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Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving
international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains
a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed
measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates
biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-
relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model
uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario
analysis for conservation policy, and highlight lessons from other modeling communities.
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mong the most urgent challenges for society and

conservation today are predicting and mitigating loss
of biodiversity and ecosystem services (IPBES 2019). With
the potential of 1 million species to go extinct in the coming
decades, developing better tools for projecting biodiversity
change is vital (IPBES 2019). Currently, no single model can
capture all the dimensions of biodiversity change resulting
from environmental and anthropogenic impacts (Pereira
et al. 2010). Consequently, modelers have developed a range
of biodiversity models and scenarios to predict change
across multiple dimensions of biodiversity (IPBES 2016).
The diversity of models enhances researchers’ ability to pre-
dict change in a myriad of individual biodiversity variables,
including species distribution and abundance, species traits
and genetic composition, community composition, and
ecosystem structure and function (Fulton et al. 2011, Lacy
et al. 2013, Pacifici et al. 2015, Tkeda et al. 2017, Landguth
et al. 2017). This array of possible predicted variables makes
it challenging to integrate model predictions to better
understand large-scale biodiversity change. However, the

diversity in models can be advantageous and also presents
an opportunity to develop new strategies to evaluate, reduce
uncertainty, and increase confidence in model predictions
for decision-makers (Aratjo et al. 2005, Akgakaya et al.
2016, Honrado et al. 2016, IPBES 2016).

Decision-makers use biodiversity projections to develop
and implement policy actions for biodiversity conservation
and must make decisions despite uncertainty in the projec-
tions (Wilson 2002, CBD 2010). Model-based projections
can be used both to inform the formulation of targets and to
identify and prioritize actions (e.g., target implementation;
Dietze et al. 2018). High-accuracy biodiversity estimates
increase decision-makers’ confidence in model outputs
(Regan et al. 2005, Akgakaya et al. 2016). To evaluate model
performance, researchers can compare model outputs with
observations and from multiple models to quantify the pre-
cision and accuracy of multimodel predictions (Zurell et al.
2016). For example, Morin and Thuiller (2009) compared
uncertainty in range shift predictions from niche-based
and process-based models. These multimodel predictions
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improved understanding of species range shifts (Morin and
Thuiller 2009). Other efforts to improve model predictions
have focused on comparing similar biodiversity variables
(e.g., range shifts and species distributions) from different
model types (Aratjo et al. 2005, Morin and Thuiller 2009,
Zurell et al. 2016). The biodiversity modeling community
continues to make strides in quantifying and reducing
uncertainty through model intercomparison efforts (Rosa
et al. 2020). However, additional approaches to evaluate
and reduce uncertainty in model-based biodiversity projec-
tions to improve model outputs is a priority (Akcakaya et al.
2016). We identified a pressing need for improved model-
data fusion approaches to evaluate and constrain uncertainty
using multiple data streams (e.g., remote sensing and in-situ
observations). We also expand on Akcakaya and colleagues’
(2016) charge to use diverse biodiversity models to improve
model outputs.

The challenges in improving biodiversity models are
unique compared with other modeling communities (e.g.,
climate modeling). For one, biological and ecological pro-
cesses, such as changes in species interactions and adapta-
tion to a stressor, can be complex and difficult to predict
(Ibanez et al. 2006, Jackson et al. 2009, Purves et al. 2013,
Harfoot et al. 2014, Bay et al. 2018). Second, there are cur-
rently no standard means to compare biodiversity model
outputs, which creates challenges when estimating uncer-
tainty (Rosa et al. 2020). Finally, there is no consistent
process to take advantage of the multiple monitoring and
varied data streams for improving model outputs (Akgakaya
et al. 2016, Honrado et al. 2016). Biodiversity researchers
and decision-makers are actively addressing these issues.
For example, the Group on Earth Observations Biodiversity
Observation Network (GEO BON) is developing Essential
Biodiversity Variables (EBVs), defined as the derived mea-
surements required to study and report on biodiversity
change (Pereira et al. 2013). EBVs include common biodi-
versity variables such as species distribution, abundance,
trait diversity, genetic diversity, and taxonomic diversity.
The EBV framework was developed to harmonize observa-
tions and model outputs into comparable and monitorable
variables (Pereira et al. 2013, Navarro et al. 2017). Recent
efforts have used the EBV framework to combine outputs
from multiple models to quantify uncertainty across models
(Rosa et al. 2020). Therefore, this is a particularly opportune
time to explore novel approaches to evaluate and reduce
uncertainty in model-based biodiversity projections and
contribute to this active field of research.

