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Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving 
international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains 
a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed 
measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates 
biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-
relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model 
uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario 
analysis for conservation policy, and highlight lessons from other modeling communities.
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Among the most urgent challenges for society and   
 conservation today are predicting and mitigating loss 

of biodiversity and ecosystem services (IPBES 2019). With 
the potential of 1 million species to go extinct in the coming 
decades, developing better tools for projecting biodiversity 
change is vital (IPBES 2019). Currently, no single model can 
capture all the dimensions of biodiversity change resulting 
from environmental and anthropogenic impacts (Pereira 
et al. 2010). Consequently, modelers have developed a range 
of biodiversity models and scenarios to predict change 
across multiple dimensions of biodiversity (IPBES 2016). 
The diversity of models enhances researchers’ ability to pre-
dict change in a myriad of individual biodiversity variables, 
including species distribution and abundance, species traits 
and genetic composition, community composition, and 
ecosystem structure and function (Fulton et  al. 2011, Lacy 
et al. 2013, Pacifici et al. 2015, Ikeda et al. 2017, Landguth 
et al. 2017). This array of possible predicted variables makes 
it challenging to integrate model predictions to better 
understand large-scale biodiversity change. However, the 

diversity in models can be advantageous and also presents 
an opportunity to develop new strategies to evaluate, reduce 
uncertainty, and increase confidence in model predictions 
for decision-makers (Araújo et  al. 2005, Akçakaya et  al. 
2016, Honrado et al. 2016, IPBES 2016).

Decision-makers use biodiversity projections to develop 
and implement policy actions for biodiversity conservation 
and must make decisions despite uncertainty in the projec-
tions (Wilson 2002, CBD 2010). Model-based projections 
can be used both to inform the formulation of targets and to 
identify and prioritize actions (e.g., target implementation; 
Dietze et  al. 2018). High-accuracy biodiversity estimates 
increase decision-makers’ confidence in model outputs 
(Regan et al. 2005, Akçakaya et al. 2016). To evaluate model 
performance, researchers can compare model outputs with 
observations and from multiple models to quantify the pre-
cision and accuracy of multimodel predictions (Zurell et al. 
2016). For example, Morin and Thuiller (2009) compared 
uncertainty in range shift predictions from niche-based 
and process-based models. These multimodel predictions 
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improved understanding of species range shifts (Morin and 
Thuiller 2009). Other efforts to improve model predictions 
have focused on comparing similar biodiversity variables 
(e.g., range shifts and species distributions) from different 
model types (Araújo et al. 2005, Morin and Thuiller 2009, 
Zurell et  al. 2016). The biodiversity modeling community 
continues to make strides in quantifying and reducing 
uncertainty through model intercomparison efforts (Rosa 
et  al. 2020). However, additional approaches to evaluate 
and reduce uncertainty in model-based biodiversity projec-
tions to improve model outputs is a priority (Akçakaya et al. 
2016). We identified a pressing need for improved model–
data fusion approaches to evaluate and constrain uncertainty 
using multiple data streams (e.g., remote sensing and in-situ 
observations). We also expand on Akçakaya and colleagues’ 
(2016) charge to use diverse biodiversity models to improve 
model outputs.

The challenges in improving biodiversity models are 
unique compared with other modeling communities (e.g., 
climate modeling). For one, biological and ecological pro-
cesses, such as changes in species interactions and adapta-
tion to a stressor, can be complex and difficult to predict 
(Ibáñez et  al. 2006, Jackson et  al. 2009, Purves et  al. 2013, 
Harfoot et al. 2014, Bay et al. 2018). Second, there are cur-
rently no standard means to compare biodiversity model 
outputs, which creates challenges when estimating uncer-
tainty (Rosa et  al. 2020). Finally, there is no consistent 
process to take advantage of the multiple monitoring and 
varied data streams for improving model outputs (Akçakaya 
et  al. 2016, Honrado et  al. 2016). Biodiversity researchers 
and decision-makers are actively addressing these issues. 
For example, the Group on Earth Observations Biodiversity 
Observation Network (GEO BON) is developing Essential 
Biodiversity Variables (EBVs), defined as the derived mea-
surements required to study and report on biodiversity 
change (Pereira et  al. 2013). EBVs include common biodi-
versity variables such as species distribution, abundance, 
trait diversity, genetic diversity, and taxonomic diversity. 
The EBV framework was developed to harmonize observa-
tions and model outputs into comparable and monitorable 
variables (Pereira et  al. 2013, Navarro et  al. 2017). Recent 
efforts have used the EBV framework to combine outputs 
from multiple models to quantify uncertainty across models 
(Rosa et al. 2020). Therefore, this is a particularly opportune 
time to explore novel approaches to evaluate and reduce 
uncertainty in model-based biodiversity projections and 
contribute to this active field of research.

