
Automatica 131 (2021) 109729

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

DMPC: A data-andmodel-driven approach to predictive control✩

Hassan Jafarzadeh a,∗, Cody Fleming b

a Department of Systems Engineering, University of Virginia, 151 Engineer’s Way Charlottesville, VA 22904, USA
b Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA

a r t i c l e i n f o

Article history:

Received 4 August 2020

Received in revised form 28 February 2021

Accepted 20 April 2021

Available online 9 June 2021

Keywords:

Learning controller

Model predictive control

Data-and model-driven predictive control

Optimal control

a b s t r a c t

This work presents DMPC (Data-and Model-Driven Predictive Control) to solve control problems in

which some of the constraints or parts of the objective function are known, while others are entirely

unknown to the controller. It is assumed that there is an exogenous ‘‘black box’’ system, e.g. a machine

learning technique, that predicts the value of the unknown functions for a given trajectory. DMPC (1)

provides an approach to merge both the model-based and black-box systems; (2) can cope with very

little data and is sample efficient, building its solutions based on recently generated trajectories; and

(3) improves its cost in each iteration until converging to an optimal trajectory, typically needing

only a few trials even for nonlinear dynamics and objectives. Theoretical analysis of the algorithm

is presented, proving that the quality of the trajectory does not worsen with each new iteration. We

apply the DMPC algorithm to the motion planning of an autonomous vehicle with nonlinear dynamics.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional techniques for analyzing and developing control

laws in safety-critical applications usually require a precise math-

ematical model of the system (Ames, Xu, Grizzle, & Tabuada,

2016; Taylor, Singletary, Yue, & Ames, 2020). However, there are

many control applications where such precise, analytical models

cannot be derived or are not readily available. System identifi-

cation is a parametric model approach to such problems, mostly

focusing on asymptotic error characterization or consistency guar-

antees, often assuming that the structure of the underlying sys-

tem is known or that states are directly measurable (Matni,

Proutiere, Rantzer, & Tu, 2019; Sarkar, Rakhlin, & Dahleh, 2019).

On the other hand, data-driven approaches from machine learn-

ing are used in order to address these cases in a non-parametric

way and often can be successful even with no assumptions about

the structure of the underlying system. Such approaches can be

used to identify unmodeled dynamics in a scalable way, and

with high accuracy. However, an objective that is increasingly

prevalent in the literature involves merging or complementing

the analytical approaches from control theory with techniques

from machine learning.

✩ The material in this paper was not presented at any conference. This paper

was recommended for publication in revised form by Associate Editor Angelo

Alessandri under the direction of Editor Thomas Parisini.
∗ Corresponding author.

E-mail addresses: hj2bh@virginia.edu (H. Jafarzadeh), flemingc@iastate.edu

(C. Fleming).

Recently, techniques based on model-predictive control (MPC)

have addressed this problem by first using a statistical method

to estimate a mathematical model that is compatible with the

data, and then using this estimated model within a nominal

MPC framework to find optimal trajectories and control actions.

In addition to the aforementioned system identification tech-

niques, a popular choice is to build statistical models using

Gaussian Processes (GPs) (Deisenroth, Fox, & Rasmussen, 2013;

Kamthe & Deisenroth, 2018), while Regression Trees and other

machine learning techniques have been used in other cases (Behl,

Smarra, & Mangharam, 2016). The use of GPs in the context

of model-predictive control often creates highly nonlinear mod-

els, resulting in non-convex problems that are difficult to solve

efficiently or online. Alternatively, approaches based on Rein-

forcement Learning have been applied in this setting. Model-

based techniques again require a statistical method, for example,

GPs or deep neural networks, to estimate transition probability

distributions (Moerland, Broekens, & Jonker, 2020). Model-free

methods represent, informally, a trial-and-error method for iden-

tifying control policies (Deisenroth & Rasmussen, 2011; Kamthe

& Deisenroth, 2017). An open question in reinforcement learning

(and indeed much of the literature that uses both control theory

and machine learning) involves how to guarantee that the learned

policy will not violate safety or other constraints (Bacci & Parker,

2020; Isele, Nakhaei, & Fujimura, 2018). In addition, sample

complexity represents a challenge for all the aforementioned

techniques and is a general problem in machine learning.

This paper seeks to leverage the notion that in many appli-

cations, some aspects of the system (and environment) may be

https://doi.org/10.1016/j.automatica.2021.109729

0005-1098/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2021.109729
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109729&domain=pdf
mailto:hj2bh@virginia.edu
mailto:flemingc@iastate.edu
https://doi.org/10.1016/j.automatica.2021.109729

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

known mathematically while other aspects are unknown or rep-
resented by a so-called ‘‘black box’’. Our method attempts to uti-
lize the capabilities of model-based (MPC) and data-driven (ma-
chine learning algorithm) approaches, and bring them together in
a single framework in planning and control problems.

The paper addresses both sample complexity and online com-
putational efficiency by dividing the state space, such that the di-
mensionality of the mathematical models and the data needed for
statistical estimation and prediction are both reduced, while also
accounting for the interconnection between these two classes of
variables. Furthermore, we develop an algorithm that leverages
this decoupling of variables, and efficiently focuses on a specific
part of the state space that likely contains the optimal, feasible
trajectory without sampling from the rest of the state space.
Specifically, we assume that the dynamics of the system are
available in the form of a known mathematical model, but there
is an unknown function of the states and control inputs of the
system that affects the performance index or feasible solution
space. It is also assumed that the unknown aspects of the system
or environment can be predicted/measured for a given system
trajectory, e.g. by a ‘‘black box’’.

