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1 | INTRODUCTION
The contributions of this work are twofold: on one hand, we initiate the investigation of erasures in local

decoding; on the other hand, we apply our understanding of local list-decoding to study the relative
difficulty with which sublinear algorithms can cope with erasures and errors in their inputs.

A preliminary version [54] of this work has appeared in the proceedings of ITCS 2019.
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Intuitively, a family of codes is locally decodable in the presence of a specified type of corruptions
(erasures or errors) if there exists an algorithm that, given oracle access to a codeword with a limited
fraction of specified corruptions, can decode each desired character of the encoded message with high
probability after querying a small number of characters in the corrupted codeword. In other words, we
can simulate oracle access to the message by using oracle access to a corrupted codeword. This notion
can be extended to local list-decoding by requiring the algorithm to output a list of descriptions of local
decoders. Intuitively, a family of codes is locally list-decodable in the presence of a specified type of
corruptions if there exists an algorithm that, given oracle access to a corrupted codeword w, outputs a
list of algorithms such that for each message x whose encoding sufficiently agrees with w, there is an
algorithm in the list that, given oracle access to w, can simulate oracle access to x. In addition to the
usual quantities studied in the literature on error-correcting codes (such as the fraction of corruptions
a code can handle, its rate and efficiency of decoding), the important parameters in local decoding are
the number of queries that the algorithms make to w and, in the case of local list-decoding, list size.

The notion of locally decodable codes (LDCs) arose in the 1990s, motivated by numerous appli-
cations in complexity theory, such as program checking [13, 24, 25, 49], probabilistically checkable
proofs [2, 3, 5, 53], derandomization [6, 59, 60], and private information retrieval [16]. LDCs that work
in the presence of errors have been extensively studied [5, 7, 8, 13, 20, 21, 24, 25, 53, 63]. The related
notion of locally list-decodable codes (LLDCs) has also received a lot of attention [8, 30, 32, 34, 39,43,
45, 59] and found applications in cryptography [30], learning theory [46], average-to-worst-case reduc-
tions [15, 31, 48], and hardness amplification and derandomization [6, 59]. The literature on decoding
in the presence of erasures is too vast to survey here. List-decoding in the presence of erasures (with-
out the locality restriction) has been addressed by Guruswami [35] and Guruswami and Indyk [36]. In
particular, Guruswami [35] constructed an asymptotically good family of binary linear codes that can
be list-decoded from an arbitrary fraction of erasures with lists of constant size. Even though decod-
ing in the presence of erasures is an important and well established problem, local (unique and list)
decoding from erasures has only been studied from the perspective of hardness amplification where
the interest is in proving lower bounds on query complexity [4, 14, 33, 62].!

Motivated by applications in property testing [29, 58], we begin our investigation of effects of
erasures with local list-decoding. Our first result is a local erasure list-decoder for the Hadamard
code. Local list-decodability of the Hadamard code in the presence of errors is a famous result of
Goldreich and Levin [30]. However, (local list) decoding of the Hadamard code is impossible when
the fraction of errors reaches or exceeds 1/2. In contrast, we show that the Hadamard code is locally
list-decodable in the presence of any constant fraction of erasures in [0, 1). Moreover, the list size and
the query complexity for our decoder is better than for the Goldreich—Levin decoder: for our decoder,
both quantities are inversely proportional to the fraction of input that has not been corrupted, whereas
for the Goldreich—Levin decoder they are quadratically larger and are known to be optimal for that
setting. Thus, our Hadamard decoder demonstrates that a square-root reduction in the list size and
query complexity in local list-decoding can be achieved for some settings of parameters when we move
from errors to erasures.

The second thrust of our work, enabled by our local list-decoding results, is investigating the effects
of adversarial corruption to inputs on the complexity of sublinear-time algorithms. Understanding the
relative difficulty of designing algorithms that work in the presence of input errors and in the presence

IThere is a related line of work on local list recovery [32, 40], where codeword positions are associated with sets of symbols. The
goal, given oracle access to such a codeword, is to output a list of codewords such that for each codeword in the list, the symbol
at each position is equal to one of the symbols from the set associated with that position. In these terms, an erased codeword
position corresponds to its associated set being equal to the alphabet.
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of input erasures is a problem of fundamental importance. The motivation of investigating adversarial
input corruption spurred the generalization of property testing, one of the most widely studied mod-
els of sublinear-time algorithms [26-28, 55, 57], to (error) tolerant testing [52] and erasure-resilient
testing [19].

Erasure-resilient property testing falls between (standard) property testing and tolerant testing.
Specifically, an erasure-resilient tester for a property, in the special case when no erasures occur,
is a standard tester for this property. Also, a tolerant tester for a property implies the existence of
an erasure-resilient tester with comparable parameters for the same property [19]. Fischer and Fort-
now [23] separated standard and tolerant testing by describing a property that is easy to test in
the standard model and hard to test tolerantly. Dixit, Raskhodnikova, Thakurta, and Varma [19]
showed that the property defined by Fischer and Fortnow separates standard property testing from
erasure-resilient testing in the same sense. Dixit, Raskhodnikova, Thakurta, and Varma [19] asked
whether it is possible to obtain a separation between erasure-resilient and tolerant testing.

In this work, we provide such a separation. Specifically, we describe a property of binary strings
that is easy to test in the erasure-resilient model, but hard to test tolerantly.

The key idea in our construction of the separating property is to encode sensitive regions of strings
(without which testing becomes hard) with an error correcting code. We need a code that exhibits a
difference in its local list-decoding capabilities for the same fraction of erasures and errors. Specifi-
cally, we want, for some constant @, ¢, and L, a code that can be decoded from an « fraction of erasures
with g queries and lists of size L, but cannot be decoded from an « fraction of errors. We first define a
property where the sensitive regions are encoded with the Hadamard code and show that it is testable
in the erasure-resilient model (with a constant number of queries), but is not testable tolerantly.

Next, we want to strengthen the separation to obtain a property that is testable with erasures, but
requires as many queries as possible to test tolerantly. In our construction, the lower bound on the
number of queries needed for tolerant testing is determined by the rate of the code. Since the Hadamard
code has low rate, we only get a polylogarithmic lower bound on the query complexity of tolerant
testing. To obtain a lower bound of 7", we would need a code of polynomial rate. The question of
whether there is a locally erasure list-decodable code (with constant @, g, and L) of polynomial rate
remains open. An LLDC with such parameters is the holy grail of research on local decoding.

We circumvent the above difficulty by starting out with a property of binary strings that has a
tester whose queries to a sensitive region of the input are nearly uniformly distributed. This implies
that testing remains easy even if a constant fraction of the sensitive region is corrupted. We construct
a new separating property by encoding the sensitive region using a code that is approximate locally
list-decodable from erasures, where an approximate locally list-decodable code (ALLDC) is defined
identically to an LLDC except that the algorithms output by a decoder for such a code simulate oracle
access to strings that are close to the original messages. We show that the resulting property can be
erasure-resiliently tested using a constant number of queries but needs n*! queries in order to be
tested tolerantly, thus obtaining a strengthened separation.

Next, we study the general relationship between local decoding in the presence of errors and in the
presence of erasures. One can observe that every LLDC that works in the presence of errors also works
in the presence of twice as many erasures (with the same parameters up to constant factors). We ask
if LLDCs or ALLDCs that work in the presence of erasures can have significantly smaller list sizes
and query complexity than LLDCs or ALLDCs of the same rate that work in the presence of errors.
We also prove that such a statement cannot hold for the case of local unique decoding: specifically,
we show that if a code is locally unique erasure-decodable, then there exists another comparable code
that is locally unique decodable (up to minor losses in parameters).
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1.1 | Model definitions and our results

This section contains descriptions and definitions of the codes, decoding tasks, and property testing
models we study, and also statements and discussion of our main results.

1.1.1 | Local erasure list-decoding and the Hadamard code

In this article, we restrict our attention to binary codes. A binary code is an infinite family of maps
{C, : F4 - FY},en. The parameter n is called the message length, N is the block length, and n/N is
the rate of the code. Corruptions in codewords can either be in the form of erasures (missing entries,
denoted by the symbol 1) or in the form of errors (wrong values from [).

Recall that a local list-decoder outputs a list of algorithms which give oracle access to decoded
messages or, in other words implicitly compute the decoded messages. This and the notion of local
erasure list-decoders are formalized in the following definitions.

Definition 1.1 (Implicit computation). An algorithm A is said to implicitly compute x € [F if, for all
i € [n], the algorithm A on input i, outputs the ith bit of x.

Definition 1.2 (Locally erasure list-decodable codes (LLEDCs)). A family of codes {C, : F; —
IFQ’ tnen 18 (a, g, L)-locally erasure list-decodable if there exists a randomized algorithm A such that,
for every n € N and every w € (F, U {L})" with at most an & fraction of erasures, the algorithm A
makes at most g queries to w and outputs a list of randomized algorithms {7}, T3, ... , 71} such that
the following hold:

1. With probability at least 2/3, for all x € IF; such that C,(x) agrees with w on all nonerased bits,
there exists an index j € [L] such that 7; with oracle access to w implicitly computes x.

2. Forallj € [L] and i € [n], the expected number of queries that the algorithm 7; makes to w on
input i is at most q.

Item 2 in the above definition can be used to obtain a high probability worst-case bound on the
query complexity of the algorithms, by incurring a constant factor loss in the query complexity expres-
sion. The definition of an (e, ¢, L)-LLDC is identical to Definition 1.2 except that the input word has
no erasures, and the list is required to contain, with probability at least 2/3, algorithms that implic-
itly compute messages corresponding to codewords disagreeing with the input word on at most an «
fraction of bits. The celebrated Goldreich—Levin theorem [30] states that the Hadamard code, defined
next, is an LLDC that has an efficient decoder.

Definition 1.3 (Hadamard code). For a € I}, let H, : 5 — IF, be defined as follows: H,(x) =
(Zie[n] a; - x;) mod 2 for all x € F}. The Hadamard code, denoted by {H, : I} — IF%" }nen, 18 such
that for a € I}, the encoding H,(a) is the string of evaluations of H, over IF}.

Our first result is about the local erasure list-decodability of the Hadamard code. It is an ana-
logue of the Goldreich—Levin theorem [30] for corruptions in the form of erasures. We first state the
Goldreich—Levin theorem and then state our result.

