Automatica 131 (2021) 109729

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Brief paper

DMPC: A data-and model-driven approach to predictive control” R

Hassan Jafarzadeh **, Cody Fleming®

Check for
updates

4 Department of Systems Engineering, University of Virginia, 151 Engineer’s Way Charlottesville, VA 22904, USA

b Department of Mechanical Engineering, lowa State University, Ames, IA 50011, USA

ARTICLE INFO ABSTRACT

Article history:

Received 4 August 2020

Received in revised form 28 February 2021
Accepted 20 April 2021

Available online 9 June 2021

Keywords:

Learning controller

Model predictive control

Data-and model-driven predictive control
Optimal control

This work presents DMPC (Data-and Model-Driven Predictive Control) to solve control problems in
which some of the constraints or parts of the objective function are known, while others are entirely
unknown to the controller. It is assumed that there is an exogenous “black box” system, e.g. a machine
learning technique, that predicts the value of the unknown functions for a given trajectory. DMPC (1)
provides an approach to merge both the model-based and black-box systems; (2) can cope with very
little data and is sample efficient, building its solutions based on recently generated trajectories; and
(3) improves its cost in each iteration until converging to an optimal trajectory, typically needing
only a few trials even for nonlinear dynamics and objectives. Theoretical analysis of the algorithm
is presented, proving that the quality of the trajectory does not worsen with each new iteration. We
apply the DMPC algorithm to the motion planning of an autonomous vehicle with nonlinear dynamics.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional techniques for analyzing and developing control
laws in safety-critical applications usually require a precise math-
ematical model of the system (Ames, Xu, Grizzle, & Tabuada,
2016; Taylor, Singletary, Yue, & Ames, 2020). However, there are
many control applications where such precise, analytical models
cannot be derived or are not readily available. System identifi-
cation is a parametric model approach to such problems, mostly
focusing on asymptotic error characterization or consistency guar-
antees, often assuming that the structure of the underlying sys-
tem is known or that states are directly measurable (Matni,
Proutiere, Rantzer, & Tu, 2019; Sarkar, Rakhlin, & Dahleh, 2019).
On the other hand, data-driven approaches from machine learn-
ing are used in order to address these cases in a non-parametric
way and often can be successful even with no assumptions about
the structure of the underlying system. Such approaches can be
used to identify unmodeled dynamics in a scalable way, and
with high accuracy. However, an objective that is increasingly
prevalent in the literature involves merging or complementing
the analytical approaches from control theory with techniques
from machine learning.

* The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Angelo
Alessandri under the direction of Editor Thomas Parisini.

* Corresponding author.

E-mail addresses: hj2bh@virginia.edu (H. Jafarzadeh), flemingc@iastate.edu
(C. Fleming).

https://doi.org/10.1016/j.automatica.2021.109729
0005-1098/© 2021 Elsevier Ltd. All rights reserved.

Recently, techniques based on model-predictive control (MPC)
have addressed this problem by first using a statistical method
to estimate a mathematical model that is compatible with the
data, and then using this estimated model within a nominal
MPC framework to find optimal trajectories and control actions.
In addition to the aforementioned system identification tech-
niques, a popular choice is to build statistical models using
Gaussian Processes (GPs) (Deisenroth, Fox, & Rasmussen, 2013;
Kamthe & Deisenroth, 2018), while Regression Trees and other
machine learning techniques have been used in other cases (Behl,
Smarra, & Mangharam, 2016). The use of GPs in the context
of model-predictive control often creates highly nonlinear mod-
els, resulting in non-convex problems that are difficult to solve
efficiently or online. Alternatively, approaches based on Rein-
forcement Learning have been applied in this setting. Model-
based techniques again require a statistical method, for example,
GPs or deep neural networks, to estimate transition probability
distributions (Moerland, Broekens, & Jonker, 2020). Model-free
methods represent, informally, a trial-and-error method for iden-
tifying control policies (Deisenroth & Rasmussen, 2011; Kamthe
& Deisenroth, 2017). An open question in reinforcement learning
(and indeed much of the literature that uses both control theory
and machine learning) involves how to guarantee that the learned
policy will not violate safety or other constraints (Bacci & Parker,
2020; Isele, Nakhaei, & Fujimura, 2018). In addition, sample
complexity represents a challenge for all the aforementioned
techniques and is a general problem in machine learning.

This paper seeks to leverage the notion that in many appli-
cations, some aspects of the system (and environment) may be

https://doi.org/10.1016/j.automatica.2021.109729
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109729&domain=pdf
mailto:hj2bh@virginia.edu
mailto:flemingc@iastate.edu
https://doi.org/10.1016/j.automatica.2021.109729

H. Jafarzadeh and C. Fleming

known mathematically while other aspects are unknown or rep-
resented by a so-called “black box”. Our method attempts to uti-
lize the capabilities of model-based (MPC) and data-driven (ma-
chine learning algorithm) approaches, and bring them together in
a single framework in planning and control problems.

