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Abstract

This paper proposes a method to conduct local linear regression smoothing in
the presence of set-valued outcome data. The proposed estimator is shown to be
consistent, and its mean squared error and asymptotic distribution are derived.
A method to build error tubes around the estimator is provided, and a small
Monte Carlo exercise is conducted to confirm the good finite sample properties
of the estimator. The usefulness of the method is illustrated on a novel dataset
from a clinical trial to assess the effect of certain genes’ expressions on different
lung cancer treatments outcomes.
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1. Introduction

Statistical analysis has traditionally contended with problems of data impre-
cision due to limits in the measuring instruments and to measurement error, as
well as with missing data, data coarsening and grouping. Geostatistical analysis

and mathematical morphology have contended with observational frameworks
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where the outcome of interest is a two or three dimensional set-valued object,
e.g. a tumor or a grain. The common denominator of these challenging data-
frameworks is the presence of set-valued data. Within the social sciences in
particular, collection of data in the form of sets, especially intervals, has be-
come increasingly widespread. For example, the Health and Retirement Study
is one of the first surveys where, in order to reduce item nonresponse, income
data is collected from respondents in the form of brackets, with degenerate
(singleton) intervals for individuals who opt to fully report their income (see,
e.g. [1]). To reduce response burden, the Occupational Employment Statistics
(OES) program at the Bureau of Labor Statistics collects wage data from em-
ployers as intervals, and uses these data to construct estimates for wage and
salary workers in 22 major occupational groups and 801 detailed occupations.
Privacy concerns often motivate providing public use tax data as the number of
tax payers in each of a finite number of cells. In the medical field, due to ethical
and cost reasons, time-to-event measurements are not collected on a continuous
scale, but at pre-specified time intervals.

The partial identification literature in econometrics (e.g., [2]) has addressed
the question of what can be learned about functionals of probability distribu-
tions, when some of the variables are only known to belong to (random) sets
and no assumptions are imposed on the distribution of the true variables within
these sets. We take the identification results of this literature as our point of
departure. Our contribution is to provide statistical results on local linear re-
gression smoothing when the outcome data is set-valued and the regressors are
exactly measured. Our paper relaxes the textbook setting (e.g., [3]) of nonpara-
metric regression — where regressors and outcome data (x;,y;), i = 1,...,n,
are precisely measured — by assuming that y; is only known to belong to an
observed set Y;. In other words, we deal with an independently and identically
distributed sample of observations for the pair (x;,Y;) composed of a random
vector &; in R™ and a random convex compact set Y; in R%. Independence and
identical distribution for random sets and measurability of Y are notions made

precise in Appendix D, while in Section 2 we explain that the distribution of
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Y can be characterized as a belief function. The true (however unobservable)
outcome associated with « is a random vector y that almost surely takes val-
ues in Y. Our goal is to provide a nonparametric regression estimator for the
expectation conditional on x of each random vector y € Y. One can think of
such expectation as the first-order moment of the belief function generated by
Y conditional on .

For a given tuple (x,y) that almost surely belongs to {x} X Y, we denote
by m(z) = Ely|z = z] the regression function for the chosen (x,y). Each
choice of (x,y) € {x} x Y as. gives rise to a function m and we denote
by M the family of all regression functions generated in this manner. We let

M(z) = {m(z): m € M} and we observe that
M(z) =E[Y|x =2z = {E[y|w =zl:yeY a.s.}

is the conditional selection expectation of Y, see [4, Sec. 2.1.6] and Section 2.
For example, consider the empirically relevant case that d = 1 and ¥ =

[yL, yu] for two random variables yr,, yu such that P(yr, < yy) = 1. Then
M(x) = [ElyLlz = 2], Elyule = 2| (1)

Our proposal is to estimate M (x) as a weighted sum of the sets Y7,...,Y,,
with weights defined as in the local linear estimation literature.! The develop-
ment of our technical results directly builds on classic references such as [5] and
[6], and is closely related to [7] and [3].

For the case that d = 1, inspection of equation (1) might suggest to report an
estimator given by the interval between a local constant or local linear regression
of y;, on & and one of yy on . Alternatively, it might suggest to report a local
constant or local linear regression of the interval midpoint, ¥ = (yr + yu)/2,

and of the interval width, w = yy — yr, on . While both in finite sample

'We comment on the case of local constant (Nadaraya—Watson) estimator in Appendix C.
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and asymptotically these approaches are equivalent to what we propose for
the case of a local constant regression, for the case of local linear regression
equivalence breaks down in finite sample. The difference is important: we show
in Remark 3.1 below that the alternative estimators just described may lead to a
finite sample bias understating the width of M (z) and are therefore unpalatable.
For example, such estimators might be empty or a singleton in finite sample even
though M (x) is an interval of strictly positive width in population. In contrast,
the estimator that we propose does not suffer from this problem, although it
does have an asymptotic bias term similar to that of point identified local linear
regression estimators.

