
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-021-09513-z

A Theoretical and Empirical Comparison of Gradient
Approximations in Derivative-Free Optimization

Albert S. Berahas1 · Liyuan Cao2 · Krzysztof Choromanski3 ·
Katya Scheinberg4

Received: 26 June 2020 / Revised: 15 March 2021 / Accepted: 18 March 2021
© SFoCM 2021

Abstract
In this paper, we analyze several methods for approximating gradients of noisy func-
tions using only function values. These methods include finite differences, linear
interpolation, Gaussian smoothing, and smoothing on a sphere. The methods differ
in the number of functions sampled, the choice of the sample points, and the way in
which the gradient approximations are derived. For each method, we derive bounds
on the number of samples and the sampling radius which guarantee favorable conver-
gence properties for a line search or fixed step size descent method. To this end, we
use the results in Berahas et al. (Global convergence rate analysis of a generic line
search algorithmwith noise, arXiv:1910.04055, 2019) and show how eachmethod can
satisfy the sufficient conditions, possibly only with some sufficiently large probability
at each iteration, as happens to be the case with Gaussian smoothing and smoothing

Communicated by Michael Overton.

This work was partially supported by NSF Grants CCF 16-18717 and TRIPODS 17-40796, DARPA
Lagrange award HR-001117S0039 and a Google Faculty Award.

B Katya Scheinberg
katyas@cornell.edu

Albert S. Berahas
albertberahas@gmail.com

Liyuan Cao
lic314@lehigh.edu

Krzysztof Choromanski
kchoro@google.com

1 Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI,
USA

2 Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

3 Google Brain, New York, NY, USA

4 Department of Operations Research and Information Engineering, Cornell University, Ithaca, NY,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-021-09513-z&domain=pdf
http://arxiv.org/abs/1910.04055

Foundations of Computational Mathematics

on a sphere. Finally, we present numerical results evaluating the quality of the gra-
dient approximations as well as their performance in conjunction with a line search
derivative-free optimization algorithm.

Keywords Derivative-free optimization · Gradient approximations · Noise

Mathematics Subject Classification 90C56 · 90C30 · 65K05

1 Introduction

We consider an unconstrained optimization problem of the form

min
x∈Rn

φ(x),

where f (x) = φ(x) + ε(x) is computable, while φ(x) may not be. In other words,
f : Rn → R is a possibly noisy approximation of a smooth function φ : Rn → R, and
the goal is to minimize φ. The noise in our analysis can be deterministic, stochastic,
or adversarial; however, we assume that the noise is bounded uniformly, i.e., there
exists a constant ε f ≥ 0 such that |ε(x)| ≤ ε f for all x ∈ R

n . Thus, even then the
noise is stochastic, we replace it with the worst case bound ε f , instead of treating it
as a random variable. We assume that ε f is known, which is a key assumption in our
analysis. While this may seem a strong assumption, it is often satisfied in practice
when f (x) is the result of a computer code aimed at computing φ(x), but that has
inaccuracies due to internal discretization [30,31]. Another common setting in which
the assumption is satisfied is when f (x) is a nonsmooth function and φ(x) is its
smooth approximation; see e.g., [29,32]. In practice, ε f can be obtained with the cost
of several function evaluations [4,31]. It is important to note that while we assume
|ε(x)| ≤ ε f for all x ∈ R

n , for simplicity, we, in fact, only use the bound on the noise
at the points which are used as sample points to estimate∇φ(x) for a specific x . Thus,
when the sample points are known to lie in a ball of a given radius around a fixed x (as
is the case for several gradient estimate methods we consider here), then our analysis
can be applied if ε f bounds the noise only in that given ball.

In this paper, we do not assume that ∇φ(x) is computable or available, but we do
assume that ∇φ(x) is Lipschitz continuous and that knowledge of an upper bound
on the Lipschitz constant is available. Such problems arise in many fields such as
Derivative-Free Optimization (DFO) [4,8,18,24,26,27,47], Simulation Optimization
[35,45] and Machine Learning [6,7,13,20,22,25,28,43,44]. There have been a number
of works analyzing the case when ε(x) is a random function with zero mean (not
necessarily bounded). The results obtained for stochastic noise, and the corresponding
optimization methods, are different than those for bounded arbitrary noise.

One common approach to optimizing functionswithout derivatives is to compute an
estimate of the gradient ∇φ(x) at the point x , denoted by g(x), using (noisy) function
values and then apply a gradient based method with g(x). The most straightforward
way to estimate ∇φ(x) is to use forward finite differences by sampling one point

123

Foundations of Computational Mathematics

near x along each of the n coordinates. Alternatively, one can estimate ∇φ(x) via
central finite differences where two points are sampled along each coordinate in both
directions. As a generalization of the finite difference approach, g(x) can be computed
via linear interpolation. This approach also requires n sample points near x ; however,
the location of the sample points can be chosen arbitrarily, as long as they form a
set of n linearly independent directions from x . Linear interpolation is very useful
when coupled with an optimization algorithm that (potentially) reuses some of the
sample function values computed at prior iterations, thus avoiding the need to compute
n + 1 new function values at each iteration. The accuracy of the resulting gradient
approximation depends on the conditioning of the matrix QX , which is the matrix
whose rows are the linearly independent directions formed by the sample points. An
extensive study of optimizationmethods based on interpolation gradients can be found
in [18].

An alternative approach for estimating gradients using an arbitrary number of func-
tion value samples is based on random sample points. The essence of these methods
is to compute gradient estimates as a sum of estimates of directional derivatives along
random (e.g., Gaussian) directions. Using randomized directional derivative estimates
was pioneered in [32], where these estimates are computed using only two function
evaluations per iteration, as opposed to n + 1 evaluations required by the finite dif-
ference method. While this appears advantageous, the consequence is that the step
size parameter has to be n times smaller and thus the overall iteration complexity n
times larger, than those for methods relying on accurate gradient approximations such
as finite difference. The question then arises —Can using multiple randomized direc-
tional derivative estimates have practical or theoretical advantage over finite difference
schemes? Such methods have become popular in the recent literature for policy opti-
mization in reinforcement learning (RL) [13,14,22,40,41,43] as a particular case of
simulation optimization. For example, in [41] a gradient approximation is constructed
by averaging a relatively large number directional derivative estimates along Gaus-
sian directions [32]. In [22], a large number of directional derivative estimates along
random unit sphere directions are used. In each case, the number of these directions
seems to be chosen to fit the specific method and this choice is somewhat obscure.

Our goal is to derive bounds on the number of directional derivative estimates
along random directions that are needed to establish gradient approximation that are
comparable in accuracy to those obtained by a traditional finite difference schemes.
Whatwe observe is that this number is at least as large as n, and it is thus our conclusion
that these newmethods offer no theoretical or practical advantage at least in the setting
of standard optimization algorithms, such as line search. The randomized schemesmay
offer some advantage in some noisy optimization setting, since randomization itself
may provide some algorithmic robustness, but such setting is yet to be discovered and
analyzed.

Overall, the methods we consider in this paper compute an estimate of the gradient
∇φ(x) (denoted by g(x)), as follows

g(x) =
N∑

i=1

f (x + σui) − f (x)

σ
ũi , (1.1)

123

Foundations of Computational Mathematics

or using the central (symmetric or antithetic) version

g(x) =
N∑

i=1

f (x + σui) − f (x − σui)

2σ
ũi , (1.2)

where {ui : i = 1, . . . , N }1 is a set of directions that depend on the method, ũi
depends on ui , and σ is the sampling radius. In particular, for the finite difference
methods N = n and ui = ũi = ei , where ei denotes the i-th column of the identity
matrix. For interpolation, N = n, {ui : i = 1, . . . , N } is a set of arbitrary linearly
independent vectors with ‖ui‖ ≤ 12 for all i , and ũi are the columns of Q−1

X , where
the i th row of QX ∈ R

N×n is ui . A special case of linear interpolation has been
explored in [13,14,40] where the ui ’s are random orthogonal directions; this approach
can also be viewed as rotated finite differences. In the case of Gaussian smoothing,
the directions ui are random directions from a standard Gaussian distribution and
ũi = 1

N ui . Finally, a variant of thismethod that selects the directions ui from a uniform
distribution on a unit sphere, where ũi = n

N ui , has been explored in [22,23]. As is
clear from (1.2), antithetic gradient approximations require 2N function evaluations.
Details about these methods are given in Sect. 2.

We are motivated by recent empirical use of these methods in the RL literature.
In [41], the authors showed that the Gaussian smoothing approach is an efficient
way to compute gradient estimates when N ∼ n. In follow-up works [13,14,40], it
was shown empirically that better gradient estimates can be obtained for the same
optimization problems by using interpolation with orthogonal directions. While the
numerical results in these works confirmed the feasibility of use of (1.1) and (1.2) for
various RL benchmark sets and different choice of directions, there is no theoretical
analysis, neither comparing the accuracy of resulting gradient estimates, nor analyzing
the connection between such accuracy and downstream optimization gains. To the best
of our best knowledge, there has been no systematic analysis of the accuracy of the
(stochastic) gradient estimates used in the DFO literature (such as Gaussian smoothing
and smoothing on a unit sphere) specifically in conjunction with requirements of
obtaining descent directions.

In this paper, we develop theoretical bounds on the gradient approximation errors
‖g(x) − ∇φ(x)‖ for all aforementioned gradient estimation methods and show their
dependence on the number of samples. Another key quantity we consider is the radius
of sampling σ . In the absence of noise, σ can be chosen arbitrarily small, however,
when noise is present, small values of σ can lead to large inaccuracies in the gradient
estimates. We derive the values for σ which ensure that the gradient estimates are
sufficiently accurate and thus can be used in conjunction with efficient gradient based
methods.

A number of works have used smoothing techniques for gradient approximations
within stochastic gradient descent schemes with a fixed step size parameter or a prede-
termined sequence of step size parameters; see e.g., [3,20–23,32,41]. The complexity

1 Throughout the paper, N denotes the size of the sample set {ui : i = 1, . . . , N }. Note that for the central
versions of the gradient approximations, the number of sampled functions is equal to 2N .
2 The norms used in this paper are Euclidean norms.

123

Foundations of Computational Mathematics

results derived in these papers depend on the assumptionsmade on the underlying func-
tions as well as the algorithm employed. In [32], the objective function is assumed
to be deterministic, and the convergence rate that is obtained for a gradient method
with gradients approximated via Gaussian smoothing is the same (in terms of depen-
dence on the dimension n and the iteration count) as for deterministic gradient descent.
Notably, [20] establishes convergence rates with better dependence on the dimension,
but worse dependence on the iteration count. This perhaps is not surprising since the
objective function is assumed to be stochastic in [20].

In this paper, we address functions with bounded noise (so more general than [32]
but more restrictive than [20]). We provide a rigorous quantitative analysis of the error
between various gradient estimates and the true gradient. The resulting error bounds
presented in this paper canbeused to establish convergence results for different variants
of (stochastic) gradient methods. The deterministic bounds (finite differences and
interpolation) can be used to establish convergence of a gradient descent scheme with
fixed or adaptive step sizes. The resulting error bounds for the randomized methods
can be used to establish convergence for simple stochastic gradient-type methods or
adaptive methods such as the line search method studied in [5].

Our results show that in order to obtain gradient accuracy comparable to interpola-
tion (or more generally methods that use orthogonal directions), smoothing methods
with Gaussian or unit sphere directions (scaled or not scaled) can require significantly
more samples. With both theoretical and empirical evidence, we argue that while
smoothing methods (Gaussian or unit sphere) can be applied with N 	 n, the result-
ing estimates generally have lower accuracy (and thus can result in slow convergence
when employed within an optimization algorithm) than the estimates computed via
linear interpolation.
Organization The paper is organized as follows. In the remainder of this section, we
introduce the assumptions we make for our analysis and then present the main results
of the paper. We define and derive theoretical results for the gradient approximation
methods in Sect. 2.We present a numerical comparison of the gradient approximations
and illustrate the performance of a line search DFO algorithm that employs these
gradient approximations in Sect. 3. Finally, in Sect. 4, we make some concluding
remarks and discuss avenues for future research.

1.1 Assumptions

Throughout the paper, we assume that the noise in the function evaluations ε(x) is
bounded for all x ∈ R

n , and that φ is Lipschitz smooth.

Assumption 1.1 (Boundedness of Noise in the Function) There is a constant ε f ≥ 0
such that | f (x) − φ(x)| = |ε(x)| ≤ ε f for all x ∈ R

n .

Assumption 1.2 (Lipschitz continuity of the gradients of φφφ) The function φ is con-
tinuously differentiable, and the gradient ofφ is L-Lipschitz continuous for all x ∈ R

n .

In some cases, to establish better approximations of the gradient, we will assume
that φ has Lipschitz continuous Hessians.

123

Foundations of Computational Mathematics

Assumption 1.3 (Lipschitz continuity of the Hessian of φφφ) The function φ is twice
continuously differentiable, and the Hessian of φ is M-Lipschitz continuous for all
x ∈ R

n .

1.2 Summary of Results

We begin by stating a condition that is often used in the analysis of first order methods
with inexact gradient computations:

‖g(x) − ∇φ(x)‖ ≤ θ‖∇φ(x)‖, (1.3)

for some θ ∈ [0, 1). This condition, referred to as the norm condition, was introduced
and studied in [11,37]. In [5], the authors establish expected complexity bounds for
a generic line search algorithm that uses gradient approximations in lieu of the true
gradient, under the condition that the gradient estimate g(x) satisfies (1.3) for suffi-
ciently small θ andwith sufficiently high probability 1−δ. Note, this condition implies
that g(x) is a descent direction for the function φ. Clearly, unless we know ‖∇φ(x)‖,
condition (1.3) may be hard or impossible to verify or guarantee. There is significant
amount of work that attempts to circumvent this difficulty; see e.g., [10,12,34]. In
[10], a practical approach to estimate ‖∇φ(xk)‖ is proposed and used to ensure some
approximation of (1.3) holds. In [12,34], the condition (1.3) is replaced by

‖g(x) − ∇φ(x)‖ ≤ καk‖g(x)‖,

for some κ > 0, and convergence rate analyses are derived for a line search method
that has access to deterministic function values in [12] and stochastic function values
(with additional assumptions) in [34]. However, for the methods studied in this paper,
condition (1.3) turns out to be achievable. We establish conditions under which (1.3)
holds either deterministically or with sufficiently high probability.

Given a point x , all methods compute g(x) via either (1.1) or (1.2). The methods
vary in their selection of the size of the sample set N , the set {ui : i = 1, . . . , N }
and the corresponding set {ũi : i = 1, . . . , N }, and the sampling radius σ . Here,
upfront, we present a simplified summary of the conditions on N , σ and ∇φ(x) for
each method that we consider in this paper to guarantee condition (1.3); see Table 1.
For more detailed results see Sect. 2.6, Table 2. Note that for the smoothing methods
(1.3) holds with probability 1− δ and the number of samples depends on δ. Moreover,
the bounds on N for the smoothing methods are a simplification of the more detailed
bounds derived in the paper and apply when n ≥ 4, while for smaller n some of the
constants are larger. We should note that the constants in the bound on N are smaller
for larger n.

The bounds N for all methods in Table 1 are the upper bounds, in the sense that they
give the value of N that guarantees the desired gradient estimate accuracy (with high
probability). Clearly for deterministicmethods these bounds are also the lower bounds,
that is, no gradient accuracy can be guaranteed (in general) with a smaller value of
N . For the smoothing methods, deriving accurate lower bound on N is nontrivial. We

123

Foundations of Computational Mathematics

Table 1 Simplified conditions under assumption that n ≥ 4

Gradient approximation N σ ‖∇φ(x)‖

Forward finite differences n 2
√

ε f
L

2
√
nLε f
θ

Central finite differences n
3
√

6ε f
M

2 3
√
n3/2Mε2f

θ

Linear interpolation n 2
√

ε f
L

2‖Q−1
X ‖√nLε f

θ

Gaussian smoothed
gradients∗∗∗

36n
δθ2

+ 3n+24
16δ

√
ε f
L

6
√
n2Lε f
θ

Centered Gaussian smoothed
gradients∗∗∗

36n
δθ2

+ n+15
48δ

3

√
ε f√
nM

12 3
√
n7/2Mε2f

θ

Sphere smoothed gradients∗∗∗
[
24n
θ2

+ 8n
3θ + 3n

8 +
√
n
3 + 13

6

]
log n+1

δ

√
nε f
L

4
√
n2Lε f
θ

Centered sphere smoothed
gradients∗∗∗

[
24n
θ2

+ 8n
3θ + n

24 +
√
n
9 + 17

24

]
log n+1

δ
3
√

nε f
M

4 3
√
n7/2Mε2f

θ

Bounds on N , σ and ∇φ(x) that ensure ‖g(x)−∇φ(x)‖ ≤ θ‖∇φ(x)‖ (∗∗∗ denotes result is with probability
1 − δ)

show, however, that this lower bound is linear inn andvia numerical simulation confirm
that the constants in the bound are significantly larger than those for deterministic
methods, such as finite differences. This suggests that deterministic methods may be
more efficient, at least in the setting considered in this paper, when accurate gradient
estimates are desired. The bounds on the sampling radius are comparable for the
smoothing and deterministic methods, as we will discuss in detail later in the paper.
Finally, our numerical results support our theoretical observations.