The paper addresses both sample complexity and online com-
putational efficiency by dividing the state space, such that the di-
mensionality of the mathematical models and the data needed for
statistical estimation and prediction are both reduced, while also
accounting for the interconnection between these two classes of
variables. Furthermore, we develop an algorithm that leverages
this decoupling of variables, and efficiently focuses on a specific
part of the state space that likely contains the optimal, feasible
trajectory without sampling from the rest of the state space.
Specifically, we assume that the dynamics of the system are
available in the form of a known mathematical model, but there
is an unknown function of the states and control inputs of the
system that affects the performance index or feasible solution
space. It is also assumed that the unknown aspects of the system
or environment can be predicted/measured for a given system
trajectory, e.g. by a “black box”.

Our technique is based on notions from Iterative Learning
Control (ILC). ILC is attractive because it can “learn” through
repeated trials to converge to better solutions (Wang, Gao, &
Doyle III, 2009). The concept of ILC has recently been extended
to a framework that does not require a reference signal (Rosolia
& Borrelli, 2018; Rosolia, Zhang, & Borrelli, 2017), although this
approach still assumes that initial conditions, constraints, and
costs remain consistent at each iteration. Although the aforemen-
tioned techniques have several nice qualities, e.g. no need for a
reference signal or known cost function, they (a) assume a repet-
itive setting and (b) generally do not apply to so-called “black
box” variables. We borrow from ILC concepts but generalize to
non-repetitive or non-iterative tasks, where a controller needs
to make real-time decisions in novel environments. Furthermore,
our approach works when the dynamics are unknown for at
least some aspects of the system or environment. The approach
leverages machine learning and MPC to predict the behavior of
the black-box and mathematically modeled components of the
system, respectively, incorporating both into a technique called
Data- and Model-driven Predictive Control (DMPC). DMPC works
without a reference signal and - for a subset of the state or cost
variables - completely unknown dynamics; furthermore, DMPC
can work with an unknown cost function. We prove that DMPC
is recursively feasible at each iteration of the algorithm, and
the generated trajectories will not worsen at each iteration. This
algorithm needs only a few iterations to converge to a locally op-
timal solution and is computationally efficient, even for nonlinear
system dynamics. We also demonstrate the performance of the
algorithm with an application to a motion planning problem with
nonlinear dynamics in a totally unknown environment.

2. Problem statement

In this section, a formal definition of the problem is presented.
Consider the dynamical system:

Xep1 =f (xe, up) (1)

where x € R" and u € R™ are the system states and control
inputs, respectively, and f : R" x R™ — R" is a known and
in general nonlinear map which assigns the successor state x; 1
to state x, and control input u,. In this paper we address the
following infinite time optimal control problem to find an optimal
trajectory from an initial state xs to final state xr within the
feasible state vector space X and control vector space U/:

Toool¥s) = min D [h e u) +2 (e, up)] (2a)
e £

Automatica 131 (2021) 109729

st.xep1 =f (e, u) Vt=>0 (2b)
Xo = Xs (ZC)
XxeXx, uedd Vvt>0, (2d)

where (2b) and (2c) are the system dynamics and the initial
conditions, and (2d) are the state and input constraints. The
cost function involves two different stage costs. (i) h(): a known
function that can be defined by a precise mathematical model,
often based on first principles from physics. We call this a “model-
driven" function. The traditional cost function of MPC, containing
quadratic terms to drive the state of the system to an equilibrium
point and to penalize the applied control input, consists of model-
driven functions. (ii) Z(): an unknown function to the controller.
A mathematical model cannot be defined for this type of stage
cost (or at least it is too expensive to derive such a function
and solve the resulting optimization model), but it affects the
overall cost function. It is assumed that, given the inputs, the
controller has access to the output of this function. Improving
an aircraft’s flight safety under the presence of turbulence can be
modeled as (2), where the behavior, location, and prediction of
turbulent air comes from an unknown function (unknown to the
controller). Another example involves connected autonomous ve-
hicles (CAVs) (Jafarzadeh & Fleming, 2019; Soltanaghaei, Elnaggar,
Kleeman, Whitehouse, & Fleming, 2019), in which the unknown
function is a model of the wireless channel and can be predicted
by e.g. recurrent neural networks (Liu & Shoji, 2019; Manh &
Alaghband, 2018).

It is assumed that the model-driven stage cost h(-, -) in Eq. (2a)
is continuous and satisfies h (xg, 0) = 0,

h (x¢, ue) = 0 Vx, € R"\{x¢}, u, € R™\{0}

where the final state x is a feasible equilibrium for the unforced
system (1), f(xr, 0) = xr. In the second term of the cost function,
Z() is considered to be positive definite and unknown for the
controller, Z : R" x R™ — R™. There is an exogenous data-driven
system acting as a black box, such as Long short-term memory
(LSTM) that calculates z, given x; and u,. Also, we assume that
the condition Z (xr, 0) = 0 is held in the equilibrium point x.

