

494 H. Jafarzadeh and C.H. Fleming

path, which is not guaranteed by non-classic algorithms

such as heuristic or probabilistic approaches. However,

SPP has significantly lower computational complexity

than the other geometry based algorithms.

The paper is organized as follows: the second section

provides a review of the state of the art in path planning

algorithms, including heuristic, probabilistic and classic

algorithms, and Section 3 then describes SPP formally.

Section 4 presents the results of the computer simulation

and compares SPP performance with a baseline algorithm

under a series of complex scenarios. Finally, the paper

concludes with a summary and directions for future study.

2. Literature review

Though the body of research is fairly mature, with

the increasing prevalence of autonomous systems it

is important to develop alternative and more efficient

techniques. To solve the problem in which the

environment is assumed to be static, numerous algorithms

have been presented and can be classified in three major

groups: heuristic, probabilistic, and classic algorithms

(Mac et al., 2016). Heuristic algorithms are flexible and

can be adapted for different optimization and decision

making problems such as path planning. Although they

often generate a good solution, the optimality of the

solutions is not guaranteed. There has been a trend

towards increasing usage of heuristic algorithms in path

planning, compared with classic algorithms.

The classic algorithms suffer from high time

complexity in high dimensional spaces, and some fail

to reach global optimal solution. To overcome the

limitations of classic algorithms, probabilistic algorithms

have been developed (Masehian and Sedighizadeh,

2007). Probabilistic algorithms do not provide optimal

solutions necessarily but they are a suitable choice for

three-dimensional problems such as path planning for

manipulators. They also tend to generate solutions

quickly, but they have problems expanding through

narrow passages and getting around obstacles.

Being relatively easy to implement, the classical

and probabilistic approaches are preferred in most of

the real-time path planning applications. Although

these methods are effective, most of these algorithms

do not provide any theoretical guarantees for obtaining

an optimal solution (Tang et al., 2012). Furthermore,

like the heuristic algorithms, they also suffer from

high computational complexity and, consequently, long

running times (Tang et al., 2012).

In this section some of the path planning algorithms

are studied in three major classes with focus on the

geometry-based algorithms in classic algorithms group:

2.1. Heuristic algorithms. The term heuristic is used

for algorithms which find a good solution but they do

not guarantee the optimality. Therefore, they might

be considered as approximate and not exact algorithms.

These algorithms, usually find a solution close to the

optimal one and they find it fast. Among the heuristic

algorithms, genetic algorithms (GAs) (Davoodi et al.,

2015; Jafarzadeh et al., 2017), artificial neural networks

(ANNs) (Ni et al., 2017), and ant colony optimization

(ACO) (Liu et al., 2017) have been the most popular

for solving path planning problems (Masehian and

Sedighizadeh, 2007). These algorithms take into account

different objectives at the same time and can be adjusted

for a wide variety of problems. But, they do not guarantee

the optimality of the generated solution. Increasing usage

of heuristic algorithms in path planning has been observed

compared with the classical algorithms. The heuristic

algorithms are considered more intelligent and advanced

methods, which can handle uncertain and incomplete

information in continuously changing environments and

obtain near-optimal solutions. On the other hand, many

of the heuristic algorithms require an additional learning

phase and very high computational cost (Mac et al., 2016).

2.2. Probabilistic algorithms. These are a group

of algorithms that take random samples from the

configuration space, testing them for feasibility, and

use a local planner to connect them to other nearby

configurations. This class of algorithms, including

rapidly-exploring random trees (RRTs) (LaValle, 1998)

and probabilistic road maps (PRMs) (Kavraki et al.,

1998) as well as other versions of PRM such as

lazy PRM (Bohlin and Kavraki, 2000) and semi-lazy

PRM (Akbaripour and Masehian, 2017), consists of two

phases. In the first phase a probabilistic road map is

incrementally constructed. In the second phase which is

called query phase, the constructed road map is used for

solving individual path planning in the given environment.

The shortest path finder algorithms such as Dijkstra’s

algorithm is used to accomplish the query phase. Further

details can be found in the work of Latombe (2012). RRT

has difficulty in expanding through narrow passages and

getting around the obstacles. In addition, the generated

path is not smooth and suboptimal with respect to path

length. To solve this problem, biased RRTs are proposed

(Urmson and Simmons, 2003). Because these biased

RRT algorithms are greedy, they tend to generate a local

minimum solution.

One of the most recently published versions of RRT

is IB-RTT* (Qureshi and Ayaz, 2015), which is specially

designed for sophisticated cluttered environments. It uses

the bidirectional tree technique and proposes an intelligent

sample insertion heuristic to converge faster to the optimal

solution. According to the provided experimental results,

IB-RRT* shows superior computational efficiency in

comparison with RRT and its variants. Although this is the

fastest variant of RRT, it still needs considerable amount

An exact geometry-based algorithm for path planning
495

of time to compute a sufficient solution, and for some

reported scenarios the running time exceeds 510 seconds.

To reduce running time, IB-RRT* can present a local

optimal solution which is relatively poor in smoothness

and the path length, but by increasing the number of

iterations (and thus running time) it improves the quality

of the path.

2.3. Classic algorithms. The classic algorithms, also

known as exact algorithms, are a group of algorithms

that decompose the environment into different sections.

A remarkable number of the studies in this group are

an enhanced version of the preliminary motion planning

algorithms such as the bug algorithm, potential fields

(Ge and Cui, 2000), mathematical programming, and the

geometry-based algorithm (Mac et al., 2016; Jafarzadeh

et al., 2014). The presented algorithm is categorized in

the geometry-based algorithms.