2 Gradient Approximations and Sampling

In this section, we analyze several existing methods for constructing gradient approx-
imations using only noisy function information. We establish conditions under which
the gradient approximations constructed via these methods satisfy the bound (1.3) for
any given θ ∈ [0, 1).

The common feature amongst these methods is that they construct approximations
g(x) of the gradient ∇φ(x) using (possibly noisy) function values f (y) for y ∈ X ,
where X is a sample set centered around x . These methods differ in the way they
select X and the manner in which the function values f (y), on all sample points
y ∈ X , are used to construct g(x). The methods have different costs in terms of
number of evaluations of f , as well as other associated computations. Our goal is to
compare these costs when computing gradient estimates that satisfy (1.3) for some
θ ∈ [0, 1). For each method, we derive bounds on the number of samples and the
sampling radius which guarantee (1.3), the sufficient condition for convergence of the
line search method in [5].

123

Foundations of Computational Mathematics

2.1 Gradient Estimation via Standard Finite Differences

The first method we analyze is the standard finite difference method. The forward
finite difference (FFD) approximation to the gradient of φ at x ∈ R

n is computed
using the sample set X = {x + σei }ni=1 ∪ {x}, where σ > 0 is the finite difference
interval and ei ∈ R

n is the i-th column of the identity matrix, as follows

[g(x)]i = f (x + σei) − f (x)

σ
, for i = 1, . . . , n.

Alternatively, gradient approximations canbe computedusing central finite differences
(CFD) based on the sample set X = {x + σei }ni=1 ∪ {x − σei }ni=1 , as

[g(x)]i = f (x + σei) − f (x − σei)

2σ
, for i = 1, . . . , n.

FFD and CFD approximations require n and 2n functions evaluations, respectively.
CFD approximations tend to be more accurate and stable, as we show below.

We begin by stating two standard gradient approximation bounds, i.e., the error
between the finite difference approximation to the gradient and the gradient of φ.

Theorem 2.1 Under Assumptions 1.1 and 1.2, let g(x) denote the forward finite dif-
ference (FFD) approximation to the gradient ∇φ(x). Then, for all x ∈ R

n,

‖g(x) − ∇φ(x)‖ ≤
√
nLσ

2
+ 2

√
nε f

σ
.

Theorem 2.2 Under Assumptions 1.1 and 1.3, let g(x) denote the central finite differ-
ence (CFD) approximation to the gradient ∇φ(x). Then, for all x ∈ R

n,

‖g(x) − ∇φ(x)‖ ≤
√
nMσ 2

6
+

√
nε f

σ
.

It is apparent from Theorems 2.1 and 2.2 that the finite difference interval σ > 0
should be chosen not to be too small or too large in order to control the bound on
‖g(x)−∇φ(x)‖. The precise range of acceptable values of σ depends on the Lipschitz
constant L of ∇φ(x) and the level of noise ε f . We derive expressions for σ based
on Theorems 2.1 and 2.2 and then discuss the implications of not knowing L and ε f

precisely.
First we consider the FFD case and thus Theorem 2.1. In order for the estimate of

∇φ(x) computed by FFD to satisfy (1.3) for some given x ∈ R
n we chose σ such that

the following holds

√
nLσ

2
+ 2

√
nε f

σ
≤ θ‖∇φ(x)‖, (2.1)

123

Foundations of Computational Mathematics

which can be written as a quadratic inequality

√
nL

2
σ 2 − θ‖∇φ(x)‖σ + 2

√
nε f ≤ 0.

The case when L = 0, and known, is not interesting in our context, because then
the function is linear and gradient approximation should be performed outside of
any optimization scheme. Hence, we assume that (the upper bound of) the Lipschitz
constant of ∇φ(x), L , is strictly positive. Then, the interval of σ values that satisfy
the quadratic inequality is

θ‖∇φ(x)‖ −
√

θ2‖∇φ(x)‖2 − 4nLε f√
nL

≤σ ≤
θ‖∇φ(x)‖ +

√
θ2‖∇φ(x)‖2 − 4nLε f√

nL
.

(2.2)

This interval is nonempty when θ2‖∇φ(x)‖2 ≥ 4nLε f , which constitutes to a condi-
tion on ‖∇φ(x)‖, with respect to L and ε f , for which FFD, with the appropriate choice
of σ , can satisfy (1.3). When θ2‖∇φ(x)‖2 ≥ 4nLε f , any choice of σ satisfying (2.2)
works, however, since we do not know ‖∇φ(x)‖, we set σ to the known value,

σ = 2

√
ε f

L
, (2.3)

which minimizes the left hand side of (2.1) and thus satisfies (2.2).

When ‖∇φ(x)‖ falls below
2
√

nLε f

θ
, finite difference approximations to the gradi-

ent can no longer ensure sufficiently accurate approximations, and any optimization
process reliant on these approximations may fail to progress. Thus, the implication of
not knowing ε f and L precisely, but replacing them with overestimates when defining
σ , results in earlier stalling of an optimization algorithm based on FFD (and all other
gradient estimates schemes that we will discuss in this manuscript). This observation
agrees with related results in [5], where it is shown that a line search algorithm for
noisy objective functions, based on gradient approximations that satisfy (1.3), enjoys
fast convergence rates until it reaches a neighborhood of optimality dictated by the
estimate ε f .

Applying the same logic as above to Theorem 2.2, in order to ensure that (1.3)
holds, we require

√
nMσ 2

6
+

√
nε f

σ
≤ θ‖∇φ(x)‖, (2.4)

which can be written as a cubic inequality,

√
nM

6
σ 3 − θ‖∇φ(x)‖σ + √

nε f ≤ 0.

123

Foundations of Computational Mathematics

The cubic left-hand side has three roots. The first root is a negative number, while the
second and third roots are positive real numbers if

‖∇φ(x)‖ ≥
√
n 3
√
9Mε2f

2θ
,

which constitutes to a condition on ‖∇φ(x)‖ for which CFD can deliver a gradient
estimate satisfying (1.3) if σ is chosen as a value inside the interval between the second
and third roots. Choosing σ to satisfy

σ = 3

√
3ε f

M

minimizes the left-hand side of (2.4) in the interval between the second and the third
roots.

2.2 Gradient Estimation via Linear Interpolation

Wenowconsider amore generalmethod for approximating gradients using polynomial
interpolation that has become a popular choice for model based trust regionmethods in
the DFO setting [15,16,18,29,38,39,51]. These methods construct surrogate models of
the objective function using interpolation (or regression). While typically, in the DFO
setting, interpolation is used to construct quadratic models of the objective function
around x ∈ R

n of the form

m(y) = f (x) + g(x)ᵀ(y − x) + 1

2
(y − x)ᵀH(x)(y − x), (2.5)

where f ∈ R and g ∈ R
n , or H ∈ R

n×n , in this paper we focus on the simplest case
of linear models,

m(y) = f (x) + g(x)ᵀ(y − x), (2.6)

as the focus of this paper is on line search methods, whereas the use of (2.5) requires
a trust region approach due to the general nonconvexity of m(y) [18].

Let us consider the following sample set X = {x + σu1, x + σu2, . . . , x + σun}
for some σ > 0. In other words, we have n directions denoted by ui ∈ R

n and we
sample f along those directions, around x , using a sampling radius of size σ . We
assume f (x) is known (function value at x). Let FX ∈ R

n be a vector whose entries
are f (x + σui) − f (x), for i = 1 . . . n, and let QX ∈ R

n×n define a matrix whose
rows are given by ui for i = 1 . . . n. The model in (2.6) is constructed to satisfy the
interpolation conditions,

f (x + σui) = m(x + σui), ∀i = 1, . . . , n,

123

Foundations of Computational Mathematics

which can be written as

σQX g = FX . (2.7)

If the matrix QX is nonsingular, then m(y) = f (x) + g(x)ᵀ(y − x), with g(x) =
1
σ
Q−1
X FX , is a linear interpolationmodel of f (y) on the sample setX .When QX is the

identitymatrix, thenwe recover standard forward finite difference gradient estimation.
In the specific case when QX is orthonormal, then Q−1

X = Qᵀ
X ; thus, g(x) is written

as

g(x) =
n∑

i=1

f (x + σui) − f (x)

σ
ui .

Next we derive a bound on ‖g(x) − ∇φ(x)‖. This result is an extension of the
results presented in [17,18] that accounts for the noise in the function evaluations.

Theorem 2.3 Suppose that Assumptions 1.1 and 1.2 hold. LetX = {x+σu1, . . . , x+
σun} be a set of interpolation points such that max1≤i≤n ‖ui‖ ≤ 1 and QX be non-
singular. Then, for all x ∈ R

n,

‖g(x) − ∇φ(x)‖ ≤ ‖Q−1
X ‖2√nLσ

2
+ 2‖Q−1

X ‖2√nε f

σ
.

Proof From the interpolation conditions and the mean value theorem, ∀i = 1, . . . , n
we have

σ g(x)ᵀui = f (x + σui) − f (x) = φ(x + σui) − φ(x) + ε(x + σui) − ε(x)

=
∫ 1

0
σuᵀ

i ∇φ(x + tσui)dt + ε(x + σui) − ε(x).

From the L-smoothness of φ(·) and the bound on ε(·), we have

σ |(g(x) − ∇φ(x))ᵀui | ≤ Lσ 2‖ui‖2
2

+ 2ε f , ∀i = 1, . . . , n

which in turn implies

‖QX (g(x) − ∇φ(x))‖ ≤
√
nLσ

2
+ 2

√
nε f

σ
,

and the theorem statement follows. ��
This result has the implication that large ‖Q−1

X ‖ can cause large deviation of g(x)
from∇φ(x). Thus, it is desirable to selectX in such away that the condition number of
Q−1
X is small, which is clearly optimized when QX is orthonormal. Thus, we trivially

recover the theorem for FFD, and moreover, extend this result to any orthonormal set

123

Foundations of Computational Mathematics

of directions {u1, u2 . . . , un}, such as those used in [14]. Aside from the condition
number, the important difference between general interpolation sets and orthonormal
ones is in the computational cost of evaluating g(x). In particular, g(x) is obtained
by solving a system of linear equations given by (2.7), which in general requires
O(n3) computations, but that reduces to O(n2) in the case of general orthornormal
matrices QX , and further reduces to O(n) for QX = I , as in the case of FFD. In
[14], it is proposed to use scaled randomized Hadamard matrices as QX . This is only
possible if the problem dimension is a power of 2, but it reduces linear algebra cost of
matrix-vector products from O(n2) to O(n log n).

On the other hand, using general sample sets allows for greater flexibility (within
an optimization algorithm), in particular enabling the re-use of sample points from
prior iterations. When using FFD to compute g(x), n function evaluations are always
required, while when using interpolation it is possible to update the interpolation set
by replacing only one (or a few) sample point(s) in the setX . It is important to note that
while X can be fairly general, the condition number of the matrix QX has to remain
bounded for Theorem 2.3 to be useful. The sets with bounded condition number of
QX are calledwell-poised; see [18] for details about the construction andmaintenance
of interpolation sets in model based trust region DFO methods.

The bounds of Theorem 2.3 are similar to those of Theorem 2.1; hence, if the
sampling radius σ and the the gradient norm satisfy

σ = 2

√
ε f

L
and ‖∇φ(x)‖ ≥ 2‖Q−1

X ‖√nLε f

θ
,

respectively, then (1.3) holds.
It is possible to derive an analogue of Theorem 2.2 by including n additional sample

points {x − σu1, . . . , x − σun} in the gradient estimation procedure. Namely, two
sample sets are used, X+ = {x + σu1, x + σu2, . . . x + σun} and X− = {x −
σu1, x − σu2, . . . x − σun}, with corresponding matrices QX+ and QX− . The linear
modelm(y) = f (x)+gᵀ(y−x) is then computed as an averageof the two interpolation
models, that is

g = g+
0 + g−

0

2
= 1

2σ
[Q−1

X+FX+ + Q−1
X−FX−].

The gradient estimates are computed in this way in [13], for the case of orthonormal
sets and symmetric finite difference computations. Similarly to the CFD, this results
in better accuracy bounds in terms of σ ; however, this requires additional n function
evaluations at each iteration, which contradicts the original idea of using interpolation
as a means for reducing the per-iteration function evaluation cost.

2.3 Gradient Estimation via Gaussian Smoothing

Gaussian smoothing has recently become a popular tool for building gradient approxi-
mations using only function values. This approach has been exploited in several recent
papers; see e.g., [3,29,32,41,50].

123

Foundations of Computational Mathematics

Gaussian smoothing of a given function f is obtained as follows:

F(x) = Ey∼N (x,σ 2 I)[f (y)] =
∫

Rn
f (y)π(y|x, σ 2 I)dy

= Eu∼N (0,I)[f (x + σu)] =
∫

Rn
f (x + σu)π(u|0, I)du, (2.8)

whereN (x, σ 2 I) denotes themultivariate normal distributionwithmean x and covari-
ance matrix σ 2 I , N (0, I) denotes the standard multivariate normal distribution, and
the functions π(y|x, σ 2 I) and π(u|0, I) denote the probability density functions (pdf)
ofN (x, σ 2 I) evaluated at y andN (0, I) evaluated at u, respectively. Using properties
of derivatives of expected value functions [1], the gradient of F can be expressed as

∇F(x) = 1

σ
Eu∼N (0,I)[f (x + σu)u]. (2.9)

Assume f is an approximation of φ with the approximation error bounded by ε f

uniformly, i.e., Assumption 1.1 holds. If Assumption 1.1 holds, then the following
bounds hold for the error between∇F(x) and∇φ(x). If φ has L-Lipschitz continuous
gradients, that is, if Assumption 1.2 holds, then

‖∇F(x) − ∇φ(x)‖ ≤ √
nLσ +

√
nε f

σ
; (2.10)

see Appendix A.1 for the proof.3 If the function φ has M-Lipschitz continuous Hes-
sians, that is, if Assumption 1.3 holds, then

‖∇F(x) − ∇φ(x)‖ ≤ nMσ 2 +
√
nε f

σ
; (2.11)

see Appendix A.2 for proof.
In order to approximate ∇φ(x) one can approximate ∇F(x), with sufficient accu-

racy, by sample average approximation applied to (2.9), i.e.,

g(x) = 1

Nσ

N∑

i=1

f (x + σui)ui , (2.12)

where ui ∼ N (0, I) for i = 1, 2, . . . , N . It can be easily verified that g(x) computed
via (2.12) has large variance (the variance explodes as σ goes to 0). The following
simple modification,

g(x) = 1

N

N∑

i=1

f (x + σui) − f (x)

σ
ui , (2.13)

3 The bound (2.10) was presented in [29] without proof; we would like to thank the first author of [29] for
providing us with guidance of this proof.

123

Foundations of Computational Mathematics

eliminates this problem and is indeed used in practice instead of (2.12); see [13,14,41].
Note that the expectation of (2.13) is also ∇F(x), since Eui∼N (0,I)[f (x)u] is an all-
zero vector for all i . In what follows, we will refer to g(x) computed via (2.13) as
the Gaussian smoothed gradient (GSG). As pointed out in [32], f (x+σui)− f (x)

σ
ui can

be interpreted as a forward finite difference version of the directional derivative of
f at x along ui . Moreover, one can also consider the central difference variant of
(2.13)–central Gaussian smoothed gradient (cGSG)–which is computed as follows,

g(x) = 1

2N

N∑

i=1

f (x + σui) − f (x − σui)

σ
ui . (2.14)

The properties of (2.8) and (2.13), with N = 1, were analyzed in [32]. However,
this analysis does not explore the effect of N > 1 on the variance of g(x). On the
other hand, in [41] the authors propose an algorithm that uses GSG estimates, (2.13)
and (2.14), with large samples sizes N in a fixed step size gradient descent algorithm,
but without any analysis or discussion of the choices of N , σ or α (where α is the
step size). Thus, the purpose of this section is to derive bounds on the approximation
error ‖g(x)−∇φ(x)‖ for GSG and cGSG, and to derive conditions on σ and N under
which condition (1.3) holds (and as a result the convergence results for a line search
DFO algorithm [5] based on these approximations also hold).

We first note that there are two sources of error: (i) approximation of the true
function φ by the Gaussian smoothed function F of the noisy function f and (i i)
approximation of ∇F(x) via sample average approximations. Hence, we have that

‖g(x) − ∇φ(x)‖ = ‖(∇F(x) − ∇φ(x)) + (g(x) − ∇F(x))‖
≤ ‖∇F(x) − ∇φ(x)‖ + ‖g(x) − ∇F(x)‖. (2.15)

The bound on the first term is given by (2.10) or (2.11). What remains is to bound the
second term ‖g(x) − ∇F(x)‖, the error due to the sample average approximation.