In the case that an unknown inequality is imposed as a con-
straint to the model rather than a penalty in the cost function, we
can use a barrier function to transform it to model (2). If we write
these constraints as ¥ (x¢, u;) < 0, Vt > 0, the barrier function
can be defined as

lfj/ (Xt, Uf) <0

__1
Z (%, up) = Youe) (3)
o0 o.w.

in the exogenous data-driven system, where the controller will
receive the value of Z() calculated from Eq. (3) and then con-
siders this value as a prediction for the unknown cost in the
performance index shown in model (2). Therefore, the problem
involves generating an optimal sequence of control inputs that
steers the system (1) from the initial state xs to the equilibrium
point xr such that the cost function of optimal control problem
(2), Jo—oco(Xs) — which is a combination of a known stage cost h(),
and unknown stage cost z() functionals - achieves the minimum
value.

At each time step of a (perhaps previously unseen) control
task, the approach uses an iterative scheme, where it learns from
each iteration and optimizes model (2) without explicitly deter-
mining the unknown function z(). At iteration j, the following
vectors collect the inputs applied to the system (1) and the cor-
responding state evolution from initial state xs to the equilibrium
point xg:

X =[x, LK xr] (4a)

H. Jafarzadeh and C. Fleming

= (4b)

In (4), the optimal values of system state and the control input ob-
tained at time ¢ and iteration j are denoted by x; and u;"”, respec-
tively. Also, we assume that at each jth iteration, the trajectories
start from the same initial condition x’o =Xxs, Vj> 0.

3. DMPC approach

This section describes the DMPC approach to obtain vectors
(4) as a sub-optimal solution for the infinite time optimal control
problem (2). We begin with the following assumption, as the
DMPC algorithm is designed such that, starting from a given
initial trajectory, it converges to the optimal solution (trajectory)
repetitively.

Assumption 1. Similar to the iterative learning control meth-
ods (Rosolia & Borrelli, 2018; Rosolia et al., 2017), it is assumed
that there exists an initial feasible trajectory x° for the infi-
nite time optimal control problem (2) from the initial state, xs,
to the equilibrium point, x¢, at the first iteration but with no
assumptions on optimality.

In addition, the concept of cost-to-go is defined for each state
in a complete trajectory as the minimum cost of reaching the
equilibrium point xr from the current state. The algorithm records
the last successful complete trajectory (i.e. from initial state x; to
the equilibrium point x¢), x*/~1, and assigns to every state in this
set a cost-to-go value obtained at iteration j — 1,

G =1) I g L

The cost of following the trajectory obtained at iteration j— 1 from
state xtj ! to final state x can be defined as:

dxTT = ZHL T,

The main approach of DMPC is generating a full trajectory from
Xs to xp at iteration j, x*4, based on the full trajectory generated
at iteration j — 1, x*~1. The full trajectory x*J is built iteratively
from the initial state xs to the final state xr. At each time step t

vVt > 0.

of iteration j, DMPC finds the optimal control input, u’t LN and
associated trajectory, X, , AN

) v .
xlt:t+N|t =[x ... ’XIH»N\[] (5a)
ult:t+N|t [”lmv S ult+N—Ht]' (5b)
where xf‘j = x’;‘t is the current state of the system, which is

considered as the optimal state of the trajectory at iteration j at
time t. DMPC selects the last state in (5a), x’t+M[, from a special
set that results in a recursive feasibility guarantee.

At iteration j, DMPC is designed by repeatedly solving a finite
time optimal control problem in a receding horizon fashion to
obtain state and control input vectors (5). In the state vector (5a),

the last state, Xlt+N|t' is enforced to be selected from set S/, that is

(U X 1) N Ry(x). (6)

The first term in Eq. (6) is the set of all the states in the most
recently generated full trajectory (iteration j — 1),.x**j‘1, and the
second term is N-step reachable set from state x;”. All the states
in trajectory x*/~! are members of control invariant set ¢ C X,
because, for every point in the set, there exists a feasible control
action in input vector u*#~!, that satisfies the state and control
constraints and steers the state of the system (1) toward the
equilibrium point x¢. Therefore, forcing the controller to select the

Automatica 131 (2021) 109729

Fig. 1. The green area shows the N-step reachable set, RN(X;‘J), from current
state, x:"j. Controllable set S{ is illustrated by large blue dots and dashed purple
line segments are the optimal trajectories from current state to available states
in controllable set s{ (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

terminal state x’t AN from the set S{ keeps the state of the system
in set C for time steps beyond the time horizon N (Firoozi, Nazari,
Guanetti, O’Gorman, & Borrelli, 2018), i.e

if X,y€C=x,y, €C Vk>0, (7)

On the other hand, trajectory x’[)¢ drives the system (1) from

state xt’ to one of the states in set S’ in N time steps (see Fig. 1).
Therefore, S| is a subset of the control invariant set and N-step
reachable set, making the state x;” a subset of the maximal stabi-
lizable set. Intuitively, this guarantees the constraint satisfaction
and feasibility for all time steps (t > 0) (the feasibility will
be proven in Theorem 1). This means that constraint satisfaction
at time steps beyond the time horizon does not depend on the
length of the time horizon, and N can be picked freely; in this
work we will select N to be small to speed up the algorithm. We
denote each state in set S, by s, Vi e {1,...,|S}|}.

