
Received: 12 July 2019 Accepted: 14 October 2020 Published on: 7 July 2021

DOI: 10.1002/rsa.21031

R E S E A R C H A R T I C L E

Erasures versus errors in local decoding and
property testing

Sofya Raskhodnikova1 Noga Ron-Zewi2 Nithin Varma2

1Department of Computer Science, Boston

University, Boston, Massachusetts, USA
2Department of Computer Science, University of

Haifa, Haifa, Israel

Correspondence
Sofya Raskhodnikova, Department of Computer

Science, Boston University, Boston,

Massachusetts, USA.

Email: sofya@bu.edu

Abstract
We initiate the study of the role of erasures in local

decoding and use our understanding to prove a separa-

tion between erasure-resilient and tolerant property test-

ing. We first investigate local list-decoding in the pres-

ence of erasures. We prove an analog of a famous result

of Goldreich and Levin on local list-decodability of the

Hadamard code. Specifically, we show that the Hadamard

code is locally list-decodable in the presence of a constant

fraction of erasures, arbitrarily close to 1, with list sizes

and query complexity better than in the Goldreich–Levin

theorem. We further study approximate locally erasure

list-decodable codes and use them to construct a property

that is erasure-resiliently testable with query complexity

independent of the input length, n, but requires nΩ(1) queries

for tolerant testing. We also investigate the general relation-

ship between local decoding in the presence of errors and

in the presence of erasures.

KEYWORDS

erasures versus errors, Goldreich–Levin theorem,

Hadamard code, local decoding, property testing

1 INTRODUCTION

The contributions of this work are twofold: on one hand, we initiate the investigation of erasures in local

decoding; on the other hand, we apply our understanding of local list-decoding to study the relative

difficulty with which sublinear algorithms can cope with erasures and errors in their inputs.

A preliminary version [54] of this work has appeared in the proceedings of ITCS 2019.

640 © 2021 Wiley Periodicals LLC wileyonlinelibrary.com/journal/rsa Random Struct Alg. 2021;59:640–670.

http://crossmark.crossref.org/dialog/?doi=10.1002%2Frsa.21031&domain=pdf&date_stamp=2021-07-07

RASKHODNIKOVA ET AL. 641

Intuitively, a family of codes is locally decodable in the presence of a specified type of corruptions

(erasures or errors) if there exists an algorithm that, given oracle access to a codeword with a limited

fraction of specified corruptions, can decode each desired character of the encoded message with high

probability after querying a small number of characters in the corrupted codeword. In other words, we

can simulate oracle access to the message by using oracle access to a corrupted codeword. This notion

can be extended to local list-decoding by requiring the algorithm to output a list of descriptions of local

decoders. Intuitively, a family of codes is locally list-decodable in the presence of a specified type of

corruptions if there exists an algorithm that, given oracle access to a corrupted codeword w, outputs a

list of algorithms such that for each message x whose encoding sufficiently agrees with w, there is an

algorithm in the list that, given oracle access to w, can simulate oracle access to x. In addition to the

usual quantities studied in the literature on error-correcting codes (such as the fraction of corruptions

a code can handle, its rate and efficiency of decoding), the important parameters in local decoding are

the number of queries that the algorithms make to w and, in the case of local list-decoding, list size.

The notion of locally decodable codes (LDCs) arose in the 1990s, motivated by numerous appli-

cations in complexity theory, such as program checking [13, 24, 25, 49], probabilistically checkable

proofs [2, 3, 5, 53], derandomization [6, 59, 60], and private information retrieval [16]. LDCs that work

in the presence of errors have been extensively studied [5, 7, 8, 13, 20, 21, 24, 25, 53, 63]. The related

notion of locally list-decodable codes (LLDCs) has also received a lot of attention [8, 30, 32, 34, 39, 43,

45, 59] and found applications in cryptography [30], learning theory [46], average-to-worst-case reduc-

tions [15, 31, 48], and hardness amplification and derandomization [6, 59]. The literature on decoding

in the presence of erasures is too vast to survey here. List-decoding in the presence of erasures (with-

out the locality restriction) has been addressed by Guruswami [35] and Guruswami and Indyk [36]. In

particular, Guruswami [35] constructed an asymptotically good family of binary linear codes that can

be list-decoded from an arbitrary fraction of erasures with lists of constant size. Even though decod-

ing in the presence of erasures is an important and well established problem, local (unique and list)

decoding from erasures has only been studied from the perspective of hardness amplification where

the interest is in proving lower bounds on query complexity [4, 14, 33, 62].1

Motivated by applications in property testing [29, 58], we begin our investigation of effects of

erasures with local list-decoding. Our first result is a local erasure list-decoder for the Hadamard

code. Local list-decodability of the Hadamard code in the presence of errors is a famous result of

Goldreich and Levin [30]. However, (local list) decoding of the Hadamard code is impossible when

the fraction of errors reaches or exceeds 1/2. In contrast, we show that the Hadamard code is locally

list-decodable in the presence of any constant fraction of erasures in [0, 1). Moreover, the list size and

the query complexity for our decoder is better than for the Goldreich–Levin decoder: for our decoder,

both quantities are inversely proportional to the fraction of input that has not been corrupted, whereas

for the Goldreich–Levin decoder they are quadratically larger and are known to be optimal for that

setting. Thus, our Hadamard decoder demonstrates that a square-root reduction in the list size and

query complexity in local list-decoding can be achieved for some settings of parameters when we move

from errors to erasures.

The second thrust of our work, enabled by our local list-decoding results, is investigating the effects

of adversarial corruption to inputs on the complexity of sublinear-time algorithms. Understanding the

relative difficulty of designing algorithms that work in the presence of input errors and in the presence

1There is a related line of work on local list recovery [32, 40], where codeword positions are associated with sets of symbols. The

goal, given oracle access to such a codeword, is to output a list of codewords such that for each codeword in the list, the symbol

at each position is equal to one of the symbols from the set associated with that position. In these terms, an erased codeword

position corresponds to its associated set being equal to the alphabet.

642 RASKHODNIKOVA ET AL.

of input erasures is a problem of fundamental importance. The motivation of investigating adversarial

input corruption spurred the generalization of property testing, one of the most widely studied mod-

els of sublinear-time algorithms [26–28, 55, 57], to (error) tolerant testing [52] and erasure-resilient

testing [19].

Erasure-resilient property testing falls between (standard) property testing and tolerant testing.

Specifically, an erasure-resilient tester for a property, in the special case when no erasures occur,

is a standard tester for this property. Also, a tolerant tester for a property implies the existence of

an erasure-resilient tester with comparable parameters for the same property [19]. Fischer and Fort-

now [23] separated standard and tolerant testing by describing a property that is easy to test in

the standard model and hard to test tolerantly. Dixit, Raskhodnikova, Thakurta, and Varma [19]

showed that the property defined by Fischer and Fortnow separates standard property testing from

erasure-resilient testing in the same sense. Dixit, Raskhodnikova, Thakurta, and Varma [19] asked

whether it is possible to obtain a separation between erasure-resilient and tolerant testing.

In this work, we provide such a separation. Specifically, we describe a property of binary strings

that is easy to test in the erasure-resilient model, but hard to test tolerantly.

The key idea in our construction of the separating property is to encode sensitive regions of strings

(without which testing becomes hard) with an error correcting code. We need a code that exhibits a

difference in its local list-decoding capabilities for the same fraction of erasures and errors. Specifi-

cally, we want, for some constant 𝛼, q, and L, a code that can be decoded from an 𝛼 fraction of erasures

with q queries and lists of size L, but cannot be decoded from an 𝛼 fraction of errors. We first define a

property where the sensitive regions are encoded with the Hadamard code and show that it is testable

in the erasure-resilient model (with a constant number of queries), but is not testable tolerantly.

Next, we want to strengthen the separation to obtain a property that is testable with erasures, but

requires as many queries as possible to test tolerantly. In our construction, the lower bound on the

number of queries needed for tolerant testing is determined by the rate of the code. Since the Hadamard

code has low rate, we only get a polylogarithmic lower bound on the query complexity of tolerant

testing. To obtain a lower bound of nΩ(1), we would need a code of polynomial rate. The question of

whether there is a locally erasure list-decodable code (with constant 𝛼, q, and L) of polynomial rate

remains open. An LLDC with such parameters is the holy grail of research on local decoding.

We circumvent the above difficulty by starting out with a property of binary strings that has a

tester whose queries to a sensitive region of the input are nearly uniformly distributed. This implies

that testing remains easy even if a constant fraction of the sensitive region is corrupted. We construct

a new separating property by encoding the sensitive region using a code that is approximate locally
list-decodable from erasures, where an approximate locally list-decodable code (ALLDC) is defined

identically to an LLDC except that the algorithms output by a decoder for such a code simulate oracle

access to strings that are close to the original messages. We show that the resulting property can be

erasure-resiliently tested using a constant number of queries but needs nΩ(1) queries in order to be

tested tolerantly, thus obtaining a strengthened separation.

Next, we study the general relationship between local decoding in the presence of errors and in the

presence of erasures. One can observe that every LLDC that works in the presence of errors also works

in the presence of twice as many erasures (with the same parameters up to constant factors). We ask

if LLDCs or ALLDCs that work in the presence of erasures can have significantly smaller list sizes

and query complexity than LLDCs or ALLDCs of the same rate that work in the presence of errors.

We also prove that such a statement cannot hold for the case of local unique decoding: specifically,

we show that if a code is locally unique erasure-decodable, then there exists another comparable code

that is locally unique decodable (up to minor losses in parameters).

RASKHODNIKOVA ET AL. 643

1.1 Model definitions and our results

This section contains descriptions and definitions of the codes, decoding tasks, and property testing

models we study, and also statements and discussion of our main results.

1.1.1 Local erasure list-decoding and the Hadamard code

In this article, we restrict our attention to binary codes. A binary code is an infinite family of maps

{Cn ∶ F
n
2 → F

N
2 }n∈N. The parameter n is called the message length, N is the block length, and n∕N is

the rate of the code. Corruptions in codewords can either be in the form of erasures (missing entries,

denoted by the symbol ⟂) or in the form of errors (wrong values from F2).

Recall that a local list-decoder outputs a list of algorithms which give oracle access to decoded

messages or, in other words implicitly compute the decoded messages. This and the notion of local

erasure list-decoders are formalized in the following definitions.

Definition 1.1 (Implicit computation). An algorithm A is said to implicitly compute x ∈ F
n
2 if, for all

i ∈ [n], the algorithm A on input i, outputs the ith bit of x.

Definition 1.2 (Locally erasure list-decodable codes (LLEDCs)). A family of codes {Cn ∶ F
n
2 →

F
N
2 }n∈N is (𝛼, q, L)-locally erasure list-decodable if there exists a randomized algorithm A such that,

for every n ∈ N and every w ∈ (F2 ∪ {⟂})N with at most an 𝛼 fraction of erasures, the algorithm A
makes at most q queries to w and outputs a list of randomized algorithms {T1, T2, … , TL} such that

the following hold:

1. With probability at least 2∕3, for all x ∈ F
n
2 such that Cn(x) agrees with w on all nonerased bits,

there exists an index j ∈ [L] such that Tj with oracle access to w implicitly computes x.

2. For all j ∈ [L] and i ∈ [n], the expected number of queries that the algorithm Tj makes to w on

input i is at most q.

Item 2 in the above definition can be used to obtain a high probability worst-case bound on the

query complexity of the algorithms, by incurring a constant factor loss in the query complexity expres-

sion. The definition of an (𝛼, q, L)-LLDC is identical to Definition 1.2 except that the input word has

no erasures, and the list is required to contain, with probability at least 2∕3, algorithms that implic-

itly compute messages corresponding to codewords disagreeing with the input word on at most an 𝛼

fraction of bits. The celebrated Goldreich–Levin theorem [30] states that the Hadamard code, defined

next, is an LLDC that has an efficient decoder.

Definition 1.3 (Hadamard code). For a ∈ F
n
2, let Ha ∶ F

n
2 → F2 be defined as follows: Ha(x) =

(
∑

i∈[n] ai ⋅ xi) mo𝑑 2 for all x ∈ F
n
2. The Hadamard code, denoted by {n ∶ F

n
2 → F2n

2 }n∈N, is such

that for a ∈ F
n
2, the encoding n(a) is the string of evaluations of Ha over F

n
2.

Our first result is about the local erasure list-decodability of the Hadamard code. It is an ana-

logue of the Goldreich–Levin theorem [30] for corruptions in the form of erasures. We first state the

Goldreich–Levin theorem and then state our result.

Theorem 1.4 (Goldreich–Levin theorem [30]). There is a
(
𝛼,O(1

(1∕2−𝛼)2
),O(1

(1∕2−𝛼)2
)
)

-local
list-decoder for the Hadamard code that works for every 𝛼 ∈ [0, 1∕2).

644 RASKHODNIKOVA ET AL.

Theorem 1.5 (Local erasure list-decoder for Hadamard). There is a
(
𝛼,O(1

1−𝛼
),O(1

1−𝛼
)
)

-local
erasure list-decoder for the Hadamard code that works for every 𝛼 ∈ [0, 1).

The Goldreich–Levin theorem holds for any fraction of errors in [0, 1∕2). In contrast, our local

erasure list-decoder works for any fraction of erasures less than 1. However, it is impossible to decode

the Hadamard code in the presence of 1∕2 fraction of errors because every Hadamard codeword has

relative distance at most 1/2 from the all-zero codeword. Another improvement in Theorem 1.5 as

compared to Goldreich–Levin is in the list size and the query complexity: from Θ(1

(1∕2−𝛼)2
) to O(1

1−𝛼
).

Such an improvement is impossible if we are decoding against errors as opposed to erasures. Specif-

ically, for the list size, Blinovsky [12] and Guruswami and Vadhan [38] show that every list-decoder

for every binary code that is list-decodable in the presence of an 𝛼 fraction of errors must output lists

of size Ω(1

(1∕2−𝛼)2
). For the query complexity, Theorem 1.4 is also optimal, as shown by Ron-Zewi,

Shaltiel, and Varma [56] in a work subsequent to ours. Together with Theorem 1.5, these works give a

separation between errors and erasures in the context of local list-decoding. Moreover, it follows from

the works of Guruswami [35] and Ron-Zewi, Shaltiel, and Varma [56] that Theorem 1.5 is also optimal

for both the list size and query complexity.

Finally, Observation 5.4 states that every (𝛼, q, L)-LLDC is also an (2𝛼, 4q, 4L)-LLEDC. By com-

bining this observation with the Goldreich–Levin theorem, one can obtain a local erasure list-decoder

for the Hadamard code that works for every 𝛼 ∈ [0, 1) and has list size and query complexity Θ(1

(1−𝛼)2
).