Since (2.13) (and (2.14)) is a (mini-)batch stochastic gradient estimate of ∇F(x),
the probabilistic bound on ‖g(x) − ∇F(x)‖ is derived by bounding the expectation,
which is equivalent to bounding the variance of the (mini-)batch stochastic gradient.
Existing bounds in the literature, see e.g., [48], are derived under the assumption
that ‖g(x) − ∇φ(x)‖ is uniformly bounded above almost surely, which does not
hold for GSG because when u follows a Gaussian distribution, f (x+σu)− f (x)

σ
u can be

arbitrarily large with positive probability. Here, we bound ‖g(x)−∇F(x)‖ only under
Assumptions 1.2 or 1.3. It is shown in [32] that Assumption 1.2 implies that ∇F(x)
is L-Lipschitz continuous; by applying similar logic it can be shown that Assumption
1.3 implies that ∇2F(x) is M-Lipschitz continuous.

The variance for (2.13) can be expressed as

Var {g(x)} = 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x)

σ

)2

uuᵀ
]

− 1

N
∇F(x)∇F(x)ᵀ,

(2.16)

123

Foundations of Computational Mathematics

and the variance of (2.14) can be expressed as

Var {g(x)}= 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x − σu)

2σ

)2

uuᵀ
]

− 1

N
∇F(x)∇F(x)ᵀ.

(2.17)

The following properties of a normally distributed multivariate random variable
u ∈ R

n will be used in our analysis and are derived in Appendix A.3. Let a ∈ R
n be

any constant vector, then

Eu∼N (0,I)

[
(aᵀu)2uuᵀ

]
= aᵀaI + 2aaᵀ

Eu∼N (0,I)

[
aᵀu · ‖u‖k · uuᵀ

]
= 0n×n for k = 0, 1, 2, ...

Eu∼N (0,I)

[
‖u‖kuuᵀ

]{
= (n + 2)(n + 4) · · · (n + k)I for k = 0, 2, 4, . . .

� (n + 1)(n + 3) · · · (n + k) · n−0.5 I for k = 1, 3, 5, . . .
(2.18)

It is interesting to note that only the last property is specific to the normal distribu-
tion, while the first two expressions hold for any random vector u, for which ui are
symmetric iid random variables with unit variance. Thus, techniques presented in this
paper can be extended to other distributions, such as the one used in [46].

We now derive bounds for the variances of GSG and cGSG.

Lemma 2.4 Under Assumption 1.2, if g(x) is calculated by (2.13), then, for all x ∈ R
n,

Var {g(x)} � κ(x)I where

κ(x) = 3

N

(
3‖∇φ(x)‖2 + L2σ 2

4
(n + 2)(n + 4) + 4ε2f

σ 2

)
.

Alternatively, under Assumption 1.3, if g(x) is calculated by (2.14), then, for all
x ∈ R

n, Var {g(x)} � κ(x)I where

κ(x) = 3

N

(
3‖∇φ(x)‖2 + M2σ 4

36
(n + 2)(n + 4)(n + 6) + ε2f

σ 2

)
.

Proof Since ∇F(x)∇F(x)ᵀ � 0, we derive from (2.16)

Var {g(x)} � 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x)

σ

)2

uuᵀ
]

= 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x)

σ
u

)(
f (x + σu) − f (x)

σ
u

)ᵀ]
.

123

Foundations of Computational Mathematics

The term in the parentheses can be written as

f (x + σu) − f (x)

σ
u

= φ(x + σu) + ε(x + σu) − φ(x) − ε(x)

σ
u

= φ(x + σu) − φ(x) − ∇φ(x)ᵀσu

σ
u + ε(x + σu) − ε(x)

σ
u + ∇φ(x)ᵀuu.

Considering for any three vectors {v1, v2, v3} ⊂ R
n , it must be (v1 + v2 + v3)(v1 +

v2 + v3)
ᵀ � 3v1v

ᵀ
1 + 3v2v

ᵀ
2 + 3v3v

ᵀ
3 , we have

Var {g(x)}

� 3

N
Eu∼N (0,I)

[(
φ(x + σu) − φ(x) − ∇φ(x)ᵀσu

σ

)2

uuᵀ

+
[(

ε(x + σu) − ε(x)

σ

)2

uuᵀ
]

+ (∇φ(x)ᵀu)2uuᵀ
]

� 3

N
Eu∼N (0,I)

[(
Lσ

2
uᵀu

)2

uuᵀ +
(
2ε f

σ

)2

uuᵀ + (∇φ(x)ᵀu)2uuᵀ
]

(2.18)= 3

N

(
L2σ 2

4
(n + 2)(n + 4)I + 4ε2f

σ 2 I + ‖∇φ(x)‖2 I + 2∇φ(x)∇φ(x)ᵀ
)

� 3

N

(
L2σ 2

4
(n + 2)(n + 4) + 4ε2f

σ 2 + 3‖∇φ(x)‖2
)
I ,

where the second inequality comes from the Lipschitz continuity of the gradients
(Assumption 1.2) and the bound on the noise, and the last inequality comes from the
fact that vvᵀ � ‖v‖2 I for any v ∈ R

n .
For cGSG, we follow the same logic as above. By (2.17) we get

Var {g(x)} � 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x − σu)

2σ

)2
uuᵀ

]

= 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x − σu)

2σ
u

)(
f (x + σu) − f (x − σu)

2σ
u

)ᵀ]
.

The term in the parentheses can be written as

f (x + σu) − f (x − σu)

2σ
u

= φ(x + σu) + ε(x + σu) − φ(x − σu) − ε(x − σu)

2σ
u

= φ(x + σu) − φ(x − σu) − 2σ∇φ(x)ᵀu
2σ

u + ε(x + σu) − ε(x)

2σ
u + ∇φ(x)ᵀuu

123

Foundations of Computational Mathematics

=
(
φ(x + σu) − φ(x) − σ∇φ(x)ᵀu − σ 2

2 uᵀ∇2φ(x)u
)

2σ
u

−
(
φ(x − σu) − φ(x) + σ∇φ(x)ᵀu − σ 2

2 uᵀ∇2φ(x)u
)

2σ
u

+ ε(x + σu) − ε(x)

2σ
u + ∇φ(x)ᵀuu.

Then, for cGSG we have

Var {g(x)}

� 3

N
Eu∼N (0,I)

[(
φ(x + σu) − φ(x − σu) − 2σ∇φ(x)ᵀu

2σ

)2
uuᵀ

+
(

ε(x + σu) − ε(x)

2σ

)2
uuᵀ + (∇φ(x)ᵀu)2uuᵀ

]

� 3

N
Eu∼N (0,I)

⎡

⎣
(
Mσ 2

6
‖u‖3

)2

uuᵀ +
(
2ε f

2σ

)2
uuᵀ + (∇φ(x)ᵀu)2uuᵀ

⎤

⎦

(2.18)= 3

N

(
M2σ 4

36
(n + 2)(n + 4)(n + 6)I +

ε2f

σ 2 I + ‖∇φ(x)‖2 I + 2∇φ(x)∇φ(x)ᵀ
)

� 3

N

(
M2σ 4

36
(n + 2)(n + 4)(n + 6) +

ε2f

σ 2 + 3‖∇φ(x)‖2
)
I ,

where the second inequality comes from the Lipschitz continuity of the Hessians
(Assumption 1.3) and the bound on noise, and the last inequality comes from the fact
that vvᵀ � ‖v‖2 I for any v ∈ R

n . ��
Using the results of Lemma 2.4, we can now bound the quantity ‖g(x) − ∇F(x)‖

in (2.15), in probability, using Chebyshev’s inequality.

Lemma 2.5 Let F be a Gaussian smoothed approximation of f (2.8). Under Assump-
tion 1.2, if g(x) is calculated via (2.13) with sample size

N ≥ 3n

δr2

(
3‖∇φ(x)‖2 + L2σ 2

4
(n + 2)(n + 4) + 4ε2f

σ 2

)
,

then, for all x ∈ R
n, ‖g(x) − ∇F(x)‖ ≤ r holds with probability at least 1 − δ, for

any r > 0 and 0 < δ < 1.
Alternatively, under Assumption 1.3, if g(x) is calculated via (2.14) with sample

size 2N where

N ≥ 3n

δr2

(
3‖∇φ(x)‖2 + M2σ 4

36
(n + 2)(n + 4)(n + 6) + ε2f

σ 2

)
,

123

Foundations of Computational Mathematics

then, for all x ∈ R
n, ‖g(x) − ∇F(x)‖ ≤ r holds with probability at least 1 − δ, for

any r > 0 and 0 < δ < 1.

Proof By Chebyshev’s inequality, for any r > 0, we have

P

{√
(g(x) − ∇F(x))ᵀVar {g(x)}−1 (g(x) − ∇F(x)) > r

}
≤ n

r2
.

Since by Lemma 2.4 Var {g(x)} � κ(x)I , with the appropriate κ(x) as shown in the
statement of the Lemma, we have Var {g(x)}−1 � κ(x)−1 I and

√
(g(x) − ∇F(x))ᵀVar {g(x)}−1 (g(x) − ∇F(x)) ≥ κ(x)−

1
2 ‖g(x) − ∇F(x)‖.

Therefore, we have,

P

{
κ(x)−

1
2 ‖g(x) − ∇F(x)‖ > r

}
≤ n

r2
�⇒ P {‖g(x) − ∇F(x)‖ > r} ≤ κ(x)n

r2
.

To ensure P {‖g(x) − ∇F(x)‖ ≤ r} ≥ 1 − δ, we choose κ such that κ(x)n
r2

≤ δ, by
choosing large enough N . The exact bounds on N (and thus the result of Lemma 2.5)
follow immediately from the two respective expressions for κ(x) in Lemma 2.4. ��

Now with bounds for both terms in (2.15), we can bound ‖g(x) − ∇φ(x)‖, in
probability.

Theorem 2.6 Suppose that Assumption 1.2 holds and g(x) is calculated via (2.13). If

N ≥ 3n

δr2

(
3‖∇φ(x)‖2 + L2σ 2

4
(n + 2)(n + 4) + 4ε2f

σ 2

)
,

then, for all x ∈ R
n and r > 0,

‖g(x) − ∇φ(x)‖ ≤ √
nLσ +

√
nε f

σ
+ r . (2.19)

with probability at least 1 − δ.
Alternatively, suppose that Assumption 1.3 holds and g(x) is calculated via (2.14).

If

N ≥ 3n

δr2

(
3‖∇φ(x)‖2 + M2σ 4

36
(n + 2)(n + 4)(n + 6) + ε2f

σ 2

)
,

then, for all x ∈ R
n and r > 0,

‖g(x) − ∇φ(x)‖ ≤ nMσ 2 +
√
nε f

σ
+ r . (2.20)

with probability at least 1 − δ.

123

Foundations of Computational Mathematics

Proof The proof of the first part (2.19) is a straightforward combination of the bound
in (2.10) and the result of the first part of Lemma 2.5. The proof for the second part
(2.20) is a straightforward combination of the bound in (2.11) and the result of the
second part of Lemma 2.5. ��

With the results of Theorem 2.6, we can now derive bounds on σ and N that ensure
that (1.3) holds with probability 1 − δ. To ensure (1.3), with probability 1 − δ, using
Theorem 2.6 we want the following to hold

√
nLσ +

√
nε f

σ
≤ λθ‖∇φ(x)‖, (2.21)

r ≤ (1 − λ)θ‖∇φ(x)‖, (2.22)

for some λ ∈ (0, 1).
Let us first consider g(x) calculated via (2.13). To ensure that (2.21) holds, we

impose conditions derived following the same logic aswas done for the case of Forward
Finite Differences. Namely,

σ =
√

ε f

L
and ‖∇φ(x)‖ ≥ 2

√
nLε f

λθ
.

Now using these bounds and substituting r = (1−λ)θ‖∇φ(x)‖ into the first bound
on N in Theorem 2.6, we have

3n

δr2

(
3‖∇φ(x)‖2 + L2σ 2

4
(n + 2)(n + 4) + 4ε2f

σ 2

)

≤ 9n

δθ2

1

(1 − λ)2
+

(
3(n + 2)(n + 4)

16δ
+ 3

δ

)
λ2

(1 − λ)2
. (2.23)

We are interested in making the lower bound on N as small as possible, and hence,
we are concerned with its dependence on n, when n is relatively large. Henceforth, we
assume that n > 1 and choose λ such that λ2

(1−λ)2
≤ 1

n+2 so as to reduce the scaling of
the second termwith n and to simplify the expression. This is always possible, because

λ2

(1−λ)2
is monotonically increasing with λ and equals 0 for λ = 0. Specifically, we can

choose λ = 1
3
√
n
, because it is easy to show that for this value of λ, λ2

(1−λ)2
≤ 1

n+2 ≤ 1
n

for all n ≥ 1. In fact, for large values of n we can choose λ to be closer in value to
1√
n
, but for simplicity we will consider the choice that fits all n. Using the fact that

λ ≤ 1√
n
, and thus, 1

(1−λ)2
≤ n

(
√
n−1)2

, and also that 1
n+2 ≤ 1

2 , the right hand side of
(2.23) is bounded from above by

9n

δθ2

n

(
√
n − 1)2

+ 3(n + 4)

16δ
+ 3

nδ
. (2.24)

123

Foundations of Computational Mathematics

This implies that by choosing N at least as large as the value of (2.24) we ensure that
(2.22) holds.

We now summarize the result for the gradient approximation computed via (2.13),
for λ = 1

3
√
n
.

Corollary 2.7 Suppose that Assumption 1.2 holds, n > 1 and g(x) is computed via
(2.13) with N and σ satisfying,

N ≥ 9n

δθ2

n

(
√
n − 1)2

+ 3(n + 4)

16δ
+ 3

nδ
and σ =

√
ε f

L
.

If ‖∇φ(x)‖ ≥ 6n
√

Lε f

θ
, then (1.3) holds with probability 1 − δ.

The bound for the number of samples for GSG is larger than those required by
FFD and interpolation, since the latter are fixed at n, although both scale linearly in
n. Moreover, the dependence of N on δ is high. However, this bound is derived as an
upper bound, and hence in order to verify that GSG indeed requires a large number of
samples to satisfy (1.3) we need to establish the lower bound on N . In what follows,
we show that linear scaling of N with respect to n is necessary to guarantee that (1.3)
is satisfied. The dependence on δ is likely to be too pessimistic and is an artifact of
using Chebychev’s inequality. In the next section, we analyze a method that estimates
gradients using samples uniformly distributed on a sphere, and for which we obtain
better dependence on δ but still linear scaling with n. Note, also, that the dependence
of the lower bound for ‖∇φ(x)‖ on n in the GSG case is larger by a factor of

√
n as

compared to the FFD case
Wenowderive the analogous bounds on N andσ for the casewhen g(x) is calculated

via (2.14). To ensure (1.3), with probability 1 − δ, using Theorem 2.6 we want the
following to hold

nMσ 2 +
√
nε f

σ
≤ λθ‖∇φ(x)‖, (2.25)

r ≤ (1 − λ)θ‖∇φ(x)‖, (2.26)

for some λ ∈ (0, 1). In order to ensure that (2.25) holds, we use the same logic as was
done for Central Finite Differences in Sect. 2.1. Namely, we require the following:

σ = 3

√
ε f

2
√
nM

and ‖∇φ(x)‖ ≥ 3

λθ

3

√
n2Mε2f

4
.

Now using these bounds and setting r = (1− λ)θ‖∇φ(x)‖ into the second bound on
N in Theorem 2.6 we have

3n

δr2

(
3‖∇φ(x)‖2 + M2σ 4

36
(n + 2)(n + 4)(n + 6) +

ε2f

σ 2

)

123

Foundations of Computational Mathematics

≤ 9n

δθ2
1

(1 − λ)2
+

(
(n + 2)(n + 4)(n + 6)

48nδ
+ 3

4δ

)
λ2

(1 − λ)2
.

As before, we are interested in making the lower bound on N to scale at most linearly
with n. Thus, to achieve this and to simplify the expression we choose λ such that

λ2

(1−λ)2
≤ n

(n+2)(n+4) ≤ 1
n , which reduces the scaling of the second term with respect

to n and simplifies the expression. It is easy to show that λ = 1
6
√
n

≤ 1√
n
satisfies this

condition. Then, using again the fact that 1
(1−λ)2

≤ n
(
√
n−1)2

and n
(n+2)(n+4) ≤ 1

2 the
above expression is bounded by

9n

δθ2

n

(
√
n − 1)2

+ n + 6

48δ
+ 3

4nδ
.

We now summarize the result for the gradient approximation computed via (2.14),
for λ = 1

6
√
n
.

Corollary 2.8 Suppose that Assumption 1.3 holds, n > 1 and g(x) is computed via
(2.14) with N and σ satisfying,

N ≥ 9n

δθ2

n

(
√
n − 1)2

+ n + 6

48δ
+ 3

4nδ
and σ = 3

√
ε f

2
√
nM

.

If ‖∇φ(x)‖ ≥ 18
θ

3

√
n7/2Mε2f

4 , then (1.3) holds with probability 1 − δ.