Theorem 1.4 (Goldreich-Levin theorem [30]). There is a <a, 0(( N /21—(1)2 ), O( a /21_0()2 ))-local
list-decoder for the Hadamard code that works for every a € [0,1/2).
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Theorem 1.5 (Local erasure list-decoder for Hadamard). There is a (a, O(i), O(i))-zocaz

erasure list-decoder for the Hadamard code that works for every a € [0, 1).

The Goldreich-Levin theorem holds for any fraction of errors in [0, 1/2). In contrast, our local
erasure list-decoder works for any fraction of erasures less than 1. However, it is impossible to decode
the Hadamard code in the presence of 1/2 fraction of errors because every Hadamard codeword has
relative distance at most 1/2 from the all-zero codeword. Another improvement in Theorem 1.5 as
compared to Goldreich—Levin is in the list size and the query complexity: from ©( @ 21—11)2) to O(ﬁ).
Such an improvement is impossible if we are decoding against errors as opposed to erasures. Specif-
ically, for the list size, Blinovsky [12] and Guruswami and Vadhan [38] show that every list-decoder
for every binary code that is list-decodable in the presence of an & fraction of errors must output lists
of size Q( a /21_a)2). For the query complexity, Theorem 1.4 is also optimal, as shown by Ron-Zewi,
Shaltiel, and Varma [56] in a work subsequent to ours. Together with Theorem 1.5, these works give a
separation between errors and erasures in the context of local list-decoding. Moreover, it follows from
the works of Guruswami [35] and Ron-Zewi, Shaltiel, and Varma [56] that Theorem 1.5 is also optimal
for both the list size and query complexity.

Finally, Observation 5.4 states that every (a, g, L)-LLDC is also an (2a,4¢g,4L)-LLEDC. By com-
bining this observation with the Goldreich-Levin theorem, one can obtain a local erasure list-decoder
for the Hadamard code that works for every @ € [0, 1) and has list size and query complexity ®(ﬁ).

However, we obtain quadratically better list size and query complexity in Theorem 1.5.

1.1.2 | Separation between erasure-resilient and tolerant testing

We first describe the erasure-resilient and tolerant models of testing. A property P is a set of strings.
Given a string x € {0, 1}" and a property P C {0, 1}", the Hamming distance of x from P is equal
to the minimum, over y € P, of the Hamming distance between x and y. A string x € {0, 1}" is e-far
(a-close) from (to, respectively) a property P C {0, 1}", if the Hamming distance of x from P is at
least en (at most an, respectively).

Definition 1.6 (a-Erased strings and completions). Given a € [0, 1), a string is a-erased if at most an
a fraction of its values are erasures (denoted by L). A completion of an a-erased string x € {0,1, L}"
is astring y € {0, 1}" that agrees with x on all the positions where x is nonerased.

Definition 1.7 (Erasure-resilient tester). An a-erasure-resilient e-tester [19] for a property P is a
randomized algorithm that, given parameters & € [0, 1), e € (0, 1) such that a+¢ < 1 and oracle access
to an a-erased string x, accepts with probability at least 2/3 if x has a completion in P and rejects with
probability at least 2 /3 if every completion of x is e-far from 7.2 The property P is a-erasure-resiliently
e-testable if there exists an a-erasure-resilient e-tester for P with query complexity that depends only
on the parameters a and € (but not on the input length n).

For the special case with no erasures, that is, when a = 0, we refer to the algorithm above as an
e-tester.

2The rejection condition in this definition of erasure-resilient testing is differently parameterized than that in the definition due to
Dixit, Raskhodnikova, Thakurta, and Varma [19]. We use the current definition as it gives cleaner query complexity expressions
and is consistent with the definition of erasure-resilient graph property testing defined by Levi, Pallavoor, Raskhodnikova, and
Varma [47]. We refer the interested reader to Appendix A for a comparison of the two definitions.
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Definition 1.8 (Tolerant tester). An (a, ’)-tolerant tester [52] for P is a randomized algorithm that,
given parameters « € (0, 1), € (a, 1) and oracle access to a string x, accepts with probability at
least % if x is a-close to P and rejects with probability at least % if x is &'-far from P. The property
P is (a, €')-tolerantly testable if there exists an (a, ')-tolerant tester for P with query complexity that
depends only on « and £’ (but not on the input length n).

Comparison of parameters

We remark that, while comparing the two models, one possibility is to compare (@, @ + €)-tolerant
testing of a property P with a-erasure-resilient e-testing of P for the same values of a € [0, 1) and
€ € (0,1) such that @ + € < 1. The parameter a in both models is an upper bound on the fraction of
corruptions (erasures, or errors) that an adversary can make to an input. An a-erasure-resilient e-tester
rejects with probability at least % if, for every completion of an input string, one needs to change at
least an ¢ fraction of the completion to make it satisfy 2. Similarly, an (a, & + £)-tolerant tester rejects
with probability at least % if, for every way of correcting an a fraction of the input values, one needs
to change at least an additional & fraction of the input to make it satisfy P.

Separation

The following theorem states that there exists a property that is erasure-resiliently testable but is not
tolerantly testable. This proves that tolerant testing is, in general, harder problem than erasure-resilient
testing.

Theorem 1.9 (Separation). There exists a property P and constants a, € € (0, 1) such that

o P is a-erasure-resiliently e-testable;
o Pisnot (a,a + €)-tolerantly testable.

Approximate local erasure list-decoding and strengthened separation

We obtain a separation better than in Theorem 1.9 with the help of a variant of LLEDCs, called approx-
imate locally erasure list-decodable codes (ALLEDC). An approximate local erasure list-decoder
is identical to a local erasure list-decoder in all aspects except that the algorithms in its list are
required to implicitly compute strings that are just “close” to the actual messages. More formally,
(a, B, q, L)-ALLEDC:s are defined as (a, g, L)-LLEDCs in Definition 1.2, except that we replace “im-
plicitly computes x” at the end of Item 1 with “implicitly computes a string x’ € I} that is f-close to
x.”

The definition of an (a, f, g, L)-ALLDC is identical to that of an (a, f, g, L)-ALLEDC except that
the input word has no erasures, and the list is required to contain, with probability at least 2/3, algo-
rithms that implicitly compute strings that are f-close to messages corresponding to codewords which
are a-close to the input word.

We observe (Observation 5.2) that every (a, f, g, L)-ALLDC is also a (2a, #,4¢q,4L)-ALLEDC,
and combine this observation with existing constructions for ALLDCs [9, 41] to obtain efficient
ALLEDCs. We use them and get our strengthened separation.

Theorem 1.10 (Strengthened separation). There exists a property P’ and constants a, € € (0, 1) such
that

e P’ is a-erasure-resiliently e-testable;

o every (a, a + €)-tolerant tester for P! makes n*V)

queries.
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Relationship between local erasure-decoding and local decoding

We investigate the general relationship between the erasures and errors in the context of local unique
and list-decoding. We show that local (unique) decoding from erasures implies local (unique) decoding
from errors, up to some loss in parameters.

Definition 1.11 (Locally erasure-decodable codes (LEDCs)). A code family {C, : I} — IFIZV }nen 18
(a, g)-locally erasure-decodable if there exists an algorithm A that, given an index i € [n] and oracle
access to an input word w € ({ L} UF,)" with at most an « fraction of erasures, makes at most g
queries to w and outputs x; with probability at least %

A (a, q)-LDC is defined similarly to an (a, g)-LEDC except that the input word w contains at most
an a fraction of errors instead of erasures. We observe (Observation 7.4) that an LDC is also locally
erasure-decodable from (nearly) twice as many erasures. We also show that constant-query LEDCs are
constant-query locally decodable (up to constant loss in parameters).

Theorem 1.12. For every a € [0,1), if a code family {C, : T} — IF]zV bnen is (@, q)-locally
erasure-decodable, then it is (%, 0(3%))-locally decodable.

To prove Theorem 1.12, we start with a local erasure-decoder for {C, },en and transform it to be
a nonadaptive and smooth local erasure-decoder, where this transformation uses ideas developed by
Katz and Trevisan [42]. An algorithm is nonadaptive if its queries do not depend on the answers to the
previous queries. A decoding algorithm is smooth if it decodes uncorrupted codewords by querying
nearly uniformly distributed codeword indices. We first make the local erasure-decoder for {C,},en
nonadaptive. We then show that every nonadaptive decoding algorithm for an LEDC can be trans-
formed into a smooth decoding algorithm. We then use this “smoothness” feature to show that the code
family is locally decodable from a smaller fraction of errors than erasures.

The technique outlined above cannot be directly used to obtain an analog of Theorem 1.12 for
the case of local list-decoding since the notion of smoothness (the way we define it for use in our
transformation) does not make sense in the local list-decoding setting. Smooth local decoding assumes
oracle access to an uncorrupted codeword and the goal is to decode the message by making nearly
uniformly distributed queries. Local list-decoding, however, is relevant in the setting that a codeword
has a higher number of corrupt bits than the unique decoding radius.

We remark that although our final code has small decoding radius (that is, it tolerates only a small
fraction of errors), the decoding radius can be amplified to any constant arbitrarily close to 1/4 at the
cost of increasing the query complexity and encoding length by a constant factor. Specifically, using a
local version of the AEL transformation [1] (see [44, Lemma 3.1]), one can amplify the decoding radius
to any constant arbitrarily close to 1/2 at the cost of increasing the query complexity, alphabet size,
and length by constant factors. The alphabet then can be reduced back to binary by encoding the binary
representation of each alphabet symbol with the Hadamard code. The length will grow by another
constant factor, and using a local version of the GMD decoder [44, Corollary 3.9], one can show that
final decoding radius is arbitrarily close to 1/4 and query complexity grows only by a constant factor.

1.2 | Open questions

The main open question raised by our work is whether local list-decoding is significantly easier in
terms of the query complexity, the list size, or the rate of codes when corruptions are in the form of
erasures. The same question can be asked about approximate local list-decoding. Our local erasure
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list-decoder for the Hadamard code shows that there is some advantage for having erasures over errors,
in terms of the list size and query complexity, for some settings of parameters. A positive or negative
answer to this question, combined with our result on the equivalence of errors and erasures in the local
decoding regime, would enhance the understanding of whether local list-decoding is an inherently
more powerful model when compared to local decoding.

We remark that our proof that the existence of a LDC that works in the presence of erasures implies
the existence of a LDC that works in the presence of errors and has related parameters does not directly
extend to the setting of local list-decoding. However, it can be extended with an additional assumption
that the output lists contain only valid algorithms (those that correspond to the original messages).
This raises the question about the power of such an assumption.