However, we obtain quadratically better list size and query complexity in Theorem 1.5.

1.1.2 Separation between erasure-resilient and tolerant testing

We first describe the erasure-resilient and tolerant models of testing. A property  is a set of strings.

Given a string x ∈ {0, 1}n and a property  ⊆ {0, 1}n, the Hamming distance of x from  is equal

to the minimum, over y ∈  , of the Hamming distance between x and y. A string x ∈ {0, 1}n is 𝜀-far

(𝛼-close) from (to, respectively) a property  ⊆ {0, 1}n, if the Hamming distance of x from  is at

least 𝜀n (at most 𝛼n, respectively).

Definition 1.6 (α-Erased strings and completions). Given 𝛼 ∈ [0, 1), a string is 𝛼-erased if at most an

𝛼 fraction of its values are erasures (denoted by ⟂). A completion of an 𝛼-erased string x ∈ {0, 1,⟂}n

is a string y ∈ {0, 1}n that agrees with x on all the positions where x is nonerased.

Definition 1.7 (Erasure-resilient tester). An 𝛼-erasure-resilient 𝜀-tester [19] for a property  is a

randomized algorithm that, given parameters 𝛼 ∈ [0, 1), 𝜀 ∈ (0, 1) such that 𝛼+𝜀 < 1 and oracle access

to an 𝛼-erased string x, accepts with probability at least 2∕3 if x has a completion in  and rejects with

probability at least 2∕3 if every completion of x is 𝜀-far from .2 The property is 𝛼-erasure-resiliently
𝜀-testable if there exists an 𝛼-erasure-resilient 𝜀-tester for  with query complexity that depends only

on the parameters 𝛼 and 𝜀 (but not on the input length n).

For the special case with no erasures, that is, when 𝛼 = 0, we refer to the algorithm above as an

𝜀-tester.

2The rejection condition in this definition of erasure-resilient testing is differently parameterized than that in the definition due to

Dixit, Raskhodnikova, Thakurta, and Varma [19]. We use the current definition as it gives cleaner query complexity expressions

and is consistent with the definition of erasure-resilient graph property testing defined by Levi, Pallavoor, Raskhodnikova, and

Varma [47]. We refer the interested reader to Appendix A for a comparison of the two definitions.

RASKHODNIKOVA ET AL. 645

Definition 1.8 (Tolerant tester). An (𝛼, 𝜀′)-tolerant tester [52] for  is a randomized algorithm that,

given parameters 𝛼 ∈ (0, 1), 𝜀′ ∈ (𝛼, 1) and oracle access to a string x, accepts with probability at

least
2

3
if x is 𝛼-close to  and rejects with probability at least

2

3
if x is 𝜀′-far from  . The property

 is (𝛼, 𝜀′)-tolerantly testable if there exists an (𝛼, 𝜀′)-tolerant tester for  with query complexity that

depends only on 𝛼 and 𝜀′ (but not on the input length n).

Comparison of parameters

We remark that, while comparing the two models, one possibility is to compare (𝛼, 𝛼 + 𝜀)-tolerant

testing of a property  with 𝛼-erasure-resilient 𝜀-testing of  for the same values of 𝛼 ∈ [0, 1) and

𝜀 ∈ (0, 1) such that 𝛼 + 𝜀 < 1. The parameter 𝛼 in both models is an upper bound on the fraction of

corruptions (erasures, or errors) that an adversary can make to an input. An 𝛼-erasure-resilient 𝜀-tester

rejects with probability at least
2

3
if, for every completion of an input string, one needs to change at

least an 𝜀 fraction of the completion to make it satisfy  . Similarly, an (𝛼, 𝛼 + 𝜀)-tolerant tester rejects

with probability at least
2

3
if, for every way of correcting an 𝛼 fraction of the input values, one needs

to change at least an additional 𝜀 fraction of the input to make it satisfy  .

Separation

The following theorem states that there exists a property that is erasure-resiliently testable but is not

tolerantly testable. This proves that tolerant testing is, in general, harder problem than erasure-resilient

testing.

Theorem 1.9 (Separation). There exists a property  and constants 𝛼, 𝜀 ∈ (0, 1) such that

•  is 𝛼-erasure-resiliently 𝜀-testable;
•  is not (𝛼, 𝛼 + 𝜀)-tolerantly testable.

Approximate local erasure list-decoding and strengthened separation

We obtain a separation better than in Theorem 1.9 with the help of a variant of LLEDCs, called approx-

imate locally erasure list-decodable codes (ALLEDC). An approximate local erasure list-decoder

is identical to a local erasure list-decoder in all aspects except that the algorithms in its list are

required to implicitly compute strings that are just “close” to the actual messages. More formally,

(𝛼, 𝛽, q, L)-ALLEDCs are defined as (𝛼, q, L)-LLEDCs in Definition 1.2, except that we replace “im-

plicitly computes x” at the end of Item 1 with “implicitly computes a string x′ ∈ F
n
2 that is 𝛽-close to

x.”

The definition of an (𝛼, 𝛽, q, L)-ALLDC is identical to that of an (𝛼, 𝛽, q, L)-ALLEDC except that

the input word has no erasures, and the list is required to contain, with probability at least 2∕3, algo-

rithms that implicitly compute strings that are 𝛽-close to messages corresponding to codewords which

are 𝛼-close to the input word.

We observe (Observation 5.2) that every (𝛼, 𝛽, q, L)-ALLDC is also a (2𝛼, 𝛽, 4q, 4L)-ALLEDC,

and combine this observation with existing constructions for ALLDCs [9, 41] to obtain efficient

ALLEDCs. We use them and get our strengthened separation.

Theorem 1.10 (Strengthened separation). There exists a property  ′ and constants 𝛼, 𝜀 ∈ (0, 1) such
that

•  ′ is 𝛼-erasure-resiliently 𝜀-testable;
• every (𝛼, 𝛼 + 𝜀)-tolerant tester for  ′ makes nΩ(1) queries.

646 RASKHODNIKOVA ET AL.

Relationship between local erasure-decoding and local decoding

We investigate the general relationship between the erasures and errors in the context of local unique

and list-decoding. We show that local (unique) decoding from erasures implies local (unique) decoding

from errors, up to some loss in parameters.

Definition 1.11 (Locally erasure-decodable codes (LEDCs)). A code family {Cn ∶ F
n
2 → F

N
2 }n∈N is

(𝛼, q)-locally erasure-decodable if there exists an algorithm A that, given an index i ∈ [n] and oracle

access to an input word w ∈ ({⟂} ∪ F2)N with at most an 𝛼 fraction of erasures, makes at most q
queries to w and outputs xi with probability at least

2

3
.

A (𝛼, q)-LDC is defined similarly to an (𝛼, q)-LEDC except that the input word w contains at most

an 𝛼 fraction of errors instead of erasures. We observe (Observation 7.4) that an LDC is also locally

erasure-decodable from (nearly) twice as many erasures. We also show that constant-query LEDCs are

constant-query locally decodable (up to constant loss in parameters).

Theorem 1.12. For every 𝛼 ∈ [0, 1), if a code family {Cn ∶ F
n
2 → F

N
2 }n∈N is (𝛼, q)-locally

erasure-decodable, then it is (𝛼

O(3q)
,O(3q))-locally decodable.

To prove Theorem 1.12, we start with a local erasure-decoder for {Cn}n∈N and transform it to be

a nonadaptive and smooth local erasure-decoder, where this transformation uses ideas developed by

Katz and Trevisan [42]. An algorithm is nonadaptive if its queries do not depend on the answers to the

previous queries. A decoding algorithm is smooth if it decodes uncorrupted codewords by querying

nearly uniformly distributed codeword indices. We first make the local erasure-decoder for {Cn}n∈N

nonadaptive. We then show that every nonadaptive decoding algorithm for an LEDC can be trans-

formed into a smooth decoding algorithm. We then use this “smoothness” feature to show that the code

family is locally decodable from a smaller fraction of errors than erasures.

The technique outlined above cannot be directly used to obtain an analog of Theorem 1.12 for

the case of local list-decoding since the notion of smoothness (the way we define it for use in our

transformation) does not make sense in the local list-decoding setting. Smooth local decoding assumes

oracle access to an uncorrupted codeword and the goal is to decode the message by making nearly

uniformly distributed queries. Local list-decoding, however, is relevant in the setting that a codeword

has a higher number of corrupt bits than the unique decoding radius.

We remark that although our final code has small decoding radius (that is, it tolerates only a small

fraction of errors), the decoding radius can be amplified to any constant arbitrarily close to 1∕4 at the

cost of increasing the query complexity and encoding length by a constant factor. Specifically, using a

local version of the AEL transformation [1] (see [44, Lemma 3.1]), one can amplify the decoding radius

to any constant arbitrarily close to 1∕2 at the cost of increasing the query complexity, alphabet size,

and length by constant factors. The alphabet then can be reduced back to binary by encoding the binary

representation of each alphabet symbol with the Hadamard code. The length will grow by another

constant factor, and using a local version of the GMD decoder [44, Corollary 3.9], one can show that

final decoding radius is arbitrarily close to 1∕4 and query complexity grows only by a constant factor.

1.2 Open questions

The main open question raised by our work is whether local list-decoding is significantly easier in

terms of the query complexity, the list size, or the rate of codes when corruptions are in the form of

erasures. The same question can be asked about approximate local list-decoding. Our local erasure

RASKHODNIKOVA ET AL. 647

list-decoder for the Hadamard code shows that there is some advantage for having erasures over errors,

in terms of the list size and query complexity, for some settings of parameters. A positive or negative

answer to this question, combined with our result on the equivalence of errors and erasures in the local

decoding regime, would enhance the understanding of whether local list-decoding is an inherently

more powerful model when compared to local decoding.

We remark that our proof that the existence of a LDC that works in the presence of erasures implies

the existence of a LDC that works in the presence of errors and has related parameters does not directly

extend to the setting of local list-decoding. However, it can be extended with an additional assumption

that the output lists contain only valid algorithms (those that correspond to the original messages).

This raises the question about the power of such an assumption.

In our work, we show the existence of a property  and parameters 𝛼, 𝜀 ∈ (0, 1) satisfying

𝛼 < 𝜀 and 𝛼 + 𝜀 < 1 such that  has an efficient 𝛼-erasure-resilient 𝜀-tester but no efficient

(𝛼, 𝛼+𝜀)-tolerant tester. In the work that introduced the erasure-resilient testing model, Dixit, Raskhod-

nikova, Thakurta, and Varma [19] prove that for some range of parameters, tolerant testing is at least

as hard as erasure-resilient testing.

Observation 1.13 (Dixit, Raskhodnikova, Thakurta, and Varma [19]). Let 𝛼, 𝜀 ∈ (0, 1) be such that

𝛼 < 𝜀. If there is an (𝛼, 𝜀)-tolerant tester with query complexity q for a property  , then there is an

𝛼-erasure-resilient 𝜀-tester for  with query complexity q.

Observation 1.13 does not rule out the existence of an (𝛼, 𝜀)-tolerantly testable property that is not

𝛼-erasure-resiliently 𝜀′-testable for 𝜀′ < 𝜀. It would be an interesting direction to explore the exact

relationship between the two models for the above range of parameters.

Organization

The article is organized as follows. Section 2 defines some of the notation that will be used through-

out the article. Our local erasure list-decoder for the Hadamard code is presented in Section 3.

Next, in Section 4, we show our separation result (Theorem 1.9) based on the Hadamard code.

Section 5 contains our transformation from approximate local list-decoding to approximate local era-

sure list-decoding. In Section 6, we show our strengthened separation result (Theorem 1.10) implied

by the resulting approximate local erasure list-decoding algorithm. Finally, in Section 7, we detail

our transformation from local erasure (unique) decoding to local (unique) decoding. Appendix A con-

tains a comparison of the erasure-resilient model that we adopt in this article with that of the original

definition proposed by Dixit, Raskhodnikova, Thakurta, and Varma [19].

2 PRELIMINARIES

In this section, we define some of the notation used in the article. We use F2 to denote the finite field

of characteristic 2 that contains the elements 0 and 1. Given a, b ∈ F2, we use a + b to denote the

addition of a and b modulo 2. Let n ∈ N. For x ∈ F
n
2 and i ∈ [n], we use xi to denote the ith coordinate

of x. Given x, y ∈ F
n
2, we use x ⊕ y to denote the element of F

n
2 whose ith entry is xi + yi. Let ek ∈ F

n
2

for k ∈ [n] denote the kth standard basis vector, and let 0⃗ ∈ F
n
2 denote the zero vector. Since a function

can be represented by a string of evaluations over points in its domain, we often view a codeword of

the Hadamard code n (see Definition 1.3) as the string of all evaluations of a linear function mapping

F
n
2 to F2. A function f is 𝛼-erased, if f evaluates to ⟂ on at most an 𝛼 fraction of its domain.

648 RASKHODNIKOVA ET AL.

An 𝛼-erased string x ∈ {0, 1,⟂}n is 𝜀-far from a property  ⊆ {0, 1}n if every completion (see

Definition 1.6) of x is 𝜀-far from . In other words, there is no way to complete x to a string that satisfies

 without changing at least 𝜀 ⋅ |x| nonerased values in x. For strings x ∈ {0, 1,⟂}n and y ∈ {0, 1}n,

the Hamming distance between x and y is defined to be the minimum number of nonerased values in

x that need to be changed in order for it to be completable to y.

3 LOCAL ERASURE LIST-DECODING OF THE HADAMARD CODE

In this section, we describe a local erasure list-decoder for the Hadamard code and prove Theorem 1.5.

We follow the style of the proof of the Goldreich–Levin theorem given in a tutorial by Trevisan [61]

on the applications of coding theory to complexity.

Proof of Theorem 1.5. Our local erasure list-decoder, described in Algorithm 1, gets a parameter

𝛼 ∈ [0, 1) as its input and has oracle access to an 𝛼-erased linear function f ∶ F
n
2 → F2 ∪ {⟂} (or,

equivalently, oracle access to an 𝛼-erased codeword of the Hadamard code n).

We now analyze Algorithm 1. Recall that for a string a ∈ F
n
2, the function Ha ∶ F

n
2 → F2 denotes

the Hadamard encoding of a (see Definition 1.3). We will show that, with probability at least 2∕3, for

every a ∈ F
n
2 such that the functions Ha and f agree with each other on all the nonerased points, one

of the local decoders output by Algorithm 1 implicitly computes a (see Definition 1.1).

There exists some iteration of Step 2 of Algorithm 1 such that bi = Ha(zi) for all i ∈ B. Let T and A
denote the algorithms whose descriptions are generated in Steps 8 and 3 of this iteration, respectively.