Our technique is based on notions from Iterative Learning
Control (ILC). ILC is attractive because it can ‘‘learn’’ through
repeated trials to converge to better solutions (Wang, Gao, &
Doyle III, 2009). The concept of ILC has recently been extended
to a framework that does not require a reference signal (Rosolia
& Borrelli, 2018; Rosolia, Zhang, & Borrelli, 2017), although this
approach still assumes that initial conditions, constraints, and
costs remain consistent at each iteration. Although the aforemen-
tioned techniques have several nice qualities, e.g. no need for a
reference signal or known cost function, they (a) assume a repet-
itive setting and (b) generally do not apply to so-called ‘‘black
box’’ variables. We borrow from ILC concepts but generalize to
non-repetitive or non-iterative tasks, where a controller needs
to make real-time decisions in novel environments. Furthermore,
our approach works when the dynamics are unknown for at
least some aspects of the system or environment. The approach
leverages machine learning and MPC to predict the behavior of
the black-box and mathematically modeled components of the
system, respectively, incorporating both into a technique called
Data- and Model-driven Predictive Control (DMPC). DMPC works
without a reference signal and – for a subset of the state or cost
variables – completely unknown dynamics; furthermore, DMPC
can work with an unknown cost function. We prove that DMPC
is recursively feasible at each iteration of the algorithm, and
the generated trajectories will not worsen at each iteration. This
algorithm needs only a few iterations to converge to a locally op-
timal solution and is computationally efficient, even for nonlinear
system dynamics. We also demonstrate the performance of the
algorithm with an application to a motion planning problem with
nonlinear dynamics in a totally unknown environment.

2. Problem statement

In this section, a formal definition of the problem is presented.
Consider the dynamical system:

xt+1 = f (xt , ut) , (1)

where x ∈ R
n and u ∈ R

m are the system states and control
inputs, respectively, and f : R

n × R
m → R

n is a known and
in general nonlinear map which assigns the successor state xt+1

to state xt and control input ut . In this paper we address the
following infinite time optimal control problem to find an optimal
trajectory from an initial state xS to final state xF within the

feasible state vector space X and control vector space U:

J0→∞(xS) = min
u0,u1,...

∞
∑

t=0

[

h (xt , ut)+ ẑ (xt , ut)
]

(2a)

s.t. xt+1 = f (xt , ut) ∀t ≥ 0 (2b)

x0 = xS (2c)

xt ∈ X , ut ∈ U ∀t ≥ 0, (2d)

where (2b) and (2c) are the system dynamics and the initial

conditions, and (2d) are the state and input constraints. The

cost function involves two different stage costs. (i) h(): a known

function that can be defined by a precise mathematical model,

often based on first principles from physics. We call this a ‘‘model-

driven" function. The traditional cost function of MPC, containing

quadratic terms to drive the state of the system to an equilibrium

point and to penalize the applied control input, consists of model-

driven functions. (ii) ẑ(): an unknown function to the controller.

A mathematical model cannot be defined for this type of stage

cost (or at least it is too expensive to derive such a function

and solve the resulting optimization model), but it affects the

overall cost function. It is assumed that, given the inputs, the

controller has access to the output of this function. Improving

an aircraft’s flight safety under the presence of turbulence can be

modeled as (2), where the behavior, location, and prediction of

turbulent air comes from an unknown function (unknown to the

controller). Another example involves connected autonomous ve-

hicles (CAVs) (Jafarzadeh & Fleming, 2019; Soltanaghaei, Elnaggar,

Kleeman, Whitehouse, & Fleming, 2019), in which the unknown

function is a model of the wireless channel and can be predicted

by e.g. recurrent neural networks (Liu & Shoji, 2019; Manh &

Alaghband, 2018).

It is assumed that the model-driven stage cost h(·, ·) in Eq. (2a)

is continuous and satisfies h (xF , 0) = 0,

h (xt , ut) ≻ 0 ∀xt ∈ R
n\{xF } , ut ∈ R

m\{0}

where the final state xF is a feasible equilibrium for the unforced

system (1), f (xF , 0) = xF . In the second term of the cost function,

ẑ() is considered to be positive definite and unknown for the

controller, ẑ : Rn ×R
m → R

+. There is an exogenous data-driven

system acting as a black box, such as Long short-term memory

(LSTM) that calculates ẑ, given xt and ut . Also, we assume that

the condition ẑ (xF , 0) = 0 is held in the equilibrium point xF .

In the case that an unknown inequality is imposed as a con-

straint to the model rather than a penalty in the cost function, we

can use a barrier function to transform it to model (2). If we write

these constraints as ŷ (xt , ut) ⩽ 0, ∀t ⩾ 0, the barrier function

can be defined as

ẑ (xt , ut) =

{

− 1
ŷ(xt ,ut)

if ŷ (xt , ut) < 0

∞ o.w.
(3)

in the exogenous data-driven system, where the controller will

receive the value of ẑ() calculated from Eq. (3) and then con-

siders this value as a prediction for the unknown cost in the

performance index shown in model (2). Therefore, the problem

involves generating an optimal sequence of control inputs that

steers the system (1) from the initial state xS to the equilibrium

point xF such that the cost function of optimal control problem

(2), J0→∞(xS) – which is a combination of a known stage cost h(),

and unknown stage cost ẑ() functionals – achieves the minimum

value.