Bug algorithms assume that, although the agent

knows the location of the global goal, only local

information of the environment is available (Choset,

2005). Bug algorithms generate suboptimal (i.e., long)

paths and have long running time. Another algorithm

in this list is the potential field algorithm, which has

the ability to generate a path in real time. However,

the potential field algorithm cannot solve many complex

scenarios, especially when there is a non-convex obstacle

in the environment and either the starting or goal point

is located within the convex hull of this obstacle (Tang

et al., 2012). Also, the potential field algorithm does not

generate a passage between very closely spaced obstacles.

The other set of algorithms in this category is the

mathematical programming approach which represents

the requirement of obstacle avoidance and an objective

function with a set of inequalities and equalities on the

configuration parameters. MP is formulated then as a

mathematical optimization problem that finds a curve

between the start and goal points.

The last group of the classic algorithms in this

classification are the geometry based algorithms. Because

the SPP algorithm introduced in this paper is within this

group, these algorithms warrant a relatively longer review.

These algorithms try to provide a globally optimal path

by generating a network of all possible paths between the

start and goal points and then proceed with a shortest path

algorithm over this network, such as Dijkstra’s algorithm

(Cormen, 2001). Because of the complexity of the

generated network, the run time of these algorithms can

be relatively long; however, the path length is generally

globally optimal. There are four major algorithms in this

sub-group: triangulation dual graph, generalized Voronoi

diagram, cell decomposition, and visibility graph (VG).

All the geometry based algorithms, also known as road

map algorithms, assume that global knowledge of the

environment is available. These algorithms try to generate

paths by using sets of nodes and edges. Usually the graph

is formed offline without information of the start and goal

locations. Eventually, these locations are given as a query

and some required edges are added to the graph, then the

graph is searched to find the shortest path from the start to

the goal point.

The first algorithm to be described in this group is

the algorithm of triangulation dual graph paths (Choset,

2005), which decomposes the solution space environment

into triangles, where each triangle composes a graph.

Then the algorithm computes the dual graph of the

original triangulated graph that generates a rough path. To

do this, the algorithm finds the center of each triangle (an

alternative method is finding the midpoint of triangulation

edges) and connects each center if the triangles share

an edge with each other. Then, one of the shortest

path algorithms is utilized to find the best path within

the designed graph. Sometimes, the generated path is

infeasible and inefficient. To improve the given path,

the algorithm applies a refining method that ensures the

computed path will be acceptable and more efficient in

terms of length.

A Voronoi road map (Choset, 2005) is a set of

paths in the environment that ensures maximum clearance

between obstacles. This method reduces the probability of

the collision, and is thus preferred in robotics. A Voronoi

cell is the set of points that are closer to an assumed or

specified point (also called a seed) than to any of the other

seed points. More formally, given a finite set of points

{p1, . . . , pn}, the Voronoi cell Rk associated with pk of

every point whose distance to pk is less than or equal

to its distance to any other pi in the set. A generalized

Voronoi diagram is designed for environments that are

populated by polygons instead of points. After forming

the Voronoi diagram, the desired graph can be processed

by a shortest path algorithm. This algorithm generates

a safe, obstacle-free path, which is suitable when the

sensors on the robot include large errors, but it does not

generate the shortest path.

The basic idea behind the cell decomposition method

(Choset, 2005) is determining a path between the start

and the goal configuration by dividing the obstacle-free

space into smaller regions called cells. After this step,

a connectivity graph is constructed according to the

adjacency relationships between the cells, where the

nodes represent the cells in the free space, and the edges

between the nodes show that the corresponding cells are

adjacent to each other. From this connectivity graph

a path will be determined by following adjacent free

cells from the start point to the goal. The final set of

algorithms in the geometry based class are visibility graph

techniques. The algorithms in this group are capable of

finding an optimal path. Two arbitrary points a and b
are visible to each other when the line segment ab does

not intersect any polygonal obstacles (Latombe, 2012).

496 H. Jafarzadeh and C.H. Fleming

By connecting all mutually visible vertices, the visibility

graph is constructed. According to the following lemma,

the visibility graph includes the optimal path.

Lemma 1. (De Berg et al., 2008) Any shortest path be-

tween S and G among a set of polygonal obstacles is a

polygonal path whose inner vertices are vertices of given

obstacles.

In this lemma, S and G indicate the starting point

and the goal point, respectively. This lemma helps to

shrink the solution space from continuous to discrete.

According to the definition, the algorithms presented to

construct the visibility graph take into account all the

vertices of existing polygonal obstacles. In the literature,

the effectiveness of algorithms in this class is often

measured in terms of the time complexity in constructing

the visibility graph.

The simplest algorithm has O(n3) running time,

where n is the number of all vertices in the given case

(Lozano-Pérez and Wesley, 1979). This algorithm is a

naive one, in which all the edges are drawn by using

two arbitrary vertices and checked for the feasibility. In

1978, Lee presented an improved algorithm (Asano et al.,

1986) by applying the rotation sweep technique. In this

algorithm vertices are sorted based on their angle relative

an arbitrary point. The sorting operation can be completed

in O(n log n) and after adding the visibility check of

all n vertices, the running time will be O(n2 logn). If

cardinality of inter-polygonal edges, denoted by εν is

equal to O(n2), the overall running time after applying

Dijkstra’s algorithm will be O(n2 logn).
Quadratic algorithms (Asano et al., 1986;

Edelsbrunner et al., 1986) can construct the visibility

graph in O(n2). In the case when the cardinality of εν is

O(n2), these algorithms work optimally with respect to

the running time of Dijkstra’s algorithm. Most of them

utilize a triangulation over the obstacle-free space or

mapping to the dual space and using the rotation sweep

technique to check the feasibility of inter-polygonal

edges.