Our approach is the first contribution in the literature to local regression
smoothing when the set-valued outcome variable is in R? with d > 1. We derive
the asymptotic properties of our estimator and extend results from [8] to obtain
pointwise confidence bands that asymptotically cover the functional of interest
with probability 1 — a. We report the results of Monte Carlo simulations with
interval-valued Y and with Y being a ball randomly placed on the plane that
support our theoretical findings.

We also demonstrate the usefulness of our approach with an empirical il-
lustration that uses a novel dataset from a clinical trial on non-small-cell lung
cancer patients, to study the relationship between tumor time to progression

and specific gene expression measures.

Related literature.. Within the partial identification literature, there is a large
body of work analyzing regression with interval-valued data. [9] consider mod-
els where one variable (either outcome or covariate) is observed as intervals and
all others are perfectly measured, and provide identification results for non-
parametric as well as parametric models in this setting. [8] introduce to the
partial identification literature the use of random set theory and provide results
on identification and inference on best linear prediction parameters (ordinary
least squares) when the outcome variable is interval-valued and the regressors

are perfectly measured. [10] extend the familiar Sargan test for overidentifying



85

90

95

100

105

110

restrictions to the setting studied by [8]. [11] extend [8]’s approach to cover
best linear approximation of any function f(x) that is known to lie within two
identified bounding functions. [12] proposes an estimator for weighted aver-
age derivatives of conditional mean and conditional quantile functionals when
either the outcome variable or a regressor is interval-valued. [13] propose em-
pirical likelihood methods for random sets to conduct inference in the class of
problems analyzed by [8]. All these papers focus exclusively on the case that
the set-valued outcome data is in R.

In contrast, our approach leverages the theory of random sets to propose
a set-valued local linear regression estimator for conditional set-valued expec-
tations with Y € R% d > 1, and to establish its asymptotic properties. This
estimator is novel in the literature, and so are our results establishing its con-
sistency and asymptotic distribution.

The method that we propose differs significantly from other approaches in
the statistical literature; see [14] for a discussion bridging this literature with
partial identification. In particular, our proposal is distinct from the large and
closely related literature that posits parametric models for set-valued data. In
these models tools from interval arithmetic are used to build analogs of the
classic linear regression model for perfectly measured data, e.g. by assuming
that E[Y;|z;] = Az; + B, where A and B are intervals. See e.g. [15], [16],
[17], and [18] among others for a discussion of least squares analysis of this
and related models. [19] proposes nonparametric smoothing for this model, by
applying weighted least squares to the interval data and then using the resulting
intercept as the estimator. [20] discuss various interpretations of set-valued data.
Compared to this literature, we leave the conditional set-valued expectation
completely unspecified, and nonparametrically estimate all regression functions
compatible with the interval-valued data.

Finally, our proposal is distinct from the literature on data coarsening, e.g.
[21], [22] and [23]. In that literature, the key assumption of “coarsening at
random” requires that for any possible value A of the random set Y and a

random vector y that almost surely belongs to Y, the conditional probability
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P(Y = Aly = yo) does not depend on yy € A. This assumption restricts
directly the conditional distribution of the random set Y, whereas we leave this

distribution completely unrestricted.

Structure of the paper.. In Section 2 we set up our notation and we briefly review
local linear regression with singleton data. Our method implicitly applies it to
each tuple (x,y) : (x,y) € {z} x Y a.s. In Section 3 we propose our estimator
and in Section 4 derive its asymptotic properties. In Section 5 we describe a
cross-validation method for bandwidth selection, and we extend the methods
proposed by [8] to test a hypothesis about the conditional expectation (eval-
uated at xg) and to build pointwise error bands with prespecified asymptotic
coverage. In Section 6 we report the results of Monte Carlo experiments and
in Section 7 the results of our empirical illustration. Section 8 concludes. All
technical proofs are collected in Appendix A. Throughout we consider the case
that the regressors  are random variables (random design case). In keeping
with the tradition in the statistics literature (e.g., [3]), we also report in Ap-
pendix B the case of deterministic design (nonstochastic explanatory variables).
Appendix C briefly discusses the local constant regression case. Appendix D
reports some basic facts in convex geometry and random set theory that we use
throughout the paper. We refer to [4] for a thorough account of random sets

theory. Appendix E provides additional simulation results.