In our work, we show the existence of a property P and parameters a,e € (0, 1) satisfying
a < € and @ + € < 1 such that P has an efficient a-erasure-resilient e-tester but no efficient
(a, a+e€)-tolerant tester. In the work that introduced the erasure-resilient testing model, Dixit, Raskhod-
nikova, Thakurta, and Varma [19] prove that for some range of parameters, tolerant testing is at least
as hard as erasure-resilient testing.

Observation 1.13 (Dixit, Raskhodnikova, Thakurta, and Varma [19]). Let a,e € (0, 1) be such that
a < e. If there is an (a, €)-tolerant tester with query complexity g for a property P, then there is an
a-erasure-resilient e-tester for P with query complexity g.

Observation 1.13 does not rule out the existence of an (a, €)-tolerantly testable property that is not
a-erasure-resiliently &'-testable for ¢’ < . It would be an interesting direction to explore the exact
relationship between the two models for the above range of parameters.

Organization

The article is organized as follows. Section 2 defines some of the notation that will be used through-
out the article. Our local erasure list-decoder for the Hadamard code is presented in Section 3.
Next, in Section 4, we show our separation result (Theorem 1.9) based on the Hadamard code.
Section 5 contains our transformation from approximate local list-decoding to approximate local era-
sure list-decoding. In Section 6, we show our strengthened separation result (Theorem 1.10) implied
by the resulting approximate local erasure list-decoding algorithm. Finally, in Section 7, we detail
our transformation from local erasure (unique) decoding to local (unique) decoding. Appendix A con-
tains a comparison of the erasure-resilient model that we adopt in this article with that of the original
definition proposed by Dixit, Raskhodnikova, Thakurta, and Varma [19].

2 | PRELIMINARIES

In this section, we define some of the notation used in the article. We use [F, to denote the finite field
of characteristic 2 that contains the elements O and 1. Given a,b € F,, we use a + b to denote the
addition of @ and b modulo 2. Let n € N. For x € I} and i € [n], we use x; to denote the ith coordinate
of x. Given x,y € IF;, we use x @ y to denote the element of IF; whose ith entry is x; + y;. Let e; € I}
for k € [n] denote the kth standard basis vector, and let 0e % denote the zero vector. Since a function
can be represented by a string of evaluations over points in its domain, we often view a codeword of
the Hadamard code H,, (see Definition 1.3) as the string of all evaluations of a linear function mapping
% to IF,. A function f is a-erased, if f evaluates to L on at most an « fraction of its domain.
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An a-erased string x € {0, 1, L}" is e-far from a property P C {0, 1}" if every completion (see
Definition 1.6) of x is e-far from P. In other words, there is no way to complete x to a string that satisfies
P without changing at least € - |x| nonerased values in x. For strings x € {0,1, L}" and y € {0, 1}",
the Hamming distance between x and y is defined to be the minimum number of nonerased values in
x that need to be changed in order for it to be completable to y.

3 | LOCAL ERASURE LIST-DECODING OF THE HADAMARD CODE

In this section, we describe a local erasure list-decoder for the Hadamard code and prove Theorem 1.5.
We follow the style of the proof of the Goldreich-Levin theorem given in a tutorial by Trevisan [61]
on the applications of coding theory to complexity.

Proof of Theorem 1.5. Our local erasure list-decoder, described in Algorithm 1, gets a parameter
a € [0, 1) as its input and has oracle access to an a-erased linear function f : F} — I, U {1} (or,
equivalently, oracle access to an a-erased codeword of the Hadamard code H,,).

We now analyze Algorithm 1. Recall that for a string a € IF;, the function H, : I} — I, denotes
the Hadamard encoding of a (see Definition 1.3). We will show that, with probability at least 2/3, for
every a € I such that the functions H, and f agree with each other on all the nonerased points, one
of the local decoders output by Algorithm 1 implicitly computes a (see Definition 1.1).

There exists some iteration of Step 2 of Algorithm 1 such that b; = H,(z;) foralli € B.Let T and A
denote the algorithms whose descriptions are generated in Steps 8 and 3 of this iteration, respectively.

First, we show that for x distributed uniformly in [}, the algorithm A on input x, returns H,(x) with
probability at least 2/3. Consider the first set S” C [¢] (in the order that A considers sets) such that

Algorithm 1. Local erasure list-decoder for the Hadamard code

Input: « € [0, 1); oracle access to a-erased linear functionf : Fy — F, u {1}
> Letr « [logz(%)].
1: Sample and query z;,22, ... ,z; € 5 uniformly and independently at random.
> Let zg « @,z for all nonempty S C [7]. Let z4 « 0. Let B « {ielf] : f(z;) =1}.
2. for all by, by, ..., bz € {0,1} do define
> Description of the local decoder T,....bp follows.
3 function Abl!"'vblB\
4: input: x € F3; oracle access tof : F5 —» F, u {1}
5 for all S C [¢] do
6 if f(x @ zs5) #L thenreturn (-I_jeSnB b]) + (+jesn([;]\3)f(zj)) +f(x @ zs).

7: return 1.

8: function 7}, by

9: input: k € [n]; oracle access tof : 3 — F, U {1}

10: repeat

11: Pick y € 5 uniformly and independently at random.
12: u—Ap . by VD), v Ap b, )

13: if v #1 and u #1 thenreturn u + v.

14: return the descriptions of Tbl*""b\Bl for all by, by, ...,bjp € {0,1}.
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f(x @ zg) #L. According to the description of A,

A(x) = < + b,-> +< + f(zj)> +fxDzg)

JES'NB JES'N([1INB)

( + Ha(Z1)> + < + Ha(Z/)> +H,(x @ zg)
JjES'NB JjeS'n([t1N\B)
<+ Ha(zj)> + H,(x) + (+ Ha(zj)> = H,(x).

jes' jes'

The second equality above holds as b; = H,(z;) for all i € B, and H,(y) = f(y) for all nonerased y €
;. The third equality holds because H,, being a linear function, satisfies H,(y ®y') = H,(y) + H,(;/")
forally,y’ € F5.

It remains to show that, with probability at least 2/3, there exists some set S C [7] such that
f(x®zs) #L.Leta* < a denote the fraction of erasures in f. For each S C [f], we have that f (x@zs) #L
with probability 1 — a*, since x (and therefore, x @ zs) is uniformly distributed in . Define indicator
random variables Zg = 1(f (x@zs) #L)forS C [f]andletZ = scirl Zs. The random variable Z is equal
to the number of nonerased values among f(x @ zs) for S C [¢]. The event that VS C [¢],f(x @ z5) =L
is equivalent to the event that Z < 1.

For each S C [f], we have E[Zs] = 1 — a*. Therefore, by the linearity of expectation,

E[Z] = ) ElZs]=2'(1 - a*).
SClr]

For every two nonempty sets R, S C [#] such that R # S, the vectors zz and zg are independently
and uniformly distributed in [F}. Thus, the collection {x @ zs|S C [¢]} is pairwise independent, and
hence the random variables Zg for S C [¢] are also pairwise independent. Now, for each S C [7], we
have Var(Zs) = (1 — a*) - a*, and by the pairwise independence,

Var[Z] = ZVar[ZS] =2 o*(1 — a*).
Scli]
Applying the Chebyshev’s inequality,
Pr[Z < 1] = Pr[E[Z] — Z > E[Z] — 1]
<PrE[Z]-Z 22" -(1-a*)-1]

2 -a* 4Var(Z)
<Pr [E[Z] z>=" S T @7
< 4a* < 4a < 1

(1—a*)-2 1-a)-2 3

The last inequality follows from our setting of ¢. Therefore, for x distributed uniformly in F}, the
algorithm A on input x, returns H,(x) with probability at least %

Finally, we prove that T implicitly computes a € [} and that the expected number of queries that
T makes to f is O(ﬁ). It is clear that the output of T on input k € [n] is always a[k] = H,(y @ ex) +
H,(y) = H,(ex). The number of queries made by T to A is a geometric random variable with success
probability at least 1/3. Hence, the expected number of queries made by T to A is at most 3. Since the
query complexity of A is at most 2/, the expected number of queries made to f in one invocation of T
is at most 3 - 2', which is at most % The number of algorithms whose descriptions are generated is

also at most 2', which is at most %. n
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4 | SEPARATION

In this section, we describe a property P that is erasure-resiliently testable using a constant number of
queries, but not tolerantly testable using a constant number of queries, and prove Theorem 1.9. In fact,
we prove the following (more general) statement and show that it implies Theorem 1.9.

Theorem 4.1. Let e* € (0, 11%) be a constant. There exists a property P C {0, 1}* such that

3e*

e for every a € [0, F) and € € (%, 1) such that a + € < 1, the property P can be a-erasure-
resiliently e-tested using O(é) queries.

e forall a € (%, ) and € € (a,e* — %), the query complexity of (a, €')-tolerant testing P on
inputs of length N is Q(log N).

4.1 | Description of the separating property P

The property P is defined in terms of a property R that is hard to test in the standard property test-
ing model [29, 58], a probabilistically checkable proof system (PCP of proximity [10, 18, 22]) for the
problem of testing R, and the Hadamard code. We discuss them below. The idea of using PCPs of prox-
imity in separating the two property testing models comes from the work of Fischer and Fortnow [23].
Our contribution is to use locally list-decodable codes in this context.

Given a Boolean formula ¢ over n variables, let R4 C {0, 1}" denote the set of all satisfying
assignments to ¢, represented as n-bit strings. Ben-Sasson, Harsha, and Raskhodnikova [11] showed
that for infinitely many n € N, there exists a 3CNF formula ¢, on n variables such that every tester
for Ry,_requires Q(n) queries.

Lemma 4.2 ([11]). There exists a parameter €* € (0,1) and a countably infinite set X C N such
that for all n € N, there exists a 3CNF formula ¢,, with n variables and ®(n) clauses such that every
g*-tester for Ry has query complexity Q(n).

An important ingredient in the description of the separating property P is a probabilistically check-
able proof system for property testing problems. The notion of proof assisted property testing was
introduced by Ergiin, Kumar, and Rubinfeld [22]. Ben-Sasson, Goldreich, Harsha, Sudan, and Vad-
han [10], and Dinur and Reingold [18] defined and studied a special case of proof-assisted property
testers called PCPs of proximity (or alternatively, assignment testers). PCPs of proximity were further
studied by Dinur [17] and Meir [50, 51].

