(t)dt.

CPG net: Instead of controlling uei , u
f
i for i = 1, . . . , n for n-

link snake robot, we only need to control uei for i = 1, . . . , n
and let ufi = 1− uei . As the tonic inputs have to be positive
in Matsuoka oscillators, we define a four dimensional action
vector a = [a1, a2, a3, a4]

T ∈ R4 and map a to tonic input
vector u as follows,

uei =
1

1 + e−ai
, and ufi = 1− uei , for i = 1, . . . , 4. (5)

This mapping bounds the tonic input within [0, 1]. The
dimension reduction enables more efficient policy search
in RL. Furthermore, different action vector a can be chosen
to stabilize the system to limit cycles or equilibrium points.

Under the constraint of Eq. (5), steering can also be
achieved by switching between different tonic input vectors
periodically. When the duty cycle of actuating signals are
different between flexors and extensors, an asymmetric
oscillating pattern will occur. We construct two tonic input
vectors u1 and u2, with u1 = [1, 0, 1, 0, 1, 0, 1, 0]T and
u2 = [0, 1, 0, 1, 0, 1, 0, 1]T . As Fig. 4d shows, when we set
the duty cycle of u1 to be 1/12 in one oscillating period,
the rest 11/12 of time slot for will be filled with u2. The
CPG output on each link shows an imbalanced oscillation
with longer time duration on the negative amplitude axis,
indicating longer bending time on the flexor. As a result, the
robot makes a clockwise (right) turn, with a circle trajectory
presented in Fig. 4b.

We compare the steering control with two different methods
in Fig. 4a and 4b. The corresponding trajectories in joint
space are shown in Fig. 4c with biased amplitudes of tonic
inputs and Fig. 4d with biased duty cycle of tonic inputs. In
both experiments, the CPG outputs present noticeable biases
to the negative amplitude axis. This indicates that all of the
soft actuators are bending more to the right-hand side of the
robot during the locomotion.

B. Frequency modulation for velocity control

As seen in Eq. (5), the constraint on each pair of tonic
inputs prevents us from controlling locomotion speed with
different amplitudes tonic inputs. We would like to determine
another input to CPG net that controls the locomotion velocity.

Based on [22, Eq. (5), Eq. (6)], since Kf and u (Eq. (3))
are the control inputs, the mapping relations can be concluded
as

ω̂ ∝ 1√
Kf

, ∀ q ∈ {e, f}, i ∈ {1, 2, 3, 4}, (6)

where ω̂ is the natural frequency of the oscillator.
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Fig. 6: Relating oscillating frequency and amplitude to the average linear
velocity of serpentine locomotion.

Besides, the oscillation amplitude Â is linearly proportional
to the amplitude of tonic inputs, that is,

Â ∝ A(uqi ), ∀ q ∈ {e, f}, i ∈ {1, 2, 3, 4}, (7)

where A(·) is the amplitude function of a rhythmic signal.
Equations (6) and (7) show that the frequency and am-

plitude of the Matsuoka CPG system can be controlled
independently by the frequency ratio Kf and the tonic inputs
uqi , for q ∈ {e, f}. Figure 6 shows the distribution of
locomotion velocity over different amplitudes and frequencies
by taking 2500 uniform samples within the region uqi ∈
[0.4, 0.8] for q ∈ {e, f}, i ∈ {1, 2, 3, 4} with all uqi to be the
same in one sample, and Kf ∈ [0.45, 1.05]. Noticed that in
Fig. 6, with fixed tonic input, the average velocity increase
nearly monotonically with the frequency ratio Kf . While
the amplitude of tonic input does not affect the velocity that
much, especially when Kf is low. Given this analysis, we
use Kf to control the velocity of the robot.

It is noted that the frequency ratio Kf only influences
the strength but not the direction of the vector field of the
Matsuoka CPG system. Thus, manipulating Kf will not affect
the stability of the whole CPG system.

C. The NN controller

We have now determined the encoded input vector of the
CPG net to be vector a and frequency ratio Kf . This input
vector of the CPG is the output vector of the NN controller.
The input to the NN controller is the state feedback of the
robot, given by s = [ρg, ρ̇g, θg, θ̇g, κ1, κ2, κ3, κ4]

T ∈ R8 (see
Fig. 2). Next, we present the design of the NN controller.

We adopt a hierarchical reinforcement learning method
called the option framework [24], [25] to learn the optimal
controller regulating the tonic inputs (low-level primitive
actions) and frequency ratio (high-level options) of the CPG
net. The low-level primitive actions are computed at every
time step. The high-level option changes infrequently as the
robot needs not to change velocity very often for smooth
locomotion. Specifically, each option is defined by 〈I, πy :
S → {y}×dom(a), βy〉 where I = S is a set of initial states.
By letting I = S, we allow the frequency ratio to be changed
at any state in the system. Variable y ∈ dom(Kf ) is a value
of frequency ratio, and βy : S → [0, 1] is the termination

function such that βy(s) is the probability of changing from
the current frequency ratio to another frequency ratio.