Another quadratic algorithm, which does not use

the triangulation method and is relatively intuitive and

easy to implement, was presented by Welzl (1985). This

algorithm has been designed to construct the visibility

graph for line segments that can be easily generalized to

polygonal obstacles.

Finally, an output-sensitive algorithm proposed by

Ghosh and Mount (1991) outperforms all previous

algorithms when the cardinality of εν is less than O(n2).
The time complexity of this algorithm is O(n log n +
card(εν)).

Rohnert introduced an improved version of the

visibility graph called the reduced-visibility-graph

algorithm that considers only the supporting and

separating edges to find the shortest path (Rohnert, 1986).

S

ε

v '
v

(a)

S
v '

v

ε

(b)

Fig. 1. Vertex v is not a part of the shortest path.

S

v

Fig. 2. Vertex v might be a part of the shortest path.

By applying this method, the number of inter-polygonal

edges decreases significantly to the visibility graph. The

main thought behind Rohnert’s algorithm is computing

the part of the visibility graph which plays a role in

finding the shortest path in O(n + p2 logn) time, where

p is the number of polygons in the obstacle space. The

following lemma ensures that the reduced visibility graph

includes the optimal path.

Lemma 2. (Rohnert, 1986) The shortest collision-free

path between S and G among a set of polygonal obsta-

cles, runs through edges of the polygons and supporting

and separating segments of pairs of polygons.

The number of edges created by the reduced

visibility graph to find the shortest path is bounded by

O(p2) which is less than O(n2). Unfortunately, this

algorithm is limited to convex polygons and does not

cover nonconvex polygons in O(p2) time complexity.

An exact geometry-based algorithm for path planning
497

3. SPP algorithm description

As mentioned above, SPP is classified in the geometry

based algorithms. Although the reduced visibility graph

algorithm considers just the extreme vertices of the

obstacles, it cannot handle nonconvex obstacles and in the

convex polygonal obstacles it still uses all the obstacles in

its calculations. It is the first algorithm that intelligently

eliminates a significant part of the solution space while

ensuring the optimal solution is not in the eliminated

set. However, not all obstacles in an environment will

necessarily play a role in constructing the optimal path.

For example, consider a sparsely populated environment,

i.e., one with numerous obstacles that are far from each

other and the line between the start and goal points SG.

Why would a path planning algorithm need to consider

such obstacles?

Therefore, an algorithm is needed to ignore those

obstacles from its calculations. SPP overlooks those

irrelevant obstacles by cleverly constructing the network

of the polygonal paths so that the size of the network

significantly decreases in terms of the number of nodes

and the number of edges. We introduce effective polygons

as a new term in this paper and define them as follows.

Definition 1. Effective polygons are those whose vertices

(and edges) are contained in the optimal path from S to

G. Polygons that are not included in the optimal path are

called ineffective polygons.

SPP attempts to ignore the ineffective obstacles in its

path finding process. There is currently no guarantee that

SPP can eliminate all of the ineffective polygons for every

scenario, but it shows significantly improved performance

in a variety of environments, particularly those that do not

have a dense population of obstacles. The fundamental

idea behind the SPP algorithm is considering just the

obstacles that block its way toward G. Before starting the

path planning, to release the shape of the agent (i.e., a disk

shape) the obstacles are expanded as much as the size of

the agent’s radius and then the algorithm considers it as a

point.

First, SPP checks the shortest path from S to G,

which is straight line SG. If it is feasible the algorithm

returns it as the optimal path, otherwise, according to

Lemma 1, it uses the vertices of the blocking polygonal

obstacles (i.e., either convex or nonconvex) to construct

its path to reach the goal point. Lemma 3 gives a

detailed instruction to find the desirable vertices in convex

and nonconvex polygons (although, there is a lemma in

(Rohnert, 1986) which helps to find the end-points and

delete the other vertices, it is limited to convex polygons

and is not applicable to the nonconvex ones).

Lemma 3. The shortest collision-free path between S
and G among a set of convex and nonconvex polygonal

obstacles does not run through any vertex v such that an

arbitrary prolongation of line segment Sv lies inside a

polygon.

Proof. If line segment Sv goes through a polygon, then

this is an infeasible segment and should be ignored in

constructing the network. Assume that the line segment

Sv is feasible and vertex v is a part of an optimal path,

but its prolongation, which is shown by line segment vv′,
enters a polygon (see Fig. 1).

Because Sv is feasible, there is a circle with radius

ε > 0 (i.e., an arbitrarily small number) at v such that the

line segment starting fromS and ending on arcαγβ is also

feasible. Assume that v is not the goal point and should

be left, and recall that we know that line segment vv′ is

an infeasible direction. The only feasible exit region from

vertex v lies along arc αγβ. The leaving ray intersects the

imaginary circle at a point called δ anywhere along the arc

αγβ. Constructed the triangle Svδ and note that |vδ| = ε.

By the triangle inequality, |Sδ| < |Sv|+|vδ| and therefore

Sδ represents a shortcut from the original path through v
and v is not on the optimal path.

On the other hand, if prolongation Sv does not enter

the polygon, then there would exists an arc such as σδλ
(in Fig. 2) for a ray leaving v in which the shortcut Sσ is

infeasible. The region of rays going from v through this

arc can be a part of an optimal path. �

The following pseudocode applies Lemma 3 to find

the required vertices in constructing the optimal path. To

do this, based on the location of the current point, goal

point, and shape of the obstacle, the algorithm constructs

the network with the encountered polygonal obstacle.

This algorithm is invoked by command f(s′,M j
i) in

the main SPP algorithm, in which s′ is the current point

and M j
i shows the set of vertices of the j-th obstacle

that makes the i-th path infeasible and the desirable

output would be the set of acceptable vertices (i.e., V)

in M j
i and are accessible from s′. Wherever the SPP

algorithm confronts this command, this means that the

first algorithm will take the vertices of the j-th obstacle

from set Mi (i.e., the set of obstacles that make the i-th
path infeasible) and s′ and returns acceptable vertices V .