Given these challenges and opportunities, clearer strate-
gies are needed for biodiversity model evaluation to inform
future formulation of biodiversity policy (Tittensor et al.
2014, IPBES 2016). International science-policy efforts such
as the Convention on Biological Diversity’s (CBD) post-2020
biodiversity agenda (CBD 2017), continued identification of
EBVs, and the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) global assess-
ment report have highlighted the urgency of biodiversity
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forecasting and conservation to society (Essential biodiver-
sity 2019, IPBES 2019). In addition, there has been a rapid
increase in the quantity and diversity of data available to
inform biodiversity assessments, including a wide array of
remote sensing, field observations (e.g., the TRY trait data-
base), metagenomics, and citizen science (Silvertown 2009,
Theobald et al. 2015, Balasingham et al. 2018). Evaluating
and using these data streams requires expertise as well as
advanced modeling approaches to harness the abundance of
available observations (Akgakaya et al. 2016).

In the present article, we address these stated biodiversity
community and strategic needs by proposing a novel mul-
tivariate approach to directly and indirectly evaluate and
reduce uncertainty of multiscale model predictions. First, we
use multiple data sources to directly constrain model-based
predictions of biodiversity variables. We then combine this
step with a multivariate indirect constraint between models
that predict related biodiversity variables to evaluate and
jointly reduce uncertainty. Our approach leverages distinct
models and allows for the evaluation and reduction of
uncertainty across multiple dimensions of biodiversity in an
ecosystem. Collectively, we describe the proposed multivari-
ate approach to evaluate and directly and indirectly reduce
model uncertainty, outline a proof of concept application to
illustrate this approach and how it could be applied to other
models and variables, embed the concept within the broader
context of model testing and scenario analysis for conser-
vation policy, and highlight lessons from other modeling
communities that could be applied to improve biodiversity
model outputs.

Multivariate approach to evaluating and reducing
uncertainty in model-based biodiversity projections
Biodiversity variables are linked by physical, biological,
and ecological processes, many of which are described
quantitatively in models (Harfoot et al. 2014). We used this
interdependency among biodiversity variables to develop a
multivariate approach to evaluate and reduce uncertainty
in model-based biodiversity projections. We illustrate the
two-step process conceptually in figure 1 using a generic
EBV and a biodiversity variable. The approach is flexible in
that modelers can apply any two models predicting related
biodiversity variables, but we used EBVs in our example to
better link to ongoing biodiversity monitoring processes.
Our approach involves two main steps to reduce uncertainty
in biodiversity projections. Step 1 illustrates a univariate
constraint on uncertainty in initial conditions via remote
sensing and in-situ observations of a biodiversity variable
(figure 1, step 1). Step 2 applies a novel multivariate con-
straint on uncertainty via model overlap using the same
models from step 1 of two biologically or ecologically related
biodiversity variables (figure 1, step 2). Following step 2, we
can repeat the process iteratively to directly constrain the
biodiversity variables using remote sensing or in-situ obser-
vations and indirectly constrain the related biodiversity
variables through reanalysis (figure 1, steps 1-2). The direct
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biodiversity variable and another pre-
dicts a related biodiversity variable, and
a set of observations is capable of con-
straining model predictions of one of
those variables, then that set of obser-
vations can indirectly constrain model
predictions of both variables (figure
1). This is based on the model predic-
tions of the related biodiversity vari-
ables being biologically or ecologically
linked, and the two variables having a
mechanistic connection in one of the
models. This link allows for joint prob-
ability density functions of the related
biodiversity predictions (see the proof
of concept below).

Using this link, our approach can
inform predictions in areas with sparse
observations. That is, if an area has
missing data (e.g., high cloud cover
in remote sensing images) but there
is strong internal model covariance
between related variables with another
model variable, then that undersam-
pled area would still receive informed
predictions from the multivariate con-
straint step and not be based purely
on an uniformed base model estimate.
Modelers can use this process iteratively
to both directly and indirectly constrain
uncertainty by integrating new remote
sensing, in situ, or emerging biodiver-
sity relevant technologies that become
available (figure 1). Repeated improve-
ment iterations can be done even when
new observations become available for
only one of the related variables in the

EBV

multivariate process. Therefore, new

Figure 1. Schematic leveraging multiple biodiversity model outputs, remote
sensing, and in-situ observations to evaluate and constrain uncertainty of
biodiversity variables. Step 1 illustrates direct constraints using remote sensing
and in-situ observations of an EBV and a related biodiversity variable. Step

2 illustrates a multivariate constraint of EBV uncertainty and the related
biodiversity variable 2 output from two different models via model overlap.

observations for one variable would
reduce uncertainty for both related bio-
diversity variables using this approach.
For the multivariate constraint
approach to function effectively, indi-
rect constraints must have strong covari-

constraint of uncertainty using remote sensing and in-situ
observations of a predicted biodiversity variable in step 1 is
common practice in modeling (Pasetto et al. 2018); the nov-
elty of our approach lies in the indirect constraint outlined
in step 2 and described in more detail below.