Given these challenges and opportunities, clearer strate-
gies are needed for biodiversity model evaluation to inform 
future formulation of biodiversity policy (Tittensor et  al. 
2014, IPBES 2016). International science-policy efforts such 
as the Convention on Biological Diversity’s (CBD) post-2020 
biodiversity agenda (CBD 2017), continued identification of 
EBVs, and the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) global assess-
ment report have highlighted the urgency of biodiversity 

forecasting and conservation to society (Essential biodiver-
sity 2019, IPBES 2019). In addition, there has been a rapid 
increase in the quantity and diversity of data available to 
inform biodiversity assessments, including a wide array of 
remote sensing, field observations (e.g., the TRY trait data-
base), metagenomics, and citizen science (Silvertown 2009, 
Theobald et  al. 2015, Balasingham et  al. 2018). Evaluating 
and using these data streams requires expertise as well as 
advanced modeling approaches to harness the abundance of 
available observations (Akçakaya et al. 2016).

In the present article, we address these stated biodiversity 
community and strategic needs by proposing a novel mul-
tivariate approach to directly and indirectly evaluate and 
reduce uncertainty of multiscale model predictions. First, we 
use multiple data sources to directly constrain model-based 
predictions of biodiversity variables. We then combine this 
step with a multivariate indirect constraint between models 
that predict related biodiversity variables to evaluate and 
jointly reduce uncertainty. Our approach leverages distinct 
models and allows for the evaluation and reduction of 
uncertainty across multiple dimensions of biodiversity in an 
ecosystem. Collectively, we describe the proposed multivari-
ate approach to evaluate and directly and indirectly reduce 
model uncertainty, outline a proof of concept application to 
illustrate this approach and how it could be applied to other 
models and variables, embed the concept within the broader 
context of model testing and scenario analysis for conser-
vation policy, and highlight lessons from other modeling 
communities that could be applied to improve biodiversity 
model outputs.

Multivariate approach to evaluating and reducing 

uncertainty in model-based biodiversity projections

Biodiversity variables are linked by physical, biological, 
and ecological processes, many of which are described 
quantitatively in models (Harfoot et al. 2014). We used this 
interdependency among biodiversity variables to develop a 
multivariate approach to evaluate and reduce uncertainty 
in model-based biodiversity projections. We illustrate the 
two-step process conceptually in figure 1 using a generic 
EBV and a biodiversity variable. The approach is flexible in 
that modelers can apply any two models predicting related 
biodiversity variables, but we used EBVs in our example to 
better link to ongoing biodiversity monitoring processes. 
Our approach involves two main steps to reduce uncertainty 
in biodiversity projections. Step 1 illustrates a univariate 
constraint on uncertainty in initial conditions via remote 
sensing and in-situ observations of a biodiversity variable 
(figure 1, step 1). Step 2 applies a novel multivariate con-
straint on uncertainty via model overlap using the same 
models from step 1 of two biologically or ecologically related 
biodiversity variables (figure 1, step 2). Following step 2, we 
can repeat the process iteratively to directly constrain the 
biodiversity variables using remote sensing or in-situ obser-
vations and indirectly constrain the related biodiversity 
variables through reanalysis (figure 1, steps 1–2). The direct 
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constraint of uncertainty using remote sensing and in-situ 
observations of a predicted biodiversity variable in step 1 is 
common practice in modeling (Pasetto et al. 2018); the nov-
elty of our approach lies in the indirect constraint outlined 
in step 2 and described in more detail below.

The relationship between the two related biodiversity 
model outputs is key in step 2. We argue that overlap 
of model-based predictions of different but related bio-
diversity variables can be used to indirectly constrain 
uncertainty of combined multiple model outputs (figure 1, 
step 2). Conceptually, if one biodiversity model predicts a 

biodiversity variable and another pre-
dicts a related biodiversity variable, and 
a set of observations is capable of con-
straining model predictions of one of 
those variables, then that set of obser-
vations can indirectly constrain model 
predictions of both variables (figure 
1). This is based on the model predic-
tions of the related biodiversity vari-
ables being biologically or ecologically 
linked, and the two variables having a 
mechanistic connection in one of the 
models. This link allows for joint prob-
ability density functions of the related 
biodiversity predictions (see the proof 
of concept below). 

Using this link, our approach can 
inform predictions in areas with sparse 
observations. That is, if an area has 
missing data (e.g., high cloud cover 
in remote sensing images) but there 
is strong internal model covariance 
between related variables with another 
model variable, then that undersam-
pled area would still receive informed 
predictions from the multivariate con-
straint step and not be based purely 
on an uniformed base model estimate. 
Modelers can use this process iteratively 
to both directly and indirectly constrain 
uncertainty by integrating new remote 
sensing, in situ, or emerging biodiver-
sity relevant technologies that become 
available (figure 1). Repeated improve-
ment iterations can be done even when 
new observations become available for 
only one of the related variables in the 
multivariate process. Therefore, new 
observations for one variable would 
reduce uncertainty for both related bio-
diversity variables using this approach.