3.1. Algorithmic details

To find the (local) optimal trajectory x’tHM[in (5), DMPC
generates two trajectories x’[4Ny and x’t 4Nt and selects the
best of them based on their cost as X/ We now explain how

t:t+N|t*
these two trajectories are built.

(i) The first trajectory generated by DMPC is x’[tne illustrated by

a solid black trajectory in Fig. 2. This trajectory 1s the state vector

associated with the optimal control input @, . obtained from

the following optlmlzatlon model over all the candldate terminal
states that are reachable in N time steps from the current state
x;”, see Eq. (6). This set of terminal states is depicted by big blue
points in Fig. 1 and indexed by i € {1,...,|S!|} in the following

term
I.II[HN“ = argmlni:]tatﬁ»N(X[)s Vl} (8)

Uy t+N\[

where 77, \(x;7) is the predicted overall cost (i.e. summation of
both the model-based > h(.) and black- box >~ 2(.) costs) due to

the system followmg the control input u;,, ; to reach the termi-
nal state xt +N|t =s,”. To simplify the mathematical notations, we
will use zk to show the predlcted value of the unknown function
following the control input u;?, . instead ofz(xk‘t, ”ku)- Then the
value of J_>t+N(xt 7) can be defined as:

t+N—1
‘7t—>t+N(xtj) _]t—>t+N th)‘i‘ Z Elldjt (9)

k=t

H. Jafarzadeh and C. Fleming

i
h . X ,
= g tit+N|t ~

Fig. 2. DMPC generates two trajectories x’[HN‘r (solid black) and x’nwu 1
(dashed green) at time step t of iteration j, and selects best of them. (For
interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

To find the optimal control input u’t N

the following formulation to generate []t AN CE4NE from

state X}/ toward terminal state st €), Vi € {1,...,|s!|}, and
calculate the cost assoc1ated with the model-based term, which

in Eq. (8), we first use
and x\’

is denoted byjf_>t+N(7Y in Eq. (9):
t+N—1
]HHN(’Q = mm Z xk\t’ uklt
t[+N k=t
+ (N + 1 (%) (10a)
StX) = f(x};{t, ug) vk (10b)
X = %! (10c)
x'tﬂth =s (10d)
xklt € X, uk|t €U, Vk. (10e)

In this model, the predictive controller generates the best trajec-
tory to reach state s, (i.e. enforced by constraint (10d)) and adds
the cost to go (N4 1)¢~'(x t+N\t) to compensate for the remaining

cost from state si‘j to the final state x;. We replace the stage cost
h(.,.) with a positive definite function £(., .) in the cost function

ij
oo “k\r) = ”xklt

where P and R are positive (semi)definite tuning matrices. The
function h() in the general optimal control problem(2) penalizes
the controller according to the difference between the generated
state xk‘t and the final state x¢, but £(., .) considers the selected
terminal state x[ENIe instead of X To compensate for the re-
maining trajectory cost from XHN” to xr, we add a cost-to-go
qj*‘(xHN) for each N + 1 states in the trajectory. Constraint
(10d) en%orces that the controller steers the system to a specific
terminal state, s;”.

The objectlve optimized by model (10) does not involve the

N=T 40
cost value coming from the black-box variables, 3, 8.

However, given the trajectory xt N generated by model (10),
the value of this unknown function can be predicted by the ex-
ternal black-box system and added to]HHN(xt 4 to find N/
(x;) based on Eq. (9). Then, according to (8), between all of the
trajectories that start from x;” and reach the terminal states in
set S} which are counted by index i (dashed purple trajectories
in Fig. 1), the trajectory that has the minimum cost value is
selected and denoted x’[HM[This is the result for (8), where
the input sequence @

te+nje Produces the overall trajectory cost
of T con(6”)

t+N\t”P + “uk\t”w

(ii) The second trajectory generated by DMPC is x]t LN—17 that is
illustrated by a dashed green trajectory in Fig. 2. In addition to
X, 4| another feasible available trajectory starting from xs to
xp can be obtained from the solution of the previous time step
t — 1 at the current iteration j. This trajectory is generated by

Automatica 131 (2021) 109729

applying one more step of the control input, u’ —14N—1)t—1» tO the
trajectory of the previous time step t — 1 and shlftmg its state one
time step toward the final state xr along the optimal trajectory of
iteration j — 1. This trajectory can be written as follows:

j j j ®,j— *,j—1
x’t:t+N|t—l = I:xltlt—lv . "x][+N72\t71’er LG] (11a)
Win = [”lutfw--- “Ir+N 2010 Uz]_1]- (11b)

x*4=1 denotes the optimal terminal state selected from the last
iteration (i.e. the last generated complete trajectory) j — 1, and

v is the time index of this state, x) et = = x*~1. The overall

trajectory cost ofx’ feeNje—1 1S given by jHHNl[(! ') and is

t+N-2

*7tj—>r+N|t—1("fJ):) [g(x’ku—v”;m—]) B 1]
k=t
NG e+ @ - (12)

Finally, the best trajectory of time step t and iteration j (ui LN
and X,) is selected between two obtained trajectories, X.,_, v,

and X[, ,,_, based on their cost.
o) = ML (), T e 00 (13)

In other words, the algorithm selects between two trajectories:
(a) the minimum-cost feasible trajectory from t — t + N at
time step t of iteration j, and (b) the time-shifted trajectory from
t — 1 — t 4+ N that leverages information from the prior time
step t — 1 of iteration j. After finding X/, \ . and w, . the first
step of its control input is applled to the system to push its state

#,j
toward the equilibrium point, u;”’ = “Imv Xip1 = Xppqpee

3.2. Theoretical analysis

In the remainder of this section, we provide theoretical anal-
yses of the algorithm for the feasibility and optimality of the
generated solutions.