2.3.1 Lower Bound on ı

We have demonstrated that if N ≥ Ω(9n
θ2δ

), then P(‖g(x)−∇φ(x)‖ ≤ θ‖∇φ(x)‖) ≥
1 − δ; that is, having a large enough number of samples is sufficient to ensure accu-
rate gradient approximations with a desired probability. A question that remains is
how many samples are necessary to ensure that accurate gradient approximations are
obtained with high probability. Here we derive a lower bound on the probability of
failure for (2.13) to satisfy condition (1.3); i.e.,

P (‖g(x) − ∇φ(x)‖ > θ‖∇φ(x)‖) . (2.27)

We derive the lower bound for (2.27) theoretically, and then illustrate the lower
bounds via numerical simulations for the specific case of a simple linear function
of the form f (x) = φ(x) = aᵀx , where a is an arbitrary nonzero vector in R

n . For
simplicity, through this subsectionwe assume that ε(x) = 0 for all x ∈ R

n . In this case,
for any σ ,∇F(x) = a. Note also that in this case∇ f (x) = ∇φ(x) = ∇F(x) = a.We
show that while theory gives us a weak lower bound, numerical simulations indicate
that the true lower bound is much closer to the upper bound, in terms of dependence
on n.

123

Foundations of Computational Mathematics

We use the following lower bound on the tail of a random variable X , derived in
[36]. For any b that satisfies 0 ≤ b ≤ E [|X |] < ∞,

P(|X | > b) ≥ (E[|X |] − b)2

E[|X |2] .

We apply this bound to the random variable ‖g(x) − ∇F(x)‖, and b = θ‖a‖. We
have

P (‖g(x) − ∇φ(x)‖ > θ‖∇φ(x)‖) = P(‖g(x) − ∇F(x)‖ > b)

= P(‖g(x) − ∇F(x)‖2 > b2)

≥
(
E

[‖g(x) − ∇F(x)‖2] − b2
)2

E
[‖g(x) − ∇F(x)‖4]

for any b such that 0 ≤ b ≤
√
E

[‖g(x) − ∇F(x)‖2]. The reason we consider the

squared version of the condition is we are unable to calculate E
[‖g(x) − ∇F(x)‖k]

when k is odd.
For brevity,weomit the derivations ofE

[‖g(x) − ∇F(x)‖2] andE [‖g(x) − ∇F(x)‖4]
from the main paper, and refer the reader to Appendices A.4 and A.5, respectively.
The required expressions are:

E

[
‖g(x) − ∇F(x)‖2

]
= 1

N
(n + 1)aᵀa, (2.28)

E

[
‖g(x) − ∇F(x)‖4

]
= 1

N3

(
(N − 1)(n2 + 4n + 7)(aᵀa)2 + (3n2 + 20n + 37)(aᵀa)2

)
.

(2.29)

Thus, for φ(x) = aᵀx ,

P (‖g(x) − a‖ > θ‖a‖) ≥
N4

(
1
N (n + 1)aᵀa − θ2aᵀa

)2

N (N − 1)(n2 + 4n + 7)(aᵀa)2 + N (3n2 + 20n + 37)(aᵀa)2

=
N

(
(n + 1)aᵀa − Nθ2aᵀa

)2

(N − 1)(n2 + 4n + 7)(aᵀa)2 + (3n2 + 20n + 37)(aᵀa)2

=
N

(
(n + 1) − θ2N

)2

(N − 1)(n2 + 4n + 7) + (3n2 + 20n + 37)

for any θ and N such that 0 ≤ θ2aᵀa ≤ 1
N (n + 1)aᵀa.

Consider n large enough such that 4(n + 1)2 ≥ n2 + 4n + 7 which is satisfied

for n ≥
√
13−2
3 ≈ 0.54; and 4(n + 1)2 ≥ 3n2 + 20n + 37 which is satisfied for

n ≥ 6 + √
69 ≈ 14.31 (henceforth we assume that n ≥ 15). Then wehave,

123

Foundations of Computational Mathematics

N ((n + 1) − θ2N)2

(N − 1)(n2 + 4n + 7) + (3n2 + 20n + 37)
≥ N ((n + 1) − θ2N)2

(N − 1)4(n + 1)2 + 4(n + 1)2

= ((n + 1) − θ2N)2

4(n + 1)2
.

Thus, from

P (‖g(x) − a‖ > θ‖a‖) ≥ ((n + 1) − θ2N)2

4(n + 1)2
≥ δ,

we get

N ≤ (n + 1)(1 − 2
√

δ)

θ2
⇒ P(‖g(x) − ∇φ(x)‖ > θ‖∇φ(x)‖) ≥ δ.

It follows that for any 0 < δ < 1
4 , n ≥ 15 and N ≤ 1

θ2
(1 − 2

√
δ)(n + 1)

P(‖g(x) − ∇φ(x)‖ > θ‖∇φ(x)‖) ≥ δ.

In other words, to have P(‖g(x) − ∇φ(x)‖ ≤ θ‖∇φ(x)‖) > 1 − δ, it is necessary to

have N >
(1−2

√
δ)

θ2
(n + 1), which is a linear function in n.

We now show through numerical simulation of the specific case of φ(x) = aᵀx
that in fact for much larger values of δ, N ≥ n is required to achieve (1.3) for any
θ < 1. Specifically, Fig. 1 shows the distribution of

θ = ‖g(x) − ∇φ(x)‖
‖∇φ(x)‖ ,

approximately computed via running 10000 experiments, where φ(x) = eᵀx (e is
a vector of all ones) and n = 32, for different choices of N ∈ {1, 2, 4, 8, 16, 32,
64, 128, 256, 512}. As is clear, θ is never smaller than 1 when N = 1. Moreover, θ is
smaller than 1

2 , which is required by the theory in [5], only about half the time when
N = 128 = 4n. Figure 1k shows the percent of successful trials (θ < 1

2) versus the
size of the sample set (N), and Table 1l shows statistics of the empirical experiments
for different sizes of the sample set (N). As expected, as N grows, the value of θ

decreases, something that is not surprising, but at the same time not captured by the
derived lower bound. Thus, we conclude that the theoretical lower bound we derive
here is weak and to satisfy (1.3) with θ < 1

2 and probability of at least
1
2 the size of the

sample set needs to be larger than n. A stronger theoretical lower bound supporting
this claim remains an open question.

In Sect. 3, we present numerical evidence that shows that for a variety of functions
choosing N to be a small constant almost always results in large values of ‖g(x)−∇φ(x)‖

‖∇φ(x)‖
with probability close to 1.

123

Foundations of Computational Mathematics

(a) N = 1 (n/32) (b) N = 2 (n/16) (c) N = 4 (n/8) (d) N = 8 (n/4) (e) N = 16 (n/2)

(f)N = 32 (n) (g) N = 64 (2n) (h) N = 128 (4n) (i) N = 256 (8n) (j) N = 512 (16n)

1 2 4 8 16 32 64 128 256 512
N

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f S

uc
ce

ss
fu

l T
ria

ls

(k) Percent of successful trials vs. N

NNN Mean (θθθ) Median (θθθ) Variance (θθθ)
Percent of
Successful

Trials

1 (n/32) 4.62 3.69 11.44 0
2 (n/16) 3.62 3.23 3.67 0
4 (n/8) 2.70 2.53 1.07 0
8 (n/4) 1.96 1.87 0.31 0
16 (n/2) 1.41 1.36 0.093 0
32 (n) 1.00 0.98 0.032 0
64 (2n) 0.71 0.70 0.012 1.04
128 (4n) 0.50 0.50 0.0051 49.53
256 (8n) 0.36 0.35 0.0023 99.56
512 (16n) 0.25 0.25 0.0011 100

(l) Summary of Results

Fig. 1 Distribution of θ for φ(x) = eᵀx , at x = e, where e is a vector of all ones, and n = 32

2.4 Gradient Estimation via Smoothing on a Sphere

Similar to the Gaussian smoothing technique, one can also smooth the function f with
a uniform distribution on a ball, i.e.,

F(x) = Ey∼U(B(x,σ))[f (y)] =
∫

B(x,σ)

f (y)
1

Vn(σ)
dy

= Eu∼U(B(0,1))[f (x + σu)] =
∫

B(0,1)
f (x + σu)

1

Vn(1)
du, (2.30)

123

Foundations of Computational Mathematics

where U(B(x, σ)) denotes the multivariate uniform distribution on a ball of radius σ

centered at x and U(B(0, 1)) denotes the multivariate uniform distribution on a ball
of radius 1 centered at 0. The function Vn(σ) represents the volume of a ball in Rn of
radius σ . It was shown in [23] that the gradient of F can be expressed as

∇F(x) = n

σ
Eu∼U(S(0,1))[f (x + σu)u],

whereS(0, 1) represents a unit sphere of radius 1 centered at 0. This leads to threeways
of approximating the gradient with only function evaluations using sample average
approximations

g(x) = n

Nσ

N∑

i=1

f (x + σui)ui , (2.31)

g(x) = n

N

N∑

i=1

f (x + σui) − f (x)

σ
ui , (2.32)

g(x) = n

N

N∑

i=1

f (x + σui) − f (x − σui)

2σ
ui , (2.33)

with N independently and identically distributed random vectors {ui }Ni=1 following a
uniform distribution on the unit sphere. Similar to the case with Gaussian smoothing,
the variance of (2.31) explodes when σ goes to zero, and thus, we do not consider this
formula. We analyze (2.32), which we refer to as ball smoothed gradient (BSG) and
(2.33) which we refer to as central BSG (cBSG).

Again, as in the Gaussian smoothed case, there are two sources of error in the
gradient approximations, and namely,

‖g(x) − ∇φ(x)‖ ≤ ‖∇F(x) − ∇φ(x)‖ + ‖g(x) − ∇F(x)‖. (2.34)

Let Assumption 1.1 hold. One can bound the first term as follows: if the function φ

has L-Lipschitz continuous gradients, that is if Assumption 1.2 holds, then

‖∇F(x) − ∇φ(x)‖ ≤ Lσ + nε f

σ
, (2.35)

and if the function φ has M-Lipschitz continuous Hessians, that is if Assumption 1.3
holds, then

‖∇F(x) − ∇φ(x)‖ ≤ Mσ 2 + nε f

σ
. (2.36)

The proofs are given in Appendices A.6 and A.7, respectively.

123

Foundations of Computational Mathematics

For the second error term in (2.34), similar to the case of Gaussian smoothing, we
begin with the variance of g(x). The variance of (2.32) can be expressed as

Var {g(x)} = n2

N
Eu∼U(S(0,1))

[(
f (x + σu) − f (x)

σ

)2

uuᵀ
]

− 1

N
∇F(x)∇F(x)ᵀ,

(2.37)

and the variance of (2.33) can be expressed as

Var {g(x)} = n2

N
Eu∼U(S(0,1))

[(
f (x + σu) − f (x − σu)

2σ

)2

uuᵀ
]

− 1

N
∇F(x)∇F(x)ᵀ.

(2.38)

For a random variable u ∈ R
n that is uniformly distributed on the unit sphere

S(0, 1) ⊂ R
n , we have

Eu∼U(S(0,1))

[
(aᵀu)2uuᵀ

]
= aᵀaI + 2aaᵀ

n(n + 2)

Eu∼U(S(0,1))

[
aᵀu‖u‖kuuᵀ

]
= 0n×n for k = 0, 1, 2, ...

Eu∼U(S(0,1))

[
‖u‖kuuᵀ

]
= 1

n
I for k = 0, 1, 2, ...,

(2.39)

where a ∈ R
n is any constant vector; see Appendix A.8 for derivations. We now

provide bounds for the variances of BSG and cBSG under the assumption of Lipschitz
continuous gradients and Hessians, respectively.

Lemma 2.9 Under Assumption 1.2, if g(x) is calculated by (2.32), then, for all x ∈ R
n,

Var {g(x)} � κ(x)I where

κ(x) = 3

N

(
3n

n + 2
‖∇φ(x)‖2 + nL2σ 2

4
+ 4nε2f

σ 2

)
.

Alternatively, under Assumption 1.3, if g(x) is calculated by (2.33), then, for all
x ∈ R

n, Var {g(x)} � κ(x)I where

κ(x) = 3

N

(
3n

n + 2
‖∇φ(x)‖2 + nM2σ 4

36
+ nε2f

σ 2

)
.

Proof Analoguous to the proof of Lemma 2.4, we derive from (2.37) to get

Var {g(x)}

� 3n2

N
Eu∼U(S(0,1))

[(
φ(x + σu) − φ(x) − σ∇φ(x)ᵀu

σ

)2

uuᵀ

123

Foundations of Computational Mathematics

+
(

ε(x + σu) − ε(x)

σ

)2

uuᵀ + (∇φ(x)ᵀu)2uuᵀ
]

� 3n2

N
Eu∼U(S(0,1))

[(
Lσ

2
uᵀu

)2

uuᵀ +
(
2ε f

σ

)2

uuᵀ + (∇φ(x)ᵀu
)2

uuᵀ
]

(2.39)= 3n2

N

(
L2σ 2

4n
I + 4ε2f

σ 2n
I + ‖∇φ(x)‖2

n(n + 2)
I + 2

n(n + 2)
∇φ(x)∇φ(x)ᵀ

)

� 3

N

(
nL2σ 2

4
+ 4nε2f

σ 2 + 3n

n + 2
‖∇φ(x)‖2

)
I .

For cBSG, by (2.38) we have

Var {g(x)}

� 3n2

N
Eu∼U(S(0,1))

[(
φ(x + σu) − φ(x − σu) − 2σ∇φ(x)ᵀu

2σ

)2

uuᵀ

+
(

ε(x + σu) − ε(x)

2σ

)2

uuᵀ + (∇φ(x)ᵀu)2uuᵀ
]

� 3n2

N
Eu∼U(S(0,1))

[(
Mσ 2

6
‖u‖3

)2

uuᵀ +
(
2ε f

2σ

)2

uuᵀ + (∇φ(x)ᵀu)2uuᵀ
]

(2.39)= 3n2

N

(
M2σ 4

36n
I + ε2f

σ 2n
I + ‖∇φ(x)‖2

n(n + 2)
I + 2

n(n + 2)
∇φ(x)∇φ(x)ᵀ

)

� 3

N

(
nM2σ 4

36
+ nε2f

σ 2 + 3n

n + 2
‖∇φ(x)‖2

)
I .

��
Using the results of Lemma 2.9, we can bound the quantity ‖g(x) − ∇F(x)‖ in

(2.34), with probability 1 − δ, using Chebyshev’s inequality, just as we did in the
case of GSG. However, ball smoothed gradient approach has a significant advantage
over Gaussian smoothing in that it allows the use of Bernstein’s inequality [49, The-
orem 6.1.1] instead of Chebychev’s and the resulting bound on N has a significantly
improved dependence on the probability δ.

Bernstein’s inequality applies here because, unlike GSG (and cGSG), BSG (and
cBSG) enjoys a deterministic bound on the error term n f (x+σu)− f (x)

σ
u − F(x); see

proof of Lemma 2.10.

Lemma 2.10 Let F be a ball smoothed approximation of f (2.30). Under Assumption
1.2, if g(x) is calculated via (2.32) with sample size

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Lσ + 4ε f

σ

)]
log

n + 1

δ
,

123

Foundations of Computational Mathematics

then, for all x ∈ R
n, ‖g(x) − ∇F(x)‖ ≤ r holds with probability at least 1 − δ, for

any r > 0 and 0 < δ < 1.
Alternatively, under Assumption 1.3 if g(x) is calculated via (2.33) with sample

size 2N where

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+

ε2f

σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Mσ 2

3
+ 2ε f

σ

)]
log

n + 1

δ
,

then, for all x ∈ R
n, ‖g(x) − ∇F(x)‖ ≤ r holds with probability at least 1 − δ, for

any r > 0 and 0 < δ < 1.

Proof We first note that

Eu∼U(S(0,1))

[
n

N

f (x + σu) − f (x)

σ
u − 1

N
∇F(x)

]
= 0,

and

∥∥∥∥
n

N

f (x + σu) − f (x)

σ
u − 1

N
∇F(x)

∥∥∥∥

=
∥∥∥∥
n

N

f (x + σu) − f (x)

σ
u − n

N
Ev∼U(S(0,1))

[
f (x + σv) − f (x)

σ
v

]∥∥∥∥

≤ n

Nσ
| f (x + σu) − f (x)| ‖u‖ + n

Nσ
Ev∼U(S(0,1)) [| f (x + σv) − f (x)| ‖v‖]

= n

Nσ
|φ(x + σu) + ε(x + σu) − φ(x) − ε(x)|

+ n

Nσ
Ev∼U(S(0,1)) [|φ(x + σv) + ε(x + σv) − φ(x) − ε(x)|]

≤ n

Nσ

(
|∇φ(x)ᵀσu| + L‖σu‖2

2
+ 2ε f

)

+ n

Nσ
Ev∼U(S(0,1))

[
|∇φ(x)ᵀσv| + L‖σv‖2

2
+ 2ε f

]

≤ n

N
(2‖∇φ(x)‖ + Lσ + 4ε f

σ
),

for any u ∼ U(S(0, 1)). The matrix variance statistic of g(x) − ∇F(x) is

v(g(x) − ∇F(x))

= max
{‖E [

(g(x) − ∇F(x))(g(x) − ∇F(x))ᵀ
] ‖,E [

(g(x) − ∇F(x))ᵀ(g(x) − ∇F(x))
]}

≤ max

{
3

N

(
3n

n + 2
‖∇φ(x)‖2 + nL2σ 2

4
+

4nε2f

σ 2

)
,
3n2

N

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)}

= 3n2

N

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)
,

123

Foundations of Computational Mathematics

where the two terms in the maximization are ‖Var {g(x)} ‖ and trace(Var {g(x)}). The
upper bound on these two terms are from Lemma 2.9. Then by Bernstein’s inequality,
we have

P(‖g(x) − ∇F(x)‖ ≥ r)

≤ (n + 1) exp

(
−r2/2

v(g(x) − ∇F(x)) + nr
3N (2‖∇φ(x)‖ + Lσ + 4ε f

σ
)

)

≤ (n + 1) exp

⎛

⎜⎜⎝
−r2/2

3n2
N

(
‖∇φ(x)‖2

n + L2σ 2

4 + 4ε2f
σ 2

)
+ nr

3N (2‖∇φ(x)‖ + Lσ + 4ε f
σ

)

⎞

⎟⎟⎠ .