Algorithm 1. Finding acceptable vertices (f(s′,M j
i)).

1: V ← ∅

2: for {∀vk|vk ∈ M j
i } do

3: calculate v′k
4: if s′v′k ∈ Ofree then

5: V ← V
⋃
vk

6: end if

7: end for

8: return V

In the given pseudocodeOfree represent the space free

of obstacles. In the first step, the algorithm checks for two

498 H. Jafarzadeh and C.H. Fleming

end-points (eu and el) in the obstacle which are called ex-

trema in this work. These extrema are the two outermost

tangential points of the obstacle identified by the smallest

two-dimensional cone that includes all of the encountered

obstacles with the cone origin set on the current location

S. If there exists a cone starting from point S (i.e.

card(V) = 2), again based on Lemma 1 of Rohnert

(1986), both of extrema which are constructing the sup-

porting line segments will be returned as the acceptable

vertices and are enough to find the optimal path. If these

points can be found by the algorithm, they are called

eu and el and saved in set V , which will be returned

as a desired output. However, in cases where the start

point is located in the inner section of spiral polygon, this

cone cannot be drawn from point S (i.e., card(V) �= 2).

Therefore, in this case we need to take into account the

other vertices to establish the network of the path to reach

the goal (see Fig. 3).

According to Lemma 3, the algorithm should not

consider all of the vertices in the polygon to find the

optimal path. If the prolongation of the connecting line S
and vk enters into the polygonal obstacle, then this vertex

is not a part of the optimal path from S to G. By this

method, most of the vertices are eliminated and the size

of the network is decreased significantly. For instance, if

line segment (Sv1) is prolonged as much as ε (where ε is

an arbitrarily small number) to obtain a new point (v′
1
) line

segment (Sv′
1
) will be infeasible, because (v′

1
) is inside of

the polygon. This vertex will not be in the optimal path

from S to G, and the only vertex should be considered in

the current position S is v6.

Lemma 4. In a polygonal obstacle with number nk ver-

tices, finding the vertices such that the prolongation of the

line segment starting from S is feasible takes O(nnk).

Proof. According to the pseudocode given in Algo-

rithm 1, for each vertex vk the algorithm finds v′k which

 v 1

ε
 v '1

 v 2

 v 3

 v 4

 v 5

G
S

Fig. 3. Nonconvex polygon with no extrema from point S.

takes O(1), then it checks if line segment Sv′k is feasible

or not in time O(n), where n is all the vertices. The

algorithm repeats this step for all vertices of the k-th

polygon, i.e., nk. Altogether, the time complexity for this

part of the algorithm is O(nnk). �

There is provided pseudocode for SPP in

Algorithm 2.

Algorithm 2. SPP algorithm.

1: ρ ← 〈S〉
2: ξ ← 〈S,G〉
3: while {∃k|¬ρkorρk‖ρk‖ �= G} do

4: calculate ξ
5: if ‖ξ‖〉0 then

6: for i = 1 to ‖ξ‖ do

7: calculate M〈ξi
‖ξi‖−1

,ξi
‖ξi‖

〉

8: delete ξi from ρ
9: for j = 1 to ‖M〈ξi

‖ξi‖−1
,ξi

‖ξi‖
〉‖ do

10: θ ← f(ξi‖ξi‖−1
,M j

〈ξi
qi−1

,ξiqi
〉
)

11: if 〈〈ξi − ξi‖ξi‖〉, θ >/∈ ρ then

12: ρ ← 〈ρ, 〈〈ξi − ξi‖ξi‖〉, θ〉〉
13: end if

14: end for

15: end for

16: go to 4

17: else

18: for q = 1 : ‖ρ‖ do

19: ρq ← 〈ρq, G〉
20: end for

21: end if

22: end while

What follows is a brief explanation of the given

pseudocode. First, we define two factors ξ and ρ. ξ is

an n-tuple of an ordered list of infeasible paths and ρ is

another n-tuple of paths that SPP tries to make them all

feasible and this pseudocode returns that as its output. At

the beginning, SPP assumes that the connecting line from

its current position S to the goal point G is infeasible and

saves it in ξ. It is a repetitive procedure that will continue

till finding an n-tuple ρ of feasible paths that ends into G.

If n-tuple ρ has at least one infeasible path (i.e., ¬ρk is

true) or the last point of at least one path in n-tuple ρ is

not the goal point (i.e., ρk‖ρk‖), it will repeat the “while”

loop to satisfy both of the conditions. Here ρk shows the

k-th path in n-tuple ρ, and ρk‖ρk‖ represents the last point

of the path ρk where ‖ρk‖ is the number of the points

constructing the path ρk.

Within this loop, the algorithm finds the infeasible

paths and saves them as ξ, if this n-tuple is empty (‖ξ‖=
0) and all paths are feasible it adds the goal point to the

end of each paths in n-tuple ρ and checks the twofold

An exact geometry-based algorithm for path planning
499

conditions again, but if ‖ξ‖> 0, for each of the paths in ξ
the algorithm will calculate an alternative path. Because

the algorithm corrects the infeasibility of the paths in each

step, then the origin of the infeasibility is the last point

added to the existing path. The line segment constructed

by the last point and the point before that makes the

path infeasible (i.e., 〈ξi‖ξi‖−1
, ξi‖ξi‖〉). Accordingly, at

the first step, it calculates the set of obstacles that make

the assumed line segment infeasible, and saves them as

M〈ξi
‖ξi‖−1

,ξi
‖ξi‖

〉and deletes them from ρ. Now, for each of

these obstacles (i.e., ‖M〈ξi
‖ξi‖−1

,ξi
‖ξi‖

〉‖ is the number of

these obstacles), the algorithm invokes the first algorithm

by command f(ξi‖ξi‖−1
,M j

〈ξi
qi−1

,ξiqi
〉
) to calculate the

acceptable vertices from the current point ξi‖ξi‖−1
and

substitutes it. The algorithm checks whether or not the

generated path 〈〈ξi − ξi‖ξi‖〉, θ〉 is already in the current

n-tuple ρ. If it is repetitive, it deletes them from the

process to make the performance of the algorithm better.