First, we show that for x distributed uniformly in F
n
2, the algorithm A on input x, returns Ha(x) with

probability at least 2∕3. Consider the first set S′ ⊆ [t] (in the order that A considers sets) such that

Algorithm 1. Local erasure list-decoder for the Hadamard code

Input: 𝛼 ∈ [0, 1); oracle access to 𝛼-erased linear function f ∶ F
n
2 → F2 ∪ {⟂}

⊳ Let t ← ⌈log2(
12

1−𝛼
)⌉.

1: Sample and query z1, z2,… , zt ∈ F
n
2 uniformly and independently at random.

⊳ Let zS ←
⨁

i∈S zi for all nonempty S ⊆ [t]. Let z𝜙 ← 0⃗. Let B ← {i ∈ [t] ∶ f (zi) =⟂}.
2: for all b1, b2,… , b|B| ∈ {0, 1} do define

⊳ Description of the local decoder Tb1,…,b|B| follows.
3: function Ab1,…,b|B|
4: input: x ∈ F

n
2; oracle access to f ∶ F

n
2 → F2 ∪ {⟂}

5: for all S ⊆ [t] do
6: if f (x ⊕ zS) ≠⟂ thenreturn (+j∈S∩B bj) + (+j∈S∩([t]⧵B) f (zj)) + f (x ⊕ zS).

7: return ⟂.

8: function Tb1,…,b|B|
9: input: k ∈ [n]; oracle access to f ∶ F

n
2 → F2 ∪ {⟂}

10: repeat
11: Pick y ∈ F

n
2 uniformly and independently at random.

12: u ← Ab1,…,b|B|(y ⊕ ek), v ← Ab1,…,b|B|(y).
13: if v ≠⟂ and u ≠⟂ thenreturn u + v.

14: return the descriptions of Tb1,…,b|B| for all b1, b2,… , b|B| ∈ {0, 1}.

RASKHODNIKOVA ET AL. 649

f (x ⊕ zS′) ≠⟂. According to the description of A,

A(x) =

(
+

j∈S′∩B
bj

)
+

(
+

j∈S′∩([t]∖B)
f (zj)

)
+ f (x ⊕ zS′)

=

(
+

j∈S′∩B
Ha(zj)

)
+

(
+

j∈S′∩([t]∖B)
Ha(zj)

)
+ Ha(x ⊕ zS′)

=

(
+
j∈S′

Ha(zj)

)
+ Ha(x) +

(
+
j∈S′

Ha(zj)

)
= Ha(x).

The second equality above holds as bi = Ha(zi) for all i ∈ B, and Ha(y) = f (y) for all nonerased y ∈
F

n
2. The third equality holds because Ha, being a linear function, satisfies Ha(y⊕ y′) = Ha(y) +Ha(y′)

for all y, y′ ∈ F
n
2.

It remains to show that, with probability at least 2∕3, there exists some set S ⊆ [t] such that

f (x⊕zS) ≠⟂. Let 𝛼⋆ ≤ 𝛼 denote the fraction of erasures in f . For each S ⊆ [t], we have that f (x⊕zS) ≠⟂
with probability 1− 𝛼⋆, since x (and therefore, x⊕ zS) is uniformly distributed in F

n
2. Define indicator

random variables ZS = 𝟙(f (x⊕zS) ≠⟂) for S ⊆ [t] and let Z =
∑

S⊆[t] ZS. The random variable Z is equal

to the number of nonerased values among f (x ⊕ zS) for S ⊆ [t]. The event that ∀S ⊆ [t], f (x ⊕ zS) =⟂
is equivalent to the event that Z < 1.

For each S ⊆ [t], we have E[ZS] = 1 − 𝛼⋆. Therefore, by the linearity of expectation,

E[Z] =
∑
S⊆[t]

E[ZS] = 2t(1 − 𝛼⋆).

For every two nonempty sets R, S ⊆ [t] such that R ≠ S, the vectors zR and zS are independently

and uniformly distributed in F
n
2. Thus, the collection {x ⊕ zS|S ⊆ [t]} is pairwise independent, and

hence the random variables ZS for S ⊆ [t] are also pairwise independent. Now, for each S ⊆ [t], we

have Var(ZS) = (1 − 𝛼⋆) ⋅ 𝛼⋆, and by the pairwise independence,

Var[Z] =
∑
S⊆[t]

Var[ZS] = 2t ⋅ 𝛼⋆(1 − 𝛼⋆).

Applying the Chebyshev’s inequality,

Pr[Z < 1] = Pr[E[Z] − Z > E[Z] − 1]
≤ Pr[E[Z] − Z ≥ 2t ⋅ (1 − 𝛼⋆) − 1]

≤ Pr

[
E[Z] − Z >

2t ⋅ (1 − 𝛼⋆)
2

]
≤

4Var(Z)
(1 − 𝛼⋆)2 ⋅ (2t)2

≤
4𝛼⋆

(1 − 𝛼⋆) ⋅ 2t ≤
4𝛼

(1 − 𝛼) ⋅ 2t ≤
1

3
.

The last inequality follows from our setting of t. Therefore, for x distributed uniformly in F
n
2, the

algorithm A on input x, returns Ha(x) with probability at least
2

3
.

Finally, we prove that T implicitly computes a ∈ F
n
2 and that the expected number of queries that

T makes to f is O(1

1−𝛼
). It is clear that the output of T on input k ∈ [n] is always a[k] = Ha(y ⊕ ek) +

Ha(y) = Ha(ek). The number of queries made by T to A is a geometric random variable with success

probability at least 1∕3. Hence, the expected number of queries made by T to A is at most 3. Since the

query complexity of A is at most 2t, the expected number of queries made to f in one invocation of T
is at most 3 ⋅ 2t, which is at most

72

1−𝛼
. The number of algorithms whose descriptions are generated is

also at most 2t, which is at most
24

1−𝛼
. ▪

650 RASKHODNIKOVA ET AL.

4 SEPARATION

In this section, we describe a property  that is erasure-resiliently testable using a constant number of

queries, but not tolerantly testable using a constant number of queries, and prove Theorem 1.9. In fact,

we prove the following (more general) statement and show that it implies Theorem 1.9.

Theorem 4.1. Let 𝜀⋆ ∈ (0, 1

100
) be a constant. There exists a property  ⊆ {0, 1}∗ such that

• for every 𝛼 ∈ [0, 3𝜀⋆

16
) and 𝜀 ∈ (3𝜀⋆

4
, 1) such that 𝛼 + 𝜀 < 1, the property  can be 𝛼-erasure-

resiliently 𝜀-tested using O(1

𝜀
) queries.

• for all 𝛼 ∈ (𝜀
⋆

8
, 1) and 𝜀′ ∈ (𝛼, 𝜀⋆ − (𝜀⋆)2

4
), the query complexity of (𝛼, 𝜀′)-tolerant testing  on

inputs of length N is Ω̃(log N).

4.1 Description of the separating property 

The property  is defined in terms of a property  that is hard to test in the standard property test-

ing model [29, 58], a probabilistically checkable proof system (PCP of proximity [10, 18, 22]) for the

problem of testing, and the Hadamard code. We discuss them below. The idea of using PCPs of prox-

imity in separating the two property testing models comes from the work of Fischer and Fortnow [23].

Our contribution is to use locally list-decodable codes in this context.

Given a Boolean formula 𝜙 over n variables, let 𝜙 ⊆ {0, 1}n denote the set of all satisfying

assignments to 𝜙, represented as n-bit strings. Ben-Sasson, Harsha, and Raskhodnikova [11] showed

that for infinitely many n ∈ N, there exists a 3CNF formula 𝜙n on n variables such that every tester

for 𝜙n requires Ω(n) queries.

Lemma 4.2 ([11]). There exists a parameter 𝜀⋆ ∈ (0, 1) and a countably infinite set ℵ ⊆ N such
that for all n ∈ ℵ, there exists a 3CNF formula 𝜙n with n variables and Θ(n) clauses such that every
𝜀⋆-tester for 𝜙n has query complexity Ω(n).

An important ingredient in the description of the separating property  is a probabilistically check-

able proof system for property testing problems. The notion of proof assisted property testing was

introduced by Ergün, Kumar, and Rubinfeld [22]. Ben-Sasson, Goldreich, Harsha, Sudan, and Vad-

han [10], and Dinur and Reingold [18] defined and studied a special case of proof-assisted property

testers called PCPs of proximity (or alternatively, assignment testers). PCPs of proximity were further

studied by Dinur [17] and Meir [50, 51].

Definition 4.3 (PCP of proximity [10, 18, 22]). Given a property Pn ⊆ {0, 1}n, the PCP of proximity

(PCPP) for Pn is a randomized algorithm V that takes a parameter 𝜀 ∈ (0, 1], gets oracle access to a

string y◦𝜋, where y ∈ {0, 1}n is the input and 𝜋 ∈ {0, 1}m is the proof, and satisfies the following:

• if y ∈ Pn, then, for some 𝜋, the algorithm V always accepts y◦𝜋;

• if y is 𝜀-far from Pn, then, for every 𝜋, the algorithm V rejects y◦𝜋 with probability at least
2

3
.

A result by Dinur [17, Corollary 8.4] implies that there are efficient PCPPs (over a small constant

alphabet Σ) for testing properties (over Σ) that are decidable using polynomial-sized circuits. The

following restatement of this result is obtained by representing the symbols in Σ using the binary

alphabet.

RASKHODNIKOVA ET AL. 651

Lemma 4.4 ([17]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n), then there exists
a randomized algorithm V ′ that gets oracle access to a string y◦𝜋 ∈ {0, 1}∗, where y ∈ {0, 1}n is the
input and 𝜋 is a proof of length at most s(n) ⋅ polylog s(n), and satisfies the following:

• if y ∈ Pn, then for some proof 𝜋, the algorithm V ′ always accepts y◦𝜋;
• if y ∉ Pn, then for every 𝜋, the algorithm V ′ rejects y◦𝜋 with probability proportional to the relative

Hamming distance of y from Pn.

Moreover, V ′ makes a constant number of nonadaptive queries.

An algorithm guaranteed by Lemma 4.4 for a property P can be converted to an efficient PCPP for

P by simply repeating the former algorithm sufficiently many times.

Lemma 4.5 ([17]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n), then there exists
a PCPP V that works for every 𝜀 ∈ (0, 1], uses a proof of length at most s(n) ⋅ polylog s(n), and has
query complexity O(1

𝜀
). Moreover, the queries of V are nonadaptive.

Claim 4.6 uses Lemma 4.5 in conjunction with the fact that the property  = {𝜙n}n∈ℵ can be

decided using linear-sized circuits.

Claim 4.6. There exists a constant c > 0 such that for every large enough n ∈ N, there exists a
PCPP V for the property 𝜙n that works for all 𝜀 ∈ (0, 1], uses a proof of length at most cn ⋅polylog n,
and has query complexity O(1

𝜀
).

Proof. One can observe that for all n ∈ ℵ, the circuit complexity of deciding 𝜙n (described in

Lemma 4.2) is O(n). In other words, there exists a c′′ such that for every large enough n, the property

𝜙n can be decided using a circuit of size at most c′′n. The claim follows by plugging this fact into

Lemma 4.5. ▪

The following is the definition of our separating property  . At a high level, the definition says

that, for all n ∈ ℵ, a string of length O(2n⋅polylog n) satisfies  if its first part is the repetition of a string

y satisfying 𝜙n , and the second part is the encoding (by the Hadamard code) of y concatenated with

a proof 𝜋 that makes the algorithm V in Claim 4.6 accept.

Definition 4.7 (Separating property ). Let 𝜀⋆ ∈ (0, 1) and ℵ ⊆ N be as in Lemma 4.2. For n ∈ ℵ,

let p(n) ≤ cn ⋅ polylog n denote the length of proof that the algorithm V in Claim 4.6 has oracle access

to. A string x ∈ {0, 1}N of length N = 4

𝜀⋆
⋅ 2n+p(n) satisfies  if the following conditions hold:

1. The first (4

𝜀⋆
− 1) ⋅ 2n+p(n) bits of x (called the plain part of x) consist of (4

𝜀⋆
− 1) ⋅ 2n+p(n)

n
repetitions

of a string y ∈ 𝜙n of length n, for 𝜙n from Lemma 4.2.

2. The remaining bits of x (called the encoded part of x) form the Hadamard encoding of a string

y◦𝜋(y) of length n + p(n), where ◦ denotes the concatenation operation on strings. The string y ∈
{0, 1}n is the same as the one in the description of the plain part. The string 𝜋(y) ∈ {0, 1}p(n) is a

proof such that the algorithm V (from Claim 4.6) accepts when given oracle access to y and 𝜋(y).

4.2 Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which in turn implies Theorem 1.9. Lemmas 4.8 and 4.12 prove

the first and second parts of Theorem 4.1, respectively.

652 RASKHODNIKOVA ET AL.

We first give a high level overview of the proof. The erasure-resilient tester for  first obtains a list

of (implicit) decodings of the encoded part (see Definition 4.7) of an input string x ∈ {0, 1}N using

the local erasure list-decoder guaranteed by Theorem 1.5. If x ∈  , with high probability, at least

one of the algorithms implicitly computes (see Definition 1.1) the string y◦𝜋(y), where y is such that

the plain part of x (see Definition 4.7) consists of repetitions of y, and 𝜋(y) is a proof string such that

the algorithm V (from Claim 4.6) accepts upon oracle access to y◦𝜋(y). In case x is 𝜀-far from  , we

show that for every algorithm T output by the local erasure list-decoder, the string y′◦𝜋(y′) implicitly

computed by T is such that, (1) either the plain part of x is far from being the repetitions of y′, (2) or

y′ is far from  (in which case, the algorithm V from Claim 4.6 rejects when given oracle access to

y′◦𝜋(y′)).
To show that tolerant testing of  is hard, we reduce 𝜀⋆-testing of 𝜙n to it. Specifically, given

oracle access to a string y ∈ {0, 1}n that we want to 𝜀⋆-test, we simulate oracle access to a string

x ∈ {0, 1}N such that the plain part of x consists of repetitions of y, and every bit in the encoded part of

x is 0. Since every Hadamard codeword has an equal number of 0s and 1s, the string x can be thought

of as having a 0.5 fraction of “errors” in the encoded part. If y ∈ 𝜙n , then the string x is close to

being in  , as the errors are only in the encoded part of x and the length of the encoded part is a small

fraction of the length of x. If y is far from 𝜙n , then x is also far from  , since the plain part of x, whose

length is a large fraction of the length of x, is the repetitions of y. Thus, the decision of a tolerant tester

for  on x can be used to test y for 𝜙n , implying that the complexity of tolerant testing of  is equal

to the complexity of testing 𝜙n .