In order to ensure that P(‖g(x) − ∇F(x)‖ ≥ r) ≤ δ, for some δ ∈ (0, 1), we require
that

(n + 1) exp

⎛

⎜⎜⎝
−r2/2

3n2
N

(
‖∇φ(x)‖2

n + L2σ 2

4 + 4ε2f
σ 2

)
+ nr

3N (2‖∇φ(x)‖ + Lσ + 4ε f
σ

)

⎞

⎟⎟⎠ ≤ δ,

from which we conclude that

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Lσ + 4ε f

σ

)]
log

n + 1

δ
.

For the cBSG case, note that

Eu∼U(S(0,1))

[
n

N

f (x + σu) − f (x − σu)

2σ
u − 1

N
∇F(x)

]
= 0,

and

∥∥∥∥
n

N

f (x + σu) − f (x − σu)

2σ
u − 1

N
∇F(x)

∥∥∥∥

≤ n

2Nσ
| f (x + σu) − f (x − σu)| ‖u‖

+ n

2Nσ
Ev∼U(S(0,1)) [| f (x + σv) − f (x − σv)| ‖v‖]

= n

2Nσ
|φ(x + σu) + ε(x + σu) − φ(x − σu) − ε(x − σu)|

+ n

2Nσ
Ev∼U(S(0,1)) [|φ(x + σv) + ε(x + σv) − φ(x) − ε(x)|]

≤ n

2Nσ

(
|2∇φ(x)ᵀσu| + M‖σu‖3

3
+ 2ε f

)

123

Foundations of Computational Mathematics

+ n

2Nσ
Ev∼U(S(0,1))

[
|2∇φ(x)ᵀσv| + M‖σv‖3

3
+ 2ε f

]

≤ n

N

(
2‖∇φ(x)‖ + Mσ 2

3
+ 2ε f

σ

)
,

for any u ∼ U(S(0, 1)). The matrix variance statistic of g(x) − ∇F(x) is

v(g(x) − ∇F(x))

= max
{‖E [

(g(x) − ∇F(x))(g(x) − ∇F(x))ᵀ
] ‖,E [

(g(x) − ∇F(x))ᵀ(g(x) − ∇F(x))
]}

≤ max

{
3

N

(
3n

n + 2
‖∇φ(x)‖2 + nM2σ 4

36
+

nε2f

σ 2

)
,
3n2

N

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+

ε2f

σ 2

)}

= 3n2

N

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+

ε2f

σ 2

)
.

By Bernstein’s inequality, we have

P(‖g(x) − ∇F(x)‖ ≥ r)

≤ (n + 1) exp

⎛

⎝ −r2/2

v(g(x) − ∇F(x)) + nr
3N

(
2‖∇φ(x)‖ + Mσ 2

3 + 2ε f
σ

)

⎞

⎠

≤ (n + 1) exp

⎛

⎜⎜⎝
−r2/2

3n2
N

(
‖∇φ(x)‖2

n + M2σ 4

36 + ε2f

σ 2

)
+ nr

3N

(
2‖∇φ(x)‖ + Mσ 2

3 + 2ε f
σ

)

⎞

⎟⎟⎠ .

In order to ensure that P(‖g(x) − ∇F(x)‖ ≥ r) ≤ δ, for some δ ∈ (0, 1), we require
that

(n + 1) exp

⎛

⎜⎜⎝
−r2/2

3n2
N

(
‖∇φ(x)‖2

n + M2σ 4

36 + ε2f

σ 2

)
+ nr

3N

(
2‖∇φ(x)‖ + Mσ 2

3 + 2ε f
σ

)

⎞

⎟⎟⎠ ≤ δ,

from which we conclude that

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+

ε2f

σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Mσ 2

3
+ 2ε f

σ

)]
log

n + 1

δ
.

��
Now, with bounds for both terms in (2.34), we can bound ‖g(x) − ∇φ(x)‖, in

probability.

123

Foundations of Computational Mathematics

Theorem 2.11 Suppose that Assumption 1.2 holds and g(x) is calculated via (2.32).
If

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Lσ + 4ε f

σ

)]
log

n + 1

δ
,

then, for all x ∈ R
n and r > 0,

‖g(x) − ∇φ(x)‖ ≤ Lσ + nε f

σ
+ r . (2.40)

with probability at least 1 − δ.
Alternatively, suppose that Assumption 1.3 holds and g(x) is calculated via (2.33).

If

N ≥
[
6n2

r2

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+

ε2f

σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Mσ 2

3
+ 2ε f

σ

)]
log

n + 1

δ
,

then, for all x ∈ R
n and r > 0,

‖g(x) − ∇φ(x)‖ ≤ Mσ 2 + nε f

σ
+ r . (2.41)

with probability at least 1 − δ.

Proof The proof for the first part (2.40) is a straightforward combination of the bound
in (2.35) and the result of the first part of Lemma 2.10. The proof for the second part
(2.41) is a straightforward combination of the bound in (2.36) and the result of the
second part of Lemma 2.10. ��

In Theorem 2.11 one should notice the improved dependence of the size of the
sample set N on the probability δ as compared to Theorem 2.6. While Bernstein’s
inequality does not apply in the case of the Gaussian smoothed gradient, there may be
other ways to establish a better dependence on δ. However, the dependence on n in all
cases is linear, which as we have shown for the GSG case is a necessary dependence.
A similar lower bound result for BSG can be derived analogously.

Using the results of Theorem 2.11, as before, we derive bounds on σ and N that
ensure that (1.3) holds with probability 1− δ. To ensure (1.3), with probability 1− δ,
using Theorem 2.11 we want the following to hold

Lσ + nε f

σ
≤ λθ‖∇φ(x)‖, (2.42)

r ≤ (1 − λ)θ‖∇φ(x)‖, (2.43)

for some λ ∈ (0, 1).

123

Foundations of Computational Mathematics

Let us first consider g(x) calculated via (2.32). As before, to ensure that (2.42)
holds, we impose the following conditions:

σ =
√
nε f

L
and ‖∇φ(x)‖ ≥ 2

√
nLε f

λθ
.

Now using these bounds and substituting r = (1 − λ)θ‖∇φ(x)‖ into the first bound
on N in Theorem 2.11 we have

[
6n2

r2

(
‖∇φ(x)‖2

n
+ L2σ 2

4
+

4ε2f
σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Lσ + 4ε f

σ

)]
log

n + 1

δ

≤
[
6n

θ2
1

(1 − λ)2
+

(
3n2

8
+ 6

)
λ2

(1 − λ)2
+ 4n

3θ

1

1 − λ
+

(
n

3
+ 4

3

)
λ

1 − λ

]
log

n + 1

δ
.

Asbefore,we are interested inmaking the lower bound on N to scale atmost linearly
with n. Thus, to achieve this and to simplify the expression we choose λ = 1

2
√
n
so

that λ2

(1−λ)2
≤ 1

n , for all n. Then, using that 1
(1−λ)2

≤ n
(
√
n−1)2

the above expression is
bounded by

[
6n

θ2

n

(
√
n − 1)2

+ 3n

8
+ 6

n
+ 4n

3θ

√
n√

n − 1
+

√
n

3
+ 4

3
√
n

]
log

n + 1

δ
. (2.44)

This implies that by choosing N at least as large as the value of (2.44) we ensure
that (2.43) holds.

We now summarize the result for the gradient approximation computed via (2.32),
for λ = 1

2
√
n
.

Corollary 2.12 Suppose that Assumption 1.2 holds, n > 1 and g(x) is computed via
(2.32) with N and σ satisfying,

N ≥
[
6n

θ2

n

(
√
n − 1)2

+ 3n

8
+ 6

n
+ 4n

3θ

√
n

(
√
n − 1)

+
√
n

3
+ 4

3
√
n

]
log

n + 1

δ

and σ =
√
nε f

L
.

If ‖∇φ(x)‖ ≥ 4n
√

Lε f

θ
, then (1.3) holds with probability 1 − δ.

Wenowderive the analogous bounds on N andσ for the casewhen g(x) is calculated
via (2.33). To ensure (1.3), with probability 1 − δ, using Theorem 2.11 we want the
following to hold

Mσ 2 + nε f

σ
≤ λθ‖∇φ(x)‖, (2.45)

r ≤ (1 − λ)θ‖∇φ(x)‖, (2.46)

123

Foundations of Computational Mathematics

for some λ ∈ (0, 1). In order to ensure that (2.45) holds, we use the same logic as was
done for Central Finite Differences in Sect. 2.1. Namely, we require the following:

σ = 3

√
nε f

2M
and ‖∇φ(x)‖ ≥ 3

λθ

3

√
n2Mε2f

4
.

Now using these bounds and setting r = (1− λ)θ‖∇φ(x)‖ into the second bound on
N in Theorem 2.11 we have

[
6n2

r2

(
‖∇φ(x)‖2

n
+ M2σ 4

36
+ ε2f

σ 2

)
+ 2n

3r

(
2‖∇φ(x)‖ + Mσ 2

3
+ 2ε f

σ

)]
log

n + 1

δ

≤
[
6n

θ2

1

(1 − λ)2
+

(
n2

24
+ 3

2

)
λ2

(1 − λ)2
+ 4n

3θ

1

1 − λ
+

(
n

9
+ 2

3

)
λ

1 − λ

]
log

n + 1

δ
.

As before, we are interested in making the lower bound on N to scale at most linearly
with n. Thus, to achieve this and to simplify the expression we choose λ such that

λ2

(1−λ)2
≤ 1

n , which, implies that λ ≤ 1√
n
. Then, using again the fact that 1

(1−λ)2
≤

n
(
√
n−1)2

and 1
n ≤ 1 the above expression is bounded by

[
6n

θ2

n

(
√
n − 1)2

+ n

24
+ 3

2n
+ 4n

3θ

√
n√

n − 1
+

√
n

9
+ 2

3
√
n

]
log

n + 1

δ
.

We now summarize the result for the gradient approximation computed via (2.33),
using the fact that λ = 1

2
√
n
.

Corollary 2.13 Suppose that Assumption 1.3 holds, n > 1 and g(x) is computed via
(2.33) with N and σ satisfying,

N ≥
[
6n

θ2

n

(
√
n − 1)2

+ n

24
+ 3

2n
+ 4n

3θ

√
n√

n − 1
+

√
n

9
+ 2

3
√
n

]
log

n + 1

δ

and σ = 3

√
nε f

2M
.

If ‖∇φ(x)‖ ≥ 6
θ

3

√
n7/2Mε2f

4 , then (1.3) holds with probability 1 − δ.

2.5 SmoothingVersus Interpolation gradients

We now want to give some quick intuition explaining why GSG and BSG method do
not provide as high accuracy as linear interpolation. Let us consider the two method of
estimating gradients based on the same sample set. In particular, to compare GSGwith
linear interpolation,we choose the sample setX = {x+σu1, x+σu2, . . . , x+σun} for
some σ > 0 with u obeying the standard Gaussian distribution. Recall the definition

123

Foundations of Computational Mathematics

of the matrix QX and the vector FX (see Sect. 2.2), and the fact that the gradient
estimate computed by linear interpolation satisfies

QX gL I = FX /σ.

The GSG estimate, on the other hand is written as,

gGSG = 1

n
QT
X FX /σ = 1

n
QT
X QX gL I .

Hence, we obtain

‖gL I − gGSG‖ =
∥∥∥∥

(
I − 1

n
QT
X QX

)
gL I

∥∥∥∥ .

We know that, when ε(x) = 0 for all x ∈ R
n , the difference ‖gL I − ∇φ(x)‖ goes to

zero as σ → 0. However, ‖(I − 1
n Q

T
X QX)gL I‖ does not, as it does not depend on σ .

While we have E[1n QT
X QX] = I , nevertheless, with non-negligible probability, the

matrix ‖(I − 1
n Q

T
X QX)gL I‖ ≥ ν‖gL I ‖ for some fixed non-negligible value of λ, for

example, ν > 1/2.
The intuition for the BSG can be derived in the same manner.

2.6 Summary of Results

In this section, we summarize the results for all methods. Specifically, Table 2 sum-
marizes the conditions on N , σ and ∇φ(x) for each method that we consider in this
paper to guarantee condition (1.3). Note that for the smoothing methods the bounds
hold with probability 1− δ and the number of samples depends on δ. From the table,
it is clear that for large n (n

(
√
n−1)2

goes to 1 as n → ∞), all methods have the same
dependence (order of magnitude) on the dimension n; however, for the smoothing
methods the constants in the bound can be significantly larger than those for deter-
ministic methods, such as finite differences. This suggests that deterministic methods
may be more efficient, at least in the setting considered in this paper, when accurate
gradient estimates are desired. The bounds on the sampling radius are comparable for
the smoothing and deterministic methods

3 Numerical Results

In this section, we test our theoretical conclusions via numerical experiments. First, we
present numerical results evaluating the quality of gradient approximations constructed
via finite differences, linear interpolation, Gaussian smoothing, and smoothing on a
unit sphere (Sect. 3.1). We then illustrate the performance of a line search derivative-
free optimization algorithm that employs the aforementioned gradient approximations
on standard DFO benchmarking problems as well as on Reinforcement Learning tasks
(Sect. 3.2).

123

Foundations of Computational Mathematics

Ta
bl
e
2

B
ou

nd
s
on

N
,σ

an
d

‖∇
φ

(x
)‖

th
at
en
su
re

‖g
(x

)
−

∇φ
(x

)‖
≤

θ
‖∇

φ
(x

)‖
G
ra
di
en
tA

pp
ro
xi
m
at
io
n

N
σ

‖∇
φ

(x
)‖

Fo
rw

ar
d
fin

ite
di
ff
er
en
ce
s

n
2√

ε
f L

2√ n
L
ε
f

θ

C
en
tr
al
fin

ite
di
ff
er
en
ce
s

n
3√
6ε

f
M

3√ 9
3√
n3

/
2
M

ε
2 f

2θ

L
in
ea
r
in
te
rp
ol
at
io
n

n
2√

ε
f L

2‖
Q

−1 X
‖√ n

L
ε
f

θ

G
au
ss
ia
n
sm

oo
th
ed

gr
ad
ie
nt
sa

9n δ
θ
2

n
(√ n−

1)
2

+
3(
n+

4)
16

δ
+

3 nδ

√
ε
f L

6n
√ L

ε
f

θ

C
en
te
re
d
G
au
ss
ia
n
sm

oo
th
ed

gr
ad
ie
nt
sa

9n δ
θ
2

n
(√ n−

1)
2

+
n+

6
48

δ
+

3 4n
δ

3√
ε
f

√ n
M

18
3√
n7

/
2
M

ε
2 f

3√ 4θ

Sp
he
re

sm
oo

th
ed

gr
ad
ie
nt
sa

[(
6n θ
2

√ n
(√ n−

1)
+

4n 3θ

)
√ n

(√ n−
1)

+
3n 8

+
6 n

+
√ n 3

+
4

3√ n

] lo
g
n+

1
δ

√
nε

f
L

4n
√ L

ε
f

θ

C
en
te
re
d
sp
he
re

sm
oo

th
ed

gr
ad
ie
nt
sa

[(
6n θ
2

√ n
(√ n−

1)
+

4n 3θ

)
√ n

(√ n−
1)

+
n 24

+
3 2n

+
√ n 9

+
2

3√ n

] lo
g
n+

1
δ

3√
nε

f
M

6
3√
n7

/
2
M

ε
2 f

3√ 4θ

a R
es
ul
ti
s
w
ith

pr
ob
ab
ili
ty

1
−

δ

123

Foundations of Computational Mathematics

3.1 Gradient Approximation Accuracy

We compare the numerical accuracy of the gradient approximations obtained by the
methods discussed in Sect. 2. We compare the resulting θ , which is the relative error,

‖g(x) − ∇φ(x)‖
‖∇φ(x)‖ , (3.1)

and report the average log of the relative error, i.e., log10 θ . Theory dictates that
an optimization algorithm will converge if log10 θ < log10 1/2 ≈ −0.301, namely
θ < 1/2, with sufficiently high probability; see [5].