Definition 4.3 (PCP of proximity [10, 18, 22]). Given a property P, C {0, 1}", the PCP of proximity
(PCPP) for P, is a randomized algorithm V that takes a parameter € € (0, 1], gets oracle access to a
string yorxr, where y € {0, 1}" is the input and = € {0, 1} is the proof, and satisfies the following:

e if y € P, then, for some z, the algorithm V always accepts yor;
e if yis e-far from P,, then, for every =, the algorithm V rejects yox with probability at least %

A result by Dinur [17, Corollary 8.4] implies that there are efficient PCPPs (over a small constant
alphabet X) for testing properties (over X) that are decidable using polynomial-sized circuits. The
following restatement of this result is obtained by representing the symbols in X using the binary
alphabet.
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Lemma 4.4 ([17]). If P, C {0, 1}" is a property decidable by a circuit of size s(n), then there exists
a randomized algorithm V' that gets oracle access to a string yor € {0, 1}*, where y € {0, 1}" is the
input and r is a proof of length at most s(n) - polylog s(n), and satisfies the following:

e if y € P, then for some proof =, the algorithm V' always accepts yor;
e ify & P, thenjorevery x, the algorithm V' rejects yor with probability proportional to the relative
Hamming distance of y from P,,.

Moreover, V' makes a constant number of nonadaptive queries.

An algorithm guaranteed by Lemma 4.4 for a property P can be converted to an efficient PCPP for
P by simply repeating the former algorithm sufficiently many times.

Lemma 4.5 ([17]). If P, C {0, 1}" is a property decidable by a circuit of size s(n), then there exists
a PCPP V that works for every € € (0, 1], uses a proof of length at most s(n) - polylog s(n), and has
query complexity 0(%). Moreover, the queries of V are nonadaptive.

Claim 4.6 uses Lemma 4.5 in conjunction with the fact that the property R = {Ry },ex can be
decided using linear-sized circuits.

Claim 4.6.  There exists a constant ¢ > 0 such that for every large enough n € N, there exists a
PCPPV for the property Ry, that works for all € € (0, 1], uses a proof of length at most cn - polylog n,
and has query complexity O(i).

Proof.  One can observe that for all n € R, the circuit complexity of deciding Ry (described in
Lemma 4.2) is O(n). In other words, there exists a ¢’ such that for every large enough n, the property
R, can be decided using a circuit of size at most ¢”’n. The claim follows by plugging this fact into
Lemma 4.5. u

The following is the definition of our separating property P. At a high level, the definition says
that, for all n € R, a string of length O(2"P°Y1°¢ " satisfies P if its first part is the repetition of a string
y satisfying R , and the second part is the encoding (by the Hadamard code) of y concatenated with
a proof x that makes the algorithm V in Claim 4.6 accept.

Definition 4.7 (Separating property P). Let ¢* € (0, 1) and X C N be as in Lemma 4.2. For n € N,
let p(n) < cn - polylog n denote the length of proof that the algorithm V in Claim 4.6 has oracle access
to. A string x € {0, 1}V of length N = Ei* . 2P gatisfies P if the following conditions hold:

2n+p(n)

1. The first (;i* — 1) - 2™ bits of x (called the plain part of x) consist of (g -1)-
of a string y € Ry, of length n, for ¢, from Lemma 4.2.

2. The remaining bits of x (called the encoded part of x) form the Hadamard encoding of a string
yoz(y) of length n + p(n), where o denotes the concatenation operation on strings. The string y €
{0, 1}" is the same as the one in the description of the plain part. The string z(y) € {0, 1}7™ is a
proof such that the algorithm V (from Claim 4.6) accepts when given oracle access to y and z(y).

repetitions
n

4.2 | Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which in turn implies Theorem 1.9. Lemmas 4.8 and 4.12 prove
the first and second parts of Theorem 4.1, respectively.
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We first give a high level overview of the proof. The erasure-resilient tester for P first obtains a list
of (implicit) decodings of the encoded part (see Definition 4.7) of an input string x € {0, 1}V using
the local erasure list-decoder guaranteed by Theorem 1.5. If x € P, with high probability, at least
one of the algorithms implicitly computes (see Definition 1.1) the string yoz(y), where y is such that
the plain part of x (see Definition 4.7) consists of repetitions of y, and z(y) is a proof string such that
the algorithm V (from Claim 4.6) accepts upon oracle access to yoz(y). In case x is e-far from P, we
show that for every algorithm T output by the local erasure list-decoder, the string y'ox(y") implicitly
computed by T is such that, (1) either the plain part of x is far from being the repetitions of y’, (2) or
y' is far from R (in which case, the algorithm V from Claim 4.6 rejects when given oracle access to
yor(y)).

To show that tolerant testing of P is hard, we reduce £*-testing of Ry to it. Specifically, given
oracle access to a string y € {0, 1}" that we want to £*-test, we simulate oracle access to a string
x € {0, 1}¥ such that the plain part of x consists of repetitions of y, and every bit in the encoded part of
x 18 0. Since every Hadamard codeword has an equal number of Os and 1s, the string x can be thought
of as having a 0.5 fraction of “errors” in the encoded part. If y € R, , then the string x is close to
being in P, as the errors are only in the encoded part of x and the length of the encoded part is a small
fraction of the length of x. If y is far from R , then x is also far from P, since the plain part of x, whose
length is a large fraction of the length of x, is the repetitions of y. Thus, the decision of a tolerant tester
for 7 on x can be used to test y for Ry , implying that the complexity of tolerant testing of 7 is equal
to the complexity of testing R, .

We now prove the existence of an efficient erasure-resilient tester for . Recall that an a-erased
string x is e-far from a property P if there is no way to complete x to a string that satisfies P without
changing at least € - |x| nonerased values in x.

Lemma 4.8. Lete* € (0,1) be as in Lemma 4.2. For every a € [0, %) and € € (%, 1) such that
a + € < 1, the property P can be a-erasure-resiliently e-tested using O(é) queries.

Proof.  The erasure-resilient tester for P is described in Algorithm 2. The query complexity of the
tester is O(1/¢) as is evident from its description. We now prove that the tester, with probability at
least %, accepts strings in P and rejects strings that are e-far from P. m

Let N, e* € (0,1) be as in Lemma 4.2. Fix n € X and let p(n) and N be as in Definition 4.7. Let
s denote (;i* -1 ZW("). Consider a string x € {0, 1}V that we want to erasure-resiliently test for
P. As in Definition 4.7, we refer to the substring x[1 ... sn] as the plain part of x and the substring
x[sn +1 ... NJ as the encoded part of x.

Assume that x € P. By this assumption, we can see that there exists a string yoz € {0, 1}
such that (1) y € R, and the plain part of x can be completed to a repetition of y, (2) x is a proof such
that the algorithm V (from Claim 4.6) accepts when given oracle access to yox, and (3) the encoded
part of x can be completed to the Hadamard encoding of yoz. Since & < 3¢* /16 and the length of the
encoded part is equal to N — sn = N - €* /4, the fraction of erasures in the encoded part of x is less
than (3¢*/16)/(¢* /4), which is equal to 3/4. Hence, by Theorem 1.5, with probability at least 2/3,
there exists an algorithm 7 computed in Step 2 of Algorithm 2 such that 7; implicitly computes the
string yorr € {0, 1 }*P0)_ Therefore, k is not discarded in either Step 7 or Step 10. Thus, the tester will
accept with probability at least 2/3.

Now, assume that x is e-far from P. Let E denote the event that the number of queries made by the
tester does not exceed its query budget. We first show that, conditioned on E, the tester rejects with
probability at least 4/5.
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Algorithm 2. Erasure-resilient tester for separating property P

Input: a,c € (0,1),N = ;i* . 20+pM): oracle access to x € {0,1, L}V
> Sets — (4 —1)- 27 ¢/ £ g < 288, L < 96.

> Set Q « 10g+ 10gL - < [9]2—“] + [4logL] - 370> where C is the constant in the O notation
of Claim 4.6.

1: Accept whenever the number of queries exceeds Q.

2: Runa (%, g, L)-local erasure list-decoder for the Hadamard code (Algorithm 1) with oracle access
to x[sn + 1..N], the encoded part of x. > Note that ¢ and L are constants for local list-decoding
from at most a 3/4 fraction of erasures, and the specific values given here follow from the
proof of Theorem 1.5.

> Let T, T>, ..., Ty, be the list of algorithms returned in the above step.

3: for each k € [L] do
> Check if the plain part of x is the repetition of y, where y denotes the first n bits of the
decoding (given by T;) of the encoded part of x.

4: repeat 912—gL times:

5: Pick a €g [n],i €r [s].

6: if x[(i — Dn + a] #1 and Ty(a) # x[(i — 1)n + a] then
7: Discard the current k

> Check if the string y € R, , where y denotes the first n bits of the decoding (by T;) of the
encoded part of x.

8: repeat [4log L] times:

9: Run V, from Claim 4.6, with input £’ and oracle access to T.

10: Discard the current k if V rejects.

J—

1: Reject if every k € [L] is discarded; otherwise, accept.

Claim 4.9. The plain part of x is %—farfrom being s repetitions of a stringy € Ry, .

Proof.  Since x is e-far from satisfying P, at least e N nonerased values in x need to be changed in
order to complete it to a string satisfying 7. The length % - N of the encoded part of x is an upper
bound on the number of nonerased values in the encoded part, and therefore, it is at most eN /3 since
€€ (%, 1). Thus, the plain part of x needs to be changed in at least 2¢ N /3 nonerased values in order
for it to be s repetitions of a string y € Ry, . The claim follows. [

From Claim 4.9, it follows that at least % nonerased points need to be changed in the plain part

of x for it to be s repetitions of a stringy € Ry .

Claim 4.10. For any y € {0,1}", if the plain part of x can be changed to s repetitions of y by
modifying less than % nonerased values, then 'y is g far from Ry .

Proof.  Consider y € {0, 1}" such that we can change less than € - sn/3 nonerased points in the plain
part of x and make it s repetitions of y. Assume that there exists y/ € Ry such that the Hamming
distance of y’ to y is at most € - n/3. Then, the plain part of x, can be changed to being s repetitions of
Y’ by first changing it to be s repetitions of y (modifying less than € - sn/3 nonerased points) and then
modifying at most s - € - n/3 nonerased points to make it s repetitions of y’. In other words, x[1 ... sn]
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can be modified in less than 2¢ - sn/3 nonerased points to make it s repetitions of a string y" in Ry .
This contradicts Claim 4.9. n

Fix k € [L], where L is the number of algorithms returned by the local erasure list-decoder. Let
y' € {0, 1}" be the first n bits from the left in the decoding, using T}, of the encoded part of x. We will
show that the algorithm discards k with high probability. We split the analysis into two cases.