2. Notation and preliminaries

We begin with listing our notation. We use boldface capital letters X,Y, Z
to denote random compact convex sets, normal font capital letters X,Y, Z and
A, B, C to denote deterministic compact convex sets, boldface lower case letters
x, vy, z to denote random vectors or random variables, and normal font lowercase
letters x, y, z to denote deterministic vectors. For x € R, we denote the positive
and negative parts of = respectively by ¥ = max(0,z) and 2= = — min(0, z).
We let (Q,F,P) denote a nonatomic probability space on which all random

vectors and random sets that we work with are defined, where €2 is the space of
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elementary events equipped with o-algebra § and probability measure P. We
denote the Euclidean space by R?, and equip it with the Euclidean norm (which
is denoted by | - ||). We denote by K(R?) the collection of compact subsets of
R? and by Kc(RY) the family of non-empty compact convex sets, also called
convex bodies. We let S¥~! = {z € R? : ||z|| = 1} denote the unit sphere in R%.

We assume that Y is a random set in R taking almost surely compact and

convex values. In terms of measurability requirements, this amounts to
{w: Y(WNK#0} €F VK € K(RY). (2)

The probabilities P(Y C K), K € K(RY), called the containment functional of
Y, fully characterize the distribution of Y, [e.g., 4, Thm. 1.8.9]. As function of
K, these probabilities are special cases of the belief functions, see [24] and more
recently [25] and [26]. While general belief functions do not necessarily satisfy
regularity conditions specific for the containment functional, the containment
functionals are exactly semicontinuous belief functions. Then Y describes the
possible regions where a true value lies, and hence represents the ambiguity
embedded in the observations, and coincides with the multivalued mapping I’
in [24].

To set the stage for local regression smoothing, we recall the standard con-
struction of the local polynomial estimators for singleton-valued outcomes, see
e.g. [6]. Suppose one is interested in estimating E(y;|z; = z) based on obser-
vations (x;,v;), 4 = 1,...,n, where x is a given value on the support of  (e.g.,
a particular level of the gene expression measure in our empirical study). Then

one fits a p-th order local model
Yi = bo(0) + 01(wo) (i — x0) + -+ + Op(20) (@i — 20)" + &4,

using the regressor x; —x (rather than @;) so that the intercept equals E(y;|z; =
xo). In this expression, the coefficients 6 are written as a function of zg to em-

phasize that they change with the evaluation point (and this is what makes the
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model “local”); to simplify notation, such dependence is suppressed henceforth.
The local polynomial estimator of order p is then obtained by minimizing the

weighted least squares

n

> (yi = 00— 1@ — o) =+ — By (s 1;0)?)21(("“ —) @

h
=1 n

with respect to g, ...,0,. The kernel function K (-) is a nonnegative integrable
function and the tuning parameter h,, is the bandwidth. As it is typically done,
we assume that h, — 0 and nh,, — co as n — oco. The following condition on

the kernel function is imposed throughout this paper.

Assumption A (Kernel function). The kernel K(z), z € R, is a nonnegative
function bounded above by Kmax < 00, with compact support [—ck, ck| for some

ck € (0,00), and satisfying

/K(z) dz =1, /zK(z) dz = 0.

Denote Varg = [ 22K (z)dz.

The normalization conditions on K are standard, while the compact support
ensures that observations sufficiently far (compared to the order of the band-
width) from the current point do not influence the estimator at this point, see
also Appendix B.

Solving explicitly the weighted least squares minimization problem in (3),
one obtains the minimizer é, and the first entry of it, the intercept éo, is used

to estimate m(xp). This estimator can be written as

m(zo) = Zfi(fo)ym (4)
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where

n
Busg = —— > u(TE 0y (T L0y

with K, = K(%) Note that £;(x¢), i = 1,...,n, sum up to one, and write

1 ¢ ,
sj:ﬁan(wi—wo)J, j=0,1,...
i=1

It is easy to see that s389 —s? > 0, and that the right-hand side of (4) is linear
in the response variables, since the weights do not depend on the y;’s.
If p = 0 (local constant regression), (zy) is the Nadaraya-Watson estimator

with ¢;(x0) = Kin/(nso). If p =1 (local linear regression), then

Kin S2 — (X; — S
bh(ag) = T 22— T T3,

(5)

n S280 — 87

Our goal is to extend the local linear regression framework to set-valued
outcomes: we propose an analog to estimator (4) with p = 1 and ¢;(z¢) as
given in (5), for the case that instead of knowing the exact value of y, it is only
assumed that y almost surely belongs to a random set Y. In this case y is said
to be a (measurable) selection of Y. Distributions of all selections of Y can
be identified with the probability measures from the core of the belief function
generated by Y, that is, probability measures dominating the belief function.
The pair (z,y) is a selection of {z} x Y, a random closed set in I x R? with I
the support of . This framework can alternatively be described as associating
with each value of the explanatory variable x a belief function describing the
(conditional) distribution of Y.