After constructing the network of the paths, the SPP

algorithm chooses the shortest path from the n-tuple ρ.

Then to make the output path applicable for navigation, it

will be smoothed by a given algorithm at the end. All

the obstacles participating in constructing this network

are effective polygons which can obtained by uniting

M〈ξi
‖ξi‖−1

,ξi
‖ξi‖

〉 in each iteration of the algorithm. The

obtained set is not necessarily equal to the whole set

of obstacles and the SPP algorithm just considers those

obstacles that blocks its way toward the goal point. By

this approach it skips ineffective obstacles and saves time,

especially in the environments in which obstacles are

located far from each other.

Lemma 5. The SPP algorithm can find the shortest

collision-free path from starting point S to goal point G in

the presence of convex and nonconvex polygonal obstacles

in O(nn′2) time, where n is the number of all vertices and

n′ is the number of vertices of the polygons that construct

the path network.

Proof. The SPP algorithm draws line segment vijG from

the i-th vertex of the j-th effective polygon toward the

goal point to find the other effective polygons and checks

for feasibility, which takes O(nn′) . Also, according to

Lemma 4, it finds the required vertices from each effective

polygon in time O(nn′). The algorithm completes these

steps for all of the vertices in effective polygons, and the

overall time complexity for constructing the network of

paths is O(n′(nn′+nn′)), which yields O(nn′2). Finally,

to find the shortest path in the constructed network,

Dijkstra’s algorithm is applied over the n′ graph, resulting

inO(nn′2+n′ logn′) complexity and reduces to O(nn′2).
�

Note that for all cases, we have n′ ≤ n. In

many environments, including the scenarios presented in

Section 4 (Figs. 5 and 6), n′ � n. The result, as will be

seen in following sections, is that in practice SPP executes

very fast. In the environments with sparsely distributed

polygonal obstacles in which n′ � n, the time complexity

of the SPP algorithm becomes linear in n, but the most

effective given algorithm for this problem has quadratic

(i.e., the cardinality of the number of edges) or in the best

case has quasilinear time complexity.

After generating [ρ], a shortest path algorithm (e.g.,

Dijkstra’s algorithm) is applied to find the shortest path

between the start and the goal points among matrix [ρ].
Finally, this path is smoothed for navigation. There

are many metrics for smoothness, but the overarching

goal of this smoothing function is to limit the sharp

discontinuities that exist between two segments of the path

generated by SPP. Consider a path R−P −Q, i.e., a path

that begins at point R, makes a discontinuous turn at point

P , and then ends at point Q. The function selects a point

to begin a “turn” some distance before the discontinuity

(T1), another point to exit the turn after the discontinuity

and begin traveling on a straight line again (T2), and a

turning radius with which to complete the turn ω. See

Fig. 4 for an example of this geometry.

The smoothing algorithm selects T1 and T2 such

that they are equidistant from the original, discontinuous

turning point, P . For conservatism, this distance d
is selected as d = min{dt, d1, d2, do}, where dt is

a user-selected parameter that represents the desired

distance to begin the turn, d1 is the distance of the

path segment entering the turn generated by SPP (i.e.,

the path from R to P), d2 is the distance of the path

segment exiting the turn generated by SPP (the path from

P to Q), and do is the distance necessary to ensure that

the smoothed path remains obstacle free. The turning

radius is then simply ω = d/ tan(θ). The turn from

T1 to T2 sweeps an arc of radius ω through an angle

2θ. The algorithm identifies the desired direction of turn

and computes the center of curvature and the sweep angle

accordingly, based on the geometry presented in Fig. 4.

minC

P m
in

C

d

d

ω
θ

θ

C

Q

R

T
1

T
2

Fig. 4. Geometry used in the smoothing algorithm.

500 H. Jafarzadeh and C.H. Fleming

The resulting arc is continuous but can be discretized

according to user preferences. For the simulations in the

next section, each smoothed turn is discretized into 50

equidistance points between T1 and T2.

The smooth path is guaranteed to be obstacle free

because of the buffer added to each obstacle. However,

in the form presented in Fig. 4 it is not guaranteed to

remain outside of the buffer defined by minC. Our

implementation includes the option for an additional

buffer, ε, at the turning point in the direction of vector

CP . With sufficient ε, the new path from R−(P +ε)−Q
can be guaranteed to lie on our outside of the area defined

by minC.

To evaluate the smoothness of the generated path, a

new evaluation measure called ADCP (average degree of

discontinuous connection point) has been used (Suzuki

et al., 2009). ADCP is calculated by the sum

of the discontinuous angles divided by the count of

discontinuous events. Therefore, the value of the

smoothest path becomes zero in this measure. The

formula of the smoothness evaluation ADCP is

Smoothness =
1

DC

G∑

i=S

Di
A, (1)

where Di
A is the discontinuity angle of the i-th turn, DC

discontinuity counts, i = S represents the start of the path,

and G the goal.

4. Results and discussion

This section provides different scenarios to evaluate

the performance of the SPP algorithm relative to the

heuristic and probabilistic algorithms. Since the presented

algorithm is exact, it deterministically generates a single

solution for the same scenario in different runs. We used

MATLAB as a platform to implement the SPP algorithm.