At each time step of a (perhaps previously unseen) control

task, the approach uses an iterative scheme, where it learns from

each iteration and optimizes model (2) without explicitly deter-

mining the unknown function ẑ(). At iteration j, the following

vectors collect the inputs applied to the system (1) and the cor-

responding state evolution from initial state xS to the equilibrium

point xF :

x∗,j = [x
j

0, x
∗,j
1 , . . . , x

∗,j
t , . . . , xF] (4a)

2

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

u∗,j = [u
∗,j
0 , u

∗,j
1 , . . . , u

∗,j
t , . . .]. (4b)

In (4), the optimal values of system state and the control input ob-

tained at time t and iteration j are denoted by x
∗,j
t and u

∗,j
t , respec-

tively. Also, we assume that at each jth iteration, the trajectories

start from the same initial condition x
j

0 = xS, ∀j ≥ 0.

3. DMPC approach

This section describes the DMPC approach to obtain vectors

(4) as a sub-optimal solution for the infinite time optimal control

problem (2). We begin with the following assumption, as the

DMPC algorithm is designed such that, starting from a given

initial trajectory, it converges to the optimal solution (trajectory)

repetitively.

Assumption 1. Similar to the iterative learning control meth-

ods (Rosolia & Borrelli, 2018; Rosolia et al., 2017), it is assumed

that there exists an initial feasible trajectory x0 for the infi-

nite time optimal control problem (2) from the initial state, xS ,

to the equilibrium point, xF , at the first iteration but with no

assumptions on optimality.

In addition, the concept of cost-to-go is defined for each state

in a complete trajectory as the minimum cost of reaching the

equilibrium point xF from the current state. The algorithm records

the last successful complete trajectory (i.e. from initial state xs to

the equilibrium point xF), x
∗,j−1, and assigns to every state in this

set a cost-to-go value obtained at iteration j − 1,

qj−1 = [qj−1(xS), . . . , q
j−1(x

∗,j−1
t), . . . , qj−1(xF)].

The cost of following the trajectory obtained at iteration j−1 from

state x
∗,j−1
t to final state xF can be defined as:

qj−1(x
∗,j−1
t) = J

∗,j−1
t→∞ (x

∗,j−1
t), ∀t ≥ 0.

The main approach of DMPC is generating a full trajectory from

xS to xF at iteration j, x∗,j, based on the full trajectory generated

at iteration j − 1, x∗,j−1. The full trajectory x∗,j is built iteratively

from the initial state xS to the final state xF . At each time step t

of iteration j, DMPC finds the optimal control input, u
j

t:t+N|t , and

associated trajectory, x
j

t:t+N|t

x
j

t:t+N|t = [x
∗,j
t , . . . , x

j

t+N|t] (5a)

u
j

t:t+N|t = [u
j

t|t , . . . , u
j

t+N−1|t]. (5b)

where x
∗,j
t = x

j

t|t is the current state of the system, which is

considered as the optimal state of the trajectory at iteration j at

time t . DMPC selects the last state in (5a), x
j

t+N|t , from a special

set that results in a recursive feasibility guarantee.

At iteration j, DMPC is designed by repeatedly solving a finite

time optimal control problem in a receding horizon fashion to

obtain state and control input vectors (5). In the state vector (5a),

the last state, x
j

t+N|t , is enforced to be selected from set S
j
t , that is

S
j
t =

(

∞
⋃

t=0

x
∗,j−1
t

)

∩ RN (x
∗,j
t). (6)

The first term in Eq. (6) is the set of all the states in the most

recently generated full trajectory (iteration j − 1), x∗,j−1, and the

second term is N-step reachable set from state x
∗,j
t . All the states

in trajectory x∗,j−1 are members of control invariant set C ⊆ X ,

because, for every point in the set, there exists a feasible control

action in input vector u∗,j−1, that satisfies the state and control

constraints and steers the state of the system (1) toward the

equilibrium point xF . Therefore, forcing the controller to select the

Fig. 1. The green area shows the N-step reachable set, RN (x
∗,j
t), from current

state, x
∗,j
t . Controllable set S

j
t is illustrated by large blue dots and dashed purple

line segments are the optimal trajectories from current state to available states

in controllable set S
j
t . (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

terminal state x
j

t+N|t from the set S
j
t keeps the state of the system

in set C for time steps beyond the time horizon N (Firoozi, Nazari,
Guanetti, O’Gorman, & Borrelli, 2018), i.e.

if x
j

t+N ∈ C ⇒ x
j

t+N+k ∈ C ∀k > 0, (7)

On the other hand, trajectory x
j

t:t+N|t drives the system (1) from

state x
∗,j
t to one of the states in set S

j
t in N time steps (see Fig. 1).

Therefore, S
j
t is a subset of the control invariant set and N-step

reachable set, making the state x
∗,j
t a subset of the maximal stabi-

lizable set. Intuitively, this guarantees the constraint satisfaction
and feasibility for all time steps (t ⩾ 0) (the feasibility will
be proven in Theorem 1). This means that constraint satisfaction
at time steps beyond the time horizon does not depend on the
length of the time horizon, and N can be picked freely; in this
work we will select N to be small to speed up the algorithm. We

denote each state in set S
j
t by s

i,j
t ,∀i ∈ {1, . . . , |S

j
t |}.

3.1. Algorithmic details

To find the (local) optimal trajectory x
j

t:t+N|t in (5), DMPC

generates two trajectories x̄
j

t:t+N|t and x
j

t:t+N|t−1, and selects the

best of them based on their cost as x
j

t:t+N|t . We now explain how
these two trajectories are built.