The relationship between the two related biodiversity
model outputs is key in step 2. We argue that overlap
of model-based predictions of different but related bio-
diversity variables can be used to indirectly constrain
uncertainty of combined multiple model outputs (figure 1,
step 2). Conceptually, if one biodiversity model predicts a
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ances (ie., if two variables are only
weakly related in a model then they will be ineffective
constraints on each other). Covariances can be positive
or negative depending on the relationship between the
variables. If the covariance is 0 or weak, then the multi-
variate constraint approach will be less informative and
is not recommended. Furthermore, confidence in these
constraints depends on confidence that models are captur-
ing relationships between variables accurately (Zurell et al.
2016). Therefore, effective model-data integration within
the approach will work best with diverse models and diverse
data sets. The models should have adequately described
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uncertainties in their measurements, and account for the
predictive variance introduced by competing hypotheses
about relevant processes as well as errors, biases, and scaling
issues of different data sources. This approach also relies on
obtaining accurate observed measurements of biodiversity
variables and their uncertainty estimates. We propose that
such remote sensing observation data could also fine-tune
model structure or reparameterize initial conditions where
appropriate. This two-step multivariate approach could
facilitate the evaluation and could reduce the uncertainty
of a single model or a diverse array of biodiversity models
against wide-ranging observations, including those deriv-
able from hyperspectral or lidar-based remote sensing,
environmental metagenomics, and long-term monitoring
programs. Our proposed two-step multivariate approach
results would yield improved biodiversity predictions for
policy formulation, including for the next generation of
biodiversity targets and EBVs (Bush et al. 2017). In our con-
ceptual diagram, the EBV is linked to a related biodiversity
variable physically, biologically, or ecologically (figure 1).
We highlight one of the biodiversity variables as an EBV
in figure 1; however, our approach could be applied to any
two related biodiversity variables regardless if they are con-
sidered EBVs. Modelers or decision-makers can choose the
relevant models and variables for their needs.

Proof of concept: MstMIP, Madingley model, and in-
situ observations of moose density

Using various remote sensing and other observations to
directly constrain initial conditions and assess accuracy of
model-based predictions is fairly straightforward (Pasetto
et al. 2018). Although we demonstrate the direct constraint
of initial conditions with observations, in the proof of con-
cept, we focus primarily on the novel aspect of our approach,
which is the multivariate constraint of uncertainty via model
overlap (figure 1, step 2). As a proof of concept of the mul-
tivariate constraint approach, we developed a simple joint
analysis of live aboveground vegetation biomass and popula-
tion density of moose (Alces alces) in North America. This
analysis uses information from a combination of models
and observations and demonstrates how a model that jointly
predicts moose density and live aboveground vegetation
biomass allows us to use information from one variable to
indirectly constrain other variables (figures 2-5).

First, we obtained aboveground vegetation biomass esti-
mates from the North American Carbon Program Multi-
Scale Synthesis and Terrestrial Model Intercomparison
Project (MstMIP; Huntzinger et al. 2018). The complete
data set includes global gridded 0.5 x 0.5 degree simula-
tions from 15 different terrestrial biosphere models at
monthly and yearly time steps for the period 1900-2010.
For each model and each pixel within North America, we
calculated the mean biomass estimate from the monthly
estimates for the period 1990-2010. We then generated
a normal distribution of biomass for each pixel by taking
the sample mean and standard deviation across the 15
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models. A map of the resulting mean estimates is shown
in figure 2a.