We now prove the existence of an efficient erasure-resilient tester for  . Recall that an 𝛼-erased

string x is 𝜀-far from a property  if there is no way to complete x to a string that satisfies  without

changing at least 𝜀 ⋅ |x| nonerased values in x.

Lemma 4.8. Let 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2. For every 𝛼 ∈
[
0,

3𝜀⋆

16

)
and 𝜀 ∈

(
3𝜀⋆

4
, 1
)

such that
𝛼 + 𝜀 < 1, the property  can be 𝛼-erasure-resiliently 𝜀-tested using O

(
1

𝜀

)
queries.

Proof. The erasure-resilient tester for  is described in Algorithm 2. The query complexity of the

tester is O(1∕𝜀) as is evident from its description. We now prove that the tester, with probability at

least
2

3
, accepts strings in  and rejects strings that are 𝜀-far from  . ▪

Let ℵ, 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2. Fix n ∈ ℵ and let p(n) and N be as in Definition 4.7. Let

s denote (4

𝜀⋆
− 1) ⋅ 2n+p(n)

n
. Consider a string x ∈ {0, 1}N that we want to erasure-resiliently test for

 . As in Definition 4.7, we refer to the substring x[1 … sn] as the plain part of x and the substring

x[sn + 1 … N] as the encoded part of x.

Assume that x ∈  . By this assumption, we can see that there exists a string y◦𝜋 ∈ {0, 1}n+p(n)

such that (1) y ∈ 𝜙n and the plain part of x can be completed to a repetition of y, (2) 𝜋 is a proof such

that the algorithm V (from Claim 4.6) accepts when given oracle access to y◦𝜋, and (3) the encoded

part of x can be completed to the Hadamard encoding of y◦𝜋. Since 𝛼 < 3𝜀⋆∕16 and the length of the

encoded part is equal to N − sn = N ⋅ 𝜀⋆∕4, the fraction of erasures in the encoded part of x is less

than (3𝜀⋆∕16)∕(𝜀⋆∕4), which is equal to 3∕4. Hence, by Theorem 1.5, with probability at least 2∕3,

there exists an algorithm Tk computed in Step 2 of Algorithm 2 such that Tk implicitly computes the

string y◦𝜋 ∈ {0, 1}n+p(n). Therefore, k is not discarded in either Step 7 or Step 10. Thus, the tester will

accept with probability at least 2∕3.

Now, assume that x is 𝜀-far from  . Let E denote the event that the number of queries made by the

tester does not exceed its query budget. We first show that, conditioned on E, the tester rejects with

probability at least 4∕5.

RASKHODNIKOVA ET AL. 653

Algorithm 2. Erasure-resilient tester for separating property 

Input: 𝛼, 𝜀 ∈ (0, 1),N = 4

𝜀⋆
⋅ 2(n+p(n)); oracle access to x ∈ {0, 1,⟂}N

⊳ Set s ← (4

𝜀⋆
− 1) ⋅ 2(n+p(n))

n
, 𝜀′ ← 𝜀

3
, q ← 288, L ← 96.

⊳ Set Q ← 10q+ 10qL ⋅
(⌈

9 log L
𝜀

⌉
+ ⌈4 log L⌉ ⋅ 3C

𝜀

)
, where C is the constant in the O notation

of Claim 4.6.
1: Accept whenever the number of queries exceeds Q.

2: Run a (3

4
, q, L)-local erasure list-decoder for the Hadamard code (Algorithm 1) with oracle access

to x[sn+ 1..N], the encoded part of x. ⊳ Note that q and L are constants for local list-decoding
from at most a 3∕4 fraction of erasures, and the specific values given here follow from the
proof of Theorem 1.5.

⊳ Let T1, T2,… , TL be the list of algorithms returned in the above step.
3: for each k ∈ [L] do

⊳ Check if the plain part of x is the repetition of y, where y denotes the first n bits of the
decoding (given by Tk) of the encoded part of x.

4: repeat
⌈

9 log L
𝜀

⌉
times:

5: Pick a ∈R [n], i ∈R [s].
6: if x[(i − 1)n + a] ≠⟂ and Tk(a) ≠ x[(i − 1)n + a] then
7: Discard the current k

⊳ Check if the string y ∈ 𝜙n , where y denotes the first n bits of the decoding (by Tk) of the
encoded part of x.

8: repeat ⌈4 log L⌉ times:

9: Run V , from Claim 4.6, with input 𝜀′ and oracle access to Tk.

10: Discard the current k if V rejects.

11: Reject if every k ∈ [L] is discarded; otherwise, accept.

Claim 4.9. The plain part of x is 2𝜀

3
-far from being s repetitions of a string y ∈ 𝜙n .

Proof. Since x is 𝜀-far from satisfying  , at least 𝜀N nonerased values in x need to be changed in

order to complete it to a string satisfying  . The length
𝜀⋆

4
⋅ N of the encoded part of x is an upper

bound on the number of nonerased values in the encoded part, and therefore, it is at most 𝜀N∕3 since

𝜀 ∈ (3𝜀⋆

4
, 1). Thus, the plain part of x needs to be changed in at least 2𝜀N∕3 nonerased values in order

for it to be s repetitions of a string y ∈ 𝜙n . The claim follows. ▪

From Claim 4.9, it follows that at least
2𝜀⋅sn

3
nonerased points need to be changed in the plain part

of x for it to be s repetitions of a string y ∈ 𝜙n .

Claim 4.10. For any y ∈ {0, 1}n, if the plain part of x can be changed to s repetitions of y by
modifying less than 𝜀⋅sn

3
nonerased values, then y is 𝜀

3
-far from 𝜙n .

Proof. Consider y ∈ {0, 1}n such that we can change less than 𝜀 ⋅ sn∕3 nonerased points in the plain

part of x and make it s repetitions of y. Assume that there exists y′ ∈ 𝜙n such that the Hamming

distance of y′ to y is at most 𝜀 ⋅ n∕3. Then, the plain part of x, can be changed to being s repetitions of

y′ by first changing it to be s repetitions of y (modifying less than 𝜀 ⋅ sn∕3 nonerased points) and then

modifying at most s ⋅ 𝜀 ⋅ n∕3 nonerased points to make it s repetitions of y′. In other words, x[1 … sn]

654 RASKHODNIKOVA ET AL.

can be modified in less than 2𝜀 ⋅ sn∕3 nonerased points to make it s repetitions of a string y′ in 𝜙n .

This contradicts Claim 4.9. ▪

Fix k ∈ [L], where L is the number of algorithms returned by the local erasure list-decoder. Let

y′ ∈ {0, 1}n be the first n bits from the left in the decoding, using Tk, of the encoded part of x. We will

show that the algorithm discards k with high probability. We split the analysis into two cases.

Case I: Suppose we need to change at least
𝜀⋅sn

3
nonerased points in the plain part of x for it to

become s repetitions of y′. We show that in this case, Steps 4–7 discard k with probability at least
9

10L
. A

point (i−1)n+a for i ∈ [s] and a ∈ [n] is called a witness if x[(i−1)n+a] ≠⟂ and x[(i−1)n+a] ≠ y′[a].
Since we need to change at least 𝜀 ⋅ sn∕3 nonerased points in the plain part of x for it to become s
repetitions of y′, there are at least 𝜀 ⋅sn∕3 witnesses in the plain part of x. In each iteration of Steps 4–7,

the point selected is a witness with probability at least
𝜀⋅sn
3sn

= 𝜀

3
. Thus, the probability that Algorithm 2

does not find a witness (and does not discard k) in ⌈ 9 log L
𝜀

⌉ iterations is at most

(
1 − 𝜀

3

) 9 log L
𝜀

≤
(

1 − 𝜀

3

) 3 log(10)⋅log(L)
𝜀

≤
1

10L
,

where we have used the inequality 3 log(10) ≤ 9.

Case II: In this case, we assume that we can change less than 𝜀 ⋅ sn∕3 nonerased points in the plain

part of x and make it s repetitions of y′. Then, by Claim 4.10, y′ is 𝜀∕3-far from 𝜙n . Let 𝜀′ = 𝜀

3
. By

Claim 4.6, for every proof 𝜋 ∈ {0, 1}p(n), the algorithm V (from Claim 4.6), on input 𝜀′ and oracle

access to y′◦𝜋 (obtained via Tk), rejects (causing k to be discarded) with probability at least 2∕3. Thus,

the probability that tester fails to discard k in ⌈4 log L⌉ independent iterations of Steps 8–10 is at most

(
1 − 2

3

)4 log L
≤
(

1 − 2

3

)(3∕2)⋅log(10)⋅log(L)
≤

1

10L
.

Therefore, the probability that the tester fails to discard k is at most
1

10L
+ 1

10L
≤

1

5L
. By the union

bound, the probability that Algorithm 2 fails to discard some k ∈ [L] is at most 1∕5. Thus, conditioned

on the event E that the number of queries made by the tester does not exceed its query budget, with

probability at least 4∕5, the tester rejects.

We now bound the probability of the event E. For this, we calculate the expected number of queries

made by Algorithm 2. The number of queries made in Step 2 is at most q. For all k ∈ [L], the expected

number of queries that each invocation of the algorithm Tk makes is at most q. Hence, the expected

number of queries made in Steps 4–7 is at most L ⋅
(⌈

9 log L
𝜀

⌉
⋅ q

)
.

By Claim 4.6, the number of queries made by the algorithm V (from Claim 4.6) on input 𝜀′ = 𝜀

3

and oracle access to Tk, is at most
3C
𝜀

, where C is the constant in the O notation of Claim 4.6. Thus,

the expected number of queries made in Steps 8–10 by Algorithm 2 is at most L ⋅
(⌈4 log L⌉ ⋅ q ⋅ 3C

𝜀

)
.

Therefore, the expected total number of queries made by the tester is at most

q + qL ⋅
(⌈

9 log L
𝜀

⌉
+ ⌈4 log L⌉ ⋅ 3C

𝜀

)
.

Hence, the probability that the number of queries exceed Q (as defined in Algorithm 2) is at most 1∕10

by the Markov’s inequality. Thus, the probability that the tester accepts x that is 𝜀-far from  is at most

1∕10 + 1∕5 ≤ 1∕3.

RASKHODNIKOVA ET AL. 655

Remark 4.11. We point out that the local erasure list-decoder (Algorithm 1) used in Algorithm 2

can be replaced by the local erasure list-decoder obtained by applying Observation 5.4 to the

Goldreich–Levin theorem by incurring only a constant factor loss in the query complexity of

Algorithm 2.

Lemma 4.12. Let 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2. For every 𝛼 ∈ (𝜀
⋆

8
, 1) and 𝜀′ ∈

(
𝛼, 𝜀⋆ − (𝜀⋆)2

4

)
,

the query complexity of (𝛼, 𝜀′)-tolerant testing  on strings of length N is Ω̃(log N).

Proof. Let ℵ, 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2. We will prove the lemma by showing a reduction from

𝜀⋆-testing of 𝜙n . Fix n ∈ ℵ and let p(n) and N be as in Definition 4.7. Let s denote
(

4

𝜀⋆
− 1

)
⋅ 2n+p(n)

n
.

Consider a string y ∈ {0, 1}n that we want to 𝜀⋆-test for 𝜙n . Let x ∈ {0, 1}N be the string where

the first sn bits of x are s repetitions of y and the remaining bits are all 0s. Recall that we refer to the

substring x[1 … sn] as the plain part of x and the substring x[sn + 1 … N] as the encoded part of x.

Assume that A is an (𝛼, 𝜀′)-tolerant tester for  . We now describe an 𝜀⋆-tester A′ for 𝜙n that has

the same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester A′ runs the tester A on

the string x ∈ {0, 1}N and accepts if and only if A accepts, where x is constructed from y as described

above. Observe that one can simulate a query to x by making at most one query to y.

We will show that if y ∈ 𝜙n , then x is 𝛼-close to  . Observe that the encoded part of x needs to

be changed in at most a 1∕2 fraction of its positions in order to make it the encoding of a string y◦𝜋,

where 𝜋 is a proof that makes a PCP of proximity for testing 𝜙n accept. This follows from the fact that

the normalized weight of every nonzero codeword in the Hadamard code is 1∕2. Thus, the fraction of

bits in x that needs to be changed in order to make it satisfy  is at most
1

2
⋅ N−sn

N
= 𝜀⋆

8
, which is less

than 𝛼. Therefore, by definition, A′ will accept x with probability at least 2∕3.

Assume now that y is 𝜀⋆-far from 𝜙n . Then x needs to be changed in at least 𝜀⋆ ⋅ sn positions to

make it satisfy  . Since sn∕N = (1− 𝜀⋆

4
) as observed above, the relative Hamming distance of x from

 is at least
𝜀⋆⋅sn

N
= 𝜀⋆ − (𝜀⋆)2

4
. That is, x is (𝜀⋆ − (𝜀⋆)2

4
)-far from  . Hence, for all 𝜀′ < 𝜀⋆ − (𝜀⋆)2

4
, we

have that A will reject x with probability at least 2∕3, and therefore A′ will reject y with probability at

least 2∕3.

Thus, we have shown that the query complexity of (𝛼, 𝜀′)-tolerant testing  is at least the query

complexity of 𝜀⋆-testing 𝜙n . Hence, the query complexity of (𝛼, 𝜀′)-tolerant testing  is Ω(n), which

is equal to Ω̃(log N). ▪

Proof of Theorem 1.9. Theorem 4.1 states that, for certain ranges of parameters 𝛼, 𝜀, 𝜀′ ∈ (0, 1)
and for large enough N ∈ N, the property  on binary strings of length N, is 𝛼-erasure-resiliently

𝜀-testable, but is not (𝛼, 𝜀′)-tolerantly testable. To prove Theorem 1.9, we need to show the existence of

𝛼, 𝜀 ∈ (0, 1) such that the property  on binary strings of length N is 𝛼-erasure-resiliently 𝜀-testable,

but is not (𝛼, 𝛼 + 𝜀)-tolerantly testable. In other words, the constraints imposed on 𝛼, 𝜀, 𝜀′ must have a

solution for the setting of 𝜀′ = 𝜀 + 𝛼.

𝜀⋆

8
< 𝛼 <

3𝜀⋆

16
; 3𝜀⋆

4
< 𝜀 < 1;

𝜀′ = 𝛼 + 𝜀 < 𝜀⋆ − (𝜀⋆)2∕4.

For every 0 < 𝜀⋆ < 1∕100, the value 𝜀⋆ − (𝜀⋆)2∕4 is strictly greater than 𝜀⋆ − 𝜀⋆∕400 = 399𝜀⋆∕400.