For the multivariate constraint 
approach to function effectively, indi-
rect constraints must have strong covari-
ances (i.e., if two variables are only 

weakly related in a model then they will be ineffective 
constraints on each other). Covariances can be positive 
or negative depending on the relationship between the 
variables. If the covariance is 0 or weak, then the multi-
variate constraint approach will be less informative and 
is not recommended. Furthermore, confidence in these 
constraints depends on confidence that models are captur-
ing relationships between variables accurately (Zurell et al. 
2016). Therefore, effective model–data integration within 
the approach will work best with diverse models and diverse 
data sets. The models should have adequately described 

Figure 1. Schematic leveraging multiple biodiversity model outputs, remote 

sensing, and in-situ observations to evaluate and constrain uncertainty of 

biodiversity variables. Step 1 illustrates direct constraints using remote sensing 

and in-situ observations of an EBV and a related biodiversity variable. Step 

2 illustrates a multivariate constraint of EBV uncertainty and the related 

biodiversity variable 2 output from two different models via model overlap.
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uncertainties in their measurements, and account for the 
predictive variance introduced by competing hypotheses 
about relevant processes as well as errors, biases, and scaling 
issues of different data sources. This approach also relies on 
obtaining accurate observed measurements of biodiversity 
variables and their uncertainty estimates. We propose that 
such remote sensing observation data could also fine-tune 
model structure or reparameterize initial conditions where 
appropriate. This two-step multivariate approach could 
facilitate the evaluation and could reduce the uncertainty 
of a single model or a diverse array of biodiversity models 
against wide-ranging observations, including those deriv-
able from hyperspectral or lidar-based remote sensing, 
environmental metagenomics, and long-term monitoring 
programs. Our proposed two-step multivariate approach 
results would yield improved biodiversity predictions for 
policy formulation, including for the next generation of 
biodiversity targets and EBVs (Bush et al. 2017). In our con-
ceptual diagram, the EBV is linked to a related biodiversity 
variable physically, biologically, or ecologically (figure 1). 
We highlight one of the biodiversity variables as an EBV 
in figure 1; however, our approach could be applied to any 
two related biodiversity variables regardless if they are con-
sidered EBVs. Modelers or decision-makers can choose the 
relevant models and variables for their needs.

Proof of concept: MstMIP, Madingley model, and in-

situ observations of moose density

Using various remote sensing and other observations to 
directly constrain initial conditions and assess accuracy of 
model-based predictions is fairly straightforward (Pasetto 
et al. 2018). Although we demonstrate the direct constraint 
of initial conditions with observations, in the proof of con-
cept, we focus primarily on the novel aspect of our approach, 
which is the multivariate constraint of uncertainty via model 
overlap (figure 1, step 2). As a proof of concept of the mul-
tivariate constraint approach, we developed a simple joint 
analysis of live aboveground vegetation biomass and popula-
tion density of moose (Alces alces) in North America. This 
analysis uses information from a combination of models 
and observations and demonstrates how a model that jointly 
predicts moose density and live aboveground vegetation 
biomass allows us to use information from one variable to 
indirectly constrain other variables (figures 2–5).

First, we obtained aboveground vegetation biomass esti-
mates from the North American Carbon Program Multi-
Scale Synthesis and Terrestrial Model Intercomparison 
Project (MstMIP; Huntzinger et  al. 2018). The complete 
data set includes global gridded 0.5 × 0.5 degree simula-
tions from 15 different terrestrial biosphere models at 
monthly and yearly time steps for the period 1900–2010. 
For each model and each pixel within North America, we 
calculated the mean biomass estimate from the monthly 
estimates for the period 1990–2010. We then generated 
a normal distribution of biomass for each pixel by taking 
the sample mean and standard deviation across the 15 

models. A map of the resulting mean estimates is shown 
in figure 2a.

Second, we obtained estimates of aboveground vegeta-
tion biomass and moose population density from existing 
global gridded ensemble simulations of the Madingley 
model (Harfoot et  al. 2014). The ensemble consisted of 
six different simulations with varying parameters and ini-
tial conditions. The Madingley model provides estimates 
of the total foliar biomass. To derive live aboveground 
vegetation biomass, we first extracted the predicted auto-
troph biomass density from each ensemble member for 
each pixel in North America. To convert the total foliar 
biomass to total live aboveground vegetation biomass, we 
multiplied these values by 10, on the basis of allometric 
relationships between foliar and total biomass in Bond-
Lamberty and colleagues (2002). A map of the resulting 
mean estimates of vegetation biomass is shown in figure 
2b. The Madingley model produces population estimates 
of terrestrial herbivores on the basis of diet and body 
mass. To get moose density from the Madingley model, 
we extracted the predicted adult population of each cohort 
of terrestrial herbivores whose body mass was greater 
than 400 kilograms (kg) for each pixel. Our criteria effec-
tively excluded the other two largest wild herbivores in 
North America: white-tailed deer Odocoileus virginianus, 
whose adult mass is typically less than 100 kg, and most 
subspecies of elk Cervus canadensis, whose adult mass is 
typically less than 350 kg (Webb et al. 2014, Murie 2017). 
Adult mass of Roosevelt elk Cervus canadensis roosevelti 
can reach as high as 400 kg, but their geographic extent 
is relatively limited compared with moose and they only 
occasionally exceed a body mass of 400 kg (Brunt 1990). 
We then calculated the population density within each 
pixel by taking the sum of the populations of all cohorts 
meeting the criteria above and dividing by the area of each 
pixel. A map of the resulting mean estimates of moose 
density is illustrated in figure 3.