Gradient estimation on a synthetic function We first conduct tests on a synthetic
function,

φ(x) =
⎛

⎝
n/2∑

i=1

M sin(x2i−1) + cos(x2i)

⎞

⎠ + L − M

2n
xᵀ1n×nx, (3.2)

where n is an even number denoting the input dimension, 1n×n denotes an n by
n matrix of all ones, and L > M > 0. We approximate the gradient of φ at the

origin, for which ‖∇φ(0)‖ =
√

n
2M . The Lipschitz constants for the first and second

derivatives are L and max{M, 1}, respectively. The function given in (3.2) allows us to
vary all themoving components in the gradient approximations, namely, the dimension
n, the Lipschitz constants L and M of the gradients and Hessians, respectively, the
sampling radius σ and the size of the sample set N , in order to evaluate different
gradient approximation methods. We show results for two regimes: (1) the noise-free
regime where f (x) = φ(x) (Fig. 2, left column); and, (2) the noisy regime where
f (x) = φ(x) + ε(x) and ε(x) ∼ U ([−ε f , ε f]) with ε f = 0.0001 (Fig. 2, right
column).

We illustrate the relative approximation errors of different methods using two sets
(noise-free and noisy) of 5 box plots (Fig. 2). The default values of the parameters
are: n = 20, M = 1, L = 2, σ = 0.01, and N = 4n (for the smoothing methods).
For each box plot, we vary one of the parameters. Since the actual sampling radius for
Gaussian smoothing methods is not σ but σEu∼N (0,I), the σ used for these methods
was σ divided by Eu∼N (0,I). Note, when comparing the relative errors for different
values ofM , the constant L is was set toM+1. For all randomizedmethods, including
linear interpolation, ∇φ(0) is estimated 100 times, i.e., we compute 100 realizations
of g(0). For linear interpolation, the directions {ui }ni=1 are chosen as ui ∼ N (0, I)
for all i = 1, 2, . . . , n, and then normalized so that they lie in a unit ball ui ←
ui/max j∈{1,...,n} ‖u j‖. Moreover, all experiments in the noisy regime were conducted
100 times. Finally, in each of the plots in Fig. 2 one parameter was varied and all the
rest were set to their default values.

In accordance with our theory, we see in Fig. 2a that the relative approximation
errors of most methods are not affected by the dimension n as long as the sampling
radius and the number of sample points is chosen appropriately. The only method
that is affected is interpolation; this is because as the dimension increases the matrix

123

Foundations of Computational Mathematics

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-5

-4

-3

-2

-1

0

1
lo

g1
0

re
la

tiv
e

er
ro

r

n (n ∈ {2, 20, 200}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-5

-4

-3

-2

-1

0

1

lo
g1

0
re

la
tiv

e
er

ro
r

n (n ∈ {2, 20, 200}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-8

-6

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

σ (σ ∈ {100, 10−3, 10−6}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-8

-6

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

σ (σ ∈ {100, 10−2, 10−4}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

G
S

G

cG
S

G

B
S

G

cB
S

G

G
S

G

cG
S

G

B
S

G

cB
S

G

-5

-4

-3

-2

-1

0

1

lo
g1

0
re

la
tiv

e
er

ro
r

N (N ∈ {n, 4n, 32n}, smoothing
methods).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

G
S

G

cG
S

G

B
S

G

cB
S

G

G
S

G

cG
S

G

B
S

G

cB
S

G

-5

-4

-3

-2

-1

0

1
lo

g1
0

re
la

tiv
e

er
ro

r

N (N ∈ {n, 4n, 32n}, smoothing
methods).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

L (L ∈ {2, 200, 20000}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

L (L ∈ {2, 200, 20000}).

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-6

-5

-4

-3

-2

-1

0

1

lo
g1

0
re

la
tiv

e
er

ro
r

M (M ∈ {1, 100, 10000}). Note,
L = M + 1.

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-6

-5

-4

-3

-2

-1

0

1

lo
g1

0
re

la
tiv

e
er

ro
r

(a)Different (b)Different

(c)Different (d)Different

(e) Different (f)Different

(g)Different (h)Different

(i) Different (j) different M (M ∈ {1, 100, 10000}). Note,
L = M + 1.

Fig. 2 Log of relative error (3.1) of gradient approximations (FFD, CFD, LI, GSG, cGSG, BSG, cBSG)with
different n, σ , N , L and M . Left column: noise-free (ε f = 0); Right column: noisy (iid noiseU (−ε f , ε f)

for each point and ε f = 0.0001)

QX formed by the sampling directions (chosen randomly) may become more ill-
conditioned. The effect of the dimension n becomesmore apparent in the noisy regime;
see Fig. 2b. In Fig. 2c, we observe that the size of σ , the sampling radius, has a
significant effect on the deterministic methods (FFD and CFD) and LI. As predicted
by the theory, in the noise-free setting, the gradient approximations improve as the
sampling radius is reduced. For the randomized methods, GSG, cGSG, BSG and

123

Foundations of Computational Mathematics

cBSG, in the noise-free setting, it appears that the sampling radius has no effect on
the approximation quality. This is not surprising as our theory indicates that one of
the terms in the error bound does not diminish with σ ; see Fig. 2c. We should note
that the randomized approximations are significantly worse than the approximations
constructed by the deterministic methods in the noise-free regime. In the noisy regime,
diminishing the sampling radius does not necessarily improve the approximations; see
Fig. 2d. This is predicted by the theory, as the error bounds have two terms, one that is
diminishing with σ and one that is increasing with σ . In Fig. 2e, f, we see that having
more samples improves the accuracy achieved byGSG, cGSG,BSGand cBSG, in both
the noise-free and noisy regimes. Finally, in Fig. 2g–j, we see how the approximations
are affected by changes in the Lipschitz constants. For example, the FFD, GSG and
BSG approximations are affected by changes in L , whereas the CFD cGSG and cBSG
approximations are immune to these changes, but are affected by changes in M . All
these effects are predicted by the theory. Note, in our experiments the FFD, GSG and
BSG approximations are sensitive to changes in M , this is due to the fact that the
constant L is linked to M (L = M + 1).

In order to further illustrate the effects of noise ε f and sampling radius σ , we
ran experiments on the function given in (3.2) and varied these two parameters; see
Fig. 3. Each row illustrates results for a different noise level ε f ∈ {0, 10−4, 10−2} for
different sampling radii σ ∈ {100, 10−1, 10−2, 10−3, 10−4}. In the absence of noise
(Fig. 3a), as the sampling radius is reduced the approximations get better. As predicted
by the theory, this is not the case in the presence of noise (Fig. 3b, c).
Gradient estimation on Schittkowski functions [42] Next, we test different gradient
approximations on the 69 functions from the Schittkowski test set [42]. The methods
we compare are the same as in the case of the synthetic function. We computed the
gradient approximations for a variety of points with diverse values for ∇φ(xk) and
local Lipschitz constants L . For each problemwe generated points by running gradient
descent with a fixed step size for either 100 iterations or until the norm of the true
gradient reached a value of 10−2. Since for several problems the algorithm terminated
in less than 100 iterations, the actual number of points we obtained was 5330.

Tables 3 and 4 summarize the results of these experiments for the noise-free and
noisy (ε f = 10−4) regimes, respectively.We show the average of the log of the relative
error (3.1) for the 5330 points and the percentage of gradient estimates achieving
θ < 1/2 for different choices of σ , and, where appropriate, different choices of N .
The values in bold indicate cases where the average of log10 θ < log10 1/2 or the
percentage of gradient estimates achieving θ < 1/2 is greater than 50%, respectively.

Table 3 illustrates the results in the noise-free regime. For these experiments, the
sampling radius was chosen as σ ∈ {10−2, 10−5, 10−8}. As predicted by the theory, in
the noise-free case as the sampling radius decreases the quality of the approximations
increases. This is true for all methods. We observe that for the smoothing methods
more than 4n samples are needed to reliably obtain log10 θ < log10 1/2 ≈ −0.301
(or θ < 1/2). Moreover, this experiment indicates that the relative errors θ for FFD,
CFD and LI methods are significantly smaller than those obtained by the smoothing
methods.

Table 4 illustrates the performance of the gradient approximation in the pres-
ence of noise (ε f = 10−4). Here the sampling radius was chosen as σ ∈

123

Foundations of Computational Mathematics

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-8

-6

-4

-2

0

2

4
lo

g1
0

re
la

tiv
e

er
ro

r

(a) εf = 0 with σ ∈ {100, 10−1, 10−2, 10−3, 10−4}

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-8

-6

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

(b) εf = 10−4 with σ ∈ {100, 10−1, 10−2, 10−3, 10−4}

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

FF
D

C
FD LI

G
S

G

cG
S

G

B
S

G

cB
S

G

-8

-6

-4

-2

0

2

4

lo
g1

0
re

la
tiv

e
er

ro
r

(c) εf = 10−2 with σ ∈ {100, 10−1, 10−2, 10−3, 10−4}

Fig. 3 Log of relative error (3.1) of gradient approximations (FFD, CFD, LI, GSG, cGSG, BSG, cBSG)
with different σ . Top row: ε f = 0; Middle row: ε f = 10−4; Bottom row: ε f = 10−2

{10−1, 10−2, 10−3, 10−4}. As in the noise-free regime, it appears that overall the
gradient approximations computed via FFD, CFD and LI have smaller relative errors
than those obtained by the smoothingmethods.Moreover, as predicted by the theory in
the noisy regime one needs to carefully select the sampling radius in order to achieve
the smallest relative error.

3.2 Performance of Line Search DFO Algorithmwith Different Gradient
Approximations

The ability to approximate the gradient sufficiently accurately is a crucial ingredient
of model based, and in particular line search, DFO algorithms. The numerical results
presented in Sect. 3.1 illustrated themerits and limitations of different gradient approx-
imations. In this section, we investigate how these methods perform in conjunction
with a line search DFO algorithm [5, Algorithm 1].
Moré&Wild Problems [30] Several algorithms could be considered in this section.We
focus on line searchDFO algorithms that either compute steepest descent search direc-

123

Foundations of Computational Mathematics

Table 3 Average (Log) relative error of gradient approximations for 5330 problems (ε f = 0)

Method N σ = 10−2 σ = 10−5 σ = 10−8

FFD n −0.1651/42.68% −3.0124/95.10% −5.7176/98.57%

CFD n −4.0112/93.41% −8.4448/98.76% −7.3651/98.57%

LI n 0.3808/27.64% −2.4616/91.44% −5.0777/98.22%

GSG n 0.4067/4.05% −0.0060/6.19% −0.0425/7.11%

2n 0.3108/8.01% −0.1252/14.50% −0.1754/15.91%

4n 0.1790/24.39% −0.2669/49.74% −0.3188/51.73%

8n 0.0477/45.82% −0.4117/84.00% −0.4625/86.85%

cGSG n 0.0215/6.19% −0.0435/6.90% −0.0430/6.42%

2n −0.0983/14.80% −0.1822/17.58% −0.1723/15.89%

4n −0.2307/48.05% −0.3195/52.12% −0.3163/51.16%

8n −0.3568/81.84% −0.4665/87.28% −0.4634/86.40%

BSG n 0.3478/6.21% −0.0823/12.38% −0.1192/12.23%

2n 0.2033/15.59% −0.2202/28.29% −0.2609/29.55%

4n 0.0544/38.46% −0.3649/67.37% −0.4097/70.58%

8n −0.0956/60.11% −0.5163/93.62% −0.5593/96.81%

cBSG n −0.0503/10.38% −0.1242/11.95% −0.1258/12.36%

2n −0.1861/26.70% −0.2677/30.19% −0.2639/29.64%

4n −0.3247/66.40% −0.4109/70.00% −0.4125/71.52%

8n −0.4625/91.52% −0.5593/97.13% −0.5677/96.94%

tions (dk = −g(xk)) or L-BFGS [33] search directions (dk = −Hkg(xk)). Moreover,
we considered both adaptive line search variants aswell as variants that used a constant,
tuned step size parameter. Overall, we investigated the performance of 17 different
algorithms . We considered algorithms that approximate the gradient using FFD, CFD
and the four smoothing methods with steepest descent or L-BFGS search directions
and an adaptive line search strategy. We also considered methods that approximate the
gradient using the smoothing methods with steepest descent search directions and a
constant step size parameter. Finally, as a benchmark, we compared the performance
of the aforementioned methods against the popular DFOTR algorithm [2].

We tested the algorithms on the problems described in [30] (53 problems), and
illustrate the performance of the methods using performance and data profiles [19,30].
Each curve in the profile displayed in Fig. 4 corresponds to one algorithm’s overall
performance on the entire problem set. Roughly speaking, larger area under the curve
indicates better overall performance. We compare the performance of the best variant
of each algorithm for different accuracy levels. For a given accuracy level τ ≥ 0 and
problem, a method was deemed successful if for some iterate xk ,

f (x0)− f (xk)
f (x0)− fL

≥ 1− τ

was satisfied, where fL is the best (lowest) function value achieved by anymethod; see
[30] for more details. We selected only the best performers amongst different possible
variants by first comparing the variants among themselves. For example, for FFD and
CFD the LBFGS variant outperformed the steepest descent variant. With regards to

123

Foundations of Computational Mathematics

Ta
bl
e
4

A
ve
ra
ge

(L
og

)
re
la
tiv

e
er
ro
r
of

gr
ad
ie
nt

ap
pr
ox

im
at
io
ns

fo
r
53

30
pr
ob

le
m
s
(ε

f
=

10
−4

)

M
et
ho

d
N

σ
=

10
−1

σ
=

10
−2

σ
=

10
−3

σ
=

10
−4

FF
D

n
0.
85

93
/1
2.
03

%
−0

.0
82

7/
41

.7
1%

−0
.5
45

0/
58

.9
9%

0.
07

24
/3
1.
26

%

C
FD

n
−0

.7
29

7/
62

.6
1%

−1
.7
84

9/
91

.4
8%

−1
.2
90

2/
80

.5
6%

−0
.3
66

4/
45

.5
2%

L
I

n
1.
46

04
/8
.3
7%

0.
47

18
/2
4.
86

%
0.
08

41
/3
8.
07

%
0.
73

35
/2
1.
33

%

G
SG

n
1.
12

84
/1
.6
7%

0.
41

05
/4
.7
3%

0.
22

62
/4
.9
7%

0.
49

54
/3
.0
8%

2n
1.
05

74
/2
.5
7%

0.
30

85
/8
.3
9%

0.
10

52
/1
1.
09

%
0.
37

28
/7
.9
4%

4n
0.
99

70
/7
.4
9%

0.
18

88
/2
2.
70

%
−0

.0
34

4/
32

.6
8%

0.
23

66
/2
0.
24

%

8n
0.
88

35
/1
4.
02

%
0.
05

03
/4
5.
55

%
−0

.1
68

6/
62

.5
5%

0.
09

60
/3
6.
79

%

cG
SG

n
0.
31

44
/4
.3
7%

0.
01

78
/6
.6
2%

0.
01

78
/6
.4
2%

0.
27

83
/4
.2
6%

2n
0.
24

72
/1
0.
19

%
−0

.0
98

8/
14

.9
5%

−0
.1
15

1/
14

.3
3%

0.
14

46
/1
1.
07

%

4n
0.
20

49
/2
8.
99

%
−0

.2
25

6/
46

.6
2%

−0
.2
49

9/
42

.2
7%

0.
00

54
/2
6.
21

%

8n
0.
14

41
/5
2.
51

%
−0

.3
59

4/
81

.9
7%

−0
.3
89

1/
76

.6
8%

−0
.1
34

1/
47

.3
5%

B
SG

n
1.
07

05
/1
.9
3%

0.
34

60
/6
.4
2%

0.
18

48
/7
.9
0%

0.
49

19
/4
.6
2%

2n
0.
93

83
/5
.0
7%

0.
20

16
/1
6.
12

%
0.
03

81
/2
0.
36

%
0.
34

73
/1
1.
52

%

4n
0.
81

19
/1
2.
53

%
0.
05

41
/3
8.
03

%
−0

.1
14

9/
45

.5
7%

0.
19

57
/2
6.
68

%

8n
0.
67

25
/2
0.
49

%
−0

.0
95

4/
59

.8
1%

−0
.2
60

3
/7
1.
31

%
0.
04

92
/4
2.
23

%

cB
SG

n
0.
22

10
/7
.9
5%

−0
.0
51

0/
10

.9
4%

−0
.0
42

2/
9.
91

%
0.
25

65
/7
.6
7%

2n
0.
13

11
/1
6.
85

%
−0

.1
77

5/
25

.9
1%

−0
.1
83

3/
24

.5
0%

0.
10

93
/1
7.
02

%

4n
0.
03

69
/4
2.
20

%
−0

.3
14

9/
64

.2
0%

−0
.3
30

3/
56

.8
5%

−0
.0
41

8/
37

.4
1%

8n
−0

.0
58

2/
63

.6
0%

−0
.4
63

6/
90

.7
1%

−0
.4
75

4/
86

.3
0%

−0
.1
87

7/
54

.1
8%

123

Foundations of Computational Mathematics

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(a) τ = 10−1

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(b) τ = 10−3

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(c) τ = 10−5

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(d) τ = 10−1

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(e) τ = 10−3

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (LBFGS)
CFD (LBFGS)
GSG (SD,n)
BSG (LBFGS,4n)
DFO-TR

(f) τ = 10−5

Fig. 4 Performance and data profiles for best variant of each method. Top row: Performance profiles, where
the x-axis represents performance ratio; Bottom row:Data profiles, where the x-axis represents the number
of function evaluations divided by (n+1). See [19,30] for more details about performance and data profiles

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (SD)
CFD (SD)
FFD (SD,LS)
CFD (SD,LS)
FFD (LBFGS)
CFD (LBFGS)