(i) The first trajectory generated by DMPC is x̄
j

t:t+N|t , illustrated by
a solid black trajectory in Fig. 2. This trajectory is the state vector

associated with the optimal control input ū
j

t:t+N|t obtained from
the following optimization model over all the candidate terminal
states that are reachable in N time steps from the current state

x
∗,j
t , see Eq. (6). This set of terminal states is depicted by big blue

points in Fig. 1 and indexed by i ∈ {1, . . . , |S
j
t |} in the following

term

ū
j

t:t+N|t = argmin

u
i,j
t:t+N|t

{

J
i,j

t→t+N (x
∗,j
t), ∀i

}

(8)

where J
i,j

t→t+N (x
∗,j
t) is the predicted overall cost (i.e. summation of

both the model-based
∑

h(.) and black-box
∑

ẑ(.) costs) due to

the system following the control input u
i,j

t:t+N to reach the termi-

nal state x
i,j

t+N|t = s
i,j
t . To simplify the mathematical notations, we

will use ẑ
i,j

k|t to show the predicted value of the unknown function

following the control input u
i,j

t:t+N , instead of ẑ(x
i,j

k|t , u
i,j

k|t). Then the

value of J
i,j

t→t+N (x
∗,j
t) can be defined as:

J
i,j

t→t+N (x
∗,j
t) = J

i,j

t→t+N (x
∗,j
t) +

t+N−1
∑

k=t

ẑ
i,j

k|t . (9)

3

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

Fig. 2. DMPC generates two trajectories x̄
j

t:t+N|t (solid black) and x
j

t:t+N|t−1

(dashed green) at time step t of iteration j, and selects best of them. (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

To find the optimal control input ū
j

t:t+N|t in Eq. (8), we first use

the following formulation to generate u
i,j

t:t+N|t and x
i,j

t:t+N|t from

state x
∗,j
t toward terminal state s

i,j
t ∈ S

j
t , ∀i ∈ {1, . . . , |S

j
t |}, and

calculate the cost associated with the model-based term, which

is denoted by J
i,j

t→t+N (x
∗,j
t) in Eq. (9):

J
i,j

t→t+N (x
∗,j
t) = min

u
i,j
t:t+N

t+N−1
∑

k=t

ℓ(x
i,j

k|t , u
i,j

k|t)

+ (N + 1)qj−1(x
i,j

t+N|t) (10a)

s.t. x
i,j

k+1|t = f (x
i,j

k|t , u
i,j

k|t) ∀k (10b)

x
i,j

t|t = x
∗,j
t (10c)

x
i,j

t+N|t = s
i,j
t (10d)

x
i,j

k|t ∈ X , u
i,j

k|t ∈ U, ∀k. (10e)

In this model, the predictive controller generates the best trajec-

tory to reach state s
i,j
t (i.e. enforced by constraint (10d)) and adds

the cost to go (N+1)qj−1(x
i,j

t+N|t) to compensate for the remaining

cost from state s
i,j
t to the final state xF . We replace the stage cost

h(., .) with a positive definite function ℓ(., .) in the cost function

ℓ(x
i,j

k|t , u
i,j

k|t) = ∥x
i,j

k|t − x
i,j

t+N|t∥
2
P + ∥u

i,j

k|t∥
2
R,

where P and R are positive (semi)definite tuning matrices. The

function h() in the general optimal control problem(2) penalizes

the controller according to the difference between the generated

state x
i,j

k|t and the final state xF , but ℓ(., .) considers the selected

terminal state x
i,j

t+N|t instead of xF . To compensate for the re-

maining trajectory cost from x
i,j

t+N|t to xF , we add a cost-to-go

qj−1(x
i,j

t+N|t) for each N + 1 states in the trajectory. Constraint

(10d) enforces that the controller steers the system to a specific

terminal state, s
i,j
t .

The objective optimized by model (10) does not involve the

cost value coming from the black-box variables,
∑t+N−1

k=t ẑ
i,j

k|t .

However, given the trajectory x
i,j

t:t+N|t generated by model (10),

the value of this unknown function can be predicted by the ex-

ternal black-box system and added to J
i,j

t→t+N (x
∗,j
t) to find J

i,j

t→t+N

(x
∗,j
t) based on Eq. (9). Then, according to (8), between all of the

trajectories that start from x
∗,j
t and reach the terminal states in

set S
j
t which are counted by index i (dashed purple trajectories

in Fig. 1), the trajectory that has the minimum cost value is

selected and denoted x̄
j

t:t+N|t . This is the result for (8), where

the input sequence ū
j

t:t+N|t produces the overall trajectory cost

of J̄
j

t→t+N (x
∗,j
t).

(ii) The second trajectory generated by DMPC is x
j

t:t+N|t−1, that is

illustrated by a dashed green trajectory in Fig. 2. In addition to

x̄
j

t:t+N|t , another feasible available trajectory starting from xS to

xF can be obtained from the solution of the previous time step

t − 1 at the current iteration j. This trajectory is generated by

applying one more step of the control input, u
j

t−1:t+N−1|t−1, to the
trajectory of the previous time step t−1 and shifting its state one
time step toward the final state xF along the optimal trajectory of

iteration j − 1. This trajectory can be written as follows:

x
j

t:t+N|t−1 =
[

x
j

t|t−1, . . . , x
j

t+N−2|t−1, x
∗,j−1
τ , x

∗,j−1

τ+1

]

(11a)

u
j

t:t+N|t−1 =
[

u
j

t|t−1, . . . , u
j

t+N−2|t−1, u
∗,j−1
τ

]

. (11b)

x∗,j−1
τ denotes the optimal terminal state selected from the last
iteration (i.e. the last generated complete trajectory) j − 1, and

τ is the time index of this state, x
j

t+N−1|t−1 = x∗,j−1
τ . The overall

trajectory cost of x
j

t:t+N|t−1 is given by J
j

t→t+N|t−1(x
∗,j
t) and is

J
j

t→t+N|t−1(x
∗,j
t) =

t+N−2
∑

k=t

[

ℓ(x
j

k|t−1, u
j

k|t−1) + ẑ
j

k|t−1

]

+Nqj−1(x
j

t+N−1|t−1) + qj−1(x
∗,j−1

τ+1). (12)

Finally, the best trajectory of time step t and iteration j (u
j

t:t+N|t

and x
j

t:t+N|t) is selected between two obtained trajectories, x̄
j

t:t+N|t

and x
j

t:t+N|t−1 based on their cost.