Finally, we obtained a separate gridded estimate of moose 
density from the North Dakota Fish and Game Department 
(Jensen et  al. 2018). We first converted the shapefile of 
moose density to a raster matching the grid of the above 
using the “rasterize” function in the R package “raster” 
(Hijmans 2020). This data set did not come with uncertainty 
estimates, so we assumed a uniform relative standard devia-
tion of 10% of the stated value for every pixel.

For each of the four modeled and observed data sets 
above—vegetation biomass (X1) from MstMIP and the 
Madingley model and moose density (X2) from the 
Madingley model and Jensen and colleagues (2018)—
we have rasters of means (μ) and standard deviations 
(σ) from each pixel shown in equation 1 below. The 
rasters of means are shown in figure 2a and 2b and in 
figure 3a and 3b. For an initial evaluation of agreement 
between these estimates, we calculated the probability 
of overlap of the corresponding distributions as fol-
lows: For each pixel and each variable, we calculated 
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Figure 2. Mean estimates of vegetation biomass (in kilograms per square meter) 

from the MstMIP multimodel ensemble (a), the Madingley model ensemble (b), 

and the fraction of distribution overlap of the vegetation biomass estimates and 

their uncertainties for each pixel (c).

the minimum of the corresponding probability density 
function (equation 2) and numerically integrated the 
resulting values over all regions of nontrivial probability 
density (equation 3):

 X1 ∼ N(µ1, σ1), X2 ∼ N(µ2, σ2) (1)

 P (overlap|x) = min (N(x|µ1, σ1), N(x|µ2, σ2)) (2)

 P (overlap) = ∫∞
-∞ P (overlap|x) dx (3)

The resulting gridded estimates of overlap for vegetation 
biomass and moose density are shown in the figures 2c and 
3c, respectively.

We performed two different kinds of 
constraint on the output variables: A 
univariate constraint where moose den-
sity and biomass were each constrained 
independently of one another highlight-
ing step 1 in figure 1, and a multi-
variate constraint whereby they were 
constrained jointly illustrating step 2 
in figure 1. In the univariate constraint, 
because we assume both variables are 
normally distributed, we can analyti-
cally calculate the best estimate of each 
variable (Xbest) from the distributions of 
its estimates (equation 4):

 Xbest ∼ N(µbest, σbest) (4)

  

  

 τbest = τ1 + τ2 

  

τn represents the Kendall rank cor-
relation coefficient for variable n in the 
equation above, where σ2 represents 
the variance of the variable estimates. 
The results of the independent univariate 
constraints on each variable are shown in 
figure 4.

The multivariate distribution of the 
six Madingley ensemble members was 

not well approximated by a multivariate normal distri-
bution. Therefore, we performed this constraint numeri-
cally, by weighting each Madingley ensemble member 
according to its agreement with MstMIP vegetation 
biomass and observed moose density. Our final best 
estimate of vegetation biomass and moose density was 
the weighted average of predictions across all Madingley 
ensemble members. The highest weights were assigned 
to Madingley ensemble members that agree closely with 
MstMIP vegetation biomass or observed moose density. 
Ensemble members that agree with only one of these two 
data sets are given lower weight, and ensemble members 
that agree with neither data set are given the lowest 
weights. Importantly, this weighting scheme considers 
differences between Madingley predictions and the data 
relative to the uncertainties in the data.
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Formally, di and bi represent the estimates of moose 
density and biomass, respectively, by Madingley ensemble 
member i. Also, µb and σb represent the mean and standard 
deviation of the distribution of MstMIP biomass estimates,  
µd and σd represent the analogous quantities for observed 
moose density, and n be the number of Madingley ensemble 
members. The likelihood, P(i), of the Madingley ensemble 
member i given the MstMIP vegetation biomass predictions 
and moose density observations is therefore given by the 
following equation:

 P (i) = N(di|µd, σd) N(bi|µb, σb) (5)

We define the weight wi of each 
ensemble member as the normalized 
likelihood:

   (6)

The general solution to determin-
ing the final best estimates of variables 
constrained using such a multivariate 
approach is to use these weights to do 
weighted random sampling of the model 
ensemble predictions and then calculate 
summary statistics (e.g., sample mean, 
variance, covariance) from these sam-
ples. However, in our specific example, 
because we assume both terms in the 
earlier equation are normally distributed, 
the final jointly constrained marginal 
distribution of biomass also follows a 
normal distribution with analytical solu-
tions for the mean µ∗

b (calculated as the 
weighted average of biomass estimates) 
and standard deviation µ∗

b (calculated 
as the weighted standard deviation of 
biomass estimates):

 (7)

 (8)

Analogous equations were used for 
moose density.