Case I: Suppose we need to change at least % nonerased points in the plain part of x for it to

become s repetitions of y’. We show that in this case, Steps 4-7 discard k with probability at least %. A
point (i— 1)n+afori € [s]and a € [n] is called a witness if x[(i— 1)n+a] #L and x[(i— 1)n+a] # y'[a].
Since we need to change at least € - sn/3 nonerased points in the plain part of x for it to become s
repetitions of y’, there are at least € - sn/3 witnesses in the plain part of x. In each iteration of Steps 4-7,

£-sn

the point selected is a witness with probability at least s % Thus, the probability that Algorithm 2

does not find a witness (and does not discard k) in [%;—gL] iterations is at most
9logL 3log(10)-log(L) 1
(1-5) " <(1-%) <
3 3 10L

where we have used the inequality 3 log(10) < 9.

Case II: In this case, we assume that we can change less than ¢ - sn/3 nonerased points in the plain
part of x and make it s repetitions of y’. Then, by Claim 4.10, y’ is £ /3-far from Ry . Let &’ = g By
Claim 4.6, for every proof z € {0, 1}7™, the algorithm V (from Claim 4.6), on input £’ and oracle
access to y'orxr (obtained via Ty), rejects (causing k to be discarded) with probability at least 2 /3. Thus,
the probability that tester fails to discard k in [4 log L] independent iterations of Steps 8—10 is at most

4logL (3/2)-1og(10)-log(L)
@—g) s@—%) <L
3 3 10L

Therefore, the probability that the tester fails to discard k is at most ﬁ + ﬁ < i By the union
bound, the probability that Algorithm 2 fails to discard some k € [L] is at most 1/5. Thus, conditioned
on the event E that the number of queries made by the tester does not exceed its query budget, with
probability at least 4/5, the tester rejects.

We now bound the probability of the event E. For this, we calculate the expected number of queries
made by Algorithm 2. The number of queries made in Step 2 is at most g. For all k € [L], the expected
number of queries that each invocation of the algorithm 7, makes is at most g. Hence, the expected
number of queries made in Steps 4—7 is at most L - < [%Tgﬂ . q) .

By Claim 4.6, the number of queries made by the algorithm V (from Claim 4.6) on input &’ = %
and oracle access to Ty, is at most %, where C is the constant in the O notation of Claim 4.6. Thus,
the expected number of queries made in Steps 8—10 by Algorithm 2 is at most L - ( [4logL] - q- 35) .

Therefore, the expected total number of queries made by the tester is at most

q+qL- <[910gL—| + [4loglL] - 3£C>

3

Hence, the probability that the number of queries exceed Q (as defined in Algorithm 2) is at most 1/10
by the Markov’s inequality. Thus, the probability that the tester accepts x that is e-far from P is at most
1/10+1/5<1/3.
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Remark 4.11.  'We point out that the local erasure list-decoder (Algorithm 1) used in Algorithm 2
can be replaced by the local erasure list-decoder obtained by applying Observation 5.4 to the
Goldreich-Levin theorem by incurring only a constant factor loss in the query complexity of
Algorithm 2.

Lemma 4.12. Let ¢* € (0,1) be as in Lemma 4.2. For every a € (%, 1) and € € (a, e* — %),

the query complexity of (a, €')-tolerant testing P on strings of length N is Q(log N).

Proof. LetR,e* € (0,1)beasin Lemma4.2. We will prove the lemma by showing a reduction from
e*-testing of Ry, . Fix n € N and let p(n) and N be as in Definition 4.7. Let s denote (;i* -1)- 2“:")

Consider a string y € {0, 1}" that we want to £*-test for Ry . Let x € {0, 1} be the string where
the first sn bits of x are s repetitions of y and the remaining bits are all Os. Recall that we refer to the
substring x[1 ... sn] as the plain part of x and the substring x[sn + 1 ... N] as the encoded part of x.

Assume that A is an («, €')-tolerant tester for . We now describe an £*-tester A’ for R 4, that has
the same query complexity as A. Given oracle access to y € {0, 1}", the tester A’ runs the tester A on
the string x € {0, 1}" and accepts if and only if A accepts, where x is constructed from y as described
above. Observe that one can simulate a query to x by making at most one query to y.

We will show that if y € R, , then x is a-close to P. Observe that the encoded part of x needs to
be changed in at most a 1/2 fraction of its positions in order to make it the encoding of a string yor,
where 7 is a proof that makes a PCP of proximity for testing R, accept. This follows from the fact that
the normalized weight of every nonzero codeword in the Hadamard code is 1/2. Thus, the fraction of
bits in x that needs to be changed in order to make it satisfy 7 is at most % L %, which is less
than a. Therefore, by definition, A’ will accept x with probability at least 2/3.

Assume now that y is £*-far from R . Then x needs to be changed in at least £* - sn positions to

make it satisfy P. Since sn/N = (1 — %) as observed above, the relative Hamming distance of x from
P is at least E*% = ¢* — € That is, x is (¢* — %)-far from P. Hence, for all ¢/ < £* — %, we
have that A will reject x with probability at least 2/3, and therefore A’ will reject y with probability at
least 2/3.

Thus, we have shown that the query complexity of («, €’)-tolerant testing P is at least the query
complexity of £*-testing R, . Hence, the query complexity of (a, £")-tolerant testing P is Q(n), which
is equal to Q(log N). n

Proof of Theorem 1.9. Theorem 4.1 states that, for certain ranges of parameters a, &, € (0, 1)
and for large enough N € N, the property P on binary strings of length N, is a-erasure-resiliently
e-testable, but is not (a, €’)-tolerantly testable. To prove Theorem 1.9, we need to show the existence of
a,e € (0, 1) such that the property P on binary strings of length N is a-erasure-resiliently e-testable,
but is not (a, @ + €)-tolerantly testable. In other words, the constraints imposed on a, €, €’ must have a
solution for the setting of ¢’ = ¢ + a.

e =a+e<e* —(e%)/4

For every 0 < e* < 1/100, the value * — (¢*)? /4 is strictly greater than £* — £* /400 = 399¢* /400.
For @« = €*/6 and ¢ = 4¢* /5, which satisfy the first two inequalities, we can see that « + £ =
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29e* /30 < 399¢* /400 < £* — (€*)? /4. Thus there exists a, € € (0, 1) satisfying a + £ < 1 such that
P is a-erasure-resiliently e-testable, but not (a, a + €)-tolerantly testable. Theorem 1.9 follows. [

5 | APPROXIMATE LOCAL ERASURE LIST-DECODING

In this section, we prove the existence of an approximate locally erasure list-decodable code
(ALLEDC) with inverse polynomial rate. Our starting point is an ALLDC due to Impagliazzo, Jaiswal,
Kabanets, and Wigderson [41]. To this code, we apply an observation that every ALLDC that works
in the presence of errors also works in the presence of twice as many erasures (with the same parame-
ters up to constant factors). This gives us the required ALLEDC that we later use for our strengthened
separation.

Theorem 5.1 ([41] as restated by [9]). Foreveryy,f > 0, there exist a number f(y, f) > 0 and a code
family {Cy. : FX — ]Ff PR bren thatis (v, B, 0(1°g(1/ 4 )) 0( - ))-approximate locally list-decodable.

For the sake of completeness, we state and prove the observation that every ALLDC that works in
the presence of errors also works in the presence of twice as many erasures (with the same parameters
up to constant factors).

Observation 5.2. If a code family {C; : F’§ — I lien is (@, f, g, L)-approximate locally
list-decodable, it is also (2a, f3, 4q, 4L)-approximate locally erasure list-decodable.

Proof.  Consider a codeword w € (I, U {1})" with at most 2« fraction of erasures. Let A be an
(a, f, q, L)-approximate local list-decoder for Cy. Assume without loss of generality that the success
probability of A is at least 5 /6. This can be ensured by running A twice and outputting the concatenation
of lists obtained in both iterations (the resulting algorithm succeeds if one of the iterations succeed).
The approximate local erasure list-decoder A’ for C;, first runs A on the word wy obtained by replacing
each erasure in w with a 0, and then on the word w; obtained by replacing each erasure in w with a 1.
The list output by algorithm A’ is the concatenation of lists output by A in these two executions. Let E,
be the event that the first execution of A succeeds and E, be the event that the second execution of A
succeeds. Each codeword w' = Ci(y') that agrees with w on all the nonerased points agrees with either
wo or wy in at least 1 — a fraction of points. In other words, for b € {0, 1}, if b is the value that w' takes
in least half the erased points in w, then w’ and w;, disagree on at most an « fraction of points. If E; N E;
holds, there exists an algorithm in the list output by A’ that implicitly computes (see Definition 1.1) a
string y” that is f-close to y’. The probability of failure of A’ is at most Pr{E; U E,] < % Hence, A’ is
a (2a, f,4q,4L)-approximate local erasure list-decoder for Cy. n

Applying Observation 5.2 to Theorem 5.1, we get the ALLEDCs that we need.

Lemma 5.3. Let C3 > 0 be a constant. For every y, > O, there exist a number f(y, ) > 0 and a
code family {Cy. - {0, 1Y@, that is (v, B, C?(l‘l’é% ) . 7)2) approximate locally erasure
list-decodable.

The following is a corollary of Observation 5.2.

Observation 5.4. If a code family {C; : ]F’g — I} }ren is (a, g, L)-locally list-decodable, it is also
(2a,4q,4L)-locally erasure list-decodable.
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6 | STRENGTHENED SEPARATION

In this section, we describe a property P’ that can be erasure-resiliently tested using a constant number
of queries, but for which every tolerant tester has query complexity n*, and prove Theorem 1.10.
The following theorem implies Theorem 1.10.

Theorem 6.1.  There exists a property P’ and constants €* € (0, 1), ¢y > 1 such that,
_e&
57 600-c,
resiliently e-tested using O(é) queries.

e Forevery e € (%, 1) and a € (0, ) such that « + € < 1, property P' can be a-erasure-

£* ' 28 800-c,-e* ’ /
o [ _— —2 - for P
or every a € (57 600-c2+2£*’ 1) and €' € <a, 28 800-c,+e* , every ((1,6 ) tolerant tester for on

inputs of length N has query complexity N1,

6.1 | Description of the separating property P’

The property P’ is very similar to the property P that we used in our first separation (see
Definition 4.7). Like a string that satisfies P, a string that satisfies P’ can also be thought of as consist-
ing of a plain part (that contains the repetition of a string y € R, ) and an encoded part. The encoded
part of a string in P is the Hadamard encoding of a string yox, where z is a proof that makes the
algorithm V from Claim 4.6 accept. However, the encoded part of a string satisfying P’ is the encoding
of a string #’, where ' is a proof (whose length is asymptotically equal to |r|) that makes a “smooth”
PCPP accept. In addition, the encoding uses an ALLEDC (from Section 5) instead of the Hadamard
code.