For 𝛼 = 𝜀⋆∕6 and 𝜀 = 4𝜀⋆∕5, which satisfy the first two inequalities, we can see that 𝛼 + 𝜀 =

656 RASKHODNIKOVA ET AL.

29𝜀⋆∕30 < 399𝜀⋆∕400 < 𝜀⋆ − (𝜀⋆)2∕4. Thus there exists 𝛼, 𝜀 ∈ (0, 1) satisfying 𝛼 + 𝜀 < 1 such that

 is 𝛼-erasure-resiliently 𝜀-testable, but not (𝛼, 𝛼 + 𝜀)-tolerantly testable. Theorem 1.9 follows. ▪

5 APPROXIMATE LOCAL ERASURE LIST-DECODING

In this section, we prove the existence of an approximate locally erasure list-decodable code

(ALLEDC) with inverse polynomial rate. Our starting point is an ALLDC due to Impagliazzo, Jaiswal,

Kabanets, and Wigderson [41]. To this code, we apply an observation that every ALLDC that works

in the presence of errors also works in the presence of twice as many erasures (with the same parame-

ters up to constant factors). This gives us the required ALLEDC that we later use for our strengthened

separation.

Theorem 5.1 ([41] as restated by [9]). For every 𝛾, 𝛽 > 0, there exist a number f (𝛾, 𝛽) > 0 and a code
family {Ck ∶ F

k
2 → F

f (𝛾,𝛽)k5

2 }k∈N that is (𝛾, 𝛽,O(log(1∕𝛽)
(1

2
−𝛾)3

),O(1

(1

2
−𝛾)2

))-approximate locally list-decodable.

For the sake of completeness, we state and prove the observation that every ALLDC that works in

the presence of errors also works in the presence of twice as many erasures (with the same parameters

up to constant factors).

Observation 5.2. If a code family {Ck ∶ F
k
2 → F

n
2}k∈N is (𝛼, 𝛽, q, L)-approximate locally

list-decodable, it is also (2𝛼, 𝛽, 4q, 4L)-approximate locally erasure list-decodable.

Proof. Consider a codeword w ∈ (F2 ∪ {⟂})n with at most 2𝛼 fraction of erasures. Let A be an

(𝛼, 𝛽, q, L)-approximate local list-decoder for Ck. Assume without loss of generality that the success

probability of A is at least 5∕6. This can be ensured by running A twice and outputting the concatenation

of lists obtained in both iterations (the resulting algorithm succeeds if one of the iterations succeed).

The approximate local erasure list-decoder A′ for Ck first runs A on the word w0 obtained by replacing

each erasure in w with a 0, and then on the word w1 obtained by replacing each erasure in w with a 1.

The list output by algorithm A′ is the concatenation of lists output by A in these two executions. Let E1

be the event that the first execution of A succeeds and E2 be the event that the second execution of A
succeeds. Each codeword w′ = Ck(y′) that agrees with w on all the nonerased points agrees with either

w0 or w1 in at least 1−𝛼 fraction of points. In other words, for b ∈ {0, 1}, if b is the value that w′ takes

in least half the erased points in w, then w′ and wb disagree on at most an 𝛼 fraction of points. If E1∩E2

holds, there exists an algorithm in the list output by A′ that implicitly computes (see Definition 1.1) a

string y′′ that is 𝛽-close to y′. The probability of failure of A′ is at most Pr[E1 ∪ E2] ≤ 1

3
. Hence, A′ is

a (2𝛼, 𝛽, 4q, 4L)-approximate local erasure list-decoder for Ck. ▪

Applying Observation 5.2 to Theorem 5.1, we get the ALLEDCs that we need.

Lemma 5.3. Let c3 > 0 be a constant. For every 𝛾, 𝛽 > 0, there exist a number f (𝛾, 𝛽) > 0 and a
code family {Ck ∶ F

k
2 → {0, 1}f (𝛾,𝛽)k5}k∈N that is (𝛾, 𝛽, c3 log(1∕𝛽)

(1−𝛾)3
,

c3

(1−𝛾)2
)-approximate locally erasure

list-decodable.

The following is a corollary of Observation 5.2.

Observation 5.4. If a code family {Ck ∶ F
k
2 → F

n
2}k∈N is (𝛼, q, L)-locally list-decodable, it is also

(2𝛼, 4q, 4L)-locally erasure list-decodable.

RASKHODNIKOVA ET AL. 657

6 STRENGTHENED SEPARATION

In this section, we describe a property  ′ that can be erasure-resiliently tested using a constant number

of queries, but for which every tolerant tester has query complexity nΩ(1), and prove Theorem 1.10.

The following theorem implies Theorem 1.10.

Theorem 6.1. There exists a property  ′ and constants 𝜀⋆ ∈ (0, 1), c2 > 1 such that,

• For every 𝜀 ∈
(

𝜀⋆

8
, 1
)

and 𝛼 ∈ (0, 𝜀⋆

57 600⋅c2

) such that 𝛼 + 𝜀 < 1, property  ′ can be 𝛼-erasure-

resiliently 𝜀-tested using O(1

𝜀
) queries.

• For every 𝛼 ∈ (𝜀⋆

57 600⋅c2+2𝜀⋆
, 1) and 𝜀′ ∈

(
𝛼,

28 800⋅c2⋅𝜀
⋆

28 800⋅c2+𝜀⋆

)
, every (𝛼, 𝜀′)-tolerant tester for  ′ on

inputs of length N has query complexity NΩ(1).

6.1 Description of the separating property  ′

The property  ′ is very similar to the property  that we used in our first separation (see

Definition 4.7). Like a string that satisfies  , a string that satisfies  ′ can also be thought of as consist-

ing of a plain part (that contains the repetition of a string y ∈ 𝜙n) and an encoded part. The encoded

part of a string in  is the Hadamard encoding of a string y◦𝜋, where 𝜋 is a proof that makes the

algorithm V from Claim 4.6 accept. However, the encoded part of a string satisfying  ′ is the encoding

of a string 𝜋′, where 𝜋′ is a proof (whose length is asymptotically equal to |𝜋|) that makes a “smooth”

PCPP accept. In addition, the encoding uses an ALLEDC (from Section 5) instead of the Hadamard

code.

We first describe the “smooth” PCPP used in our construction. The following lemma by

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [10] and Guruswami and Rudra [37, Lemma 5]

states that algorithms making nonadaptive queries can be transformed into algorithms that make nearly

uniform queries.

Lemma 6.2 ([10, 37]). Let n ∈ N. Consider a nonadaptive algorithm T that gets oracle access to
strings from {0, 1}n. There exists a mapping 𝜑T ∶ {0, 1}n → {0, 1}n′ and an algorithm T ′ satisfying
the following:

• For every x ∈ {0, 1}n, the distribution on outcomes of T with oracle access to x is identical to
the distribution on outcomes of T ′ with oracle access to 𝜑T (x). Moreover, 3n < n′ ≤ 4n, and the
number of queries that T ′ makes to 𝜑T (x) is at most twice the number of queries that T makes to x.

• Upon oracle access to x′ ∈ {0, 1}n′, each query of T ′ is to location j ∈ [n′] with probability at
most 2∕n′.

Combining Lemma 4.4 with Lemma 6.2 (along with the fact that  = {𝜙n}n∈ℵ can be decided

using linear-sized circuits), we get the required “smooth” PCPP for .

Lemma 6.3 (Smooth PCPP). Let c1 > 0, c2 > 1 be fixed constants. Let n ∈ N. The property 𝜙n

has a PCPP V that works for all 𝜀 ∈ (0, 1], gets oracle access to an input y of length n and a proof
𝜋 of length at most c1n ⋅ poly log n, and makes at most c2

𝜀
queries. Moreover, the queries of V are

nonadaptive and satisfy the following:

• each query V makes to y is to any particular location of y with probability 1∕n;

658 RASKHODNIKOVA ET AL.

• each query V makes to 𝜋 is to any particular location of 𝜋 with probability at most 2∕|𝜋|.
Proof. Let c > 0 be the constant from Claim 4.6. Consider the algorithm V ′ guaranteed by

Lemma 4.4 for the property 𝜙n . The algorithm V ′ gets oracle access to the concatenation of an input

y ∈ {0, 1}n and a proof 𝜋′ ∈ {0, 1}p′(n), where p′(n) ≤ cn ⋅ poly log n.

We now describe an algorithm V ′′ that, on oracle access to a string y◦𝜋′′, where y ∈ {0, 1}n and

𝜋′′ ∈ {0, 1}n+p′(n), and does the following:

1. Sample a uniformly random i ∈ [n] and reject if y[i] ≠ 𝜋′′[i].
2. Simulate V ′ with oracle access to 𝜋′′ and reject if V ′ rejects.

3. Accept if neither of the above events happen.

We prove the following claim about the algorithm V ′′.

Claim 6.4. V ′′ is an algorithm satisfying:

• if y ∈ 𝜙n , then for some proof 𝜋′′, the algorithm V ′ always accepts y◦𝜋′′;
• if y ∉ 𝜙n , then for every 𝜋′′, the algorithm V ′ rejects y◦𝜋′′ with probability proportional to the

relative Hamming distance of y from 𝜙n .

Proof. Assume y ∈ 𝜙n . There exists a proof 𝜋′ of length at most cn ⋅ poly log n such that the

algorithm V ′ accepts when given oracle access to y◦𝜋′. Therefore, algorithm V ′′ accepts if given oracle

access to y◦𝜋′′, where 𝜋′′ = y◦𝜋′.

Next, assume that y ∉ 𝜙n . Let 𝛿 be the relative Hamming distance of y from 𝜙n . Fix 𝜋′′ ∈
{0, 1}n+p′(n). Let 𝛿′ be the relative Hamming distance of y from the string y′ obtained by considering the

first n bits of 𝜋′′. Step 1 of the algorithm V ′′ rejects with probability 𝛿′, since, for a uniformly random

index i ∈ [n], we have that y[i] ≠ y′[i] with probability 𝛿′. If 𝛿′ ≥ 𝛿∕2, then Step 1 of algorithm V ′′

rejects with probability at least 𝛿∕2. If 𝛿′ < 𝛿∕2, then the relative Hamming distance of y′ from 𝜙n

has to be greater than 𝛿∕2; otherwise, the distance of y from 𝜙n is less than 𝛿, which is a contradiction.

If y′ has distance at least 𝛿∕2 from 𝜙n , for every string z ∈ {0, 1}p′(n) that forms the last p′(n) bits of

𝜋′′, the algorithm V ′ with oracle access to 𝜋′′ = y′◦z rejects with probability Ω(𝛿). That is, Step 2 of

V ′′ rejects with probability Ω(𝛿). ▪

We can think of V ′′ as running two algorithms V1 and V2, where V1 makes the input queries of V ′′

and V2 makes the proof queries of V ′′. We observe that the query distribution of V1 is uniform over the

input part. By applying Lemma 6.2 to V2 we obtain a mapping 𝜑 ∶ {0, 1}∗ → {0, 1}∗ and an algorithm

V ′
2 such that each query of V ′

2 is to a particular location in the string 𝜑(𝜋′′) with probability at most

2∕|𝜑(𝜋′′)|. By Lemma 6.2, we also have: |𝜑(𝜋′′)| ≤ 4|𝜋′′|.
Let p(n) denote |𝜑(𝜋′′)|, where 𝜋′′ ∈ {0, 1}n+p′(n). Consider the algorithm V ′′′ that runs V1 and V ′

2

using a common random string with oracle access to a string y◦z, where y ∈ {0, 1}n and z ∈ {0, 1}p(n),

and rejecting whenever V ′′ rejects based on the query answers. In addition, V ′′′ also rejects if the

answers to its queries to z are not consistent with any string in the image of 𝜑. Observe that V ′′ can

check this condition, since it completely knows the mapping 𝜑, which is fully determined by V2 (by

Lemma 6.2).

If y ∈ 𝜙n , then there exists a proof 𝜋′′ such that V ′′ accepts y◦𝜋′′, implying that for the same

𝜋′′, the algorithm V ′′′ accepts y◦𝜋, where 𝜋 = 𝜑(𝜋′′). If y ∉ 𝜙n , then for every proof 𝜋′′, the

algorithm V ′′ rejects y◦𝜋′′ with probability proportional to the relative Hamming distance of y from

𝜙n . This implies that for every proof 𝜋, the algorithm V ′′′ rejects y◦𝜋 with probability proportional

to the relative Hamming distance of y from 𝜙n .

RASKHODNIKOVA ET AL. 659

On input 𝜀 ∈ (0, 1), the algorithm V guaranteed by the statement of the lemma repeats for Θ(1∕𝜀)
time, the algorithm V ′′′. The acceptance and rejection guarantees of V are immediate. Note also that

the distribution of a single input or proof query does not change by repetition. The lemma follows. ▪

The following is the definition of our separating property  ′. Note that the encoded part of a string

satisfying  ′ contains the encoding of a proof as well as the complement of that encoding. This is done

in order to equalize the number of 0s and 1s in the encoded part.

Definition 6.5 (Separating property  ′). Let ℵ, {𝜙n}n∈ℵ and 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2. Let

c1 > 0, c2 > 1 be as in Lemma 6.3. Let c3 > 0 be as in Lemma 5.3. Let m = 28 800⋅c2

𝜀⋆
, 𝛾 = 1

2
+ 𝜀⋆

57 600⋅c2

,

and 𝛽 = 𝜀⋆

9000c2⋅
⌈

ln
6c3

(1−𝛾)2

⌉ .

For n ∈ ℵ, let p(n) ≤ c1 ⋅ n ⋅ polylog n denote the length of a valid proof that makes the

algorithm V from Lemma 6.3 accept. Let f (⋅, ⋅) be as in Lemma 5.3. Let  = {Ck}k∈N be the

(𝛾, 𝛽, c3 log(1∕𝛽)
(1−𝛾)3

,
c3

(1−𝛾)2
)-ALLEDC from Lemma 5.3.

A string x ∈ {0, 1}N of length N = (m+1) ⋅2f (𝛾, 𝛽) ⋅ (p(n))5 satisfies  ′ if the following conditions

hold:

1. The first m ⋅2f (𝛾, 𝛽) ⋅(p(n))5 bits of x (called the plain part of x) consist of m ⋅ 2f (𝛾,𝛽)⋅(p(n))5

n
repetitions

of a string y ∈ {0, 1}n, where y ∈ 𝜙n of length n.

2. The remaining 2f (𝛾, 𝛽) ⋅ (p(n))5 bits of x is called the encoded part. Its first half is the encoding,

using , of a string 𝜋 ∈ {0, 1}p(n) such that the PCPP V in Lemma 6.3 accepts when given oracle

access to y◦𝜋. The second half of the encoded part is the complement of its first half.