The options share the same Neural Network (NN) for
their intro-option policies and the same NN for termination
functions. However, these NNs for intro-option policies take
different frequency ratios. The set of parameters to be learned
by policy search include parameters for intra-option policy
function approximation, parameters for termination function
approximation, and parameters for high-level policy function
approximation (for determining the next option/frequency
ratio). Proximal Policy Optimization Option-Critics (PPOC)
in the openAI Baselines [26] is employed as the policy search
in the RL module.

Let’s now review the control architecture in Figure 3. We
have a Multi-layer perceptron (MLP) neural network with
two hidden layers to approximate the optimal control policy
that controls the inputs of the CPG net in Eq. (1). The output
layer of MLP is composed of action a (green nodes), option
in terms of frequency ratio (pink node) and the terminating
probability (blue node) for that option. The input of NN
consists of state vector (yellow nodes) and its output from
the last time step. The purpose of this design is to let the
actor network learn the unknown dynamics of the system by
tracking the past actions in one or multiple steps [6], [27],
[28]. Given the BIBO stability of the Matsuoka CPG net
[18] and that of the soft snake robots, we ensure that the
closed-loop robot system with the PPOC-CPG controller is
BIBO stable. Combining with Eq. (5) that enforces limited
range for all tonic inputs, the outputs of this control scheme
are guaranteed to stay within a bounded region.

V. LEARNING-BASED GOAL TRACKING CONTROL DESIGN

In this section, we introduce the design of curriculum and
reward function for learning goal-tracking behaviors with the
proposed controller.

A. Task curriculum

Fig. 7: Task difficulty upgrade from level i− 1 to level i. As the curriculum
level increases, goals are sampled at a narrower distance and wider angle,
and acceptance area gets smaller.

Curriculum teaching [29] is used to accelerate motor skills
learning under complex goal reaching task scenario. Through
starting the trials with easy-to-reach goals, the agent will learn
good policies more quickly. As the level increases, the robot
improves the policy with more complex tasks. We design
different levels of tasks as follows: At task level i, the center
of goal is sampled from the 2D workspace based on the
current location and head direction of the robot. For each
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sampled goal, we say the robot reaches the goal if it is ri
distance away from the goal. The sampling distribution is a
uniform distribution in the fan area determined by the range
of angle θi and distance bound [ρli, ρ

u
i ] in polar coordinate

given by the predefined curriculum.
As shown in Fig. 7, when the task level increases, we have

ri < ri−1, θi > θi−1, ρui > ρui−1, and ρui −ρli < ρui−1−ρli−1;
that is, the robot has to be closer to the goal in order to success
and receive a reward, the goal is sampled in a range further
from the initial position of the robot. We select discrete sets
of {ri}, {θi}, [ρli, ρui ] and determine a curriculum table. We
train the robot in simulation starting from level 0. The task
level will be increased to level i + 1 from level i if the
controller reaches the desired success rate σi, for example,
σi = 0.9 indicates at least 90 successful goal-reaching tasks
out of n = 100 at level i.

B. Reward design

Based on the definition of goal-reaching tasks and their
corresponding level setups, the reward is defined as

R(vg, θg) = cv|vg|+ cg cos(θg(t))

i∑
k=0

1

rk
I(ρg(t) < rk),

where cv, cg ∈ R+ are constant weights, vg is the velocity
towards the goal, θg is the angular deviation from the center of
goal, rk defines the goal range in task level k, for k = 0, . . . , i,
ρg is the linear distance between the head of the robot and the
goal, and I(ρg(t) < rk) is an indicator function that outputs
one if the robot head is within the goal range for task level
k.

This reward trades off two objectives. The first term,
weighted by cv , encourages movement toward the goal. The
second term, weighted by cg, rewards the learner given the
level of curriculum the learner has achieved for the goal-
reaching task. For every task, if the robot enters the goal
range in task level i, it will receive a summation of rewards
1/rk for all k ≤ i (the closer to the goal the higher this
summation), shaped by the approaching angle θg (the closer
the angle to zero, the higher the reward).

If the robot agent reaches the goal defined by the current
task level, a new goal is randomly sampled in the current or
next level (if the current level is completed). There are two
failing situations, where the desired goal will be re-sampled
and updated. The first situation is starving, which happens
when the robot stops moving for a certain amount of time.
The second case is missing the goal, which happens when
the robot keeps moving towards the wrong direction to the
goal region for a certain amount of time.

VI. EXPERIMENT VALIDATION

We used an artificial neural network configuration with
128× 128 hidden layer neurons. At every step, the algorithm
samples the current termination function to decide whether
to terminate the current option and obtain a new frequency
ratio Kf or keep the previous option. The backpropagation
of the critic net was done with Adam Optimizer and a step
size of 5e − 4. The starvation time for failing condition is

60 ms. The missing goal criterion is determined by whenever
vg(t) stays negative for over 30 time steps.

A. Policy training

(a)

(b)

Fig. 8: (a) Learning progress of task level and (b) average learning score in
the goal-reaching task.