Theorem 1. In the DMPC scheme with given system (1), cost func-
tion (8), and constraints (10b)-(10e), if there is a feasible trajectory
at iteration j — 1, DMPC is feasible at the next iteration, j, as well.

Proof. To prove this theorem, first, we need to show that, given a
feasible solution at time step t — 1 of iteration j, DMPC is feasible
for the next time step, t, too. The solution of DMPC at iteration
j—1is

J-1 _ *,j—1 *,j—1
x*I [xg,x1 e Xy ,...,xF],
and at iteration j and time step t — 1 is:

. T .
x]t—1:t+N—l\[—1 =[x 1”‘]“[71! - "Xlt+N—1|t—1]

u’tfltherl\tf] - [ul 1t-1° ul[|t71’ ""ult+N72|t71]‘

According to constraint (10d), DMPC selects terminal state

j L i.j i.j
x’HN 1e—1 from set S,_; which is denoted by s,” ;. Because s;” ; €

*,j—1
x*~1, we know that X,y .,

x’[N-1jt—1 = X7 *J=1 Based on the assumption given in the theorem
(existence of a fea51ble trajectory at iteration j— 1), for every state
in trajectory x*/~1 there is a feasible sequence of control actions
that satisfies the constraints and steers the system toward the
final state x¢. This feasible trajectory for state x’;*f‘l can be shown
as:

e x*~1, Let us assume that

w,j—1 xj—1

J=1

X = XL X]
*,j—1 *,j—1 k=1

Ul [u ur+1 L]

H. Jafarzadeh and C. Fleming

Then there is at least one feasible trajectory at time step t and
iteration j that is constructed as:

j #j—1 rj—1

xl [xlt|t l""’xlt+N—2\t—1’xr X4 e XF]
j #,j—1 , xj—1

“I [ult\t 1""’ult+N—2\t—1’ur JUS s

This completes the proof of the statement that DMPC is feasible at
time step t if it is feasible at t — 1. Also, based on Assumption 1
and by induction we can conclude that DMPC is feasible for all
iterations and time steps. W

We showed that, given a feasible initial trajectory x°, the
algorithm is feasible at every time step of different iterations.
Theorem 2 proves that the algorithm will finally converge to the
equilibrium point xr, and Theorem 3 proves that the performance
index is non-increasing at every DMPC iteration. The next two
theorems follow a similar approach to Rosolia and Borrelli (2018).

Theorem 2. In the DMPC scheme with given system (1), cost func-
tion (8), constraints (10b)—(10e), and an initial feasible trajectory x°,
the equilibrium point x is asymptotically stable at every iteration
izl

Proof. Let us start with writing the overall optimal trajectory cost
of state x;”|

J *.J i—1¢,J
Titmein1®2) = (N + 1)¢ (x’t+N—1|t—l)
t+N—-2

+ Z [kje—1° k\t 1)+Zl}<\t 1]

k=t—1

_e(x,[1t— 17”]r 1t— 1)"‘2] 1t— 1+q) t+N 1|t— 1)+
t+N-2
*,j—1
Z e(x;c\[1!”’<\t 1)+qu t+N 1t— 1 +q’ ril)
k=t
where 0-15") = X [0 (50) 4207 us
ing Eq. (12),

\7tj 1—>t+N— 1(x*’j):~7tj—>r+N|r 1(x*’j)
+g(x’r 1)t— v”lt 1)t— 1)"‘2} 1)t— 1+ql
Also, according to Eq. (13),

t+N 1)t— 1)-

j *,J j *,]
Ten®) < Tos g1 (X 7)-

From the last two inequalities we conclude that

'l *,J Jj *,J
Ten®) = Teq v (X 2y)

_E(Xlt—l\t—l’ul[—l\[—l)_éi—l\t—l _qi (XIH»N 1)t— 1)
<0, Vt>1, and Vj>1. (14)

<

This completes the proof of asymptotic stability of the equilib-
rium point xr. W

Theorem 3. In the DMPC scheme with given system (1), cost
function (8), and constraints (10b)-(10e), and a feasible trajectory
x*4~1 at iteration j — 1,

ToT () < T %), Wiz (15)

the next trajectory x*I generated by DMPC has an overall trajectory
cost, 7 ..(xs), not worse than jHOO(Xs)

Proof. Assume that, at iteration j, the trajectory x*J~1 is avail-
able for an overall cost of Jo*i;;(xs). It is desirable to show
that, according to model (8) and Eq. (13), DMPC will generate
trajectory xIO:N (trajectory blue) which is not worse than x*/~1,