6.2 Proof of strengthened separation

In this section, we prove Theorem 6.1. Lemmas 6.6 and 6.10 together imply the first and second parts

of Theorem 6.1, respectively. The high level idea of the proof of Lemma 6.6 is very similar to that of

Lemma 4.8. The differences arise mainly because of the way the encoded parts of strings satisfying 

and  ′ differ. The erasure-resilient tester for  could first check whether the plain part is a repetition of

the “decoded input,” and then check whether the “decoded input” is in  with the help of the “decoded

PCPP proof.” Since the encoded part of  ′ is the encoding of just a PCPP proof, this is not possible.

Instead, the erasure-resilient tester for  ′ samples a uniformly random point u from the plain part and

uses the “block” from which u is obtained as a “candidate input” y. It then checks whether the plain

part is a repetition of y and also checks whether y ∈  using the “approximately decoded proof.” In

case a string is 𝛼-erased and 𝜀-far from  ′, we show that the “candidate input” y that we sample is

c𝛼-erased and c′𝜀-far from , for some constants c, c′. Hence, the smooth PCPP verifier rejects.

Lemma 6.6. Let 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2 and c2 > 1 be as in Lemma 6.3. For every 𝜀 ∈(
𝜀⋆

8
, 1
)

and 𝛼 ∈
(
0,

𝜀⋆

57 600⋅c2

)
such that 𝛼 + 𝜀 < 1, the property  ′ is 𝛼-erasure-resiliently 𝜀-testable

using O
(

1

𝜀

)
queries.

Proof. We first show that Algorithm 3 accepts, with probability at least 3∕5, strings satisfying  ′

and rejects, with probability at least 3∕5, strings that are 𝜀-far from  ′. The success probability can be

660 RASKHODNIKOVA ET AL.

Algorithm 3. Erasure-resilient tester for separating property  ′

Input: 𝛼, 𝜀 ∈ (0, 1),N = (m + 1) ⋅ 2f (𝛾, 𝛽) ⋅ (p(n))5; oracle access to x ∈ {0, 1,⟂}N

⊳ Set s ← m ⋅ 2f (𝛾,𝛽)⋅(p(n))5

n
, q ← c3 log(1∕𝛽)

(1−𝛾)3
, and L ← c3

(1−𝛾)2
.

⊳ Set the query budget Q ← 30 ⋅
(⌈ 432

𝜀
⌉ + L⌈6 ln 6L⌉ ⋅ c2⋅75

24𝜀
⋅ q

)
.

1: Accept whenever the number of queries exceeds Q.

⊳ Steps 2–7 check that the plain part of x is the repetition of a string y ∈ {0, 1}n.

2: repeat ⌈ 432

𝜀
⌉ times:

3: Sample a uniformly random point u from the plain part.

4: if x[u] ≠⟂ then
5: Let i ∈ [s], a ∈ [n] be such that u = (i − 1) ⋅ n + a.

6: Repeatedly sample j ∈ [s] uniformly at random until x[(j − 1)n + a] ≠⟂.

7: Reject if x[u] ≠ x[(j − 1)n + a].

⊳ In order to query the ith bit of the encoding, we query the ith bits of both the first and
second halves of the encoded part.We set the ith bit of the encoding to the ith bit of the
first half if that is nonerased, and to the complement of the ith bit of second half if that is
nonerased.If both are erased, we set the ith bit of the encoding to ⟂.

8: Run the decoder for the (𝛾, 𝛽, q, L)-ALLED code (from Lemma 5.3) with oracle access to the

encoded part of x.

⊳ Let A1,A2,… ,AL be the list of algorithms returned in the above step.
⊳ Steps 9–14 check that y ∈ 𝜙n using the smooth PCPP V (from Lemma 6.3) on decoded
proofs.

9: for each k ∈ [L] do
10: repeat ⌈6 ln 6L⌉ times:

11: Sample i ∈ [s] uniformly at random.

12: Run the smooth PCPP V with proximity parameter
24𝜀

75
, and oracle access to the concate-

nation of x[(i − 1) ⋅ n + 1,… , (i − 1) ⋅ n + n] and the string decoded by Tk.

13: Discard the current k if all query answers to V are nonerased and V rejects.

14: Reject if every k ∈ [L] is discarded; otherwise, accept.

amplified by to 2∕3 by repeating Algorithm 3 a constant number of times and returning the majority

decision.

The erasure-resilient tester is presented in Algorithm 3. Let m denote
28 800⋅c2

𝜀⋆
. Let 𝛾 = 1

2
+ 𝜀⋆

57 600⋅c2

,

𝛽 = 𝜀⋆

9000c2⋅
⌈

ln
6c3

(1−𝛾)2

⌉ , q = c3 log(1∕𝛽)
(1−𝛾)3

, and L = c3

(1−𝛾)2
. For n ∈ ℵ, consider a string x ∈ {0, 1}N , where

N = (m+ 1) ⋅ 2f (𝛾, 𝛽) ⋅ (p(n))5. The plain part of x is m times larger than the encoded part. Let s denote

the number m ⋅ 2f (𝛾,𝛽)⋅(p(n))5

n
.

Assume that x satisfies  ′. Since x satisfies  ′, the plain part of x is completable to the repetitions

of y for some y ∈ 𝜙n . Therefore, Steps 2–7 do not reject. By the definition of  ′, the first half of the

encoded part of x is the encoding (using the (𝛾, 𝛽, q, L)-ALLED code  from Lemma 5.3) of a string

𝜋(y) ∈ {0, 1}p(n) such that the smoothed PCPP V with oracle access to y◦𝜋(y) always accepts. The

second half of the encoding is completable to the complement of the first half. The fraction of erasures

RASKHODNIKOVA ET AL. 661

in the encoded part (even if all of the erasures were there) is at most (m+1)𝛼. Therefore, the fraction of

erasures is at most (m+1) ⋅𝛼 ≤
1

2
+ 1

2m
= 𝛾 in either the first half or the second half of the encoded part.

By the definition of a (𝛾, 𝛽, q, L)-ALLED code, with probability at least 2∕3, one of the algorithms

T1, T2, … , TL returned by the approximate local list-decoder provides oracle access to 𝜋(y) with at

most a 𝛽 fraction of errors. Let Tk be that algorithm. The tester discards this k only if an erroneous

point is queried in some iteration of Steps 10–13. Since each proof query of V (in Step 12) is made

to a specific index in the proof with probability at most 2∕|p(n)| and the string decoded by Tk is

𝛽-erroneous, by the union bound over queries of V , the probability of V querying an erroneous point in

some iteration of Steps 10–13 is at most 6 ⋅ ⌈ln 6L⌉ ⋅ 2𝛽 ⋅ c2⋅75

24𝜀
, where we used the fact that ⌈6 ln 6L⌉ ≤

6 ⋅⌈ln 6L⌉. Now, the tester makes a wrong decision only if either (1) the approximate local list-decoder

fails (which happens with probability at most 1∕3), or (2) if the approximate local list-decoder succeeds

but Steps 10–13 discard k. Hence, by the union bound over the two events, the probability that the

tester makes a wrong decision is at most
1

3
+ 2 ⋅ 6 ⋅ ⌈ln 6L⌉ ⋅ c2⋅75

24𝜀
⋅ 𝛽 ≤

2

5
, where the inequality follows

from our setting of 𝛽. Hence, Step 14 rejects with probability at most 2∕5. That is, the tester accepts x
with probability at least 3∕5.

Assume now that x is 𝜀-far from  ′. Let pl denote the set of nonerased points in the plain part

of x. Let en denote the set of nonerased points in the encoded part of x. Let 𝛼pl denote the fraction

(with respect to s ⋅ n, the length of the plain part) of erased points in the plain part. ■

Let E denote the event that the number of queries made by the tester does not exceed the query

budget Q. In what follows, we upper bound the probability that Algorithm 3 accepts, conditioned on

E. We prove later, in Claim 6.9, that Pr[E] ≤ 1∕30.

Let 𝜀pl denote the fraction of points (with respect to s⋅n, the length of the plain part) in the plain part

whose values need to be changed in order to make the plain part a repetition of some string y ∈ {0, 1}n.

Let Sa = {(i− 1)n+ a ∶ i ∈ [s]} for all a ∈ [n]. We use the term ath segment to refer to the set Sa. For

all a ∈ [n], we have |Sa| = s. For all a ∈ [n], let 𝛼a = |{u ∈ Sa ∶ x[u] =⟂}|∕s denote the fraction of

points in Sa that are erased. Let a ⊆ Sa denote the set of nonerased points in the ath segment.

Case I: The plain part of x is 𝜀∕144-far from being the repetitions of every y ∈ {0, 1}n.

For a ∈ [n], let 𝜀a denote the smallest fraction of points in Sa whose values need to be changed in

order to satisfy x[u] = x[v] for all u, v ∈ a. For every a ∈ [n] and u ∈ a, the number of v ∈ a
such that x[u] ≠ x[v], is at least 𝜀a ⋅ s. It is immediate that 𝜀pl ⋅ s ⋅ n =

∑
a∈[n] 𝜀a ⋅ s.

Let F denote the event that the tester rejects in a single iteration of the loop in Steps 2–7. Let Ga for

all a ∈ [n] denote the event that the tester samples a nonerased point u from Sa in Step 3. Conditioned

on Ga, the number of nonerased points in Sa that make the tester reject is at least 𝜀a ⋅ s. Putting all this

together, we have,

Pr[F|E] = ∑
a∈[n]

Pr[Ga|E] ⋅ Pr[F|Ga,E] =
∑

a∈[n]

|a|
sn

⋅
𝜀a ⋅ s|a| = ∑

a∈[n]

1

n
⋅ 𝜀a = 𝜀pl ≥

𝜀

144
.

Therefore, conditioned on E, in at least 432∕𝜀 iterations, the tester will reject with probability at

least 19∕20. Hence, in Case I, the algorithm accepts with probability at most
1

20
+Pr[E] ≤ 1

20
+ 1

30
≤

2

5
,

where we prove later (in Claim 6.9) Pr[E] ≤ 1∕30. Thus, the algorithm rejects with probability at least

3∕5.

Case II: The plain part of x is 𝜀∕144-close to being repetitions of a string y∗ ∈ {0, 1}n.

We first show that y∗ has to be far from 𝜙n .

Claim 6.7. The string y∗ is 𝜀∕2-far from 𝜙n .

662 RASKHODNIKOVA ET AL.

Proof. Otherwise, one can transform the entire plain part of x to (be completable to) repetitions of

y∗ by making at most sn ⋅ 𝜀

144
≤ N ⋅ 𝜀

144
changes. This can then be transformed to repetitions of a string

in 𝜙n by making at most sn ⋅ 𝜀

2
≤ N ⋅ 𝜀

2
changes. Thus, the string x can be made to satisfy  ′ by

making at most N ⋅
(

𝜀

144
+ 𝜀

2
+ 1

m+1

)
changes, where the term

N
m+1

accounts for the number of changes

in the encoded part. Since 𝜀 >
𝜀⋆

8
and c2 > 1, we have that m = 28 800⋅c2

𝜀⋆
>

144

71𝜀
. Hence,

1

m
<

71𝜀

144
and,

therefore, N ⋅
(

𝜀

144
+ 𝜀

2
+ 1

m+1

)
< 𝜀N. Thus, the string x can be made to satisfy  ′ by making less than

𝜀N changes. This is a contradiction. ▪

Let Bi = {(i−1)n+a ∶ a ∈ [n]} for all i ∈ [s]. We use the term ith block to refer to the set Bi. For all

i ∈ [s], we have, |Bi| = n. Let 𝛼i = |{u∈Bi∶x[u]=⟂}|
n

for all i ∈ [s] denote the fraction of points in Bi that

are erased. Let i ⊆ Bi denote the set of nonerased points in the ith block. Let 𝜀i for all i ∈ [s] denote

the fraction of points in Bi whose values need to be changed in order to satisfy x[(i − 1)n + a] = y∗[a]
for all a ∈ [n]. In other words, 𝜀in is the smallest number of points in i that need to be changed in

order for the ith block to be completable to y∗.

Fix k ∈ [L]. We show that Algorithm 3 discards k with high probability. Consider a single iteration

of the repeat-loop in Steps 11–13. Let y′ denote the (partially erased) string represented by the block

that Algorithm 3 samples in Step 11. Let G1 denote the (good) event that y′ is 𝜀∕6-close to y∗. Let G2

denote the (good) event that y′ has at most 48𝛼 fraction of erasures. We first evaluate the probability

that the tester discards k in Steps 11–13 conditioned on G1 and G2.

Claim 6.8. Conditioned on G1 and G2, the string y′ is 24𝜀∕75-far from 𝜙n .

Proof. Let y′′ be a string in 𝜙n closest to y′. Let 𝑑 denote the number of nonerased bits in y′ that

need to be changed in order for it to be completable to y′′. By our conditioning, y′ is a 48𝛼-erased

string that is 𝜀∕6-close to y∗. Thus, one can convert y∗ into y′ and then y′ into y′′ by modifying at most

48𝛼n + 𝜀n
6
+ 𝑑 bits in y∗. Since y∗ is 𝜀∕2-far from 𝜙n , we get that 𝑑 ≥

𝜀n
2
− 𝜀n

6
− 48𝛼n. From the

restrictions on 𝛼 and 𝜀, one can verify that for all settings of these parameters, we have 𝛼 ≤
𝜀

3600
, which

implies that 𝑑 ≥
24𝜀n
75

. ▪

The smooth PCPP V , with proximity parameter
24𝜀

75
, is run on y′ and the proof decoded by Tk. Let

B1 denote the (bad) event that the PCPP V obtains an erased bit as the answer to some query. Let B2

denote the (bad) event that V accepts. By Lemma 6.3, V makes
c2⋅75

24𝜀
queries and each query of V to

the input part is made to each of the n input indices with probability 1∕n. Hence Pr[B1|E,G1,G2], the

probability that some input query is made to an erased point, is at most
c2⋅75

24𝜀
⋅ 48𝛼.

The probability that the V accepts (even if there were no erased query answers) is Pr[B2|E,G1,G2]
and is, by Definition 4.3, at most 1∕3. Thus, the probability that the smooth PCPP accepts, conditioned

on E, G1, and G2, is by the union bound, at most

c2 ⋅ 75

24𝜀
⋅ 48𝛼 + 1

3
≤

1

24
+ 1

3
,

where the inequality follows from our setting of 𝜀 and 𝛼.