Second, we obtained estimates of aboveground vegeta-
tion biomass and moose population density from existing
global gridded ensemble simulations of the Madingley
model (Harfoot et al. 2014). The ensemble consisted of
six different simulations with varying parameters and ini-
tial conditions. The Madingley model provides estimates
of the total foliar biomass. To derive live aboveground
vegetation biomass, we first extracted the predicted auto-
troph biomass density from each ensemble member for
each pixel in North America. To convert the total foliar
biomass to total live aboveground vegetation biomass, we
multiplied these values by 10, on the basis of allometric
relationships between foliar and total biomass in Bond-
Lamberty and colleagues (2002). A map of the resulting
mean estimates of vegetation biomass is shown in figure
2b. The Madingley model produces population estimates
of terrestrial herbivores on the basis of diet and body
mass. To get moose density from the Madingley model,
we extracted the predicted adult population of each cohort
of terrestrial herbivores whose body mass was greater
than 400 kilograms (kg) for each pixel. Our criteria effec-
tively excluded the other two largest wild herbivores in
North America: white-tailed deer Odocoileus virginianus,
whose adult mass is typically less than 100 kg, and most
subspecies of elk Cervus canadensis, whose adult mass is
typically less than 350 kg (Webb et al. 2014, Murie 2017).
Adult mass of Roosevelt elk Cervus canadensis roosevelti
can reach as high as 400 kg, but their geographic extent
is relatively limited compared with moose and they only
occasionally exceed a body mass of 400 kg (Brunt 1990).
We then calculated the population density within each
pixel by taking the sum of the populations of all cohorts
meeting the criteria above and dividing by the area of each
pixel. A map of the resulting mean estimates of moose
density is illustrated in figure 3.

Finally, we obtained a separate gridded estimate of moose
density from the North Dakota Fish and Game Department
(Jensen et al. 2018). We first converted the shapefile of
moose density to a raster matching the grid of the above
using the “rasterize” function in the R package “raster”
(Hijmans 2020). This data set did not come with uncertainty
estimates, so we assumed a uniform relative standard devia-
tion of 10% of the stated value for every pixel.

For each of the four modeled and observed data sets
above—vegetation biomass (X;) from MstMIP and the
Madingley model and moose density (X,) from the
Madingley model and Jensen and colleagues (2018)—
we have rasters of means (y) and standard deviations
(0) from each pixel shown in equation 1 below. The
rasters of means are shown in figure 2a and 2b and in
figure 3a and 3b. For an initial evaluation of agreement
between these estimates, we calculated the probability
of overlap of the corresponding distributions as fol-
lows: For each pixel and each variable, we calculated
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Figure 2. Mean estimates of vegetation biomass (in kilograms per square meter)
from the MstMIP multimodel ensemble (a), the Madingley model ensemble (b),
and the fraction of distribution overlap of the vegetation biomass estimates and

their uncertainties for each pixel (c).

the minimum of the corresponding probability density
function (equation 2) and numerically integrated the
resulting values over all regions of nontrivial probability
density (equation 3):

X; ~ N(y, 01), X5 ~ N(p, 03) (1)

P (overlap|x) = min (N(x|p;, 67), N(x|t,, 03)) (2)

P (overlap) = |%, P (overlap|x) dx (3)
The resulting gridded estimates of overlap for vegetation

biomass and moose density are shown in the figures 2c and
3¢, respectively.

https://academic.oup.com/bioscience

I [orum

- We performed two different kinds of
' constraint on the output variables: A
univariate constraint where moose den-
sity and biomass were each constrained
1 independently of one another highlight-
: ing step 1 in figure 1, and a multi-
ga variate constraint whereby they were
constrained jointly illustrating step 2
in figure 1. In the univariate constraint,
because we assume both variables are
normally distributed, we can analyti-
cally calculate the best estimate of each
variable (X,.q) from the distributions of
its estimates (equation 4):

Xbest ~ N(:ubesb c;best) (4)
u T T T,
best — — _ ,
® T, 471,
1
Ohest =
© Thest

Thest= T1 + T2

1 1
T, = T —
22 2
1 )

7, represents the Kendall rank cor-
relation coefficient for variable » in the
equation above, where o® represents
the variance of the variable estimates.
The results of the independent univariate
constraints on each variable are shown in
figure 4.

The multivariate distribution of the
six Madingley ensemble members was
not well approximated by a multivariate normal distri-
bution. Therefore, we performed this constraint numeri-
cally, by weighting each Madingley ensemble member
according to its agreement with MstMIP vegetation
biomass and observed moose density. Our final best
estimate of vegetation biomass and moose density was
the weighted average of predictions across all Madingley
ensemble members. The highest weights were assigned
to Madingley ensemble members that agree closely with
MstMIP vegetation biomass or observed moose density.
Ensemble members that agree with only one of these two
data sets are given lower weight, and ensemble members
that agree with neither data set are given the lowest
weights. Importantly, this weighting scheme considers
differences between Madingley predictions and the data
relative to the uncertainties in the data.
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Figure 3. Moose density (in individuals per square kilometer) from in-situ
observations (a). Mean estimates of moose density from a six-member ensemble
simulation of the Madingley model (b). The agreement between moose density
observations (a) and Madingley estimates (b) for each pixel (c), expressed as the
overlap between the pixel-specific probability distributions (equation 1). The
pixel used for the multivariate constraint analysis is indicated by the symbol in

panel c.