For the joint constraint to produce 
meaningful and useful results, the dis-
tributions of the underlying variables 
need to have nontrivial overlap for both 
variables of interest. In practice, this 
means that the subset of model ensemble 
members that produce values within the 
range of observations (and vice versa) 
should be large enough to allow statisti-

cal inference. If there is no overlap between the model and 
observations, that strongly suggests that there is a problem 
with the model. In our proof of concept, although this was 
often true for vegetation biomass (figure 2), overlap in 
moose density estimates was poor in all but a few specific 
locations (figure 3), resulting in poor joint constraint results 
in most places. Therefore, we show the joint constraint 
analysis described above for one specific pixel.

We recognize that the above procedure includes many 
simplistic assumptions, both scientifically and statistically, 
and therefore the results of this analysis should only be taken 
as a proof-of-concept illustration and are not meant to be 
robust. Rather, our objective is to show a simple example 

Figure 3. Moose density (in individuals per square kilometer) from in-situ 

observations (a). Mean estimates of moose density from a six-member ensemble 

simulation of the Madingley model (b). The agreement between moose density 

observations (a) and Madingley estimates (b) for each pixel (c), expressed as the 

overlap between the pixel-specific probability distributions (equation 1). The 

pixel used for the multivariate constraint analysis is indicated by the symbol in 

panel c.
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of reducing uncertainty via indirect constraints from out-
put variables of different models and with observations. In 
real settings, more careful consideration should be given to 
the choice of distributions (or, nonparametric techniques 
such as bootstrapping can be used) and to the processing 
steps used to align different variables. Where possible, we 
recommend running large model ensembles (100s or 1000s 
of members), much more than our six, so that calculations 
of summary statistics (e.g., sample mean and variance) on 
even relatively small subsets of these ensembles are as robust 
as possible. Where distributions have to be assumed, prac-
titioners should try to pick distributions appropriate to the 
data; for instance, a Poisson distribution is a good choice for 
discrete count data, although a rescaled beta distribution is a 
good choice for data that have both lower and upper bounds 
(e.g., fractions). In comparing models with data, it is impor-
tant to remember that every transformation that requires 
some assumptions about the data (e.g., our assumptions 
about the ratio of foliar biomass to total vegetation biomass, 
interpolation, spatial or temporal disaggregation) introduces 
additional uncertainties, so such transformations should be 
avoided wherever possible.

Proof of concept results. Uncertainty was reduced using 
our two-step multivariate approach. The univariate step 
(step 1) directly constrained uncertainty of the Madingley 

model predictions of moose density and vegetation biomass 
(figure 4). The univariate observed moose density estimates 
when combined with the Madingley model prediction 
reduced uncertainty in the probability distribution, which 
tracked with the in-situ observations (figure 4). The joint 
estimates of MstMIP and Madingley also improved the 
vegetation biomass estimates compared with MstMIP alone. 
The multivariate joint analysis of both moose density and 
vegetation biomass further constrained both variable out-
puts (figure 5). Overall, the proof of concept showed the util-
ity of the multivariate approach in evaluating and reducing 
model uncertainty by leveraging multiple data streams and 
different model outputs (figure 5).

Role in iterative biodiversity model testing and improvement.  

Biodiversity model testing, comparison, and improvement 
using multiple data streams is an active field of research that 
is continuously and rapidly advancing (Akçakaya et al. 2016, 
Honrado et al. 2016, Ferrier et al. 2017, Dietze et al. 2018, 
Rosa et  al. 2020). Model-based projections of biodiversity 
change used in policy and decision support are generated by 
combining scenarios of drivers (e.g., land-use and climate 
change) with policy options for addressing these drivers 
(IPBES 2016, Ferrier et al. 2017). Our proposed multivariate 
approach fits into a broader model testing and improve-
ment framework where models translate policy scenarios 

Figure 4. Results of the univariate constraint analysis. The black lines are the distribution of observed moose density (a) and 

the MstMIP ensemble estimates of vegetation biomass (b). The labeled red dashes indicate individual predictions from 

the six Madingley ensemble members, and the red line in each figure is the normal distribution approximated by this six-

member ensemble (i.e., parameterized according to the sample mean and standard deviation calculated from the six-member 

ensemble). The green lines show the best-estimate distribution from combining the model estimates and observations for 

moose density and the MstMIP and Madingley model estimates of vegetation biomass. In panel (a), the black moose density 

line tracks the green line (described below) almost perfectly making it difficult to distinguish on the graph.
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into expected consequences for biodiversity with clear 
error envelopes to convey the range of potential outcomes 
(figure 6). The approach can be applied at different stages in 
this process, from assessing how well past models performed 
to reducing uncertainty in future projections.