To bound the probability that the PCPP accepts in a single iteration of Steps 11–13, we now evaluate

Pr[G1] and Pr[G2]. Let the random variable X denote the relative Hamming distance of y′ from y∗.

Then,

E[X] =
∑
i∈[s]

1

s
⋅ 𝜀i = 𝜀pl ≤

𝜀

144
.

RASKHODNIKOVA ET AL. 663

By Markov’s inequality,

Pr[G1] = Pr
[
X ≥

𝜀

6

]
≤ E[X]∕(𝜀∕6) ≤ 1∕24.

To bound Pr[G2], let the random variable Y denote the fraction of erasures in y′. We have that

E[Y] =
∑
i∈[s]

𝛼i
s
= 𝛼pl.

Even if all the erasures were in the plain part, 𝛼pl ≤
𝛼N
sn

≤ 𝛼 ⋅ (1 + 1

m
). Again, by an application of

Markov’s inequality, we get

Pr[G2] = Pr[Y > 48𝛼] ≤ E[Y]
48𝛼

≤
1 + 1

m
48

≤ 1∕24.

Therefore, conditioned on E, the probability that the PCPP accepts in one iteration of Steps 11–13 is

at most

Pr[B1|E,G1,G2] + Pr[B2|E,G1,G2] + Pr[G2] + Pr[G1] ≤
1

24
+ 1

3
+ 1

24
+ 1

24
≤

2

3
.

That is, conditioned on E, for a fixed k ∈ [L], in ⌈6 ln 6L⌉ independent repetitions of Steps 11–13, the

probability that the PCPP does not discard k is at most
(

1 − 1

3

)⌈6 ln 6L⌉
≤

1

36L2
. Hence, conditioned on

E, the probability that for some k ∈ [L], Steps 10–13 accepts is, by the union bound, at most 1∕(36L).
Thus, if x is in Case II, the probability that the tester accepts is at most,

1

36L
+ Pr[E] ≤ 1

36L
+ 1

30
≤

2

5
,

where Claim 6.9 shows that Pr[E] is at most 1∕30, which then completes the proof of Lemma 6.6.

Claim 6.9. The probability that Algorithm 3 exceeds its query budget is at most 1∕30.

Proof. We first compute the expected number of queries that the tester makes. Lemma 6.3 implies

that the verifier V , when run with parameter
24𝜀

75
, makes at most

c2⋅75

24𝜀
queries. Hence, the number of

queries made in Steps 9–13 is at most L⌈6 ln 6L⌉ ⋅ c2⋅75

24𝜀
⋅ q, where q and L are the query complexity

and list size of the approximate local list-decoder, respectively.

We now calculate the expected number of queries made from Steps 3–7. Let Y denote the number

of queries made in a particular iteration of Steps 3–7. The variable Y is nonzero only if the sampled

point u is nonerased. To calculate E[Y]:

E[Y] =
∑

a∈[n]

|a|
sn

⋅
1

1 − 𝛼a
=

∑
a∈[n]

(1 − 𝛼a)s
sn

⋅
1

1 − 𝛼a
= 1.

Hence, the expected number of queries made by the tester in Steps 2–7 is ⌈ 432

𝜀
⌉. Hence, setting Q to

30 ⋅
(⌈ 432

𝜀
⌉ + L⌈6 ln 6L⌉ ⋅ c2⋅75

24𝜀
⋅ q

)
, and applying Markov’s inequality, one can see that Pr[E] ≤ 1∕30.▪

▪

Next, we show that it is hard to tolerant test  ′. The proof of Lemma 6.10 is identical to the proof

of Lemma 4.12 up to change in parameters.

664 RASKHODNIKOVA ET AL.

Lemma 6.10. Let 𝜀⋆ ∈ (0, 1) be as in Lemma 4.2 and c2 > 1 be as in Lemma 6.3. For every
𝛼 ∈ (𝜀⋆

57 600⋅c2+2𝜀⋆
, 1), and 𝜀′ ∈

(
𝛼,

28 800⋅c2⋅𝜀
⋆

28 800⋅c2+𝜀⋆

)
, every (𝛼, 𝜀′)-tolerant tester for  ′ requires Ω̃(N0.2)

queries.

Proof. Let ℵ be as in Lemma 4.2 and let n ∈ ℵ. We will prove the lemma by showing a reduction

from 𝜀⋆-testing of 𝜙n . Let N and p(n) be as in Definition 6.5. Let s denote m ⋅ 2f (𝛾, 𝛽) ⋅ (p(n))5∕n.

Consider a string y ∈ {0, 1}n that we want to 𝜀⋆-test for 𝜙n . Let x ∈ {0, 1}N be the string where

the first sn bits of x are s repetitions of y and the remaining bits are all 0s. We refer to the substring

x[1 … sn] as the plain part of x and the substring x[sn + 1 … N] as the encoded part of x.

Assume that A is an (𝛼, 𝜀′)-tolerant tester for  ′. We now describe an 𝜀⋆-tester A′ for 𝜙n that has

the same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester A′ runs the tester A on

the string x ∈ {0, 1}N (as constructed from y above) and accepts iff A accepts. Observe that one can

simulate a query to x by making at most one query to y.

We will show that if y ∈ 𝜙n , then x is 𝛼-close to  ′. Observe that the encoded part of x needs to

be changed in at most a
1

2
fraction of its positions in order to make it the encoding of a string 𝜋, where

𝜋 is a proof that makes a smooth PCPP for testing 𝜙n (as guaranteed by Lemma 6.3) accept. This

follows from the fact that the encoded part of every string that satisfies the property contains an equal

number of 0s and 1s. Thus, the fraction of bits in x that needs to be changed in order to make it satisfy

 ′ is at most
1

2
⋅ N−sn

N
= 1

2(m+1)
= 𝜀⋆

57 600⋅c2+2𝜀⋆
, which is less than 𝛼. Therefore, by definition, A′ will

accept x with probability at least
2

3
.

Assume now that y is 𝜀⋆-far from 𝜙n . Then x needs to be changed in at least 𝜀⋆ ⋅ sn positions to

make it satisfy  ′. From this, one can observe that x is 𝜀⋆ ⋅ m
m+1

-far from  ′. Hence, for all 𝜀′ < 𝜀⋆ ⋅ m
m+1

,

we have that A will reject x with probability at least 2∕3, and therefore A′ will reject y with probability

at least 2∕3.

Thus, we have shown that the query complexity of (𝛼, 𝜀′)-tolerant testing  ′ is at least the query

complexity of 𝜀⋆-testing 𝜙n . Hence, the query complexity of (𝛼, 𝜀′)-tolerant testing  ′ is Ω(n), which

is equal to Ω̃(N0.2). ▪

Remark 6.11. We would like to point out that the lower bound on the query complexity of tolerant

testing (from Lemma 6.10) can be improved if there exist approximate local erasure list-decodable

codes with larger rate. In other words, constant-query approximate local erasure list-decodable codes

with larger rate, when used in our above construction, directly imply an even stronger separation

between the query complexity of erasure-resilient and tolerant testing models.

Proof of Theorem 1.10. From Theorem 6.1, we get the following constraints on 𝛼, 𝜀, 𝜀′:

𝜀⋆

57 600 ⋅ c2 + 2𝜀⋆
< 𝛼 <

𝜀⋆

57 600 ⋅ c2

; 𝜀 >
𝜀⋆

8
; 𝜀′ <

28 800 ⋅ c2𝜀
⋆

28 800 ⋅ c2 + 𝜀⋆
.

To complete the proof of Theorem 1.10, it is enough to find values of 𝜀, 𝛼 that satisfy the above con-

straints, where we set 𝜀′ = 𝜀+ 𝛼. For sufficiently small 𝜀⋆, the upper bound on 𝜀+ 𝛼 is strictly greater

than 𝜀⋆∕2. So, it is enough to find 𝜀 < 𝜀⋆∕4 and 𝛼 < 𝜀⋆∕4 that also satisfy the first two conditions.

The existence of such 𝜀 and 𝛼 is clear from the bounds imposed on them by the first two constraints.

▪

RASKHODNIKOVA ET AL. 665

7 LOCAL ERASURE-DECODING VERSUS LOCAL DECODING

In this section, we prove Theorem 1.12 and an observation that if a code is locally decodable, it is also

locally erasure-decodable up to (nearly) twice as many erasures. A part of our proof (Claim 7.2) uses

ideas developed Katz and Trevisan [42].

Definition 7.1 (Smooth locally decodable codes). A code family {Cn ∶ F
n
2 → F

N
2 }n∈N is (q, 𝜂)-smooth

locally decodable if there exists a nonadaptive (0, q)-local erasure-decoder A (see Definition 1.11) that,

given oracle access to an uncorrupted codeword w ∈ F
N
2 , and an input i ∈ [n], is such that, for all

j ∈ [N], the probability that A queries j is at most 𝜂.

It is easy to see that the following two claims imply Theorem 1.12.

Claim 7.2. For every 𝛼 ∈ [0, 1), if a code family {Cn ∶ F
n
2 → F

N
2 }n∈N is (𝛼, q)-locally erasure-

decodable, then {Cn ∶ F
n
2 → F

N
2 }n∈N is (q′, 𝜂)-smooth locally decodable, where q′ = 3q, and 𝜂 = q′

𝛼N
.

Claim 7.3. For every 𝛼 ∈ [0, 1), if a code family {Cn ∶ F
n
2 → F

N
2 }n∈N is (q, q

𝛼⋅N
)-smooth locally

decodable, then {Cn ∶ F
n
2 → F

N
2 }n∈N is (𝛼

O(q)
,O(q))-locally decodable.

Proof of Claim 7.2. Let A be an (𝛼, q)-local erasure-decoder for Cn. Since A could be adaptive, for

every choice of random coins, the execution of A can be represented as a ternary tree, where each node

represents a query. The root represents the first query made by A. The three children of a non-leaf node

u represent the next points that A will query for the cases that the answers to the query u are 0, 1, or

⟂. The size of this tree is at most 3q. Consider an algorithm A1 that, after having generated its random

string r ∈ {0, 1}∗, queries all the points in the tree of execution of A on the string r. After obtaining

the answers to its queries, A1 outputs the value at the end of the root-to-leaf path that matches with

the actual query answers. Note that there is exactly one such path. Therefore, A1 is a nonadaptive local

erasure-decoder for Cn that makes at most q′ = 3q queries and has the same success probability as A.

We now use A1 to construct A2, a (q′,
q′

𝛼N
)-smooth local decoder for Cn. Consider an uncorrupted

codeword w = Cn(x) for x ∈ F
n
2. For each i ∈ [n], let qi ≤ q′ denote the number of queries made by A1

on input i and let Si denote the set consisting of indices in [N] that get queried by A1 (on input i) with

probability more than
q′

𝛼N
. For i ∈ [n], k ∈ [qi], it is clear that

∑
j∈[N]

Pr[kth query of A(⋅)
1 (i) is to position j] = 1.

Hence, for each i ∈ [n],∑
j∈[N]

∑
k∈[qi]

Pr[kth query of A(⋅)
1 (i) is to position j] = qi ≤ q′.

From this, we have |Si| ≤ 𝛼 ⋅ N. On input i ∈ [n] and oracle access to w = Cn(x), the algorithm A2

simulates A1 in the following way. If A1 queries j′ ∈ Si, the algorithm A2 does not query j′ and assumes

that w[j′] =⟂. Thus, A2 is a (q′,
q′

𝛼N
)-smooth local decoder for Cn. ▪

Proof of Claim 7.3. Consider a (q, q
𝛼N

)-smooth local decoder A for Cn. We will construct an

(𝛼

12q
, 72q)-local decoder A′ for Cn. Algorithm A′, on input i ∈ [n] and oracle access to a word w with

666 RASKHODNIKOVA ET AL.

at most an
𝛼

12q
fraction of errors, performs 72 independent repetitions of A and outputs the majority

value output among all the iterations.

Let x ∈ F
n
2 be such that y = Cn(x) is the codeword closest to w. If A is run on input i with oracle

access to y, then for at least a
2

3
fraction of the sequences of its random coin tosses, A returns xi correctly.

When A is run on input i with oracle access to w, by the union bound and the smoothness of A, at most

an
𝛼

12q
⋅ N ⋅ q

𝛼N
= 1

12
fraction of sequences of its random coin tosses result in an erroneous position

being queried. Hence, the probability that A, on input i and oracle access to w, returns xi correctly is

at least
2

3
− 1

12
. Hence, by a Chernoff bound, the probability that A′, which is obtained by running 72

independent iterations of A and outputting the majority answer, outputs xi correctly is at least 2∕3. The

query complexity of A′ is 72q. ▪

The following observation is based on an idea suggested to us by Guruswami.

Observation 7.4. Every (𝛼, q)-LDC family {Cn ∶ F
n
2 → F

N
2 }n∈N is also (2𝛼 − 𝜌,O(q))-locally

erasure-decodable, where 𝜌 = O(
√

𝛼

N
).

Proof. Consider an (𝛼, q)-local decoder A for Cn ∶ F
n
2 → F

N
2 . Let w ∈ (F2 ∪ {⟂})N be a codeword

with at most (2𝛼 − 𝜌)N erasures. Consider algorithm A′ that, on input i ∈ [n] and oracle access to w,

runs A on input i ∈ [n] and oracle access to w′, where w′ is generated on the fly by filling in the erased

bits of w with 0 or 1 u.a.r. The expected Hamming distance of w′ to the code is at most 𝛼N − 𝜌

2
N. By

a Chernoff bound, the probability that the Hamming distance of w′ to the code is more than 𝛼N is at

most
1

12
. The probability of failure of A′ is at most

5

12
. One can amplify the success probability to 2∕3

by performing 72 independent repetitions of A′ and outputting the majority answer. ▪

ACKNOWLEDGMENTS
The authors express their gratitude to anonymous reviewers whose comments helped improve the

presentation of this article. The authors are thankful to Venkatesan Guruswami for helping to tighten

the analysis of the local erasure list-decoder for the Hadamard code and also for making a suggestion

that led to Observation 5.2. The authors are grateful to Prahladh Harsha, Or Meir, Ramesh Krishnan S.

Pallavoor, Adam Smith, Sergey Yekhanin, and Avi Wigderson for useful discussions. Last but not least,

the authors would like to thank the sponsors and organizers of the Workshop on Local Algorithms 2018

for making this collaboration possible. The first author was supported by National Science Foundation

(NSF) grants CCF-142297, CCF-1832228, and CCF-1909612. The second author was supported in

part by the Israel Science Foundation (ISF) grant 735/20. Most of this work was done when the third

author was a student at the Boston University, where he was supported by NSF grants CCF-142297,

and CCF-1832228. The third author was also supported by the ISF grant 497/17, and by the PBC

Fellowship for Postdoctoral Fellows by the Israeli Council of Higher Education.