(a) τ = 10−1

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (SD)
CFD (SD)
FFD (SD,LS)
CFD (SD,LS)
FFD (LBFGS)
CFD (LBFGS)

(b) τ = 10−3

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFD (SD)
CFD (SD)
FFD (SD,LS)
CFD (SD,LS)
FFD (LBFGS)
CFD (LBFGS)

(c) τ = 10−5

Fig. 5 Performance profiles for Finite Difference variants with steepest descent (SD) and LBFGS search
directions; SD with and without a line search (LS)

the smoothing methods, GSG with N = n samples per iteration and steepest descent
search directions was the best performer out of all GSG methods, and BSG with
N = 4n and LBFGS performed best among all BSG variants. For all the types of
gradient approximations, the variants that performed the best used an adaptive step
length procedure. We omit illustrations of these comparison for brevity. Finally, in
Figs. 5 and 6 we compare the adaptive step size methods versus the constant step size
variants.
Reinforcement Learning Tasks [9] In this section,we investigate the performance of the
methods on noisy optimization problems. Specifically, we present numerical results
for reinforcement learning tasks from OpenAI Gym library [9]. We compare gradient
based methods, where the gradients are approximated as follows:

123

Foundations of Computational Mathematics

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GSG (SD,n)
BSG (SD,n/2)
BSG (SD,LS,4n)
BSG (LBFGS,4n)

(a) τ = 10−1

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GSG (SD,n)
BSG (SD,n/2)
BSG (SD,LS,4n)
BSG (LBFGS,4n)

(b) τ = 10−3

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GSG (SD,n)
BSG (SD,n/2)
BSG (SD,LS,4n)
BSG (LBFGS,4n)

(c) τ = 10−5

Fig. 6 Performance profiles for best smoothed variants with steepest descent (SD) and LBFGS search
directions; SD with and without a line search (LS)

0 100 200 300 400 500 600 700 800

Iterations

-50

0

50

100

150

200

250

300

350

400

R
ew

ar
d

FFD (SD)
Interpolation (SD
Interpolation (SD,LS)
GSG (SD)

0 1000 2000 3000 4000 5000

Iterations

-8000

-6000

-4000

-2000

0

2000

4000

6000

R
ew

ar
d

FFD (SD)
Interpolation (SD)
Interpolation (SD,LS)
GSG (SD)

0 500 1000 1500 2000

Iterations

-105

-104

-103

-102

-101

-100

R
ew

ar
d

FFD (SD)
Interpolation (SD)
Interpolation (SD,LS)
GSG (SD)

(a) Swimmer (b) HalfCheetah (c) Reacher

Fig. 7 Performance of methods on reinforcement learning tasks

1. Forward Finite Differences (FFD (SD)),
2. Linear Interpolation (Interpolation (SD)) and (Interpolation (SD,

LS)),
3. Gaussian Smoothed Gradients (GSG (SD)).

For the methods that use interpolation, we implemented two different step length
strategies: (1) fixed step length αk = α, and (2) step length chosen via a line search.

In Fig. 7, we show the average (solid lines) and max/min (dashed lines) over a
number of runs. We can see that in some experiments FD did not perform well com-
pared to other methods. This happens because FD being deterministic method may get
stuck in local minima, while adding some randomness helps to escape those. While
our theory is the same for FD and Interpolation, our experiments show that for these
tasks, choosing ui to be orthonormal but random helps the algorithm to avoid getting
stuck in local maxima. We observe that the Interpolation method is superior to the
GSG and that line-search provides some improvements over a manually tuned choice
of αk . More details are given in Appendix B.

4 Final Remarks

We have shown that several derivative-free techniques for approximating gradients
provide comparable estimates under reasonable assumptions. More specifically, we
analyzed the gradient approximations constructed via finite differences, linear inter-
polation, Gaussian smoothing, and smoothing on a unit sphere using functions values

123

Foundations of Computational Mathematics

with bounded noise. For each method, we derived bounds on the number of samples
and the sampling radius which guarantee favorable convergence properties for a line
search or fixed step size descent method. These approximations can be used effectively
in conjunction with a line search algorithm, possibly with L-BFGS search directions,
provided they are sufficiently accurate. Our theoretical results, and related numerical
experiments, show that finite difference and interpolation methods are much more
efficient than smoothing methods in providing good gradient approximations. The
techniques presented in this paper can be extended to other distributions of the ran-
dom vector u, as long as individual components of u are symmetric and independent
and identically distributed randomvariables, e.g., the distribution used for constructing
gradient approximations in [46].

A Derivations

A.1 Derivation of (2.10)

‖∇F(x) − ∇φ(x))‖ =
∥∥∥∥Eu∼N (0,I)

[
1

σ
f (x + σu)u

]
− ∇φ(x)

∥∥∥∥

=
∥∥∥∥Eu∼N (0,I)

[
φ(x + σu) + ε(x + σu)

σ
u

]
− ∇φ(x)

∥∥∥∥

=
∥∥∥∥Eu∼N (0,I) [∇φ(x + σu) − ∇φ(x)] + Eu∼N (0,I)

[
ε(x + σu)

σ
u

]∥∥∥∥

≤ ∥∥Eu∼N (0,I) [∇φ(x + σu) − ∇φ(x)]
∥∥ +

∥∥∥∥Eu∼N (0,I)

[
ε(x + σu)

σ
u

]∥∥∥∥

≤ Eu∼N (0,I)[‖∇φ(x + σu) − ∇φ(x)‖] + Eu∼N (0,I)

[∥∥∥∥
ε(x + σu)

σ
u

∥∥∥∥

]

≤ LσEu∼N (0,I)[‖u‖] + ε f

σ
Eu∼N (0,I)[‖u‖]

=
(
Lσ + ε f

σ

)√
2
Γ (n+1

2)

Γ (n2)
≤ √

nLσ +
√
nε f

σ
.

A.2 Derivation of (2.11)

‖∇F(x) − ∇φ(x))‖
=

∥∥∥∥Eu∼N (0,I)

[
φ(x + σu) + ε(x + σu) − φ(x + σu) − ε(x + σu)

2σ
u

]
− ∇φ(x)

∥∥∥∥

=
∥∥∥∥Eu∼N (0,I)

[
1

2
∇φ(x + σu) + 1

2
∇φ(x − σu) − ∇φ(x)

]

+Eu∼N (0,I)

[
ε(x + σu) − ε(x + σu)

2σ
u

]∥∥∥∥

123

Foundations of Computational Mathematics

≤ 1

2
Eu∼N (0,I) [‖ (∇φ(x + σu) − ∇φ(x)) − (∇φ(x) − φ(x − σu))‖]

+ Eu∼N (0,I)

[∥∥∥∥
ε(x + σu) − ε(x + σu)

2σ
u

∥∥∥∥

]

≤ 1

2
Eu∼N (0,I) [‖ (∇φ(x + σu) − ∇φ(x)) − (∇φ(x) − φ(x − σu))‖]

+ Eu∼N (0,I)

[ε f

σ
‖u‖

]

= 1

2
Eu∼N (0,I)

[
‖
(
∇2φ(x + ξ1u) − ∇2φ(x − ξ2u)

)
σu‖

]
+ Eu∼N (0,I)

[ε f

σ
‖u‖

]
,

for some 0 ≤ ξ1 ≤ σ and 0 ≤ ξ2 ≤ σ by the intermediate value theorem. Then

‖∇F(x) − ∇φ(x))‖ ≤ 1

2
Eu∼N (0,I)

[
‖∇2φ(x + ξ1u) − ∇2φ(x − ξ2u)‖‖σu‖

]

+ Eu∼N (0,I)

[ε f

σ
‖u‖

]

≤ 1

2
Eu∼N (0,I) [M‖ξ1u + ξ2u‖ · σ‖u‖] + Eu∼N (0,I)

[ε f

σ
‖u‖

]

= 1

2
Eu∼N (0,I)

[
|ξ1 + ξ2| · ‖u‖2Mσ

]
+ Eu∼N (0,I)

[ε f

σ
‖u‖

]

≤ nMσ 2 +
√
nε f

σ
.

A.3 Derivation of (2.18)

For the first equality, let A = Eu∼N (0,I)(aᵀu)2uuᵀ. Then for any (i, j) ∈
{1, 2, . . . , n}2 with i �= j , we have

Ai j = E
{
(aᵀu)2uiu j

}

=
n∑

k=1

n∑

l=1

E
{
akukalului u j

}

=
∑

k=i

∑

l=i

E
{
akukalului u j

} +
∑

k �=i

∑

l=i

E
{
akukalului u j

}

+
∑

k=i

∑

l �=i

E
{
akukalului u j

} +
∑

k �=i

∑

l �=i

E
{
akukalului u j

}

= E
{
a2i u

3
i u j

}
+

∑

k �=i

E
{
akaiuku

2
i u j

}
+

∑

l �=i

E
{
aialulu

2
i u j

}

+E {ui }
∑

k �=i

∑

l �=i

E
{
akukalulu j

}

= 0 +
∑

k �=i

E
{
akaiuku

2
i u j

}
+

∑

l �=i

E
{
aialulu

2
i u j

}
+ 0

123

Foundations of Computational Mathematics

= E
{
aia j u

2
i u

2
j

}
+ E

{
aia j u

2
i u

2
j

}

= 2aia j .

For any i ∈ {1, 2, . . . , n},

Aii = E
{
(aᵀu)2u2i

}

=
∑

k=i

∑

l=i

E
{
akukalulu

2
i

}
+

∑

k �=i

∑

l=i

E
{
akukalulu

2
i

}

+
∑

k=i

∑

l �=i

E
{
akukalulu

2
i

}
+

∑

k �=i

∑

l �=i

E
{
akukalulu

2
i

}

= E
{
a2i u

4
i

}
+

∑

k �=i

E
{
akaiuku

3
i

}
+

∑

l �=i

E
{
aialulu

3
i

}

+ E
{
u2i

}∑

k �=i

∑

l �=i

E {akukalul}

= 3a2i + 0 + 0 + 1 ×
∑

k=l �=i

E {akukalul} = 3a2i +
∑

k �=i

E
{
a2k u

2
k

}

= 3a2i +
∑

k �=i

a2k = 2a2i +
n∑

k=1

a2k .

Then by writing the result in matrix format, we get Eu∼N (0,I)
[
(aᵀu)2uuᵀ] = aᵀaI +

2aaᵀ. This result is valid for any distribution for u such that ui , i ∈ {1, 2, . . . , n} are
i.i.d. and has Eui = 0 and Eu2i = 1 for all i ∈ {1, 2, . . . , n}.

For the second equality, since the possibility density function of N (0, I) is even
while aᵀu·‖u‖k ·uuᵀ is an odd function, the expectationEu∼N (0,I)

[
aT u · ‖u‖k · uuT]

is zero.
Because Eu∼N (0,I)

[‖u‖kuᵀu
] = Eu∼N (0,I)

[‖u‖k+2
]
is the (k + 2)nd moment of

a Chi distributed variable for all k ∈ N, we have

Eu∼N (0,I)

[
‖u‖kuᵀu

]
= 21+k/2Γ ((n + k + 2)/2)

Γ (n/2)
.

This value is also the trace of the matrix Eu∼N (0,I)
[‖u‖kuuT]. Considering all n

elements on the diagonal of this matrix are the same, we have

Eu∼N (0,I)

[
‖u‖kuuT

]
= 21+k/2Γ ((n + k + 2)/2)

nΓ (n/2)
I for k = 0, 1, 2,

For even k, this quantity is equal to
∏k/2

i=1(n + 2i). For odd k, this quan-

tity is equal to
[√

2Γ
(n+1

2

) /
Γ

(n
2

)] 1
n

∏(k+1)/2
i=1 (n + 2i − 1). Use the inequality

123

Foundations of Computational Mathematics

√
2 Γ

(n+1
2

) /
Γ

(n
2

) ≤ √
n for all n ∈ N, we have

Eu∼N (0,I)

[
‖u‖kuuT

]
� (n + 1)(n + 3) · · · (n + k) · n−0.5 I for k = 1, 3, 5,

A.4 Derivation of (2.28)

E

[
‖g(x) − ∇F(x)‖2

]
= E

⎡

⎢⎣

∥∥∥∥∥∥
1

N

N∑

i=1

f (x + σui) − f (x)

σ
ui − ∇F(x)

∥∥∥∥∥∥

2
⎤

⎥⎦

= 1

N
Eu∼N (0,I)

[(
f (x + σu) − f (x)

σ

)2
uᵀu

]
− 1

N
∇F(x)ᵀ∇F(x)

= 1

N
Eu∼N (0,I)

[(
aᵀu

)2 uᵀu
]

− 1

N
aᵀa

= 1

N
(n + 1)aᵀa.

A.5 Derivation of (2.29)

The expression for E
[‖g(x) − ∇F(x)‖4] is a sum of N 4 terms with each term being

the product of four vectors:

E

[
‖g(x) − ∇F(x)‖4

]

= 1

N 4E

⎡

⎣
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

∏

w∈{i, j,k,l}

(
f (x + σuw) − f (x)

σ
uw − ∇F(x)

)⎤

⎦ ,

where
∏

denotes the operation which is a product of the inner products of the two
pairs of vectors. Specifically, given four vectors a1, a2, a3, a4 ∈ R

n ,
∏

i∈{1,2,3,4} ai =
(aᵀ

1 a2) · (aᵀ
3 a4) and

∏
i∈{1,1,2,2} ai = (aᵀ

1 a1) · (aᵀ
2 a2).

We first observe that
∏

w∈{i, j,k,l}
(

f (x+σuw)− f (x)
σ

uw − ∇F(x)
)

= 0whenever one

of the indices (i, j, k, l) is different from all of the other ones. This is because all uw,
for w ∈ {i, j, k, l} are independent of each other if their indices are different and

E

[
f (x + σuw) − f (x)

σ
uw − ∇F(x)

]
= 0.

Thus, we need only to consider the terms having one of the following conditions:

1. i = j = k = l;
2. i = j �= k = l;
3. i = k �= j = l;

123

Foundations of Computational Mathematics

4. i = l �= j = k.

First we consider the case: i = j �= k = l, which occurs when N > 1.

E

⎡

⎣
N∑

i=1

N∑

k=1,k �=i

∏

w∈{i,i,k,k}

(
f (x + σuw) − f (x)

σ
uw − ∇F(x)

)⎤

⎦

=
N∑

i=1

E

[∥∥∥∥
f (x + σui) − f (x)

σ
ui − ∇F(x)

∥∥∥∥
2
]

·
N∑

k=1,k �=i

E

[∥∥∥∥
f (x + σuk) − f (x)

σ
uk − ∇F(x)

∥∥∥∥
2
]

= N (N − 1)
[
(n + 1)aᵀa

]2
.

We now consider two other cases: i = k �= j = l and i = l �= j = k that are
essentially the same. We have

E

⎡

⎣
N∑

i=1

N∑

k=1,k �=i

∏

w∈{i,k,i,k}

(
f (x + σuw) − f (x)

σ
uw − ∇F(x)

)⎤

⎦

=
N∑

i=1

N∑

k=1,k �=i

E

{[(
f (x + σui) − f (x)

σ
ui − ∇F(x)

)ᵀ

(
f (x + σuk) − f (x)

σ
uk − ∇F(x)

)]2}

=
N∑

i=1

N∑

k=1,k �=i

E

({[
(aᵀui)ui − a

]ᵀ [
(aᵀuk)uk − a

]}2)

=
N∑

i=1

N∑

k=1,k �=i

E

([
(aᵀui)(aᵀuk)(u

ᵀ
i uk) − (aᵀui)2 − (aᵀuk)2 + aᵀa

]2)

=
N∑

i=1

N∑

k=1,k �=i

E

⎡

⎣
(aᵀui)2(aᵀuk)2(u

ᵀ
i uk)

2 + (aᵀui)4 + (aᵀuk)4 + (aᵀa)2

+ 2(aᵀa)(aᵀui)(aᵀuk)(u
ᵀ
i uk) − 2(aᵀa)(aᵀui)2 − 2(aᵀa)(aᵀuk)2

− 2(aᵀui)3(aᵀuk)(u
ᵀ
i uk) − 2(aᵀui)(aᵀuk)3(u

ᵀ
i uk) + 2(aᵀui)2(aᵀuk)2

⎤

⎦

=
N∑

i=1

N∑

k=1,k �=i

⎡

⎣
(n + 8)(aᵀa)2 + 3(aᵀa)2 + 3(aᵀa)2 + (aᵀa)2

+ 2(aᵀa)2 − 2(aᵀa)2 − 2(aᵀa)2

− 6(aᵀa)2 − 6(aᵀa)2 + 2(aᵀa)2

⎤

⎦

=
N∑

i=1

N∑

k=1,k �=i

(n + 3)(aᵀa)2 = N (N − 1)(n + 3)(aᵀa)2

123

Foundations of Computational Mathematics

Finally, we have the i = j = k = l case:

E

⎡

⎣
N∑

i=1

∏

w∈{i,i,i,i}

(
f (x + σuw) − f (x)

σ
uw − ∇F(x)

)⎤

⎦

= NEu∼N (0,I)

[∥∥∥∥
f (x + σu) − f (x)

σ
u − ∇F(x)

∥∥∥∥
4
]

= NEu∼N (0,I)

{[(
f (x + σu) − f (x)

σ

)2

uᵀu

−2

(
f (x + σu) − f (x)

σ

)
uᵀ∇F(x) + ∇F(x)ᵀ∇F(x)

]2}

= NEu∼N (0,I)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(
f (x+σu)− f (x)

σ

)4
(uᵀu)2 + 4

(
f (x+σu)− f (x)

σ

)2
(uᵀ∇F(x))2

+ (∇F(x)ᵀ∇F(x))2 − 4
(

f (x+σu)− f (x)
σ

)3
(uᵀu) (uᵀ∇F(x))

− 4
(

f (x+σu)− f (x)
σ

)
(uᵀ∇F(x))(∇F(x)ᵀ∇F(x))

+ 2
(

f (x+σu)− f (x)
σ

)2
(uᵀu)(∇F(x)ᵀ∇F(x))

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= NEu∼N (0,I)

[
(aᵀu)4 (uᵀu)2 + 4 (aᵀu)2 (uᵀa)2 + (aᵀa)2 − 4 (aᵀu)3 (uᵀu) (uᵀa)

− 4 (aᵀu) (uᵀa)(aᵀa) + 2 (aᵀu)2 (uᵀu)(aᵀa)

]

= N

[
3(n + 4)(n + 6)(aᵀa)2 + 12(aᵀa)2 + (aᵀa)2 − 12(n + 4)(aᵀa)2

− 4(aᵀa)2 + 2(n + 2)(aᵀa)2

]

= N (3n2 + 20n + 37)(aᵀa)2

In summary, we have

N4
E

[
‖g(x) − ∇F(x)‖4

]

= N (N − 1)(n + 1)2(aᵀa)2 + 2N (N − 1)(n + 3)(aᵀa)2 + N (3n2 + 20n + 37)(aᵀa)2

= N (N − 1)(n2 + 4n + 7)(aᵀa)2 + N (3n2 + 20n + 37)(aᵀa)2.