J
j

t→t+N (x
∗,j
t) = min{J̄

j

t→t+N (x
∗,j
t),J

j

t→t+N|t−1(x
∗,j
t)}. (13)

In other words, the algorithm selects between two trajectories:
(a) the minimum-cost feasible trajectory from t → t + N at
time step t of iteration j, and (b) the time-shifted trajectory from
t − 1 → t + N that leverages information from the prior time

step t − 1 of iteration j. After finding x
j

t:t+N|t and u
j

t:t+N|t , the first
step of its control input is applied to the system to push its state

toward the equilibrium point, u
∗,j
t = u

j

t|t , x
∗,j
t+1 = x

j

t+1|t .

3.2. Theoretical analysis

In the remainder of this section, we provide theoretical anal-
yses of the algorithm for the feasibility and optimality of the
generated solutions.

Theorem 1. In the DMPC scheme with given system (1), cost func-
tion (8), and constraints (10b)–(10e), if there is a feasible trajectory
at iteration j − 1, DMPC is feasible at the next iteration, j, as well.

Proof. To prove this theorem, first, we need to show that, given a
feasible solution at time step t −1 of iteration j, DMPC is feasible
for the next time step, t , too. The solution of DMPC at iteration
j − 1 is

x∗,j−1 =
[

xS, x
∗,j−1

1 , . . . , x
∗,j−1
t , . . . , xF

]

,

and at iteration j and time step t − 1 is:

x
j

t−1:t+N−1|t−1 = [x
∗,j
t−1, x

j

t|t−1, . . . , x
j

t+N−1|t−1]

u
j

t−1:t+N−1|t−1 = [u
j

t−1|t−1, u
j

t|t−1, . . . , u
j

t+N−2|t−1].

According to constraint (10d), DMPC selects terminal state

x
j

t+N−1|t−1 from set S
j

t−1 which is denoted by s
i,j

t−1. Because s
i,j

t−1 ∈

x∗,j−1, we know that x
j

t+N−1|t−1 ∈ x∗,j−1. Let us assume that

x
j

t+N−1|t−1 = x∗,j−1
τ . Based on the assumption given in the theorem

(existence of a feasible trajectory at iteration j−1), for every state
in trajectory x∗,j−1 there is a feasible sequence of control actions
that satisfies the constraints and steers the system toward the
final state xF . This feasible trajectory for state x∗,j−1

τ can be shown
as:

x∗,j−1
τ :∞ = [x∗,j−1

τ , x
∗,j−1

τ+1 , . . . , xF]

u∗,j−1
τ :∞ = [u∗,j−1

τ , u
∗,j−1

τ+1 , . . .].

4

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

Then there is at least one feasible trajectory at time step t and

iteration j that is constructed as:

x
j
t:∞ = [x

j

t|t−1, . . . , x
j

t+N−2|t−1, x
∗,j−1
τ , x

∗,j−1

τ+1 , . . . , xF]

u
j
t:∞ = [u

j

t|t−1, . . . , u
j

t+N−2|t−1, u
∗,j−1
τ , u

∗,j−1

τ+1 , . . .].

This completes the proof of the statement that DMPC is feasible at

time step t if it is feasible at t − 1. Also, based on Assumption 1

and by induction we can conclude that DMPC is feasible for all

iterations and time steps. ■

We showed that, given a feasible initial trajectory x0, the

algorithm is feasible at every time step of different iterations.

Theorem 2 proves that the algorithm will finally converge to the

equilibrium point xF , and Theorem 3 proves that the performance

index is non-increasing at every DMPC iteration. The next two

theorems follow a similar approach to Rosolia and Borrelli (2018).

Theorem 2. In the DMPC scheme with given system (1), cost func-

tion (8), constraints (10b)–(10e), and an initial feasible trajectory x0,

the equilibrium point xF is asymptotically stable at every iteration

j ⩾ 1.

Proof. Let us start with writing the overall optimal trajectory cost

of state x
∗,j
t−1

J
j

t−1→t+N−1(x
∗,j
t−1) = (N + 1)qj−1(x

j

t+N−1|t−1)

+

t+N−2
∑

k=t−1

[

ℓ(x
j

k|t−1, u
j

k|t−1) + ẑ
j

k|t−1

]

= ℓ(x
j

t−1|t−1, u
j

t−1|t−1) + ẑ
j

t−1|t−1 + qj−1(x
j

t+N−1|t−1)+

t+N−2
∑

k=t

ℓ(x
j

k|t−1, u
j

k|t−1) + Nqj−1(x
j

t+N−1|t−1) + qj−1(x
∗,j−1

τ+1)

where qj−1(x
∗,j−1

τ+1) =
∑∞

k=τ+1

[

h

(

x
∗,j−1

k , u
∗,j−1

k

)

+ ẑ
∗,j−1

k

]

. Us-

ing Eq. (12),

J
j

t−1→t+N−1(x
∗,j
t−1) = J

j

t→t+N|t−1(x
∗,j
t)

+ ℓ(x
j

t−1|t−1, u
j

t−1|t−1) + ẑ
j

t−1|t−1 + qj−1(x
j

t+N−1|t−1).

Also, according to Eq. (13),

J
j

t→t+N (x
∗,j
t) ⩽ J

j

t→t+N|t−1(x
∗,j
t).