To validate the SPP algorithm, we compare its

performance with the genetic algorithm from the heuristic

algorithms, the rapidly-exploring random tree (RRT) and

the probabilistic road map (PRM) from the probabilistic

algorithms. Because the time complexity of the SPP

algorithm has been presented in Lemma 5 and it is

available for other classic algorithms in the literature,

the running time of this group of algorithms can be

compared based on their time complexities. We therefore

do not consider this group in the simulations. For

the other two groups (i.e., heuristic and probabilistic

algorithms) we chose GAMOPP (multi-objective path

planning) (Davoodi et al., 2015), RRT (Kala, 2014b) and

PRM (Kala, 2014a).

GAMOPP represents a state-of-the-art path planning

algorithm and has been published recently in the

literature. Also, in the GAMOPP paper, the authors

have compared the performance of their algorithm with

two other previously presented powerful algorithms,

i.e., the improved strength Pareto evolutionary algorithm

(SPEA2) (Zitzler et al., 2001) and multi-objective particle

swarm optimization (MOPSO) (Zhang et al., 2013;

Coello et al., 2004), and they show that their algorithm

outperforms those. SPEA2 is an effective algorithm

and several evolutionary algorithms have compared their

results with this algorithm in the literature (e.g., Deb,

2001). Particle swarm optimization (PSO) is a swift and

simple randomized search algorithm applied to optimize

numerous NP-hard problems, and by now, several

versions of multi-objective PSO have been proposed

(Coello et al., 2004; 2007). One application of this

algorithm is in the path planning problems (Zhang et al.,

2013; Purcaru et al., 2013).

Because GAMOPP, MOPSO, and SPEA2 are

heuristic algorithms, they produce a different solution

for the same problem for each run. They thus perform

their algorithm several times and study its results using

statistical tools. Alternatively, SPP produces a single

path for each problem. Davoodi et al. (2015) highlight

that sometimes MOPSO is not able to find any feasible

solution in 100 generations, especially when there is

a narrow passage framework, or numerous obstacles

have cluttered the environment, but GAMOPP always

provides a feasible solution per each run. Therefore, we

select GAMOPP presented by Mohanta et al. (2011) and

(a) (b) (c) (d)

Fig. 5. Standard framework (minC = 10): SPP (a), GAMOPP (b), RRT (c), PRM (d).

An exact geometry-based algorithm for path planning
501

(a) (b) (c) (d)

Fig. 6. Clutter space (minC = 4): SPP (a), GAMOPP (b), RRT (c), PRM (d).

compare its results with SPP in terms of running time and

quality of solutions.

Being probabilistic, RRT and PRM have the same

problem as GAMOPP and they cannot find a feasible

solution for the given problem all the time. To solve this

problem, we increased the number of randomly chosen

points from the environment in PRM and the number

of trials in RRT. Although this approach increases the

running time in PRM, it improves the likelihood of

achieving a feasible solution. Increasing the number of

trials will not increase the running time in RRT, because

whenever it reaches the goal point it stops but it affects the

likelihood of producing a feasible solution. Accordingly,

these factors were adjusted such that the probability of

generating a feasible solution in both algorithms would

be 90%.

To have a clear comparison between these

algorithms, we use the same test problems from the

work of Davoodi et al. (2015) to evaluate the performance

of the SPP algorithm. These four cases examine the

capabilities of each algorithm under difference scenarios.

Figure 5 shows the paths produced by GAMOPP.

GAMOPP attempts to optimize a multi-objective

function with three output parameters. The first function

is concerned with minimizing the length of the path, the

next two functions maximize the smoothness of the path

and the last two terms try to maximize the clearance of

the path. GAMOPP seeks to maximize the minimum

distance of the path from the closest obstacle and also

the minimum distance from the nearest obstacle along

the path. Alternatively, the SPP algorithm adds the

desirable distance of the agent from each obstacle in the

first step and substitutes the expanded obstacles in its

calculation. This factor is accounted for, which allows for

a comparison with respect to the length and smoothness

of the paths.

In the SPP, RRT and PRM algorithms we have

extended the polygons as much as the desired distance

value and considered these extended polygons as the

obstacles that the paths need to avoid.

The first scenario in this group is called the stan-

dard framework (Fig. 5). The desired clearance (minC)

for this case has been set at 10. The expanded obstacles

around the real obstacles (filled with dark color) show

the virtual obstacles that involve minC. The output of

GAMOPP for different runs has been shown.

The number of randomly generated points in PRM

was set at 50 and the size of each step for RRT was set

to 20.

Three other scenarios that have been provided to

challenge the effectiveness of the presented SPP algorithm

are used to evaluate its performance. The four algorithms

(a) (b) (c) (d)

Fig. 7. Narrow passage (corridor) (minC = 3): SPP (a), GAMOPP (b), RRT (c), PRM (d).

502 H. Jafarzadeh and C.H. Fleming

(a) (b) (c) (d)

Fig. 8. Spiral shape (minC = 0): SPP (a), GAMOPP (b), RRT (c), PRM (d).

are compared across several scenarios, and their results

are summarized in Table 1 in terms of running time,

length and smoothness of the generated paths. The second

scenario is called the clutter space and 20 convex and

nonconvex obstacles have been distributed randomly in it

(Fig. 6). This is a challenging case, because it contains

more obstacles that the other scenarios since there are

numerous local optima for this scenario. The minimum

clearance for this case is set to 4.

To make sure that algorithms can handle a case with a

narrow passage, the scenario shown in Fig. 7 is used. Here

minC is 3, resulting in a very narrow clearance between

the virtual expanded obstacle and the real obstacle. The

last scenario is a spiral obstacle (Fig. 8). For this case

minC is set to zero, so the algorithms generate paths

relative to the real obstacle.