First, we recommend rerunning previously developed 
models using observed drivers of change and applying the 
two-step multivariate constraint approach to assess model 
performance. This would provide insight into how well 
the models, either individually or collectively, predicted 
the past. For example, researchers could rerun a model of 

predicted biodiversity change in response to climate and 
land-use change variables as the dominant drivers, with 
reconstructions of the actual changes over a certain time 
period (e.g., 1950–2000) by applying step 1 (figure 6). The 
same strategy could also predict how well models predict the 
present status of EBVs and other biodiversity variables (fig-
ure 6; Ferrier et al. 2017). In some cases, model predictions 
could be compared with observed biodiversity changes (e.g., 
remote sensing-enabled EBVs or the subset of EBVs that 
have features capable of being characterized using satellite-
based remote sensing; figure 6; Pettorelli et al. 2016a, 2016b). 

Figure 5. Results of the multivariate constraint analysis outlined in figure 1 step 2. The labeled black dots are the six 

Madingley ensemble joint estimates of moose density (in individuals per square kilometer) and vegetation biomass (in 

kilograms per square meter). The shading indicates the joint probability of moose density and vegetation biomass based 

on the MstMIP/observed distributions represented by the black lines in the marginal density plot. The blue lines in the 

marginal density plot represent the marginal distribution of the two variables after the multivariate constraint has been 

applied. The green dashed lines in the marginal plots show the distribution of the estimates from figure 4 if only the 

univariate constraint step is applied.
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This model evaluation and uncertainty analysis can also be 
performed iteratively over time using updated observations 
to continuously improve predictions of EBVs or other biodi-
versity variables and refine models.

Secondly, projection and scenario analysis that informs 
policy and decision-making could also benefit from apply-
ing our multivariate approach. For example, the observed 
EBV in figure 6 would provide the starting condition to proj-
ect changes in biodiversity on the basis of projected drivers 
of change. The multivariate constraint approach could then 
be applied to reduce uncertainty in the projected EBVs (fig-
ures 1 and 6). Using different projections of drivers, depend-
ing on policy decisions, projected changes in biodiversity 
could be compared to inform the best policy alternatives 
to conserve biodiversity (Kim et al. 2018). These two com-
ponents of iterative model testing could be run in parallel, 
at regular intervals in time to determine if actual changes 
in biodiversity aligned with projections based on which 
policy was selected. Although we focus on climate and 
land-use as the main drivers of biodiversity change, these 

are not the sole drivers that influence 
species populations. For example, com-
mercial exploitation, recreational and 
subsistence hunting and fishing, inva-
sive species, disease, and other use and 
nonuse drivers of biodiversity change 
are important factors to take into con-
sideration when using this approach in 
the broader context of scenario analysis 
(IPBES 2019).

Throughout this article, we have placed 
a particular focus on remotely sensed 
EBVs. This is because satellite-based 
remote sensing is valuable for moni-
toring large-scale biodiversity change 
because of its global and repeated cover-
age (Pettorelli et  al. 2016b). Therefore, 
the remote sensing-enabled EBVs may 
serve to link model-based projections 
to observed variables (e.g., aboveground 
vegetation biomass) and non–remote 
sensing observable variables (e.g., mam-
mal densities) using multivariate model 
constraints. Satellite-based remote sens-
ing technology can be especially useful 
for understanding ecosystem function 
and structure and these capabilities con-
tinue to expand (Jetz et al. 2016, Murray 
et  al. 2018, Pettorelli et  al. 2018). In 
addition, remotely sensed EBVs may be 
a useful way to provide more time-series 
data for model calibration and valida-
tion (Rosa et  al. 2020). Thus far, scien-
tists have focused mainly on identifying 
satellite data that can help detect past-
to-present change in ecosystems and 

thereby support reporting requirements on target achieve-
ment. However, in addition to assessing and reporting on 
biodiversity change, multiscale (i.e., tower, drone, aircraft, 
satellite) remote sensing observations could also serve as 
a rapid-response, cost-effective means to test and improve 
model-based projections with observed data (Shiklomanov 
et al. 2019).