Formally, d; and b; represent the estimates of moose
density and biomass, respectively, by Madingley ensemble
member i. Also, 1, and o}, represent the mean and standard
deviation of the distribution of MstMIP biomass estimates,
tg and oy represent the analogous quantities for observed
moose density, and # be the number of Madingley ensemble
members. The likelihood, P(i), of the Madingley ensemble
member i given the MstMIP vegetation biomass predictions
and moose density observations is therefore given by the
following equation:

P (i) = N(d;| ug> 04) N(bj| > 03) (5)

6 BioScience « XXXX XXXX / Vol. XX No. X

We define the weight w; of each
ensemble member as the normalized
likelihood:

p(i)

Wi = Thp() ©
The general solution to determin-
ing the final best estimates of variables
constrained using such a multivariate
approach is to use these weights to do
weighted random sampling of the model
ensemble predictions and then calculate
summary statistics (e.g., sample mean,
variance, covariance) from these sam-
ples. However, in our specific example,
because we assume both terms in the
earlier equation are normally distributed,
the final jointly constrained marginal
distribution of biomass also follows a
normal distribution with analytical solu-
tions for the mean u*, (calculated as the
weighted average of biomass estimates)
and standard deviation y*, (calculated
as the weighted standard deviation of

biomass estimates):

Ju'*b = Z:q W ba’ (7)
oy = | wilb — p3)? (®)
Nt

Analogous equations were used for
moose density.

For the joint constraint to produce
meaningful and useful results, the dis-
tributions of the underlying variables
need to have nontrivial overlap for both
variables of interest. In practice, this
means that the subset of model ensemble
members that produce values within the
range of observations (and vice versa)
should be large enough to allow statisti-
cal inference. If there is no overlap between the model and
observations, that strongly suggests that there is a problem
with the model. In our proof of concept, although this was
often true for vegetation biomass (figure 2), overlap in
moose density estimates was poor in all but a few specific
locations (figure 3), resulting in poor joint constraint results
in most places. Therefore, we show the joint constraint
analysis described above for one specific pixel.

We recognize that the above procedure includes many
simplistic assumptions, both scientifically and statistically,
and therefore the results of this analysis should only be taken
as a proof-of-concept illustration and are not meant to be
robust. Rather, our objective is to show a simple example
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Figure 4. Results of the univariate constraint analysis. The black lines are the distribution of observed moose density (a) and
the MstMIP ensemble estimates of vegetation biomass (b). The labeled red dashes indicate individual predictions from

the six Madingley ensemble members, and the red line in each figure is the normal distribution approximated by this six-
member ensemble (i.e., parameterized according to the sample mean and standard deviation calculated from the six-member
ensemble). The green lines show the best-estimate distribution from combining the model estimates and observations for
moose density and the MstMIP and Madingley model estimates of vegetation biomass. In panel (a), the black moose density
line tracks the green line (described below) almost perfectly making it difficult to distinguish on the graph.

of reducing uncertainty via indirect constraints from out-
put variables of different models and with observations. In
real settings, more careful consideration should be given to
the choice of distributions (or, nonparametric techniques
such as bootstrapping can be used) and to the processing
steps used to align different variables. Where possible, we
recommend running large model ensembles (100s or 1000s
of members), much more than our six, so that calculations
of summary statistics (e.g., sample mean and variance) on
even relatively small subsets of these ensembles are as robust
as possible. Where distributions have to be assumed, prac-
titioners should try to pick distributions appropriate to the
data; for instance, a Poisson distribution is a good choice for
discrete count data, although a rescaled beta distribution is a
good choice for data that have both lower and upper bounds
(e.g., fractions). In comparing models with data, it is impor-
tant to remember that every transformation that requires
some assumptions about the data (e.g., our assumptions
about the ratio of foliar biomass to total vegetation biomass,
interpolation, spatial or temporal disaggregation) introduces
additional uncertainties, so such transformations should be
avoided wherever possible.

Proof of concept results. Uncertainty was reduced using

our two-step multivariate approach. The univariate step
(step 1) directly constrained uncertainty of the Madingley

https://academic.oup.com/bioscience

model predictions of moose density and vegetation biomass
(figure 4). The univariate observed moose density estimates
when combined with the Madingley model prediction
reduced uncertainty in the probability distribution, which
tracked with the in-situ observations (figure 4). The joint
estimates of MstMIP and Madingley also improved the
vegetation biomass estimates compared with MstMIP alone.
The multivariate joint analysis of both moose density and
vegetation biomass further constrained both variable out-
puts (figure 5). Overall, the proof of concept showed the util-
ity of the multivariate approach in evaluating and reducing
model uncertainty by leveraging multiple data streams and
different model outputs (figure 5).