Three outputs with different results have been

presented by GAMOPP for this case but we considered

the best running time and path length in the Table 1.

5. Conclusions and future work

In this paper, a novel algorithm, which is called SPP, has

been presented for solving path-planning problems in a

static environment with convex and nonconvex obstacles.

Although SPP is presented for static environments

and this version does not address unknown and dynamic

areas, being fast it can applied on different screen shots of

environment repetitively to handle them easily and in real

time.

The SPP algorithm is classified as a geometry based

algorithm in which the first step is coming up with a

network of the segment lines that connect the vertices of

obstacles and location of the start and goal points. The

visual graph and the improved version of this algorithm,

RVG—for a reduced visibility graph, generate this graph

of possible paths for this problem, but the advantage

of SPP over existing techniques is shrinking the size

of this network as much as possible while preserving

optimality conditions. It was proven mathematically

that the SPP algorithm generates an optimal path and

Table 1. Comparing the results of the SPP, GAMOPP, RRT and PRM algorithms.

Scenarios Algorithm Clearance Smoothness Path length Running time [s]

Standard framework

SPP 10 0.41 818.4 0.01

GAMOPP 10.24 12.60 924.8 1.5

RRT 10 33.42 1353.1 6.23

PRM 10 35.1 1238.4 1.04

Clutter space

SPP 4 0.98 1541.3 0.67

GAMOPP 4.49 18.61 1613 4

RRT 4 35.78 1944.6 5.33

PRM 4 59.61 2220.7 1.93

Narrow passage

SPP 3 2.15 2034.9 0.02

GAMOPP 3 29.97 2201 1

RRT 3 29.37 4292.2 8.94

PRM 3 70.68 3315.6 2.1

Spiral shape

SPP 0 1.65 3729.8 0.13

GAMOPP 0 40.49 4147 3

RRT 0 46 7017.7 25.81

PRM 0 54.73 4424.8 53.21

An exact geometry-based algorithm for path planning
503

the time complexity of this algorithm was calculated

as O(nn′2). The SPP algorithm has the capability of

discerning the ineffective polygon and eliminating them

from its calculations.

In a densely populated environment, in which n′ >√
n, the advantages of SPP over the other algorithms

are somewhat minimized. As seen in Table 1, SPP

still outperforms the other algorithms. However, in the

absolute worst-case environment, i.e., if all polygons

become so-called effective polygons, SPP has O(n3) time

complexity.

To evaluate the effectiveness of SPP, we selected

one from each of path planning algorithm groups

and compared the results. The selected algorithm

from the heuristic algorithms is the genetic algorithm

for multi-objective path planning (GAMOPP) which

outperforms two other state-of-the-art path planning

algorithms (i.e., improved strength pareto evolutionary

algorithm (SPEA2) and multi-objective particle swarm

optimization (MOPSO)). The selected algorithms from

the probabilistic algorithms are the rapidly exploring

random tree (RRT) and the probabilistic road map (PRM).

The provided results show that SPP algorithms generated

better solutions in terms of running time as well as length

and smoothness of the path. In some cases GAMOPP,

RRT and PRM could not find a feasible solution, but as

long as there is a feasible solution SPP is able to give

a feasible and optimal solution. The SPP algorithm has

been tested by scenarios designed for different purposes,

and its results have been presented in tabular format as

well as graphically. This algorithm generates the shortest

paths for different scenarios.

The future work would be exploring this class

of algorithms, which emphasize on distinguishing and

eliminating the redundant polygons from visibility graph

algorithms in path planning.

References

Akbaripour, H. and Masehian, E. (2017). Semi-lazy

probabilistic roadmap: A parameter-tuned, resilient and

robust path planning method for manipulator robots, Inter-

national Journal of Advanced Manufacturing Technology

89(5–8): 1401–1430.

Asano, T., Asano, T., Guibas, L., Hershberger, J. and Imai,

H. (1986). Visibility of disjoint polygons, Algorithmica

1(1): 49–63.

Bohlin, R. and Kavraki, L.E. (2000). Path planning using lazy

PRM, Proceedings of the IEEE International Conference

on Robotics and Automation, ICRA’00, San Francisco, CA,

USA, Vol. 1, pp. 521–528.

Choset, H.M. (2005). Principles of Robot Motion: Theory, Algo-

rithms, and Implementation, MIT Press, Cambridge, MA.

Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004).

Handling multiple objectives with particle swarm

optimization, IEEE Transactions on Evolutionary Compu-

tation 8(3): 256–279.

Coello, C.C., Lamont, G.B. and Van Veldhuizen, D.A.

(2007). Evolutionary Algorithms for Solving Multi-

Objective Problems, Springer, New York, NY.

Cormen, T.H. (2001). Introduction to Algorithms, MIT Press,

Cambridge, MA, pp. 595–601.

Davoodi, M., Panahi, F., Mohades, A. and Hashemi, S.N. (2015).

Clear and smooth path planning, Applied Soft Computing

32: 568–579.

De Berg, M., Cheong, O., Van Kreveld, M. and Overmars, M.

(2008). Computational Geometry: Algorithms and Appli-

cations, Springer-Verlag TELOS, Santa Clara, CA.

Deb, K. (2001). Multi-Objective Optimization Using Evolution-

ary Algorithms, Wiley, New York, NY.

Edelsbrunner, H., Guibas, L.J. and Stolfi, J. (1986). Optimal

point location in a monotone subdivision, SIAM Journal

on Computing 15(2): 317–340.

Ge, S.S. and Cui, Y.J. (2000). New potential functions for mobile

robot path planning, IEEE Transactions on Robotics and

Automation 16(5): 615–620.