In the present article, we presented one potential applica-
tion of our proposed approach, but this approach could be 
applied to other remote sensing variables beyond biodiver-
sity variables, as long as the models or variables are physi-
cally, biologically, or ecologically linked. Other emerging 
techniques, such as environmental DNA (eDNA) testing 
could also be used in our approach. Recent advances in 
genetic technologies provide novel opportunities to detect 
distribution and abundance of organisms that leave traces 
of DNA in the environment, including seawater, freshwater, 
soil, snow, and air (Pilliod et al. 2013, Lacoursiere-Roussel 
et al. 2016). For example, metabarcoding and next-genera-
tion sequencing of eDNA was used to detect three species 

Figure 6. Framing of the multivariate approach to evaluating and reducing 

uncertainty in model-based biodiversity projections within a broader model 

testing, biodiversity policy, and decision-making context. The approach to 

constrain biodiversity uncertainty via both univariate (step 1 from figure 1) 

and multivariate constraints (step 2 from figure 1) are mapped in the present 

article to show at what time step (past, present, or future) remote sensing, in-

situ observations, and multimodel overlap of related biodiversity variables can 

directly constrain initial conditions of an EBV (past), directly and indirectly 

constrain EBV uncertainty to improve and refine model output (present), and 

indirectly constrain uncertainty of EBV projections (future).
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at risk, an invasive species, and 78 native species from two 
tributary rivers to the Great Lakes in Canada (Balasingham 
et al. 2018). More case studies would reveal best practices 
in using the multivariate approach and would be a valuable 
exercise. Care needs to be taken, because a key component 
of this approach is that the models accurately capture the 
unique biological, ecological, and physical links in eco-
systems and accurately predict biodiversity variables; our 
multivariate constraint depends on the strength of the rela-
tionships in the models (Harfoot et al. 2014). However, the 
iterative approach that we propose, including using in situ 
or remote-sensing observations to constrain model output, 
will allow the update of models as understanding of these 
relationships improves.

Strategies from other modeling communities. Biodiversity model-
ing has already and could continue to benefit from building 
on successes from other communities by learning from what 
worked and did not work to avoid similar pitfalls as advances 
are made (McMahon et  al. 2011). Applying lessons from 
climate, agricultural, and other modeling communities for 
improving models could ultimately improve our multivari-
ate approach by increasing overall model accuracy. These 
lessons fall into three categories: strengthening the commu-
nity of practice, improving cooperation across relevant dis-
ciplines, and better adaptation of remote sensing products.

First, leveraging existing communities of practice (e.g., 
GEO BON; Navarro et  al. 2017), and establishing a cross-
community network can facilitate solutions that use appro-
priate expertise, address challenges and goals, and prevent 
the need to overcome established institutional frameworks. 
Much of the advances in climate modeling have been facili-
tated by the World Climate Research Programme, which 
organizes working groups to encourage engagement and sys-
tematic development across research and application groups. 
Through these interactions, models are often developed with 
goals of integration into larger climate and earth system 
models, allowing nested models to share boundary variables 
or creating interchangeable modules and parameterizations. 
Groundwork for common variables, formal documentation, 
scenario design, and the dissemination of outputs allow for 
coordinated climate projections (Taylor et  al. 2012, Eyring 
et al. 2016a), stakeholder-relevant applications (Ruane et al. 
2016), and user-oriented evaluation metrics (Eyring et  al. 
2016b). In recent years, the biodiversity modeling commu-
nity has made strides through IPBES and The Inter-Sectoral 
Impact Model Intercomparison Project to conduct intercom-
parison efforts. For example, these model intercomparison 
efforts projected global biodiversity change in marine and 
terrestrial ecosystems under different climate change and 
economic scenarios (Kim et  al. 2018, Tittensor et  al. 2018, 
Rosa et al. 2020). These efforts identified ongoing challenges 
in producing biodiversity projections. Biodiversity model 
intercomparisons and related efforts to improve models 
could benefit from engaging and coordinating with other dis-
ciplines to develop best practices. Such efforts could include 

the Agricultural Model Intercomparison and Improvement 
Project (AgMIP) within the agricultural modeling commu-
nity, Observations for Model Intercomparison Projects initia-
tive (Obs4MIPS; Teixeira et al. 2014), and the International 
Land Model Benchmarking (ILAMB) framework to formu-
late curated data sets with similar grids and variable speci-
fications to the Coupled Modeled Intercomparison Project 
(CMIP) model outputs (Collier et  al. 2004). AgMIP devel-
oped tools to connect disciplines and scales for model inputs 
and outputs and to allow consistently nested driving sce-
narios (Valdivia et al. 2015, Rosenzweig et al. 2016). AgMIP 
underscored the importance of protocol-based analyses cen-
tered on clear questions and observations for validation along 
with inclusive leadership efforts (Rosenzweig et  al. 2013, 
Rosenzweig et  al. 2016). It was most successful when pilot 
intercomparisons framed a specific question, spatial domain, 
set of data for model configuration, driving scenarios, and 
output template.