Automatica 131 (2021) 109729

J(j)l—wo(XS) < j(;‘i;l(xs). Positive definiteness of z and h indicates
that at different time steps, t, in iteration j

Trein®E) S T (), Ve 1 (16)
Also, according to Eq. (14), for t = 1
Toon(¥8) = Tl yr (067) + Llxs, ug”) + 257+ ¢ (6 0)

fort =2,

j{ﬁNﬁ»l(xT,j) =

‘7;—>N+2(x;j) + E(XT’jv u1 A*j +d! N-H|l

until t — oo, in which the system converges to Xr. Summing up
these inequalities results in

oo

~70—>N(XS) Z [z("k , ”k 2:1 +q7! I<+NH<]

k=0

The right-hand side of this inequality is the sum of all stage costs
of optlmal trajectory generated at iteration j

Totheel¥s) = 202 o[X)+ 200+ 47 k+N\k):|’ which
yields the followmg inequality
Ton(xs) = Tgd o (xs). (17)
From the last two inequalities we can easily conclude that

TE N xs) = T (xs) = T (%), (18)

which shows, the overall cost of trajectories does not increase by
the number of iterations

Tod o (xs) < Tg L (%),

and the proof is complete. W

Vi>1, (19)

4. Example

We apply the proposed DMPC algorithm on the motion plan-
ning of an autonomous vehicle with a kinematic bicycle model in
an inertial frame (Kong, Pfeiffer, Schildbach, & Borrelli, 2015). Z is
an unknown function and it is assumed that, given a trajectory,
there is a black-box system that can predict its outputs and pass
these to the controller. An example application of such a setting
(see Fig. 3) involves motion planning in an environment with
regions that have different cost values, where the associated cost
of selected states can be predicted by a machine learning-based
black box. In motion planning, such black-box variables could
include predictions of other agents’ states or simply a region
with uneven terrain or a potentially dangerous zone for a robot.
The infinite time optimal control problem is defined according to
model (2), where f(x,, u;) is defined as follows:

X = vy cos(Yr + Be) (20a)
Ve = v sin(Yre + Be) (20Db)
Vi = % sin(B:) (20¢)
Uy = ;. (20d)
The state and control input vectors are X, = [x; V: ¥ vel’,

u; = [6; a;]", respectively. x; and y; are the coordinates of the
center of mass of the vehicle, v, is the heading angle, and v,
is the velocity of the vehicle at time step t. I and I, show the
distance of the center of the mass from the front and rear axles,
respectively. 8, = tan’l(lf T (8¢)) is the angle between the
current velocity vector of the center of mass and the longitudinal
axis of the vehicle. The control input vector u, is composed of

H. Jafarzadeh and C. Fleming

——o&— iteration:0
—%— iteration:1
—+— iteration:2

iteration:3
—*— iteration:4

45
40 -

§l 35
35

4 30

0 5 10 15 20 25 30 35 40 45 50
€

Fig. 3. The contour plot of unknown non-convex cost function, and local
optimal trajectory generated by DMPC. The contours are totally unknown to the
controller. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the steering angle §; and the acceleration a; that is defined for
the center of mass in the same direction as vy.

The upper and lower bounds of the state and control vectors
are Xmin = [—00 — 00 0 0], Xpmax = [+00 + oo 27 4],
Unin = [—Z —1]" and Upgy = [1]". The equality constraint rep-
resenting initial state xq is assumed to be xs = [0 5 % 0]. Function
Jo— 0o(Xo) shows the overall cost imposed to the controller to steer
the system from initial state x¢ to final state xp = [51 10 % 1.17".
The stage cost h(., .) is defined as a quadratic function h(x;, u;) =
(X — Xp)TP(Xc — XF) + ulRu,. The tuning matrices of the cost
function are P = diag[1 1 0.1 0.1] and R = diag[0.01 0.01]. In
this example, the DMPC controller is expected to improve the
given initial trajectory (blue circle trajectory in Fig. 3) in the
presence of an unknown cost function. The controller will use
the most recently generated trajectory to converge to an optimal
trajectory. The algorithm will stop if 37 [x — ¥ '|< 107
Also, the time step and time horizon are assumed to be 0.5 s
and N = 12, respectively for this problem. We used ACADO Code
Generation tool (Houska, Ferreau, & Diehl, 2011) with MATLAB
to solve this problem, and DMPC converged after 4 iterations
(trajectories 2 and 3 are very close to the optimal solution that
makes them invisible in the figure). Figs. 3 and 4 depict the
generated trajectories x*/ Vj > 0, and optimal steering angle and
acceleration/deceleration as control inputs, velocity and heading
angle at different time steps.