Ghosh, S.K. and Mount, D.M. (1991). An output-sensitive

algorithm for computing visibility graphs, SIAM Journal

on Computing 20(5): 888–910.

Jafarzadeh, H., Gholami, S. and Bashirzadeh, R. (2014). A new

effective algorithm for on-line robot motion planning, De-

cision Science Letters 3(1): 121–130.

Jafarzadeh, H., Moradinasab, N. and Elyasi, M. (2017). An

enhanced genetic algorithm for the generalized traveling

salesman problem, Engineering, Technology & Applied

Science Research 7(6): 2260–2265.

Kala, R. (2014a). Code for robot path planning using

probabilistic roadmap, Indian Institute of Information

Technology, Allahabad, http://rkala.in/codes.

php.

Kala, R. (2014b). Code for robot path planning using

rapidly-exploring random trees, Indian Institute of

Information Technology, Allahabad, http://rkala.i

n/codes.php.

Kavraki, L.E., Kolountzakis, M.N. and Latombe, J.-C. (1998).

Analysis of probabilistic roadmaps for path planning, IEEE

Transactions on Robotics and Automation 14(1): 166–171.

Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal

path planning problem for heterogeneous multi-vehicle

systems, International Journal of Applied Mathemat-

ics and Computer Science 26(2): 297–308, DOI:

10.1515/amcs-2016-0021.

Latombe, J.-C. (2012). Robot Motion Planning, Springer, New

York, NY.

LaValle, S.M. (1998). Rapidly-Exploring Random Trees: A New

Tool for Path Planning, Iowa State University, Ames, IA.

Liu, J., Yang, J., Liu, H., Tian, X. and Gao, M. (2017). An

improved ant colony algorithm for robot path planning,

Soft Computing 21(19): 5829–5839.

504 H. Jafarzadeh and C.H. Fleming

Lozano-Pérez, T. and Wesley, M.A. (1979). An algorithm for

planning collision-free paths among polyhedral obstacles,

Communications of the ACM 22(10): 560–570.

Mac, T.T., Copot, C., Tran, D.T. and De Keyser, R. (2016).

Heuristic approaches in robot path planning: A survey,

Robotics and Autonomous Systems 86: 13–28.

Masehian, E. and Sedighizadeh, D. (2007). Classic and heuristic

approaches in robot motion planning—a chronological

review, World Academy of Science, Engineering and Tech-

nology 23(5): 101–106.

Mohanta, J.C., Parhi, D.R. and Patel, S.K. (2011). Path planning

strategy for autonomous mobile robot navigation using

Petri-GA optimisation, Computers & Electrical Engineer-

ing 37(6): 1058–1070.

Ni, J., Wu, L., Shi, P. and Yang, S. X. (2017). A dynamic

bioinspired neural network based real-time path planning

method for autonomous underwater vehicles, Computa-

tional Intelligence and Neuroscience 2017, Article ID:

9269742.

Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O.

and David, R.-C. (2013). Hybrid PSO-GSA robot path

planning algorithm in static environments with danger

zones, Proceedings of the 17th International Conference

System Theory, Control and Computing (ICSTCC), Sinaia,

Romania, pp. 434–439.

Qureshi, A.H. and Ayaz, Y. (2015). Intelligent bidirectional

rapidly-exploring random trees for optimal motion

planning in complex cluttered environments, Robotics and

Autonomous Systems 68(6): 1–11.

Rohnert, H. (1986). Shortest paths in the plane with

convex polygonal obstacles, Information Processing Let-

ters 23(2): 71–76.

Suzuki, Y., Thompson, S. and Kagami, S. (2009). Smooth path

planning with pedestrian avoidance for wheeled robots:

Implementation and evaluation, 4th International Confer-

ence on Autonomous Robots and Agents, ICARA 2009,

Wellington, New Zealand, pp. 657–662.

Tang, S., Khaksar, W., Ismail, N. and Ariffin, M. (2012). A

review on robot motion planning approaches, Pertanika

Journal of Science and Technology 20(1): 15–29.

Urmson, C. and Simmons, R. (2003). Approaches for

heuristically biasing RRT growth, Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 2,

pp. 1178–1183.

Welzl, E. (1985). Constructing the visibility graph for n-line

segments in O(n2) time, Information Processing Letters

20(4): 167–171.

Zhang, Y., Gong, D.-W. and Zhang, J.-H. (2013). Robot

path planning in uncertain environment using

multi-objective particle swarm optimization, Neuro-

computing 103: 172–185.

Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2:

Improving the strength Pareto evolutionary algorithm,

Working paper, ETH Zürich, Zürich.

Hassan Jafarzadeh received his BS and MSc,

both in industrial engineering, from Tabriz Uni-

versity and the K.N. Toosi University of Science

and Technology, respectively. He is currently a

PhD candidate with the Systems and Informa-

tion Department at the University of Virginia.

His research interests include connected and au-

tonomous vehicles, computational geometry, and

optimization models and methods.

Cody H. Fleming joined the Department of

Systems and Information Engineering, Univer-

sity of Virginia, in 2015. He received his doc-

toral degree in aeronautics and astronautics at the

Massachusetts Institute of Technology, where he

focused on formally and rigorously integrating

safety analysis into early concept development of

complex systems. He holds a Bachelor’s degree

in mechanical engineering from Hope College

with honors (summa cum laude) and a Master’s

degree from MIT. Prior to getting his doctorate, he spent 5 years working

in space system development for various satellite and laser projects, spe-

cializing in dynamics, design, and systems integration. His research in-

terests are in methods for development and verification of safety-critical

systems, particularly those with high levels of automation, aside general

interests in dynamic systems and control.

Received: 12 July 2017

Revised: 6 January 2018

Re-revised: 24 February 2018

Accepted: 9 April 2018