Finally, adaptation or development of remote sens-
ing specific to biodiversity models could improve model 
accuracy. In the cryospheric science community, remote 
sensing data product scientists have interacted with cryo-
spheric climate modelers to adapt remote sensing data 
products toward climate model requirements (e.g., Hall 
et al. 2018). Designing observational tools, networks, and 
easily accessible data portals to provide information for 
model ingestion and validation would also be helpful. A 
greater push to make model code and forecasts publicly 
available would help the biodiversity modeling community 
test projections (Mislan et al. 2016, Dietze et al. 2018). EBV 
development could benefit from some of the approaches 
used by ILAMB and Obs4MIPs. These projects translate 
observations to be directly comparable with model out-
puts in a way that allows improved validation exercises. A 
similar “Obs4Impacts” was proposed by the Vulnerability, 
Impacts, Adaptation and Climate Services Advisory Board 
for CMIP6, which would locate and process remote sensing 
and related observational data sets to make them useful for 
model applications that could include components of bio-
diversity (Ruane et al. 2016). Strengthening the community 
of practice, cross collaboration, and adaptation and appli-
cation of new remote sensing products could contribute to 
improved biodiversity model accuracy for target formula-
tion and implementation.

Policy relevance. Policymakers use biodiversity goals and 
targets, such as the CBD Aichi Biodiversity Targets, to 
define agreed outcomes for biodiversity to be achieved in 
a given time period (CBD 2010). Although the aim is for 
these targets to be science based, previous targets have been 
adopted even when biodiversity information was lacking. 
The proposed process could be most useful for increasing 
confidence in target setting and decision-making, because it 
would provide more accurate model-based information on 
current and future changes in biodiversity and improve the 
models used for these projections (Regan et al. 2005).
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Most of the current Aichi targets were not met by the 
2020 target (CBD 2020). As the CBD develops the post-2020 
biodiversity framework, there has been a push to consider 
lessons learned from the Aichi targets. One important les-
son is that the next round of targets should “be ambitious 
but realistic, recognizing that ambition without realism 
can undermine confidence in the ability to deliver on tar-
gets” (CBD 2018). In addition to increased realism, targets 
should also encourage meaningful conservation outcomes 
(Di Marco et al. 2016). By improving the scenarios and mod-
els used to predict future states of biodiversity and assess the 
impact of policy interventions, the approach described in 
the present article would contribute to the development of 
biodiversity predictions with less uncertainty. More trusted 
scenarios and models are necessary for effective conserva-
tion policy (Akçakaya et al. 2016) and could help identify a 
range of plausible targets in conjunction with other aspects 
and interests policymakers consider.

Finally, because we have reached the end of the Strategic 
Plan for Biodiversity 2011–2020, we need a better mecha-
nism to assess progress, such as addressing what policies 
worked and which models effectively projected the observed 
changes in biodiversity. This task is hampered by the fact 
that several Aichi targets had indicators that were not 
well aligned with the goal or lacked indicators altogether 
(Tittensor et al. 2014). Using remote sensing-enabled EBVs 
to test, evaluate, and improve future projections from mod-
els used to formulate and implement targets is an important 
extension of the current EBV agenda. However, for this to 
happen, agreement is needed on which EBVs to monitor 
to better align with model-based biodiversity projections 
(Skidmore and Pettorelli 2015) and coordination is needed 
to expand monitoring in conservation (Honrado et al. 2016). 
Former, current and forthcoming government and commer-
cial high spectral, spatial and temporal resolution sensors 
hold promise for establishing benchmarks on the state of 
the world’s ecosystems against which future changes can be 
compared (Transon et al. 2018). Our approach could drive 
model development toward specific key EBVs and guide 
resource allocation to monitoring programs or remote sens-
ing capabilities to continuously gather EBV observations to 
improve the predictive accuracy of models.

Conclusions

The IPBES global assessment report on biodiversity and 
ecosystem services stresses the urgency of continuing to 
improve on biodiversity forecasting under future scenarios 
(IPBES 2019). The wealth of remote sensing, metagenom-
ics, and citizen science data would help to scientifically 
establish data-informed biodiversity conservation targets. 
Our approach illustrates the power of linking observations 
with multiple biodiversity model outputs to directly and 
indirectly evaluate and reduce uncertainty of model-based 
predictions. The novelty of this approach is that uncertainty 
is jointly constrained for biodiversity variables of different 
taxa and functional groups, providing improvements of 

outputs from multiple dimensions of biodiversity—a need 
for future biodiversity model intercomparison efforts (Rosa 
et  al. 2020). The approach also fits into the broader con-
text of model testing and projection and scenario analysis 
for identification of alternative policies. Applying lessons 
from other modeling communities, such as climate and 
agriculture, coupled with the use of our approach could 
improve model-based biodiversity predictions for future 
policy actions. We highlighted the need for reliable, data-
driven, and continuously improved forecasts of biodiversity 
to assess policy options and make science-based decisions in 
an ever-changing world (IPBES 2016). The proposed process 
meets this crucial requirement by providing a data-driven 
method to evaluate and improve biodiversity model outputs 
to better inform biodiversity conservation policy.
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