From the last two inequalities we conclude that

J
j

t→t+N (x
∗,j
t) − J

j

t−1→t+N−1(x
∗,j
t−1) ⩽

−ℓ(x
j

t−1|t−1, u
j

t−1|t−1) − ẑ
j

t−1|t−1 − qj−1(x
j

t+N−1|t−1)

< 0, ∀t ⩾ 1, and ∀j ⩾ 1. (14)

This completes the proof of asymptotic stability of the equilib-

rium point xF . ■

Theorem 3. In the DMPC scheme with given system (1), cost

function (8), and constraints (10b)–(10e), and a feasible trajectory

x∗,j−1 at iteration j − 1,

J
∗,j
0→∞(xS) ⩽ J

∗,j−1

0→∞(xS), ∀j ⩾ 1 (15)

the next trajectory x∗,j generated by DMPC has an overall trajectory

cost, J
∗,j
t→∞(xS), not worse than J

∗,j−1
t→∞ (xS)

Proof. Assume that, at iteration j, the trajectory x∗,j−1 is avail-

able for an overall cost of J
∗,j−1

0→∞(xS). It is desirable to show

that, according to model (8) and Eq. (13), DMPC will generate

trajectory x
j

0:N (trajectory blue) which is not worse than x∗,j−1,

J
j

0→∞(xS) ⩽ J
∗,j−1

0→∞(xS). Positive definiteness of z and h indicates

that at different time steps, t , in iteration j

J
j

t→t+N (x
∗,j
t) ⩽ J

j

t−1→t+N−1(x
∗,j
t−1), ∀t ⩾ 1. (16)

Also, according to Eq. (14), for t = 1

J
j

0→N (xS) ⩾ J
j

1→N+1(x
∗,j
1) + ℓ(xS, u

∗,j
0) + ẑ

∗,j
0 + qj−1(x

j

N|0)

for t = 2,

J
j

1→N+1(x
∗,j
1) ⩾

J
j

2→N+2(x
∗,j
2) + ℓ(x

∗,j
1 , u

∗,j
1) + ẑ

∗,j
1 + qj−1(x

j

N+1|1)

until t → ∞, in which the system converges to xF . Summing up

these inequalities results in

J
j

0→N (xS) ⩾

∞
∑

k=0

[

ℓ(x
∗,j
k , u

∗,j
k) + ẑ

∗,j
k + qj−1(x

j

k+N|k)

]

.

The right-hand side of this inequality is the sum of all stage costs

of optimal trajectory generated at iteration j

J
∗,j
0→∞(xS) =

∑∞
k=0

[

ℓ(x
∗,j
k , u

∗,j
k) + ẑ

∗,j
k + qj−1(x

j

k+N|k)

]

, which

yields the following inequality

J
j

0→N (xS) ⩾ J
∗,j
0→∞(xS). (17)

From the last two inequalities we can easily conclude that

J
∗,j−1

0→∞(xS) ⩾ J
j

0→N (xS) ⩾ J
∗,j
0→∞(xS), (18)

which shows, the overall cost of trajectories does not increase by

the number of iterations

J
∗,j
0→∞(xS) ⩽ J

∗,j−1

0→∞(xS), ∀j ⩾ 1, (19)

and the proof is complete. ■

4. Example

We apply the proposed DMPC algorithm on the motion plan-

ning of an autonomous vehicle with a kinematic bicycle model in

an inertial frame (Kong, Pfeiffer, Schildbach, & Borrelli, 2015). ẑ is

an unknown function and it is assumed that, given a trajectory,

there is a black-box system that can predict its outputs and pass

these to the controller. An example application of such a setting

(see Fig. 3) involves motion planning in an environment with

regions that have different cost values, where the associated cost

of selected states can be predicted by a machine learning-based

black box. In motion planning, such black-box variables could

include predictions of other agents’ states or simply a region

with uneven terrain or a potentially dangerous zone for a robot.

The infinite time optimal control problem is defined according to

model (2), where f (xt , ut) is defined as follows:

ẋt = vt cos(ψt + βt) (20a)

ẏt = vt sin(ψt + βt) (20b)

ψ̇t =
vt

lr
sin(βt) (20c)

v̇t = at . (20d)

The state and control input vectors are xt = [xt yt ψt vt]
T ,

ut = [δt at]
T , respectively. xt and yt are the coordinates of the

center of mass of the vehicle, ψt is the heading angle, and vt
is the velocity of the vehicle at time step t . lf and lr show the

distance of the center of the mass from the front and rear axles,

respectively. βt = tan−1(lr
lf +lr

tan(δt)) is the angle between the

current velocity vector of the center of mass and the longitudinal

axis of the vehicle. The control input vector ut is composed of

5

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

Fig. 3. The contour plot of unknown non-convex cost function, and local

optimal trajectory generated by DMPC. The contours are totally unknown to the

controller. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

the steering angle δt and the acceleration at that is defined for

the center of mass in the same direction as vt .

The upper and lower bounds of the state and control vectors

are xmin = [−∞ − ∞ 0 0]T , xmax = [+∞ + ∞ 2π 4]T ,
umin = [− π

7
−1]T and umax = [π

7
1]T . The equality constraint rep-

resenting initial state x0 is assumed to be xS = [0 5 π
2
0]. Function

J0→∞(x0) shows the overall cost imposed to the controller to steer

the system from initial state x0 to final state xF = [51 10 π
10

1.1]T .
The stage cost h(., .) is defined as a quadratic function h(xt , ut) =
(xt − xF)

TP(xt − xF) + uT
t Rut . The tuning matrices of the cost

function are P = diag[1 1 0.1 0.1] and R = diag[0.01 0.01]. In
this example, the DMPC controller is expected to improve the

given initial trajectory (blue circle trajectory in Fig. 3) in the

presence of an unknown cost function. The controller will use

the most recently generated trajectory to converge to an optimal

trajectory. The algorithm will stop if
∑∞

t=0|x
j
t − x

j−1
t |< 10−4.