Figure 8a shows improving performance over different
levels versus the number of learning episodes. Figure 8b
shows the corresponding total reward with respect to the
number of learning episodes. As shown in Fig. 8a, we first
train the policy net with fixed options (at this moment, the
termination probability is always 0, and a fixed frequency ratio
Kf = 1.0 is used). When both the task level and the reward
cannot increase anymore (at about 3857 episodes), we allow
the learning algorithm to change Kf along with termination
function β, and keep training the policy until the highest
level in the curriculum is passed. In this experiment, the
learning algorithm equipped with stochastic gradient descent
converges to a near-optimal policy after 6400 episodes of
training. The whole process takes about 12 hours with 4
snakes training in parallel on a workstation equipped with
an Intel Core i7 5820K, 32GB of RAM, and one NVIDIA
GTX1080 ti GPU.

In order to compensate for simulation inaccuracies, most
notably friction coefficients, we employed a domain ran-
domization technique [30], in which a subset of physical
parameters are sampled from a distribution with mean on the
measured value. The Domain Randomization (DR) parameters
used for training are on Table II, on the Appendix.

Figure 9 shows a sampled trajectory in the simulated snake
robot controlled by the learned PPOC-CPG policy. Below
the trajectory plot in Fig. 9 is the recorded pressure input
trajectory to the first chamber. In the picture, green circles
indicate the goals reached successfully, and the red circle
represents a new goal to be reached next. The colors on
the path show the reward of the snake state, with a color
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Fig. 9: A sample trajectory and the corresponding control events on the first
link CPG output ψ1.

gradient from red to green, indicating the reward value from
low to high. Several maneuvering behaviors discussed in
Section IV are exhibited by the policy. First, as the higher
frequency can result in lower locomotion speed, the trained
policy presents a specific two-phase behavior — (1) The
robot starts from a low oscillation frequency to achieve a
high speed when it is far from the goal; (2) then it switches
to higher oscillation frequency using different options when
it is getting closer to the goal. This allows it to stay close
on the moving direction straight towards the goal. If this still
does not work, the RL controller will use tonic inputs to force
stopping the oscillation with the whole snake bending to the
desired direction (see IV), and then restart the oscillation to
acquire a larger turning angle.

B. Experiments with the real robot

We apply the learned policy directly to the real robot. The
policy is tested on goal-reaching tasks guided by a mobile
robot with an accuracy radius of r = 0.175 meter (The robot
base has a 0.16 meter radius). The learning policy obtains the
mobile robot position using the Mocap system in 60Hz, and
send the control commands to the robot through a low-latency
wireless transmitter. A pair of example trajectories obtained
from both simulation and real robot with identical policy are
shown in Fig. 10a. The real robot tracks the goals with an
average speed of 0.092m/s, while the simulation robot with
tuned contact friction (see Table II in Appendix) reaches an
average speed of 0.083m/s. Though trained on fixed goals
only, the policy can also follow the slowly moving target in
the test. From Fig. 10b and 10c, we notice that a delay of state
evolution still exists between real robot and simulated robot,
which is probably due to the inaccurate contact dynamics
modeling by the physical engine. This could be fixed by either
reducing the sim-to-real gap with more accurate modeling
of the dynamics, or incorporating adaptive mechanism with
velocity feedback to reduce the difference. We will leave this
challenge as part of our future work.

(a)

(b)

(c)

Fig. 10: Head trajectory of the simulation and real snake robot in consecutive
goal-reaching tasks using PPOC-CPG controller trained in simulation in (a)
x-y plane, (b) x-t plane and (c) y-t plane.

VII. CONCLUSION

The contribution of this paper is two folds: First, we
investigate the properties of Matsuoka oscillator for learning
diverse locomotion skills in a soft snake robot. Second,
we construct a PPOC-CPG net that uses a CPG net to
actuate the soft snake robot, and a reinforcement learning
algorithm to learn a closed-loop near-optimal control policy
that utilizes different oscillation patterns in the CPG net. This
learning-based control method shows promising results on
goal-reaching and tracking behaviors in soft snake robots.
This control architecture may be extended to motion control of
other robotic systems, including bipedal and soft manipulators.
Our next step is to verify the scalability of the proposed
control framework on the soft snake robot with more body
segments and extend it to a three-dimensional soft snake robot
and to realize more complex motion and force control in soft
snake robots using distributed sensors and visual feedback.
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APPENDIX

TABLE I: Parameter Configuration of Matsuoka CPG Net Controller for the
Soft Snake Robot.

Parameters Symbols Values
Amplitude A 4.6062
∗Self inhibition weight b 10.0355
∗Discharge rate τr 0.2888
∗Adaptation rate τa 0.6639
Period ratio Kf 1.0

Mutual inhibition weights ai 2.0935

Coupling weights wij 8.8669
wji 0.7844

TABLE II: Domain randomization parameters

Parameter Low High
Ground friction coefficient 0.1 1.5
Wheel friction coefficient 0.05 0.10

Rigid body mass (kg) 0.035 0.075
Tail mass (kg) 0.065 0.085

Head mass (kg) 0.075 0.125
Max link pressure (psi) 5 12

Gravity angle (rad) -0.001 0.001
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