Whereas in the standard case of singleton-valued outcomes one observes

singleton-valued data (x;,y;), ¢ = 1,...,n, in our framework the observations
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are set-valued, (z;,Y;), ¢ = 1,...,n. As a result, our estimators are also set-
valued, and in order to assess their properties, we need to define square loss
for sets, so as to formalize consistency results and the notion of mean squared
error. To do so, and to provide a computationally tractable estimator, we
exploit the duality between convex sets and their support function (see, e.g.,
Chapter 13 in [27], and (D.2) in Appendix D). The support function of Y in
direction v € S9! is given by s(Y,v) = SUPycy vy, and can be used to define
the width function of Y in direction v € S¥~ 1 w(Y,v) = s(Y,v) + s(Y, —v)
(see Appendix D). We assume that Y is integrably bounded, that is, [|[Y|| =
sup,cy ||yl is integrable (Assumption B in the next section provides sufficient
conditions guaranteeing that this is the case), and since |s(Y,v)| < ||Y|| for all
v from the unit sphere, this implies that the support function is integrable. It
is possible to show that Es(Y,v) = s(EY,v) [see 4, Theorem 2.1.35], i.e. the
expected support function is the support function of a convex body EY, which
in turn is called the expectation of Y. This expectation equals the set of values
Ey for all random vectors y such that y € Y a.s.

Similarly, for given x it is possible to define the conditional expectation
EY|z=2] = {E[y\m =z]:yeY a.s.},

and also in this case it holds that E[s(Y,v)|x = z] = s(E[Y |z = z],v) [see, e.g.,
4, Sec. 2.1.6]. The set E[Y |z = z] is the object of interest in this paper, and
one can think of it as the first-order moment of the belief function generated by
Y conditional on «.

To simplify the exposition, henceforth we assume that @ is a scalar random
variable and that [ is an interval, I C R. Our results apply, subject only
to modification in notation and convergence rates (as in the point identified
case), with vector-valued & provided the real-valued bandwidth is replaced by
a matrix-valued one.

The family of support functions of all non-empty compact convex subsets in

R? is a subset of the family of continuous functions on the unit sphere S*~!. In

10
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particular, the Hausdorff metric between compact convex sets equals the uniform
(Loo) distance between their support functions, see e.g. [28, Lemma 1.8.14].
For our purposes, it is convenient to endow the family of continuous functions on
the unit sphere with the Ls-metric, so that the distance between two non-empty
compact convex sets A; and A, is given by

1
2

s = ([ 6t - stazPao) ©)

The integration is performed with respect to the uniform measure on S1. If
d =1, the integral turns into the sum of two terms for v =1 and v = —1. The
distance to the empty set is assigned to be infinite.

In Section 3, we employ this distance to define the mean square error of
our estimator. This distance differs from the standard Hausdorff distance used
in the related literature in partial identification and in the standard laws of
large numbers and central limit theorems for Minkowski averages of random
sets. However, under our assumptions the result of Theorem 3 in [29] yields
that these two metrics define the same topology, and so the consistency with
respect to the Lo-distance implies consistency with respect to the L.-distance.
At the same time, use of the Lo-distance is particularly well suited to analyze

properties of estimators based on least squares minimization.

3. Nonparametric smoothing for random sets

In the following we assume that (x;,Y;), i =1,...,n, is a sample of i.i.d. re-
alizations of (x,Y") as defined in Appendix D, where Y satisfies Assumption B
introduced below. This i.i.d. assumption is consistent with many collection
processes of set-valued data, such as, e.g., the use of unfolding brackets in the
Health and Retirement Study, in the Occupational Employment Statistics sur-
vey of the Bureau of Labor Statistics, and in the empirical application that we
present in Section 7. We relate it to the typical i.i.d. assumption for singleton-

valued data following our statement of Assumption B below.