We first describe the “smooth” PCPP used in our construction. The following lemma by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [10] and Guruswami and Rudra [37, Lemma 5]
states that algorithms making nonadaptive queries can be transformed into algorithms that make nearly
uniform queries.

Lemma 6.2 ([10, 37]). Let n € N. Consider a nonadaptive algorithm T that gets oracle access to
strings from {0, 1}". There exists a mapping o7 : {0,1}* — {0,1}" and an algorithm T’ satisfying
the following:

e For every x € {0,1}", the distribution on outcomes of T with oracle access to x is identical to
the distribution on outcomes of T' with oracle access to @7(x). Moreover, 3n < n' < 4n, and the
number of queries that T' makes to @7(x) is at most twice the number of queries that T makes to x.

e Upon oracle access to xt € {0,1}", each query of T' is to location j € [n'] with probability at
most 2/n’.

Combining Lemma 4.4 with Lemma 6.2 (along with the fact that R = {R, }.ex can be decided
using linear-sized circuits), we get the required “smooth” PCPP for R.

Lemma 6.3 (Smooth PCPP). Let ¢; > 0,c; > 1 be fixed constants. Let n € N. The property Ry,
has a PCPP V that works for all € € (0, 1], gets oracle access to an input y of length n and a proof
7 of length at most cin - poly logn, and makes at most % queries. Moreover, the queries of V are
nonadaptive and satisfy the following:

e cach query V makes to y is to any particular location of 'y with probability 1/n;
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e cach query V makes to x is to any particular location of r with probability at most 2/|x|.

Proof.  Let ¢ > 0 be the constant from Claim 4.6. Consider the algorithm V’ guaranteed by
Lemma 4.4 for the property R . The algorithm V' gets oracle access to the concatenation of an input
y € {0, 1}" and a proof z/ € {0, 1}7'™, where p'(n) < cn - poly log .

We now describe an algorithm V”’ that, on oracle access to a string yox”’, where y € {0, 1}" and
x" € {0,1}"*7'™ _and does the following:

1. Sample a uniformly random i € [n] and reject if y[i] # ="' [i].
2. Simulate V' with oracle access to #” and reject if V' rejects.
3. Accept if neither of the above events happen.

We prove the following claim about the algorithm V.

Claim 6.4. V" is an algorithm satisfying:

o if y € Ry, then for some proof n”, the algorithm V' always accepts yox"';
o if y & Ry, then for every n”’, the algorithm V' rejects yor'' with probability proportional to the
relative Hamming distance of 'y from Ry .

Proof.  Assume y € Ry . There exists a proof z’ of length at most cn - polylogn such that the
algorithm V' accepts when given oracle access to yor’. Therefore, algorithm V"’ accepts if given oracle
access to yox”', where z'' = yor'.

Next, assume that y & R . Let 6 be the relative Hamming distance of y from Ry, . Fix #/1 €
{0, 1}7'™_ Let ¢’ be the relative Himming distance of y from the string y’ obtained by considering the
first n bits of z”. Step 1 of the algorithm V" rejects with probability §’, since, for a uniformly random
index i € [n], we have that y[i] # y'[i] with probability §'. If §' > /2, then Step 1 of algorithm V"
rejects with probability at least §/2. If 6’ < 6/2, then the relative Hamming distance of y’ from R,
has to be greater than 6 /2; otherwise, the distance of y from R, is less than 6, which is a contradiction.
If y’ has distance at least 6/2 from R , for every string z € {0, 1}/ @ that forms the last p’(n) bits of
7", the algorithm V’ with oracle access to z”/ = y' oz rejects with probability (). That is, Step 2 of
V" rejects with probability Q(5). n

We can think of V" as running two algorithms V; and V5, where V| makes the input queries of V"’
and V, makes the proof queries of V. We observe that the query distribution of V is uniform over the
input part. By applying Lemma 6.2 to V, we obtain a mapping ¢ : {0,1}* — {0, 1}* and an algorithm
V} such that each query of V} is to a particular location in the string @(z") with probability at most
2/|@(x")|. By Lemma 6.2, we also have: |p(x")| < 4|z"|.

Let p(n) denote |@(z"")|, where z/ € {0, 1}"*7'™_ Consider the algorithm V"’ that runs V; and V}
using a common random string with oracle access to a string yoz, where y € {0,1}" and z € {0, 1}/,
and rejecting whenever V" rejects based on the query answers. In addition, V"’ also rejects if the
answers to its queries to z are not consistent with any string in the image of ¢. Observe that V"’ can
check this condition, since it completely knows the mapping ¢, which is fully determined by V, (by
Lemma 6.2).

If y € Ry,, then there exists a proof z” such that V" accepts yoz”, implying that for the same
", the algorithm V"'’ accepts yox, where 7 = ¢(z”). If y & R, , then for every proof z”, the
algorithm V" rejects yor”” with probability proportional to the relative Hamming distance of y from
R, . This implies that for every proof 7, the algorithm V" " rejects yorr with probability proportional
to the relative Hamming distance of y from Ry .
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On input € € (0, 1), the algorithm V guaranteed by the statement of the lemma repeats for (1 /¢)
time, the algorithm V"”’. The acceptance and rejection guarantees of V are immediate. Note also that
the distribution of a single input or proof query does not change by repetition. The lemma follows. =

The following is the definition of our separating property P’. Note that the encoded part of a string
satisfying P’ contains the encoding of a proof as well as the complement of that encoding. This is done

in order to equalize the number of Os and 1s in the encoded part.

Definition 6.5 (Separating property P’). Let R, {Ry }sex and €* € (0, 1) be as in Lemma 4.2. Let

. *
c1 > 0,cp > 1beasinLemma 6.3. Let c3 > Obe asin Lemma 5.3. Let m = w, y = %+ ﬁ,
£ -Cy
*
and f= ——F—————.
.. c3
9000¢,-|In - |

For n € N, let p(n) < ¢ - n - polylog n denote the length of a valid proof that makes the
algorithm V from Lemma 6.3 accept. Let f(-,-) be as in Lemma 5.3. Let C = {C}ien be the
. B, %ﬁ){’” (7=5)-ALLEDC from Lemma 5.3.

A string x € {0, 1}" of length N = (m+1)-2f(y, ) - (p(n))° satisfies P’ if the following conditions

hold:

1. The firstm-2f(y, B)- (p(n))° bits of x (called the plain part of x) consist of m - Zf(yﬂ)ni(p(”))s repetitions
of astring y € {0, 1}", where y € Ry, of length n.

2. The remaining 2f(y, ) - (p(n))’ bits of x is called the encoded part. Its first half is the encoding,
using C, of a string = € {0, 1}™ such that the PCPP V in Lemma 6.3 accepts when given oracle
access to yox. The second half of the encoded part is the complement of its first half.

6.2 | Proof of strengthened separation

In this section, we prove Theorem 6.1. Lemmas 6.6 and 6.10 together imply the first and second parts
of Theorem 6.1, respectively. The high level idea of the proof of Lemma 6.6 is very similar to that of
Lemma 4.8. The differences arise mainly because of the way the encoded parts of strings satisfying P
and P’ differ. The erasure-resilient tester for P could first check whether the plain part is a repetition of
the “decoded input,” and then check whether the “decoded input” is in R with the help of the “decoded
PCPP proof.” Since the encoded part of P’ is the encoding of just a PCPP proof, this is not possible.
Instead, the erasure-resilient tester for P’ samples a uniformly random point u from the plain part and
uses the “block” from which u is obtained as a “candidate input” y. It then checks whether the plain
part is a repetition of y and also checks whether y € R using the “approximately decoded proof.” In
case a string is a-erased and e-far from P’, we show that the “candidate input” y that we sample is
ca-erased and ¢’e-far from R, for some constants ¢, ¢’. Hence, the smooth PCPP verifier rejects.

Lemma 6.6. Let ¢* € (0,1) be as in Lemma 4.2 and ¢, > 1 be as in Lemma 6.3. For every € €

(%, 1) and a € (O, 5 200 - ) such that a + € < 1, the property P’ is a-erasure-resiliently e-testable
¢

using 0( ) queries.

1
€

Proof.  We first show that Algorithm 3 accepts, with probability at least 3/5, strings satisfying P’
and rejects, with probability at least 3/5, strings that are e-far from P’. The success probability can be
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Algorithm 3. Erasure-resilient tester for separating property P’

Input: a,e € (0,1),N = (n+1)-2f(, p) - (p(n))’; oracle access to x € {0, 1, L}V

2f(}’sﬂ)'(P("))5’ q < G lof(léﬁ) i3 .
n (1-y) (1=y)

> Set the query budget Q « 30 - ([462] + L[6In6L] - C;Zj -q).

>Sets <« m- ,and L «

1: Accept whenever the number of queries exceeds Q.

> Steps 2-7 check that the plain part of x is the repetition of a string y € {0, 1}".

: repeat [4;2] times:

Sample a uniformly random point « from the plain part.

if x[u] #1 then
Leti€[s],a€ [n]besuchthatu=(G—-1)-n+a.
Repeatedly sample j € [s] uniformly at random until x[(j — 1)n + a] #L.
Reject if x[u] # x[(j — Dn + a].

N R RN

> In order to query the ith bit of the encoding, we query the ith bits of both the first and
second halves of the encoded part.We set the ith bit of the encoding to the ith bit of the
first half if that is nonerased, and to the complement of the ith bit of second half if that is
nonerased.If both are erased, we set the ith bit of the encoding to L.

8: Run the decoder for the (v, f, g, L)-ALLED code (from Lemma 5.3) with oracle access to the
encoded part of x.
> Let A}, A,, ..., AL be the list of algorithms returned in the above step.
> Steps 9-14 check that y € Ry using the smooth PCPP V (from Lemma 6.3) on decoded
proofs.

9: for each k € [L] do

10: repeat [61n6L] times:

11: Sample i € [s] uniformly at random.

12: Run the smooth PCPP V with proximity parameter %, and oracle access to the concate-
nationof x[(i — 1) -n+ 1, ...,(i — 1) - n + n] and the string decoded by 7.

13: Discard the current & if all query answers to V are nonerased and V rejects.