Role in iterative biodiversity model testing and improvement.
Biodiversity model testing, comparison, and improvement
using multiple data streams is an active field of research that
is continuously and rapidly advancing (Akgakaya et al. 2016,
Honrado et al. 2016, Ferrier et al. 2017, Dietze et al. 2018,
Rosa et al. 2020). Model-based projections of biodiversity
change used in policy and decision support are generated by
combining scenarios of drivers (e.g., land-use and climate
change) with policy options for addressing these drivers
(IPBES 2016, Ferrier et al. 2017). Our proposed multivariate
approach fits into a broader model testing and improve-
ment framework where models translate policy scenarios
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Figure 5. Results of the multivariate constraint analysis outlined in figure 1 step 2. The labeled black dots are the six
Madingley ensemble joint estimates of moose density (in individuals per square kilometer) and vegetation biomass (in
kilograms per square meter). The shading indicates the joint probability of moose density and vegetation biomass based
on the MstMIP/observed distributions represented by the black lines in the marginal density plot. The blue lines in the
marginal density plot represent the marginal distribution of the two variables after the multivariate constraint has been
applied. The green dashed lines in the marginal plots show the distribution of the estimates from figure 4 if only the

univariate constraint step is applied.

into expected consequences for biodiversity with clear
error envelopes to convey the range of potential outcomes
(figure 6). The approach can be applied at different stages in
this process, from assessing how well past models performed
to reducing uncertainty in future projections.

First, we recommend rerunning previously developed
models using observed drivers of change and applying the
two-step multivariate constraint approach to assess model
performance. This would provide insight into how well
the models, either individually or collectively, predicted
the past. For example, researchers could rerun a model of
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predicted biodiversity change in response to climate and
land-use change variables as the dominant drivers, with
reconstructions of the actual changes over a certain time
period (e.g., 1950-2000) by applying step 1 (figure 6). The
same strategy could also predict how well models predict the
present status of EBVs and other biodiversity variables (fig-
ure 6; Ferrier et al. 2017). In some cases, model predictions
could be compared with observed biodiversity changes (e.g.,
remote sensing-enabled EBVs or the subset of EBVs that
have features capable of being characterized using satellite-
based remote sensing; figure 6; Pettorelli et al. 2016a, 2016b).
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As time progresses, iterative model testing for
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Figure 6. Framing of the multivariate approach to evaluating and reducing
uncertainty in model-based biodiversity projections within a broader model
testing, biodiversity policy, and decision-making context. The approach to
constrain biodiversity uncertainty via both univariate (step 1 from figure 1)
and multivariate constraints (step 2 from figure 1) are mapped in the present
article to show at what time step (past, present, or future) remote sensing, in-
situ observations, and multimodel overlap of related biodiversity variables can
directly constrain initial conditions of an EBV (past), directly and indirectly
constrain EBV uncertainty to improve and refine model output (present), and

indirectly constrain uncertainty of EBV projections (future).

This model evaluation and uncertainty analysis can also be
performed iteratively over time using updated observations
to continuously improve predictions of EBVs or other biodi-
versity variables and refine models.

Secondly, projection and scenario analysis that informs
policy and decision-making could also benefit from apply-
ing our multivariate approach. For example, the observed
EBV in figure 6 would provide the starting condition to proj-
ect changes in biodiversity on the basis of projected drivers
of change. The multivariate constraint approach could then
be applied to reduce uncertainty in the projected EBVs (fig-
ures 1 and 6). Using different projections of drivers, depend-
ing on policy decisions, projected changes in biodiversity
could be compared to inform the best policy alternatives
to conserve biodiversity (Kim et al. 2018). These two com-
ponents of iterative model testing could be run in parallel,
at regular intervals in time to determine if actual changes
in biodiversity aligned with projections based on which
policy was selected. Although we focus on climate and
land-use as the main drivers of biodiversity change, these

https://academic.oup.com/bioscience

ing technology can be especially useful
for understanding ecosystem function
and structure and these capabilities con-
tinue to expand (Jetz et al. 2016, Murray
et al. 2018, Pettorelli et al. 2018). In
addition, remotely sensed EBVs may be
a useful way to provide more time-series
data for model calibration and valida-
tion (Rosa et al. 2020). Thus far, scien-
tists have focused mainly on identifying
satellite data that can help detect past-
to-present change in ecosystems and
thereby support reporting requirements on target achieve-
ment. However, in addition to assessing and reporting on
biodiversity change, multiscale (i.e., tower, drone, aircraft,
satellite) remote sensing observations could also serve as
a rapid-response, cost-effective means to test and improve
model-based projections with observed data (Shiklomanov
et al. 2019).