Also, the time step and time horizon are assumed to be 0.5 s

and N = 12, respectively for this problem. We used ACADO Code

Generation tool (Houska, Ferreau, & Diehl, 2011) with MATLAB

to solve this problem, and DMPC converged after 4 iterations

(trajectories 2 and 3 are very close to the optimal solution that

makes them invisible in the figure). Figs. 3 and 4 depict the

generated trajectories x∗,j ∀j ⩾ 0, and optimal steering angle and

acceleration/deceleration as control inputs, velocity and heading

angle at different time steps.

Reinforcement learning (RL) is a natural candidate for com-

parison, but these approaches typically require a large number

of interactions with the unknown system/function to learn con-

trollers, which is a practical limitation in real cases, such as

robots, where these number of interactions can be impracti-

cal, unsafe, and time-consuming (Deisenroth et al., 2013). In

this group of applications Gaussian Process-based MPC outper-

forms the RL approaches, so we compare the performance of

the DMPC with state-of-the-art GP methods (Deisenroth & Ras-

mussen, 2011; Kamthe & Deisenroth, 2018). We consider a Gaus-

sian Process setting where we seek deterministic control inputs

ut that minimize the cost function of the following finite time

optimal control problems, which will be solved in a receding

horizon fashion until reaching the terminal state

min
ut

{

Jt→t+N (xt) +

t+N
∑

k=t

Exk|t [ẑ(xk|t)]
}

,

Fig. 4. Control inputs and states in the steady state.

where Jt→t+N (xt) denotes the conventional stage cost and

Exk|t [ẑ(xk|t)] denotes the expected data-driven cost at time step k

calculated at time t . To implement the GP we define the training

input and target data to be x̃ = [x y]T and z̃ respectively. We

refer the reader to Deisenroth and Rasmussen (2011), Kamthe

and Deisenroth (2017) for details of the PILCO algorithm.

We use the same values of the parameters such as time hori-

zon, time step, etc. However, without a decent reference trajec-

tory this approach (PILCO) that is adopted from Deisenroth and

Rasmussen (2011) cannot find the optimal trajectory that drives

the system to the terminal state. The reason for this result is

that the MPC uses a naive approach (quadratic Euclidean distance

from the equilibrium point) at each iteration to estimate the cost

of the terminal state. Therefore, a reference trajectory is necessary

for this approach, but it may be hard to compute such a trajectory.

Alternatively, DMPC does not need any reference trajectory, and

like RL, calculates a cost-to-go value for available states in the

terminal set but in fewer trials than RL.

After adding a reference trajectory (Jafarzadeh & Fleming,

2018) to the cost function and training the model with 5600

training samples, PILCO could solve the problem, whereas DMPC

needs less than 2900 data samples, half the running time, and no

reference trajectory. Another downside of using GP is that, even if

the system has linear dynamics, adding such an estimation of ẑ to

the cost function will make the model non-convex. Such a result

is not desirable in terms of running time and solution quality.

Applying DMPC in this context results in a MILP model, which

can be solved efficiently using off-the-shelf solvers such as CPLEX,

Gurobi, etc.

5. Conclusions

In this work, a Data-and Model-driven Predictive Control

(DMPC) algorithm is presented to solve a model predictive control

problem in which there is a function in the performance index

or constraints that (a) is unknown to the controller and (b) is

interdependent with the decision variables (state and control vec-

tor) of the MPC. The controller is designed to exploit an existing,

exogenous data-driven system such as a black-box deep learning

model, along with model predictive control to find the optimal

sequence of control inputs. To solve this problem, a controller

is developed that conceptually borrows from iterative learning

controller but is intended for non-iterative or nonrepetitive tasks.

The algorithm starts from an initial arbitrary trajectory and it

is proven that the algorithm will find a feasible trajectory in

6

H. Jafarzadeh and C. Fleming Automatica 131 (2021) 109729

each subsequent iteration, and the trajectory at each iteration

is guaranteed to be no worse than the previous iteration. DMPC

is effective with very little data and converges in only a few

iterations. We provided an infinite time horizon optimal con-

trol example, in which the controller should drive a nonlinear

system from an initial state to an equilibrium point where the

environment is an uneven surface with an unknown non-convex

shape.

Acknowledgments

This work was partially supported by the NSF, USA under grant

CPS-1739333.

References

Ames, Aaron D, Xu, Xiangru, Grizzle, Jessy W, & Tabuada, Paulo (2016). Control

barrier function based quadratic programs for safety critical systems. IEEE

Transactions on Automatic Control, 62(8), 3861–3876.

Bacci, Edoardo, & Parker, David (2020). Probabilistic guarantees for safe deep

reinforcement learning. arXiv preprint arXiv:2005.07073.

Behl, Madhur, Smarra, Francesco, & Mangharam, Rahul (2016). DR-advisor: A

data-driven demand response recommender system. Applied Energy, 170,

30–46.

Deisenroth, Marc Peter, Fox, Dieter, & Rasmussen, Carl Edward (2013). Gaussian

processes for data-efficient learning in robotics and control. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 37(2), 408–423.

Deisenroth, Marc, & Rasmussen, Carl E. (2011). PILCO: A model-based and data-

efficient approach to policy search. In Proceedings of the 28th international

conference on machine learning (pp. 465–472).