Reinforcement learning (RL) is a natural candidate for com-
parison, but these approaches typically require a large number
of interactions with the unknown system/function to learn con-
trollers, which is a practical limitation in real cases, such as
robots, where these number of interactions can be impracti-
cal, unsafe, and time-consuming (Deisenroth et al., 2013). In
this group of applications Gaussian Process-based MPC outper-
forms the RL approaches, so we compare the performance of
the DMPC with state-of-the-art GP methods (Deisenroth & Ras-
mussen, 2011; Kamthe & Deisenroth, 2018). We consider a Gaus-
sian Process setting where we seek deterministic control inputs
u; that minimize the cost function of the following finite time
optimal control problems, which will be solved in a receding
horizon fashion until reaching the terminal state

t+N

nz‘in{ Jeseonx) + Y By 01

k=t

Automatica 131 (2021) 109729

Fig. 4. Control inputs and states in the steady state.

where Ji_,in(x;) denotes the conventional stage cost and
Exy, [2(xk)] denotes the expected data-driven cost at time step k
calculated at time t. To implement the GP we define the training
input and target data to be X = [x y]” and Z respectively. We
refer the reader to Deisenroth and Rasmussen (2011), Kamthe
and Deisenroth (2017) for details of the PILCO algorithm.

We use the same values of the parameters such as time hori-
zon, time step, etc. However, without a decent reference trajec-
tory this approach (PILCO) that is adopted from Deisenroth and
Rasmussen (2011) cannot find the optimal trajectory that drives
the system to the terminal state. The reason for this result is
that the MPC uses a naive approach (quadratic Euclidean distance
from the equilibrium point) at each iteration to estimate the cost
of the terminal state. Therefore, a reference trajectory is necessary
for this approach, but it may be hard to compute such a trajectory.
Alternatively, DMPC does not need any reference trajectory, and
like RL, calculates a cost-to-go value for available states in the
terminal set but in fewer trials than RL.

After adding a reference trajectory (Jafarzadeh & Fleming,
2018) to the cost function and training the model with 5600
training samples, PILCO could solve the problem, whereas DMPC
needs less than 2900 data samples, half the running time, and no
reference trajectory. Another downside of using GP is that, even if
the system has linear dynamics, adding such an estimation of Z to
the cost function will make the model non-convex. Such a result
is not desirable in terms of running time and solution quality.
Applying DMPC in this context results in a MILP model, which
can be solved efficiently using off-the-shelf solvers such as CPLEX,
Gurobi, etc.

5. Conclusions

In this work, a Data-and Model-driven Predictive Control
(DMPC) algorithm is presented to solve a model predictive control
problem in which there is a function in the performance index
or constraints that (a) is unknown to the controller and (b) is
interdependent with the decision variables (state and control vec-
tor) of the MPC. The controller is designed to exploit an existing,
exogenous data-driven system such as a black-box deep learning
model, along with model predictive control to find the optimal
sequence of control inputs. To solve this problem, a controller
is developed that conceptually borrows from iterative learning
controller but is intended for non-iterative or nonrepetitive tasks.
The algorithm starts from an initial arbitrary trajectory and it
is proven that the algorithm will find a feasible trajectory in

H. Jafarzadeh and C. Fleming

each subsequent iteration, and the trajectory at each iteration
is guaranteed to be no worse than the previous iteration. DMPC
is effective with very little data and converges in only a few
iterations. We provided an infinite time horizon optimal con-
trol example, in which the controller should drive a nonlinear
system from an initial state to an equilibrium point where the
environment is an uneven surface with an unknown non-convex
shape.

Acknowledgments

This work was partially supported by the NSF, USA under grant
CPS-1739333.

References

Ames, Aaron D, Xu, Xiangru, Grizzle, Jessy W, & Tabuada, Paulo (2016). Control
barrier function based quadratic programs for safety critical systems. IEEE
Transactions on Automatic Control, 62(8), 3861-3876.

Bacci, Edoardo, & Parker, David (2020). Probabilistic guarantees for safe deep
reinforcement learning. arXiv preprint arXiv:2005.07073.

Behl, Madhur, Smarra, Francesco, & Mangharam, Rahul (2016). DR-advisor: A
data-driven demand response recommender system. Applied Energy, 170,
30-46.

Deisenroth, Marc Peter, Fox, Dieter, & Rasmussen, Carl Edward (2013). Gaussian
processes for data-efficient learning in robotics and control. I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 37(2), 408-423.

Deisenroth, Marc, & Rasmussen, Carl E. (2011). PILCO: A model-based and data-
efficient approach to policy search. In Proceedings of the 28th international
conference on machine learning (pp. 465-472).

Firoozi, Roya, Nazari, Shima, Guanetti, Jacopo, O’Gorman, Ryan, & Bor-
relli, Francesco (2018). Safe adaptive cruise control with road grade preview
and V2V communication. arXiv preprint arXiv:1810.09000.

Houska, B., Ferreau, H.], & Diehl, M. (2011). An auto-generated real-time
iteration algorithm for nonlinear MPC in the microsecond range. Automatica,
47(10), 2279-2285. http://dx.doi.org/10.1016/j.automatica.2011.08.020.

Isele, David, Nakhaei, Alireza, & Fujimura, Kikuo (2018). Safe reinforcement
learning on autonomous vehicles. In 2018 IEEE/RS] international conference
on intelligent robots and systems (pp. 1-6). IEEE.