In the present article, we presented one potential applica-
tion of our proposed approach, but this approach could be
applied to other remote sensing variables beyond biodiver-
sity variables, as long as the models or variables are physi-
cally, biologically, or ecologically linked. Other emerging
techniques, such as environmental DNA (eDNA) testing
could also be used in our approach. Recent advances in
genetic technologies provide novel opportunities to detect
distribution and abundance of organisms that leave traces
of DNA in the environment, including seawater, freshwater,
soil, snow, and air (Pilliod et al. 2013, Lacoursiere-Roussel
et al. 2016). For example, metabarcoding and next-genera-
tion sequencing of eDNA was used to detect three species
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at risk, an invasive species, and 78 native species from two
tributary rivers to the Great Lakes in Canada (Balasingham
et al. 2018). More case studies would reveal best practices
in using the multivariate approach and would be a valuable
exercise. Care needs to be taken, because a key component
of this approach is that the models accurately capture the
unique biological, ecological, and physical links in eco-
systems and accurately predict biodiversity variables; our
multivariate constraint depends on the strength of the rela-
tionships in the models (Harfoot et al. 2014). However, the
iterative approach that we propose, including using in situ
or remote-sensing observations to constrain model output,
will allow the update of models as understanding of these
relationships improves.

Strategies from other modeling communities. Biodiversity model-
ing has already and could continue to benefit from building
on successes from other communities by learning from what
worked and did not work to avoid similar pitfalls as advances
are made (McMahon et al. 2011). Applying lessons from
climate, agricultural, and other modeling communities for
improving models could ultimately improve our multivari-
ate approach by increasing overall model accuracy. These
lessons fall into three categories: strengthening the commu-
nity of practice, improving cooperation across relevant dis-
ciplines, and better adaptation of remote sensing products.
First, leveraging existing communities of practice (e.g.,
GEO BON; Navarro et al. 2017), and establishing a cross-
community network can facilitate solutions that use appro-
priate expertise, address challenges and goals, and prevent
the need to overcome established institutional frameworks.
Much of the advances in climate modeling have been facili-
tated by the World Climate Research Programme, which
organizes working groups to encourage engagement and sys-
tematic development across research and application groups.
Through these interactions, models are often developed with
goals of integration into larger climate and earth system
models, allowing nested models to share boundary variables
or creating interchangeable modules and parameterizations.
Groundwork for common variables, formal documentation,
scenario design, and the dissemination of outputs allow for
coordinated climate projections (Taylor et al. 2012, Eyring
et al. 2016a), stakeholder-relevant applications (Ruane et al.
2016), and user-oriented evaluation metrics (Eyring et al.
2016b). In recent years, the biodiversity modeling commu-
nity has made strides through IPBES and The Inter-Sectoral
Impact Model Intercomparison Project to conduct intercom-
parison efforts. For example, these model intercomparison
efforts projected global biodiversity change in marine and
terrestrial ecosystems under different climate change and
economic scenarios (Kim et al. 2018, Tittensor et al. 2018,
Rosa et al. 2020). These efforts identified ongoing challenges
in producing biodiversity projections. Biodiversity model
intercomparisons and related efforts to improve models
could benefit from engaging and coordinating with other dis-
ciplines to develop best practices. Such efforts could include
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the Agricultural Model Intercomparison and Improvement
Project (AgMIP) within the agricultural modeling commu-
nity, Observations for Model Intercomparison Projects initia-
tive (Obs4MIPS; Teixeira et al. 2014), and the International
Land Model Benchmarking (ILAMB) framework to formu-
late curated data sets with similar grids and variable speci-
fications to the Coupled Modeled Intercomparison Project
(CMIP) model outputs (Collier et al. 2004). AgMIP devel-
oped tools to connect disciplines and scales for model inputs
and outputs and to allow consistently nested driving sce-
narios (Valdivia et al. 2015, Rosenzweig et al. 2016). AgMIP
underscored the importance of protocol-based analyses cen-
tered on clear questions and observations for validation along
with inclusive leadership efforts (Rosenzweig et al. 2013,
Rosenzweig et al. 2016). It was most successful when pilot
intercomparisons framed a specific question, spatial domain,
set of data for model configuration, driving scenarios, and
output template.