REFERENCES

1. N. Alon, J. Edmonds, and M. Luby, Linear time erasure codes with nearly optimal recovery (extended abstract),
Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1995), 1995,

pp. 512–519.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and intractability of approximation
problems, J. ACM 45(3) (1998), 501–555.

RASKHODNIKOVA ET AL. 667

3. S. Arora and S. Safra, Probabilistic checkable proofs: A new characterization of NP, J. ACM 45(1) (1998),

70–122.

4. S. Artemenko and R. Shaltiel, Lower bounds on the query complexity of non-uniform and adaptive reductions
showing hardness amplification, Comput. Complex. 23(1) (2014), 43–83.

5. L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, Checking computations in polylogarithmic time, in Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, C. Koutsougeras and J. S. Vitter,

Eds., ACM, New Orleans, Louisiana, 1991, 21–31.

6. L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential time simulations unless EXPTIME has
publishable proofs, Comput. Complex. 3(4) (1993), 307–318.

7. A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, Breaking the o
(
n1∕(2k−1)) barrier for information-theoretic

private information retrieval, in Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, IEEE Computer Society, Vancouver, BC, Canada, 2002, 261–270.

8. A. Ben-Aroya, K. Efremenko, and A. Ta-Shma, Local list decoding with a constant number of queries, in Proceed-
ings of the 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010,

IEEE Computer Society, Las Vegas, Nevada, 2010, 715–722.

9. A. Ben-Aroya, K. Efremenko, and A. Ta-Shma, A note on amplifying the error-tolerance of locally decodable codes,

Electronic Colloquium on Computational Complexity (ECCC), vol. 17, 2010, p. 134.

10. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan, Robust PCPs of proximity, shorter PCPs, and
applications to coding, SIAM J. Comput. 36(4) (2006), 889–974.

11. E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3CNF properties are hard to test, SIAM J. Comput. 35(1)

(2005), 1–21.

12. V. M. Blinovsky, Bounds for codes in the case of list decoding of finite volume, Probl. Inf. Transm. 22(1) (1986),

7–19.

13. M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical problems, J. Comput.

Syst. Sci. 47(3) (1993), 549–595.

14. A. Bogdanov and M. Safra, Hardness amplification for errorless heuristics, Proceedings of the 48th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2007), October 20–23, 2007, IEEE Computer Society,

Providence, RI, 2007, pp. 418–426.

15. J.-Y. Cai, A. Pavan, and D. Sivakumar, On the hardness of permanent, in Proceedings of the 16th Annual Symposium
on Theoretical Aspects of Computer Science STACS 99, March 4-6, 1999, Lecture Notes in Computer Science, Vol

1563, C. Meinel and S. Tison, Eds., Springer, Trier, Germany, 1999, 90–99.

16. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval, J. ACM 45(6) (1998),

965–981.

17. I. Dinur, The PCP theorem by gap amplification, J. ACM 54(3) (2007), 12.

18. I. Dinur and O. Reingold, Assignment testers: Towards a combinatorial proof of the PCP theorem, SIAM J. Comput

36(4) (2006), 975–1024.

19. K. Dixit, S. Raskhodnikova, A. Thakurta, and N. M. Varma, Erasure-resilient property testing, SIAM J. Comput.

47(2) (2018), 295–329.

20. Z. Dvir, P. Gopalan, and S. Yekhanin, Matching vector codes, SIAM J. Comput. 40(4) (2011), 1154–1178.

21. K. Efremenko, 3-query locally decodable codes of subexponential length, SIAM J. Comput. 41(6) (2012),

1694–1703.

22. F. Ergün, R. Kumar, and R. Rubinfeld, Fast approximate probabilistically checkable proofs, Inf. Comput. 189(2)

(2004), 135–159.

23. E. Fischer and L. Fortnow, Tolerant versus intolerant testing for Boolean properties, Theory Comput. 2(9) (2006),

173–183.

24. P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-testing/correcting for polynomials and
for approximate functions, Proc. STOC 1991 (1991), 32–42.

25. P. Gemmell and M. Sudan, Highly resilient correctors for polynomials, Inf. Process. Lett. 43(4) (1992),

169–174.

26. O. Goldreich, A brief introduction to property testing, in Studies in Complexity and Cryptography. Miscellanea on
the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, Lecture Notes in Computer Science, Vol 6650,

O. Goldreich, Ed., Springer, New York, NY, 2011, 465–469.

27. O. Goldreich, Introduction to testing graph properties, in Studies in Complexity and Cryptography. Miscellanea on
the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, Lecture Notes in Computer Science, Vol 6650,

O. Goldreich, Ed., Springer, New York, NY, 2011, 470–506.

28. O. Goldreich, Introduction to property testing, Cambridge University Press, Cambridge, MA, 2017.

668 RASKHODNIKOVA ET AL.

29. O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and approximation,

J. ACM 45(4) (1998), 653–750.

30. O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions, in Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, D. S. Johnson, Ed., ACM, Seattle, Washington, 1989,

25–32.

31. O. Goldreich, R. Rubinfeld, and M. Sudan, Learning polynomials with queries: The highly noisy case, SIAM

J. Discret. Math. 13(4) (2000), 535–570.

32. S. Gopi, S. Kopparty, R. Oliveira, N. Ron-Zewi, and S. Saraf, Locally testable and locally correctable codes
approaching the gilbert-varshamov bound, IEEE Trans. Inf. Theory 64(8) (2018), 5813–5831.

33. A. Grinberg, R. Shaltiel, and E. Viola, Indistinguishability by adaptive procedures with advice, and lower bounds
on hardness amplification proofs, in Proceedings of the 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, October 7-9, 2018, M. Thorup, Ed., IEEE Computer Society, Paris, France, 2018,

956–966.

34. A. Guo and S. Kopparty, List-decoding algorithms for lifted codes, IEEE Trans. Inf. Theory 62(5) (2016),

2719–2725.

35. V. Guruswami, List decoding from erasures: Bounds and code constructions, IEEE Trans. Inf. Theory 49(11)

(2003), 2826–2833.

36. V. Guruswami and P. Indyk, Linear-time encodable/decodable codes with near-optimal rate, IEEE Trans. Inf.

Theory 51(10) (2005), 3393–3400.

37. V. Guruswami and A. Rudra, Tolerant locally testable codes, in Approximation, Randomization and Combinato-
rial Optimization, Algorithms and Techniques, Proceedings of the 8th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th International Workshop on Ran-
domization and Computation, RANDOM 2005, August 22-24, 2005, Lecture Notes in Computer Science, Vol 3624,

C. Chekuri, K. Jansen, J. D. P. Rolim, and L. Trevisan, Eds., Springer, Berkeley, CA, 2005, 306–317.

38. V. Guruswami and S. P. Vadhan, A lower bound on list size for list decoding, IEEE Trans. Inf. Theory 56(11) (2010),

5681–5688.

39. D. Gutfreund and G. N. Rothblum, The complexity of local list decoding, in Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques, Proceedings of the 11th International Workshop,
APPROX 2008, and 12th International Workshop, RANDOM 2008, August 25-27, 2008, Lecture Notes in Computer
Science, A. Goel, K. Jansen, J. D. P. Rolim, and R. Rubinfeld, Eds., Springer, 5171, Boston, MA, 2008, 455–468.

40. B. Hemenway, N. Ron-Zewi, and M. Wootters, Local list recovery of high-rate tensor codes & applications, Pro-

ceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer

Society, Washington, DC, 2017.

41. R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson, Uniform direct product theorems: Simplified, optimized,
and derandomized, SIAM J. Comput. 39(4) (2010), 1637–1665.

42. J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-correcting codes, in Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, May 21-23, 2000, F. F. Yao and E. M. Luks, Eds.,

ACM, Portland, OR, 2000, 80–86.

43. S. Kopparty, List-decoding multiplicity codes, Theory Comput. 11 (2015), 149–182.

44. S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf, High-rate locally correctable and locally testable codes with
sub-polynomial query complexity, J. ACM 64(2) (2017), 11:1–11:42.

45. S. Kopparty and S. Saraf, Local list-decoding and testing of random linear codes from high error, SIAM J. Comput.

42(3) (2013), 1302–1326.

46. E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum, SIAM J. Comput. 22(6) (1993),

1331–1348.

47. A. Levi, R. K. S. Pallavoor, S. Raskhodnikova, and N. Varma, Erasure-resilient sublinear-time graph algorithms, in

Proceedings of the 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021,
Virtual Conference, LIPIcs, Vol 185, J. R. Lee, Ed., Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern,

Germany, 2021, 80:1–80:20.

48. R. J. Lipton, New directions in testing, in Distributed Computing And Cryptography, Proceedings of a DIMACS
Workshop, October 4-6, 1989, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol 2,

J. Feigenbaum and M. Merritt, Eds., DIMACS/AMS, Princeton, NJ, 1989, 191–202.

49. R. J. Lipton, Efficient checking of computations, Proceedings of the 7th Annual ACM Symposium on Theoretical

Aspects of Computer Science (STACS), San Jose, CA, 1990, pp. 207–215.

50. O. Meir, Combinatorial PCPs with efficient verifiers, Comput. Complex. 23(3) (2014), 355–478.

51. O. Meir, Combinatorial PCPs with short proofs, Comput. Complex. 25(1) (2016), 1–102.

52. M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property testing and distance approximation, J. Comput. Syst. Sci.

72(6) (2006), 1012–1042.

53. A. Polishchuk and D. A. Spielman, Nearly-linear size holographic proofs, in Proceedings of the 26th Annual ACM
Symposium on Theory of Computing, 23-25 May 1994, F. T. Leighton and M. T. Goodrich, Eds., ACM, Montréal,

Québec, Canada, 1994, 194–203.

RASKHODNIKOVA ET AL. 669

54. S. Raskhodnikova, N. Ron-Zewi, and N. M. Varma, Erasures vs. errors in local decoding and property testing,

Proceedings of the 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10–12,

2019, San Diego, CA, 2019, pp. 63:1–63:21.

55. D. Ron, Algorithmic and analysis techniques in property testing, Found. Trends Theor. Comput. Sci. 5(2) (2009),

73–205.

56. N. Ron-Zewi, R. Shaltiel, and N. Varma, Query complexity lower bounds for local list-decoding and hard-core
predicates (even for small rate and huge lists), in Proceedings of the 12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, LIPIcs, Vol 185, J. R. Lee, Ed., Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, Germany, 2021, 33:1–33:18.

57. R. Rubinfeld and E. Blais, Something for (almost) nothing: New advances in sublinear-time algorithms, in

Handbook of big data, Chapman & Hall/CRC Press, Boca Raton, FL, 2016, 155–167.

58. R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to program testing, SIAM

J. Comput. 25(2) (1996), 252–271.

59. M. Sudan, L. Trevisan, and S. P. Vadhan, Pseudorandom generators without the XOR lemma, J. Comput. Syst. Sci.

62(2) (2001), 236–266.

60. L. Trevisan, List-decoding using the XOR lemma, Proceedings of the 44th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), Cambridge, MA, 2003, pp. 126–135.

61. L. Trevisan, Some applications of coding theory in computational complexity, CoRR (2004), cs.CC/0409044.

62. T. Watson, Query complexity in errorless hardness amplification, Comput. Complex. 24(4) (2015),

823–850.

63. S. Yekhanin, Towards 3-query locally decodable codes of subexponential length, J. ACM 55(1) (2008),

1:1–1:16.

How to cite this article: S. Raskhodnikova, N. Ron-Zewi, and N. Varma, Erasures versus
errors in local decoding and property testing, Random Struct. Algorithms. 59 (2021),

640–670. https://doi.org/10.1002/rsa.21031

APPENDIX A: TWO DEFINITIONS OF ERASURE-RESILIENT TESTING

In this section, we show that for constant 𝛼, 𝜀 ∈ (0, 1), the definition of 𝛼-erasure-resilient 𝜀-testing

model used in this article is equivalent to that defined by Dixit et al. [19]. For convenience, we refer to

the former and latter definitions as the new and old definitions, respectively. We first describe the rejec-

tion condition of an erasure-resilient tester according to the old definition, which is the only difference

between the two definitions. For 𝛼 ∈ [0, 1) and 𝜀 ∈ (0, 1), an 𝛼-erasure-resilient 𝜀-tester for a property

 (of strings of length n) rejects, with probability at least 2∕3, an 𝛼-erased string x ∈ {0, 1,⟂}n if

every completion of x has to be changed in at least 𝜀 ⋅ | | nonerased values in order for it to satisfy

 , where  denotes the set of nonerased points in x.

Claim A.1. Let 𝛼, 𝜀 ∈ (0, 1) such that 𝛼 + 𝜀 < 1. Let  be a property over strings of length n.
If T is an 𝛼-erasure-resilient 𝜀-tester for a property  with query complexity q(𝜀, 𝛼, n) w.r.t. the old
definition, then T is also an 𝛼-erasure-resilient 𝜀-tester for  with query complexity q(𝜀, 𝛼, n) w.r.t. the
new definition.

Proof. Consider an 𝛼-erased string x ∈ {0, 1,⟂}n. If x satisfies  , then T accepts x with probability

at least 2∕3. If x is 𝜀-far from  w.r.t. the new definition, then  is
𝜀⋅n| | -far from  w.r.t. the old

definition. Since
𝜀⋅n| | ≥ 𝜀, the tester T , when run with parameters 𝛼 and 𝜀, rejects x with probability at

least 2∕3. Moreover, the query complexity of T remains the same. ▪

https://doi.org/10.1002/rsa.21031

670 RASKHODNIKOVA ET AL.

Claim A.2. Let 𝛼, 𝜀 ∈ (0, 1) and 𝜀′ = 𝜀(1 − 𝛼). Let  be a property over strings of length n. If T is
an 𝛼-erasure-resilient 𝜀′-tester with query complexity q(𝜀′, 𝛼, n) for  w.r.t. the new definition, then T
is an 𝛼-erasure-resilient 𝜀-tester for  with query complexity q(𝜀(1− 𝛼), 𝛼, n) w.r.t. the old definition.

Proof. Consider an 𝛼-erased string x ∈ {0, 1,⟂}n. If x satisfies  , then T accepts x with probability

at least 2∕3. If x is 𝜀-far from  w.r.t. the old definition, then  is
𝜀⋅| |

n
-far from  w.r.t. the new

definition. Since
𝜀⋅| |

n
≥ 𝜀(1 − 𝛼), the tester T , when run with parameters 𝛼′ = 𝛼 and 𝜀′ = 𝜀(1 − 𝛼),

rejects x with probability at least 2∕3. ▪