Jafarzadeh, Hassan, & Fleming, Cody H. (2018). An exact geometry-based
algorithm for path planning. International Journal of Applied Mathematics and
Computer Science, 28(3), 493-504.

Jafarzadeh, H., & Fleming, C. (2019). Learning model predictive control for
connected autonomous vehicles. In 2019 IEEE 58th conference on decision
and control (pp. 2336-2343).

Kamthe, Sanket, & Deisenroth, Marc Peter (2017). Data-efficient reinforcement
learning with probabilistic model predictive control. arXiv preprint arXiv:
1706.06491.

Kamthe, Sanket, & Deisenroth, Marc (2018). Data-efficient reinforcement learning
with probabilistic model predictive control. In International conference on
artificial intelligence and statistics (pp. 1701-1710). PMLR.

Kong, Jason, Pfeiffer, Mark, Schildbach, Georg, & Borrelli, Francesco (2015).
Kinematic and dynamic vehicle models for autonomous driving control
design. In 2015 IEEE intelligent vehicles symposium (IV) (pp. 1094-1099). IEEE.

Automatica 131 (2021) 109729

Liu, Wei, & Shoji, Yozo (2019). DeepVM: RNN-based vehicle mobility prediction
to support intelligent vehicle applications. IEEE Transactions on Industrial
Informatics, 16(6), 3997-4006.

Manh, Huynh, & Alaghband, Gita (2018). Scene-lstm: A model for human
trajectory prediction. arXiv preprint arXiv:1808.04018.

Matni, Nikolai, Proutiere, Alexandre, Rantzer, Anders, & Tu, Stephen (2019). From
self-tuning regulators to reinforcement learning and back again. In 2019 IEEE
58th conference on decision and control (pp. 3724-3740). IEEE.

Moerland, Thomas M., Broekens, Joost, & Jonker, Catholijn M. (2020).
Model-based reinforcement learning: A survey. arXiv preprint arXiv:2006.
16712.

Rosolia, Ugo, & Borrelli, Francesco (2018). Learning model predictive control
for iterative tasks. A data-driven control framework. IEEE Transactions on
Automatic Control, 63(7), 1883-1896.

Rosolia, Ugo, Zhang, Xiaojing, & Borrelli, Francesco (2017). Robust learning model
predictive control for iterative tasks: Learning from experience. In 2017 IEEE
56th annual conference on decision and control (pp. 1157-1162). IEEE.

Sarkar, Tuhin, Rakhlin, Alexander, & Dahleh, Munther A. (2019). Finite-time
system identification for partially observed Iti systems of unknown order.
arXiv preprint arXiv:1902.01848.

Soltanaghaei, Elahe, Elnaggar, Mahmoud, Kleeman, Katie, Whitehouse, Kamin,
& Fleming, Cody (2019). Characterizing uncertainties of wireless channels
in connected vehicles. In The 25th annual international conference on mobile
computing and networking (pp. 1-3).

Taylor, Andrew, Singletary, Andrew, Yue, Yisong, & Ames, Aaron (2020). Learning
for safety-critical control with control barrier functions. In Learning for
dynamics and control (pp. 708-717). PMLR.

Wang, Youqing, Gao, Furong, & Doyle III, Francis J. (2009). Survey on iterative
learning control, repetitive control, and run-to-run control. Journal of Process
Control, 19(10), 1589-1600.

Hassan Jafarzadeh received his BS and M.Sc., both
in industrial engineering, from Tabriz University and
K.N. Toosi University of Technology, respectively. He is
currently a Ph.D. candidate with the Systems and In-
formation Engineering Department at the University of
Virginia. His research interests include model predictive
control and its applications to advanced automotive
control, Optimization and Machine Learning.

Cody Fleming is on the faculty of Mechanical Engi-
neering at lowa State University, and was previously
an assistant professor of Systems Engineering and
Aerospace Engineering at the University of Virginia.
He received his Ph.D. in Aeronautics and Astronautics
at MIT. He is interested in modeling and analy-
sis of complex systems, particularly those with high
levels of automation. He has investigated several next-
generation air traffic management initiatives, as well
as safety assurance and algorithm development for
driverless vehicles. Related research interests lie in
modern feedback control, dynamics, and modeling, as well as model-based
systems engineering and system assurance.

http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb1
http://arxiv.org/abs/2005.07073
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb3
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb4
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb5
http://arxiv.org/abs/1810.09000
http://dx.doi.org/10.1016/j.automatica.2011.08.020
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb8
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb9
http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1706.06491
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb12
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb13
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb14
http://arxiv.org/abs/1808.04018
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb16
http://arxiv.org/abs/2006.16712
http://arxiv.org/abs/2006.16712
http://arxiv.org/abs/2006.16712
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb18
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb19
http://arxiv.org/abs/1902.01848
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb22
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23
http://refhub.elsevier.com/S0005-1098(21)00249-1/sb23

	DMPC: A data-and model-driven approach to predictive control
	Introduction
	Problem statement
	DMPC approach
	Algorithmic details
	Theoretical analysis

	Example
	Conclusions
	Acknowledgments
	References