A.6 Derivation of (2.35)

‖∇F(x) − ∇φ(x))‖ =
∥∥∥Eu∼U(S(0,1))

[n
σ

f (x + σu)u
]

− ∇φ(x)
∥∥∥

=
∥∥∥Eu∼U(S(0,1))

[n
σ

(φ(x + σu) + ε(x + σu))u
]

− ∇φ(x)
∥∥∥

= ∥∥Eu∼U(B(0,1)) [∇φ(x + σu) − ∇φ(x)]

+Eu∼U(S(0,1))

[
nε(x + σu)

σ
u

]∥∥∥∥

≤ ∥∥Eu∼U(B(0,1)) [∇φ(x + σu) − ∇φ(x)]
∥∥

+
∥∥∥∥Eu∼U(S(0,1))

[
nε(x + σu)

σ
u

]∥∥∥∥

123

Foundations of Computational Mathematics

≤ Eu∼U(B(0,1))[‖∇φ(x + σu) − ∇φ(x)‖]
+ Eu∼U(S(0,1))

[∥∥∥∥
nε(x + σu)

σ
u

∥∥∥∥

]

≤ LσEu∼U(B(0,1))[‖u‖] + nε f

σ
Eu∼U(S(0,1))[‖u‖]

= Lσ
n

n + 1
+ nε f

σ
≤ Lσ + nε f

σ
.

A.7 Derivation of (2.36)

‖∇F(x) − ∇φ(x))‖
=

∥∥∥Eu∼U(S(0,1))

[n

2σ
(φ(x + σu) + ε(x + σu) − φ(x + σu) − ε(x + σu))u

]
− ∇φ(x)

∥∥∥

=
∥∥∥∥Eu∼U(B(0,1))

[
1

2
∇φ(x + σu) + 1

2
∇φ(x − σu) − ∇φ(x)

]

+Eu∼U(S(0,1))

[n

2σ
(ε(x + σu) − ε(x + σu))u

]∥∥∥

≤ 1

2
Eu∼U(B(0,1)) [‖ (∇φ(x + σu) − ∇φ(x)) − (∇φ(x) − φ(x − σu))‖]

+ Eu∼U(S(0,1))

[∥∥∥
n

2σ
(ε(x + σu) − ε(x + σu))u

∥∥∥
]

≤ 1

2
Eu∼U(B(0,1)) [‖ (∇φ(x + σu) − ∇φ(x)) − (∇φ(x) − φ(x − σu))‖]

+ Eu∼U(S(0,1))

[nε f

σ
‖u‖

]

= 1

2
Eu∼U(B(0,1))

[
‖
(
∇2φ(x + ξ1u) − ∇2φ(x − ξ2u)

)
σu‖

]
+ Eu∼U(S(0,1))

[nε f

σ
‖u‖

]
,

for some 0 ≤ ξ1 ≤ σ and 0 ≤ ξ2 ≤ σ by the intermediate value theorem. Then

‖∇F(x) − ∇φ(x))‖ ≤ 1

2
Eu∼U(B(0,1))

[
‖∇2φ(x + ξ1u) − ∇2φ(x − ξ2u)‖‖σu‖

]

+ Eu∼U(S(0,1))

[nε f

σ
‖u‖

]

≤ 1

2
Eu∼U(B(0,1)) [M‖ξ1u + ξ2u‖ · σ‖u‖]
+ Eu∼U(S(0,1))

[nε f

σ
‖u‖

]

= 1

2
Eu∼U(B(0,1))

[
|ξ1 + ξ2| · ‖u‖2Mσ

]

+ Eu∼U(S(0,1))

[nε f

σ
‖u‖

]

≤ Mσ 2 + nε f

σ
.

123

Foundations of Computational Mathematics

A.8 Derivation of (2.39)

The first and third equalities of (A.8) comes from the first and third equalities of (2.18).
Considering any vector of iidGaussian v, dividing by its ownnorm, can be expressed as
v = ‖v‖u. Moreover, ‖v‖ and u are independent. Thus, any homogeneous polynomial
p in the entries of u of degree k has the property that

Eu∼U(S(0,1))[p(u)] = Ev∼N (0,I)[p(v)]
Ev∼N (0,I)‖v‖k .

Then

Eu∼U(S(0,1))

[
(aT u)2uuT

]
= Eu∼N (0,I))

[
(aT u)2uuT

]

Eu∼N (0,I))‖u‖4 = aT aI + 2aaT

n(n + 2)

Eu∼U(S(0,1))

[
‖u‖kuuT

]
= Eu∼N (0,I))

[‖u‖kuuT]
Eu∼N (0,I))‖u‖k+2 = 1

n
I .

The second equality of (2.39) being 0 follows the same argument as that for the
second equality of (2.18).

B Additional Details: RL Experiments

In all RL experiments the blackbox function f takes as input the parameters of the
policy πθ : S → A which maps states to proposed actions. The output of f is
the total reward obtained by an agent applying that particular policy πθ in the given
environment.

To encode policies πθ , we used fully-connected feedforward neural networks with
two hidden layers, each of h = 41 neurons and with tanh nonlinearities. The matrices
of connections were encoded by low-displacement rank neural networks (see [14]),
as in several recent papers on applying orthogonal directions in gradient estimation
for ES methods in reinforcement learning. We did not apply any additional techniques
such as state/reward renormalization, ranking or filtering, in order to solely focus on
the evaluation of the presented proposals.

All experiments were run with hyperparameter σ = 0.1. Experiments that did not
apply line search were run with the use of Adam optimizer and α = 0.01. For line
search experiments, we were using adaptive α that was updated via Armijo condition
with Armijo parameter c1 = 0.2 and backtracking factor τ = 0.3.

Finally, in order to construct orthogonal samples, at each iterationwewere conduct-
ing orthogonalization of randomGaussianmatriceswith entries taken independently at
random fromN (0, 1) via Gram–Schmidt procedure (see [14]). Instead of the orthog-
onalization of Gaussian matrices, we could take advantage of constructions, where
orthogonality is embedded into the structure (such as random Hadamard matrices
from [14]), introducing extra bias but proved to work well in practice. However, in all
conducted experiments that was not necessary.

123

Foundations of Computational Mathematics

For each environment and each method we run k = 3 experiments corresponding
to different random seeds.

References

1. Søren Asmussen and Peter W. Glynn. Stochastic simulation - algorithms and analysis, volume 57 of
Stochastic modeling and applied probability. Springer, 2007.

2. Afonso Bandeira, Katya Scheinberg, and Luis N Vicente. Computation of sparse low degree interpo-
lating polynomials and their application to derivative-free optimization. Mathematical Programming,
Series B, 134:223–257, 2012.

3. Anastasia Bayandina, Alexander Gasnikov, Fariman Guliev, and Anastasia Lagunovskaya. Gradient-
free two-points optimal method for nonsmooth stochastic convex optimization problemwith additional
small noise. arXiv preprint arXiv:1701.03821, 2017.

4. Albert S Berahas, Richard H Byrd, and Jorge Nocedal. Derivative-free optimization of noisy functions
via quasi-newton methods. SIAM Journal on Optimization, 29(2):965–993, 2019.

5. Albert S Berahas, Liyuan Cao, and Katya Scheinberg. Global convergence rate analysis of a generic
line search algorithm with noise. arXiv preprint arXiv:1910.04055, 2019.

6. Lev Bogolubsky, Pavel Dvurechenskii, Alexander Gasnikov, Gleb Gusev, Yurii Nesterov, Andrei M
Raigorodskii, Aleksey Tikhonov, and Maksim Zhukovskii. Learning supervised pagerank with
gradient-based and gradient-free optimization methods. Advances in neural information processing
systems, 29:4914–4922, 2016.

7. Raghu Bollapragada and Stefan MWild. Adaptive sampling quasi-newton methods for derivative-free
stochastic optimization. arXiv preprint arXiv:1910.13516, 2019.

8. Richard P Brent. Algorithms for minimization without derivatives. Courier Corporation, 2013.
9. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and

Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.
10. Richard HByrd, GillianMChin, Jorge Nocedal, andYuchenWu. Sample size selection in optimization

methods for machine learning. Mathematical programming, 134(1):127–155, 2012.
11. Richard G Carter. On the global convergence of trust region algorithms using inexact gradient infor-

mation. SIAM Journal on Numerical Analysis, 28(1):251–265, 1991.
12. Coralia Cartis and Katya Scheinberg. Global convergence rate analysis of unconstrained optimization

methods based on probabilistic models. Mathematical Programming, pages 1–39, 2018.
13. Krzysztof Choromanski, Atil Iscen, Vikas Sindhwani, Jie Tan, and Erwin Coumans. Optimizing simu-

lations with noise-tolerant structured exploration. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 2970–2977. IEEE, 2018.

14. Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. arXiv preprint
arXiv:1804.02395, 2018.

15. Andrew R Conn, Katya Scheinberg, and Philippe L Toint. On the convergence of derivative-free
methods for unconstrained optimization. InA. Iserles andM. Buhmann, editors,Approximation Theory
and Optimization: Tributes to M. J. D. Powell, pages 83–108, Cambridge, England, 1997. Cambridge
University Press.

16. Andrew R Conn, Katya Scheinberg, and Philippe L Toint. A derivative free optimization algorithm
in practice. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, Missouri, September 2-4, 1998.

17. Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Geometry of interpolation sets in derivative
free optimization.Mathematical programming, 111(1-2):141–172, 2008.

18. Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to Derivative-free Optimization.
MPS-SIAM Optimization series. SIAM, Philadelphia, USA, 2008.

19. Elizabeth DDolan and Jorge JMoré. BenchmarkingOptimization Software with Performance Profiles.
Mathematical Programming, 91(2):201–213, 2002.

20. John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-
order convex optimization: The power of two function evaluations. IEEE Transactions on Information
Theory, 61(5):2788–2806, 2015.

123

http://arxiv.org/abs/1701.03821
http://arxiv.org/abs/1910.04055
http://arxiv.org/abs/1910.13516
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1804.02395

Foundations of Computational Mathematics

21. Pavel Dvurechensky, EduardGorbunov, andAlexander Gasnikov. An accelerated directional derivative
method for smooth stochastic convex optimization. European Journal of Operational Research, 2020.

22. MaryamFazel,RongGe, ShamMKakade, andMehranMesbahi.Global convergence of policy gradient
methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.

23. Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for Industrial and Applied
Mathematics, 2005.

24. Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

25. Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
Advances in Neural Information Processing Systems, 25:2672–2680, 2012.

26. Jack C Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, 23(3):462–466, 1952.

27. Jeffrey Larson, Matt Menickelly, and Stefan M Wild. Derivative-free optimization methods. Acta
Numerica, 28:287–404, 2019.

28. Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. In Advances in Neural Information
Processing Systems, pages 3727–3737, 2018.

29. Alvaro Maggiar, Andreas Wächter, Irina S Dolinskaya, and Jeremy Staum. A derivative-free trust-
region algorithm for the optimization of functions smoothed via gaussian convolution using adaptive
multiple importance sampling. SIAM Journal on Optimization, 28(2):1478–1507, 2018.

30. Jorge JMoré and StefanMWild. Benchmarking derivative-free optimization algorithms. SIAMJournal
on Optimization, 20(1):172–191, 2009.

31. Jorge J Moré and Stefan M Wild. Estimating computational noise. SIAM Journal on Scientific Com-
puting, 33(3):1292–1314, 2011.

32. Yurii Nesterov andVladimir Spokoiny. Random gradient-freeminimization of convex functions.Foun-
dations of Computational Mathematics, 17(2):527–566, 2017.

33. Jorge Nocedal and Stephen J Wright. Numerical Optimization, Second Edition. Springer, 2006.
34. Courtney Paquette and Katya Scheinberg. A stochastic line search method with expected complexity

analysis. SIAM Journal on Optimization, 30(1):349–376, 2020.
35. Raghu Pasupathy, Peter Glynn, Soumyadip Ghosh, and Fatemeh S Hashemi. On sampling rates in

simulation-based recursions. SIAM Journal on Optimization, 28(1):45–73, 2018.
36. Valentin V Petrov. On lower bounds for tail probabilities. Journal of statistical planning and inference,

137(8):2703–2705, 2007.
37. Boris T Polyak. Introduction to Optimization (1987). Optimization Software, Inc, New York.
38. Michael J D Powell. Unconstrained minimization algorithms without computation of derivatives. Bol-

lettino delle Unione Matematica Italiana, 9:60–69, 1974.
39. Michael J D Powell. The NEWUOA software for unconstrained optimization without derivatives. In

Large-Scale Nonlinear Optimization, volume 83, pages 255–297. Springer, US, 2006.
40. Mark Rowland, Krzysztof Choromanski, François Chalus, Aldo Pacchiano, Tamas Sarlós,

Turner Richard E, and Adrian Weller. Geometrically coupled monte carlo sampling. In Advances
in Neural Information Processing Systems, pages 195–205, 2018.

41. Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. Technical Report arXiv:1703.03864, 2016.

42. Klaus Schittkowski. More test examples for nonlinear programming codes, volume 282. Springer
Science & Business Media, 2012.

43. John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and PhilippMoritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897, 2015.

44. Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. The Journal of Machine Learning Research, 18(1):1703–1713, 2017.

45. Sara Shashaani, Fatemeh S Hashemi, and Raghu Pasupathy. Astro-df: A class of adaptive sampling
trust-region algorithms for derivative-free stochastic optimization. SIAM Journal on Optimization,
28(4):3145–3176, 2018.

46. James C Spall. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE
transactions on automatic control, 45(10):1839–1853, 2000.

123

http://arxiv.org/abs/1801.05039
http://arxiv.org/abs/1703.03864

Foundations of Computational Mathematics

47. James C Spall. Introduction to stochastic search and optimization: estimation, simulation, and control,
volume 65. John Wiley & Sons, 2005.

48. Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
regularization for fast nonconvex optimization. In Advances in neural information processing systems,
pages 2899–2908, 2018.

49. Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint arXiv:1501.01571,
2015.

50. DaanWierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber. Natural
evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

51. Stefan M Wild, Rommel G Regis, and Christine A Shoemaker. ORBIT: optimization by radial basis
function interpolation in trust-regions. SIAM Journal on Scientific Computing, 30(6):3197–3219, 2008.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1501.01571

	A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization
	Abstract
	1 Introduction
	1.1 Assumptions
	1.2 Summary of Results
	2 Gradient Approximations and Sampling
	2.1 Gradient Estimation via Standard Finite Differences
	2.2 Gradient Estimation via Linear Interpolation
	2.3 Gradient Estimation via Gaussian Smoothing
	2.3.1 Lower Bound on δ

	2.4 Gradient Estimation via Smoothing on a Sphere
	2.5 Smoothing Versus Interpolation gradients
	2.6 Summary of Results

	3 Numerical Results
	3.1 Gradient Approximation Accuracy
	3.2 Performance of Line Search DFO Algorithm with Different Gradient Approximations

	4 Final Remarks
	A Derivations
	A.1 Derivation of (2.10)
	A.2 Derivation of (2.11)
	A.3 Derivation of (2.18)
	A.4 Derivation of (2.28)
	A.5 Derivation of (2.29)
	A.6 Derivation of (2.35)
	A.7 Derivation of (2.36)
	A.8 Derivation of (2.39)
	B Additional Details: RL Experiments
	References