Firoozi, Roya, Nazari, Shima, Guanetti, Jacopo, O’Gorman, Ryan, & Bor-

relli, Francesco (2018). Safe adaptive cruise control with road grade preview

and V2V communication. arXiv preprint arXiv:1810.09000.

Houska, B., Ferreau, H. J., & Diehl, M. (2011). An auto-generated real-time

iteration algorithm for nonlinear MPC in the microsecond range. Automatica,

47(10), 2279–2285. http://dx.doi.org/10.1016/j.automatica.2011.08.020.

Isele, David, Nakhaei, Alireza, & Fujimura, Kikuo (2018). Safe reinforcement

learning on autonomous vehicles. In 2018 IEEE/RSJ international conference

on intelligent robots and systems (pp. 1–6). IEEE.

Jafarzadeh, Hassan, & Fleming, Cody H. (2018). An exact geometry–based

algorithm for path planning. International Journal of Applied Mathematics and

Computer Science, 28(3), 493–504.

Jafarzadeh, H., & Fleming, C. (2019). Learning model predictive control for

connected autonomous vehicles. In 2019 IEEE 58th conference on decision

and control (pp. 2336–2343).

Kamthe, Sanket, & Deisenroth, Marc Peter (2017). Data-efficient reinforcement

learning with probabilistic model predictive control. arXiv preprint arXiv:

1706.06491.

Kamthe, Sanket, & Deisenroth, Marc (2018). Data-efficient reinforcement learning

with probabilistic model predictive control. In International conference on

artificial intelligence and statistics (pp. 1701–1710). PMLR.

Kong, Jason, Pfeiffer, Mark, Schildbach, Georg, & Borrelli, Francesco (2015).

Kinematic and dynamic vehicle models for autonomous driving control

design. In 2015 IEEE intelligent vehicles symposium (IV) (pp. 1094–1099). IEEE.

Liu, Wei, & Shoji, Yozo (2019). DeepVM: RNN-based vehicle mobility prediction

to support intelligent vehicle applications. IEEE Transactions on Industrial

Informatics, 16(6), 3997–4006.

Manh, Huynh, & Alaghband, Gita (2018). Scene-lstm: A model for human

trajectory prediction. arXiv preprint arXiv:1808.04018.

Matni, Nikolai, Proutiere, Alexandre, Rantzer, Anders, & Tu, Stephen (2019). From

self-tuning regulators to reinforcement learning and back again. In 2019 IEEE

58th conference on decision and control (pp. 3724–3740). IEEE.

Moerland, Thomas M., Broekens, Joost, & Jonker, Catholijn M. (2020).

Model-based reinforcement learning: A survey. arXiv preprint arXiv:2006.

16712.

Rosolia, Ugo, & Borrelli, Francesco (2018). Learning model predictive control

for iterative tasks. A data-driven control framework. IEEE Transactions on

Automatic Control, 63(7), 1883–1896.

Rosolia, Ugo, Zhang, Xiaojing, & Borrelli, Francesco (2017). Robust learning model

predictive control for iterative tasks: Learning from experience. In 2017 IEEE

56th annual conference on decision and control (pp. 1157–1162). IEEE.

Sarkar, Tuhin, Rakhlin, Alexander, & Dahleh, Munther A. (2019). Finite-time

system identification for partially observed lti systems of unknown order.

arXiv preprint arXiv:1902.01848.

Soltanaghaei, Elahe, Elnaggar, Mahmoud, Kleeman, Katie, Whitehouse, Kamin,

& Fleming, Cody (2019). Characterizing uncertainties of wireless channels

in connected vehicles. In The 25th annual international conference on mobile

computing and networking (pp. 1–3).

Taylor, Andrew, Singletary, Andrew, Yue, Yisong, & Ames, Aaron (2020). Learning

for safety-critical control with control barrier functions. In Learning for

dynamics and control (pp. 708–717). PMLR.

Wang, Youqing, Gao, Furong, & Doyle III, Francis J. (2009). Survey on iterative

learning control, repetitive control, and run-to-run control. Journal of Process

Control, 19(10), 1589–1600.

Hassan Jafarzadeh received his BS and M.Sc., both

in industrial engineering, from Tabriz University and

K.N. Toosi University of Technology, respectively. He is

currently a Ph.D. candidate with the Systems and In-

formation Engineering Department at the University of

Virginia. His research interests include model predictive

control and its applications to advanced automotive

control, Optimization and Machine Learning.

Cody Fleming is on the faculty of Mechanical Engi-

neering at Iowa State University, and was previously

an assistant professor of Systems Engineering and

Aerospace Engineering at the University of Virginia.

He received his Ph.D. in Aeronautics and Astronautics

at MIT. He is interested in modeling and analy-

sis of complex systems, particularly those with high

levels of automation. He has investigated several next-

generation air traffic management initiatives, as well

as safety assurance and algorithm development for

driverless vehicles. Related research interests lie in

modern feedback control, dynamics, and modeling, as well as model-based

systems engineering and system assurance.

7

http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://arxiv.org/abs/2005.07073
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://arxiv.org/abs/1810.09000
http://dx.doi.org/10.1016/j.automatica.2011.08.020
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1706.06491
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://arxiv.org/abs/1808.04018
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://arxiv.org/abs/2006.16712
http://arxiv.org/abs/2006.16712
http://arxiv.org/abs/2006.16712
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://arxiv.org/abs/1902.01848
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23

	DMPC: A data-and model-driven approach to predictive control
	Introduction
	Problem statement
	DMPC approach
	Algorithmic details
	Theoretical analysis

	Example
	Conclusions
	Acknowledgments
	References