Finally, adaptation or development of remote sens-
ing specific to biodiversity models could improve model
accuracy. In the cryospheric science community, remote
sensing data product scientists have interacted with cryo-
spheric climate modelers to adapt remote sensing data
products toward climate model requirements (e.g., Hall
et al. 2018). Designing observational tools, networks, and
easily accessible data portals to provide information for
model ingestion and validation would also be helpful. A
greater push to make model code and forecasts publicly
available would help the biodiversity modeling community
test projections (Mislan et al. 2016, Dietze et al. 2018). EBV
development could benefit from some of the approaches
used by ILAMB and Obs4MIPs. These projects translate
observations to be directly comparable with model out-
puts in a way that allows improved validation exercises. A
similar “Obs4Impacts” was proposed by the Vulnerability,
Impacts, Adaptation and Climate Services Advisory Board
for CMIP6, which would locate and process remote sensing
and related observational data sets to make them useful for
model applications that could include components of bio-
diversity (Ruane et al. 2016). Strengthening the community
of practice, cross collaboration, and adaptation and appli-
cation of new remote sensing products could contribute to
improved biodiversity model accuracy for target formula-
tion and implementation.

Policy relevance. Policymakers use biodiversity goals and
targets, such as the CBD Aichi Biodiversity Targets, to
define agreed outcomes for biodiversity to be achieved in
a given time period (CBD 2010). Although the aim is for
these targets to be science based, previous targets have been
adopted even when biodiversity information was lacking.
The proposed process could be most useful for increasing
confidence in target setting and decision-making, because it
would provide more accurate model-based information on
current and future changes in biodiversity and improve the
models used for these projections (Regan et al. 2005).
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Most of the current Aichi targets were not met by the
2020 target (CBD 2020). As the CBD develops the post-2020
biodiversity framework, there has been a push to consider
lessons learned from the Aichi targets. One important les-
son is that the next round of targets should “be ambitious
but realistic, recognizing that ambition without realism
can undermine confidence in the ability to deliver on tar-
gets” (CBD 2018). In addition to increased realism, targets
should also encourage meaningful conservation outcomes
(Di Marco et al. 2016). By improving the scenarios and mod-
els used to predict future states of biodiversity and assess the
impact of policy interventions, the approach described in
the present article would contribute to the development of
biodiversity predictions with less uncertainty. More trusted
scenarios and models are necessary for effective conserva-
tion policy (Akgakaya et al. 2016) and could help identify a
range of plausible targets in conjunction with other aspects
and interests policymakers consider.

Finally, because we have reached the end of the Strategic
Plan for Biodiversity 2011-2020, we need a better mecha-
nism to assess progress, such as addressing what policies
worked and which models effectively projected the observed
changes in biodiversity. This task is hampered by the fact
that several Aichi targets had indicators that were not
well aligned with the goal or lacked indicators altogether
(Tittensor et al. 2014). Using remote sensing-enabled EBV's
to test, evaluate, and improve future projections from mod-
els used to formulate and implement targets is an important
extension of the current EBV agenda. However, for this to
happen, agreement is needed on which EBVs to monitor
to better align with model-based biodiversity projections
(Skidmore and Pettorelli 2015) and coordination is needed
to expand monitoring in conservation (Honrado et al. 2016).
Former, current and forthcoming government and commer-
cial high spectral, spatial and temporal resolution sensors
hold promise for establishing benchmarks on the state of
the world’s ecosystems against which future changes can be
compared (Transon et al. 2018). Our approach could drive
model development toward specific key EBVs and guide
resource allocation to monitoring programs or remote sens-
ing capabilities to continuously gather EBV observations to
improve the predictive accuracy of models.

Conclusions

The IPBES global assessment report on biodiversity and
ecosystem services stresses the urgency of continuing to
improve on biodiversity forecasting under future scenarios
(IPBES 2019). The wealth of remote sensing, metagenom-
ics, and citizen science data would help to scientifically
establish data-informed biodiversity conservation targets.
Our approach illustrates the power of linking observations
with multiple biodiversity model outputs to directly and
indirectly evaluate and reduce uncertainty of model-based
predictions. The novelty of this approach is that uncertainty
is jointly constrained for biodiversity variables of different
taxa and functional groups, providing improvements of
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outputs from multiple dimensions of biodiversity—a need
for future biodiversity model intercomparison efforts (Rosa
et al. 2020). The approach also fits into the broader con-
text of model testing and projection and scenario analysis
for identification of alternative policies. Applying lessons
from other modeling communities, such as climate and
agriculture, coupled with the use of our approach could
improve model-based biodiversity predictions for future
policy actions. We highlighted the need for reliable, data-
driven, and continuously improved forecasts of biodiversity
to assess policy options and make science-based decisions in
an ever-changing world (IPBES 2016). The proposed process
meets this crucial requirement by providing a data-driven
method to evaluate and improve biodiversity model outputs
to better inform biodiversity conservation policy.
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