14: Reject if every k € [L] is discarded; otherwise, accept.

amplified by to 2/3 by repeating Algorithm 3 a constant number of times and returning the majority
decision.
The erasure-resilient tester is presented in Algorithm 3. Let m denote 282# Lety = % +

£*

57 600-c,’
— e _ c3log(1/p) _ G . . N
= ——F————,9g =22 and L = . For n € R, consider a string x € {0, 1}", where
s 9000c,|In -1 | 1 (1= (1= g (.13
N=m+1)-2f(y,p)- (p(?))5 . The plain part of x is m times larger than the encoded part. Let s denote
2 @.B)-(p()

the number m - -

Assume that x satisfies P’. Since x satisfies P’, the plain part of x is completable to the repetitions
of y for some y € Ry, . Therefore, Steps 2-7 do not reject. By the definition of 7’, the first half of the
encoded part of x is the encoding (using the (y, f, g, L)-ALLED code C from Lemma 5.3) of a string
z(y) € {0,1}P™ such that the smoothed PCPP V with oracle access to yoz(y) always accepts. The
second half of the encoding is completable to the complement of the first half. The fraction of erasures
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in the encoded part (even if all of the erasures were there) is at most (m+ 1)a. Therefore, the fraction of
erasures is at most (m+1)-a < % + ﬁ = y in either the first half or the second half of the encoded part.

By the definition of a (y, 8, ¢, L)-ALLED code, with probability at least 2/3, one of the algorithms
Ty,T,, ... , Ty returned by the approximate local list-decoder provides oracle access to z(y) with at
most a f fraction of errors. Let T be that algorithm. The tester discards this k only if an erroneous
point is queried in some iteration of Steps 10—13. Since each proof query of V (in Step 12) is made
to a specific index in the proof with probability at most 2/|p(n)| and the string decoded by T} is
f-erroneous, by the union bound over queries of V, the probability of V querying an erroneous point in
some iteration of Steps 10-13 is at most 6 - [In6L] - 2 - C;Z:, where we used the fact that [6In6L] <
6- [In 6L]. Now, the tester makes a wrong decision only if either (1) the approximate local list-decoder
fails (which happens with probability at most 1/3), or (2) if the approximate local list-decoder succeeds
but Steps 10-13 discard k. Hence, by the union bound over the two events, the probability that the
tester makes a wrong decision is at most % +2-6-[In6L] - ‘;Zj -p < %, where the inequality follows
from our setting of f. Hence, Step 14 rejects with probability at most 2/5. That is, the tester accepts x
with probability at least 3/5.

Assume now that x is e-far from P’. Let N} denote the set of nonerased points in the plain part
of x. Let N, denote the set of nonerased points in the encoded part of x. Let a1 denote the fraction
(with respect to s - n, the length of the plain part) of erased points in the plain part. u

Let E denote the event that the number of queries made by the tester does not exceed the query
budget Q. In what follows, we upper bound the probability that Algorithm 3 accepts, conditioned on
E. We prove later, in Claim 6.9, that Pr[E] < 1 /30.

Let &5 denote the fraction of points (with respect to s-n, the length of the plain part) in the plain part
whose values need to be changed in order to make the plain part a repetition of some string y € {0, 1}".
LetS, ={(i—1)n+a : i€ [s]} for all a € [n]. We use the term ath segment to refer to the set S,. For
all a € [n], we have |S,| = s. Foralla € [n], let a, = |{u € S, : x[u] =L1}|/s denote the fraction of
points in S, that are erased. Let N, C S, denote the set of nonerased points in the ath segment.

Case I: The plain part of x is £ /144-far from being the repetitions of every y € {0, 1}".

For a € [n], let £, denote the smallest fraction of points in S, whose values need to be changed in
order to satisfy x[u] = x[v] for all u,v € N,. For every a € [n] and u € N, the number of v € N,
such that x[u] # x[v], is at least g, - 5. It is immediate that g - s - n = Zue[n] E4° 8.

Let F denote the event that the tester rejects in a single iteration of the loop in Steps 2—7. Let G, for
all a € [n] denote the event that the tester samples a nonerased point u from S, in Step 3. Conditioned
on G,, the number of nonerased points in S, that make the tester reject is at least g, - s. Putting all this
together, we have,

PrF|E] = ) Pr{G,|E] - Pr{F|G,E] = ) Us\/—nl et= Y L, = g > ——.

a€ln] a€ln]

Therefore, conditioned on E, in at least 432 /¢ iterations, the tester will reject with probability at
least 19/20. Hence, in Case I, the algorithm accepts with probability at most % +Pr{E] < 2—10 + % < %
where we prove later (in Claim 6.9) Pr[E] < 1/30. Thus, the algorithm rejects with probability at least
3/5.

Case II: The plain part of x is £ /144-close to being repetitions of a string y* € {0, 1}".

We first show that y* has to be far from R, .

Claim 6.7.  The string y* is € /2-far from Ry, .



662 RASKHODNIKOVA ET AL.
WILEY

Proof.  Otherwise, one can transform the entire plain part of x to (be completable to) repetitions of
y* by making at most sn - ﬂ <N- m changes This can then be transformed to repetitions of a string
in Ry, by making at most sn - % <N- 5 changes. Thus, the string x can be made to satisfy P’ by

making at most N - (ﬂ +i+ —) changes, where the term Ll accounts for the number of changes

28 soo 144 71
9 5 2 - Hence, - < ﬁ and,

therefore, N - (ﬂ + i+ —) < eN. Thus, the string x can be made to satlsfy P’ by maklng less than

€N changes. This is a contradrction. [

in the encoded part. Since £ > ? and ¢, > 1, we have that m =

LetB; = {(i—1)n+a : a € [n]} foralli € [s]. We use the term ith block to refer to the set B;. For all
i € [s], we have, |B;| = n. Leta; = M for all i € [s] denote the fraction of points in B; that
are erased. Let \V; C B; denote the set of nonerased points in the ith block. Let ¢; for all i € [s] denote
the fraction of points in B; whose values need to be changed in order to satisfy x[(i — )n + a] = y*[a]
for all @ € [n]. In other words, &;n is the smallest number of points in N; that need to be changed in
order for the ith block to be completable to y*.

Fix k € [L]. We show that Algorithm 3 discards k with high probability. Consider a single iteration
of the repeat-loop in Steps 11-13. Let ¥’ denote the (partially erased) string represented by the block
that Algorithm 3 samples in Step 11. Let G; denote the (good) event that y’ is £ /6-close to y*. Let G,
denote the (good) event that y' has at most 48« fraction of erasures. We first evaluate the probability
that the tester discards k in Steps 11-13 conditioned on G; and G,.

Claim 6.8.  Conditioned on G| and G,, the string y' is 24¢ [ 75-far from R, .

Proof.  Lety” be a string in Ry closest to y’. Let d denote the number of nonerased bits in y’ that
need to be changed in order for it to be completable to y’. By our conditioning, y’ is a 48a-erased
string that is £ /6-close to y*. Thus, one can convert y* into y’ and then y’ into y’ ! by modifying at most
48an + ﬂ + d bits in y*. Since y* is £/2-far from Ry , we get thatd > = — f — 48an. From the
restrlctlons on a and ¢, one can verify that for all settings of these parameters we have « < ——, which

0 = 3600
implies that d > ==

The smooth PCPP V, with proximity parameter %, is run on y’ and the proof decoded by T}. Let
B, denote the (bad) event that the PCPP V obtains an erased bit as the answer to some query. Let B;
denote the (bad) event that V accepts. By Lemma 6.3, V makes 2= 2 4 querres and each query of V to
the input part is made to each of the n input indices with probability 1/n. Hence Pr[B; |E, G1, G,], the
probability that some input query is made to an erased point, is at most 05475 - 48a.

The probability that the V accepts (even if there were no erased query answers) is Pr[B; |E, G, G3]
and is, by Definition 4.3, at most 1 /3. Thus, the probability that the smooth PCPP accepts, conditioned
on E, Gy, and Gy, is by the union bound, at most

75 11
e Wat3zsots

w\»—

where the inequality follows from our setting of € and a.

To bound the probability that the PCPP accepts in a single iteration of Steps 11-13, we now evaluate
Pr[G,] and Pr{G,]. Let the random variable X denote the relative Hamming distance of y’ from y*.
Then,

1 £
EIX]= X\~ &i=ep < 1
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By Markov’s inequality,
Pr[G,] = Pr [X > %] < E[X]/(¢/6) < 1/24.

To bound Pr[G,], let the random variable ¥ denote the fraction of erasures in y'. We have that

E[Y] = Z% = .

iels]

Even if all the erasures were in the plain part, a, < % <a-(1+ i). Again, by an application of
Markov’s inequality, we get

IE[Y]
< — < .
Pr[G,] = Pr[Y > 48a] < 18 = 48 <1/24

Therefore, conditioned on E, the probability that the PCPP accepts in one iteration of Steps 11-13 is
at most

Pr[B||E, Gy, G,] + Pr[B,|E, Gy, G3] +PI‘[G2] +PI’[G1] < L + - ! + i +

1.2
2473724 2473

That is, conditioned on E, for a fixed k € [L], in [6In 6L] independent repetitions of Steps 11-13, the
[61n6L]
probability that the PCPP does not discard & is at most (1 - 5) <3 61L2

E, the probability that for some k € [L], Steps 10—13 accepts is, by the union bound, at most 1 / (36L).

Thus, if x is in Case II, the probability that the tester accepts is at most, et Pr[E] < %—L + % < i

where Claim 6.9 shows that Pr[E] is at most 1/30, which then completes the proof of Lemma 6.6.

. Hence, conditioned on

Claim 6.9.  The probability that Algorithm 3 exceeds its query budget is at most 1/30.

Proof. We first compute the expected number of queries that the tester makes Lemma 6.3 implies
. Hence, the number of

cz 75

queries made in Steps 9-13 is at most L[61In 6L]
and list size of the approximate local list-decoder, respectrvely

We now calculate the expected number of queries made from Steps 3—7. Let Y denote the number
of queries made in a particular iteration of Steps 3—7. The variable Y is nonzero only if the sampled
point u is nonerased. To calculate E[Y]:

- q, Where q and L are the query complexity

my= Y el Loy e 1y

a€(n] sn - ®a a€(n] — U

Hence, the expected number of queries made by the tester in Steps 2—7 is [%1 . Hence, setting Q to

30- ( [432] +L[6In6L] - Lz B, ), and applying Markov’s inequality, one can see that Pr[E] < 1/30s

Next, we show that it is hard to tolerant test P’. The proof of Lemma 6.10 is identical to the proof
of Lemma 4.12 up to change in parameters.
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Lemma 6. 1(). Let e* € (0,1) be as in Lemma 4.2 and ¢y > 1 be as in Lemma 6.3. For every

28 800-c-e* e O(NO2
1 ' DI ) every (a, €)-toler r for P’ requires (N
a € (57 600c2+2£*7 ), and €' € | «, 28 800crer ) EVETY (a, €’)-tolerant tester fo equires Q(N"~)
queries.

Proof.  Let X be as in Lemma 4.2 and let n € R. We will prove the lemma by showing a reduction
from £*-testing of Ry, Let N and p(n) be as in Definition 6.5. Let s denote m - 2f(y, §) - (p(n))’ /n.

Consider a string y € {0, 1}" that we want to e*-test for Ry . Let x € {0, 1} be the string where
the first sn bits of x are s repetitions of y and the remaining bits are all Os. We refer to the substring
x[1 ... sn] as the plain part of x and the substring x[sn + 1 ... N] as the encoded part of x.

Assume that A is an («a, €’)-tolerant tester for P’. We now describe an £*-tester A’ for R4, that has
the same query complexity as A. Given oracle access to y € {0, 1}", the tester A’ runs the tester A on
the string x € {0, 1}V (as constructed from y above) and accepts iff A accepts. Observe that one can
simulate a query to x by making at most one query to y.

We will show thatif y € Ry, , then x is a-close to P’. Observe that the encoded part of x needs to
be changed in at most a % fraction of its positions in order to make it the encoding of a string 7, where
7 is a proof that makes a smooth PCPP for testing Ry (as guaranteed by Lemma 6.3) accept. This
follows from the fact that the encoded part of every string that satisfies the property contains an equal
number of 0s and 1s. Thus, the fraction of bits in x that needs to be changed in order to make it satisfy

L N—sn _ e* '
v =3 (m+ 5= 5o Tt which is less than a. Therefore, by definition, A" will

accept x with probability at least %

Assume now that y is e*-far from R . Then x needs to be changed in at least £* - sn positions to
make it satisfy P’. From this, one can observe that x is £* o ™__far from P’. Hence, forall ¢’ < &* %
we have that A will reject x with probability at least 2 /3, and therefore A’ will reject y with probability
at least 2/3.

Thus, we have shown that the query complexity of (a, £’)-tolerant testing P’ is at least the query
complexity of e*-testing R, . Hence, the query complexity of (a, €’)-tolerant testing P’ is (n), which
is equal to Q(N2). "

P’ is at most =

Remark 6.11. 'We would like to point out that the lower bound on the query complexity of tolerant
testing (from Lemma 6.10) can be improved if there exist approximate local erasure list-decodable
codes with larger rate. In other words, constant-query approximate local erasure list-decodable codes
with larger rate, when used in our above construction, directly imply an even stronger separation
between the query complexity of erasure-resilient and tolerant testing models.

Proof of Theorem 1.10.  From Theorem 6.1, we get the following constraints on a, €, €’

* *

€ € ) e* / 28 800 - cre*
- ca<—— > 2T
57 600 - ¢y + 2e* 57 600 - ¢, 8 28 800 - ¢y + &*

To complete the proof of Theorem 1.10, it is enough to find values of ¢, a that satisfy the above con-
straints, where we set ¢’ = ¢ + a. For sufficiently small £*, the upper bound on ¢ + « is strictly greater
than £* /2. So, it is enough to find € < £*/4 and a < £* /4 that also satisfy the first two conditions.
The existence of such ¢ and « is clear from the bounds imposed on them by the first two constraints.

|
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7 | LOCAL ERASURE-DECODING VERSUS LOCAL DECODING

In this section, we prove Theorem 1.12 and an observation that if a code is locally decodable, it is also
locally erasure-decodable up to (nearly) twice as many erasures. A part of our proof (Claim 7.2) uses
ideas developed Katz and Trevisan [42].

Definition 7.1 (Smooth locally decodable codes). A code family {C, : F} — Y} en is (g, 7)-smooth
locally decodable if there exists a nonadaptive (0, g)-local erasure-decoder A (see Definition 1.11) that,
given oracle access to an uncorrupted codeword w € FY, and an input i € [n], is such that, for all
J € [N], the probability that A queries j is at most 7.

It is easy to see that the following two claims imply Theorem 1.12.

Claim 7.2. For every a € [0,1), if a code family {C, : F} — IFIZV}”EN is (a, q@)-locally erasure-

decodable, then {C, : T3 — FY },en is (¢, n)-smooth locally decodable, where ¢' = 39, and n = %.

Claim 1.3.  For every a € [0,1), if a code family {C, . F} — IFIZV},,GN is (q, afIN)-smooth locally
decodable, then {C, : F3 — FY},en is (%q), 0(q))-locally decodable.
Proof of Claim 7.2. Let A be an (a, g)-local erasure-decoder for C,. Since A could be adaptive, for
every choice of random coins, the execution of A can be represented as a ternary tree, where each node
represents a query. The root represents the first query made by A. The three children of a non-leaf node
u represent the next points that A will query for the cases that the answers to the query u are 0, 1, or
1. The size of this tree is at most 3. Consider an algorithm A, that, after having generated its random
string r € {0, 1}*, queries all the points in the tree of execution of A on the string r. After obtaining
the answers to its queries, A; outputs the value at the end of the root-to-leaf path that matches with
the actual query answers. Note that there is exactly one such path. Therefore, A; is a nonadaptive local
erasure-decoder for C, that makes at most ¢’ = 37 queries and has the same success probability as A.
We now use A; to construct A,, a (¢, %)-smooth local decoder for C,. Consider an uncorrupted
codeword w = C,(x) for x € . For each i € [n], let ¢; < ¢’ denote the number of queries made by A,
on input i and let S; denote the set consisting of indices in [N] that get queried by A; (on input i) with
probability more than %. Fori € [n], k € [q;], itis clear that

Z Pr[kth query of A(l‘)(i) is to position j] = 1.
JEIN]

Hence, for each i € [n],

Z Z Pr{kth query of A{’(i) is to position j] = ¢; < ¢
JEINIkelg;]

From this, we have |S;| < @ - N. On input i € [n] and oracle access to w = C,(x), the algorithm A,
simulates A; in the following way. If A queries j’ € S;, the algorithm A, does not query j’ and assumes
that w[j’] =L. Thus, A; is a (¢, :—N)—smooth local decoder for C,. n

Proof of Claim 7.3. Consider a (g, aiN)—smooth local decoder A for C,. We will construct an
(1%1, 72q)-local decoder A’ for C,. Algorithm A’, on input i € [n] and oracle access to a word w with
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at most an 10’7(] fraction of errors, performs 72 independent repetitions of A and outputs the majority
value output among all the iterations.

Let x € I} be such that y = C,(x) is the codeword closest to w. If A is run on input i with oracle
access to y, then for at least a % fraction of the sequences of its random coin tosses, A returns x; correctly.
When A is run on input i with oracle access to w, by the union bound and the smoothness of A, at most
an %q -N - ﬁ = é fraction of sequences of its random coin tosses result in an erroneous position
being queried. Hence, the probability that A, on input i and oracle access to w, returns x; correctly is
at least % — é Hence, by a Chernoff bound, the probability that A’, which is obtained by running 72
independent iterations of A and outputting the majority answer, outputs x; correctly is at least 2/3. The
query complexity of A’ is 72q. [

The following observation is based on an idea suggested to us by Guruswami.

Observation 7.4. Every (a,¢)-LDC family {C, : F} — IF’2V Inen 1s also a — p, O(g))-locally

erasure-decodable, where p = O( \/% ).

Proof.  Consider an (a, g)-local decoder A for C, : I} — IFQ’ .Letw € (F, U {L})" be a codeword
with at most (2a — p)N erasures. Consider algorithm A’ that, on input i € [r] and oracle access to w,
runs A on input i € [n] and oracle access to w’, where w' is generated on the fly by filling in the erased
bits of w with 0 or 1 u.a.r. The expected Hamming distance of w' to the code is at most aN — gN .By
a Chernoff bound, the probability that the Hamming distance of w’ to the code is more than aN is at
most é The probability of failure of A’ is at most % One can amplify the success probability to 2/3
by performing 72 independent repetitions of A’ and outputting the majority answer. [
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APPENDIX A: TWO DEFINITIONS OF ERASURE-RESILIENT TESTING

In this section, we show that for constant a, e € (0, 1), the definition of a-erasure-resilient e-testing
model used in this article is equivalent to that defined by Dicxit et al. [19]. For convenience, we refer to
the former and latter definitions as the new and old definitions, respectively. We first describe the rejec-
tion condition of an erasure-resilient tester according to the old definition, which is the only difference
between the two definitions. For & € [0, 1) and € € (0, 1), an a-erasure-resilient e-tester for a property
P (of strings of length n) rejects, with probability at least 2/3, an a-erased string x € {0, 1, L}" if
every completion of x has to be changed in at least & - | N'| nonerased values in order for it to satisfy
P, where N denotes the set of nonerased points in x.

Claim A.1. Let a,e € (0,1) such that a« + € < 1. Let P be a property over strings of length n.
If T is an a-erasure-resilient e-tester for a property P with query complexity q(e, a, n) w.r.t. the old
definition, then T is also an a-erasure-resilient e-tester for P with query complexity q(g, a, n) w.r.t. the
new definition.

Proof.  Consider an a-erased string x € {0, 1, L}". If x satisfies P, then T accepts x with probability

at least 2/3. If x is e-far from P w.r.t. the new definition, then P is IEJ;;II -far from P w.r.t. the old

> g, the tester T, when run with parameters a and €, rejects x with probability at

&en
IV
least 2/3. Moreover, the query complexity of T remains the same. ]

definition. Since
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Claim A2. Leta,e € (0,1)and € = e(1 — a). Let P be a property over strings of length n. If T is
an a-erasure-resilient €' -tester with query complexity q(€’, a, n) for P w.r.t. the new definition, then T
is an a-erasure-resilient e-tester for P with query complexity q(e(1 — @), a, n) w.r.t. the old definition.

Proof.  Consider an a-erased string x € {0, 1, L}". If x satisfies 7, then T accepts x with probability
at least 2/3. If x is e-far from P w.r.t. the old definition, then P is eIV

- -far from P w.r.t. the new

definition. Since %N' > &(1 — ), the tester T, when run with parameters «’ = a and &’ = £(1 — a),
rejects x with probability at least 2/3. [