11
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When the outcome data is set-valued, it is necessary to obtain an estimator
for the collection of conditional expectations E[y|z = z] for all (x,y) € {z} xY
a.s. This can be accomplished by repeating the procedure in the previous section
for all selections of {x} x Y. Computationally this is easily achieved by taking
the weighted Minkowski average of the Y; data (see Appendix D for a formal

definition of Minkowski sum):

For p = 0 we obtain a local constant set-valued regression estimator; the choice
p =1 yields a local linear set-valued regression estimator. Note that (7) is also
the Fréchet mean of the observed values Y7, ...,Y,, in the metric given by (6),
see [30] and Sec. 2.2.5 in [4].

The estimator in (7) yields a convex set, therefore we can characterize its
properties by working with its support function (see (D.2) in Appendix D and
Chapter 13 of [27]). To simplify notation, in what follows we omit the argument
xo in £;(xo) and write shortly ¢;, unless the dependence on zg is essential. By
representing the difference of its positive and negative parts as ¢; = ¢ — ¢,
and using that s(—A,v) = s(A, —v) for a convex compact set A and its centrally

symmetric set —A = {—z: x € A}, we arrive at

n

s(M (o s< Yz,v) :igfs(i’},v)—l—iﬁ;s(l’},—v)
l:1 3 i=1

A key feature of the above estimator is that it averages the support function
of the set Y; in direction +v when ¢; > 0, and in direction —v when ¢; < 0.
In doing so we guarantee that the estimator is always non-empty for any n, a

highly desirable feature in light of Assumption B.

Remark 3.1. When d =1 and Y = [yr, yu] with P(yuy > yr) = 1, one might

12

Z€ +47)s(Y;,v) —l—Z@ s( Z,—v):i&s(Yi,v)—&—iE;w(Y},v).
i=1 i=1 i=1 i=1
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consider two estimators as alternatives to M (z9). One is given by

N (o) = [ZéiyiL,ZEiyiU] -
i=1 i=1

The other is obtained by regressing the midpoint () and the width (w) of the

interval [yr,, yu] on « and letting

O(zo) = [Z@Qz - Z&%, Z&‘Qi + Z&u;} .
i—1 i=1 i=1 i=1

Standard arguments in [5] yield that N (z0) and O(z) are consistent estimators
of
M(wo) = E[Y|@ = x0] = [Elye|z = o], Elyu|z = ]|

with respect to the Lo-distance. However, these estimators can have large finite
sample bias, and even be empty (with asymptotically vanishing probability), as
illustrated in the following example. Suppose that for ¢ with ¢; > 0, y;1, = y.u;

and for ¢ with ¢; < 0, y;u > yir..2 Then
n n n n n
Yoty = Gy = Ly =) Lyu—> Ly
i=1 i=1 =1 i=1 i=1
n n n
>Nty =Y Gy =Y by,
=1 =1 i=1

and N (z9) is empty. One can similarly show that O(xo) is empty. Similarly
empty estimators may result even if y;u > y;r, whenever ¢; > 0, depending on
the realizations of y;1, and y,;y, see Figure 1 for N (z9). Even if one censors
w; = 0 if £; < 0, the resulting estimator may still in finite sample significantly

understate the width of M (xg).

While the example in Remark 3.1 might appear stylized, it highlights a

2While the example is provided for the case d = 1, similar constructions can be obtained
also when d > 2.

13



Figure 1: Possible emptiness of the estimator N (zo). Blue dashed line: > iy red solid
line: >0 | 4iyiu.

finite sample problem that can easily occur in practice with interval-valued

data, but does not affect the corresponding estimators in the singleton-valued

case. The reason is that in the singleton case, local regression smoothers are

weighted averages of the observed outcomes. That is also the case for our

us  estimator, M (z9), which averages the sets Y; and indeed is always non-empty.

On the other hand, N(xz¢) and O(zo) average specific selections of Y; (e.g.,

the extreme points), without recognizing that the sign of the weight may affect
which selection is extreme in a given direction.

Throughout the paper we assume I = R and we impose the following re-

0 strictions on the observed and theoretical responses and on the density function

of x.

Assumption B (Observed responses). (i) Let (x;,Y;), i = 1,...,n, be a
sample of i.i.d. realizations of (x,Y), i =1,...,n. Conditional onx1,...,T,,
the observations Y1, ..., Yy, are non-empty random compact conver sets.

s (i) Y; C &+ B a.s. for square integrable random vectors &, i =1,...,n, and

a deterministic compact set B that is the same for all 1.

Define
gi(v) = s(Y;,v) — s(M(x;),v), veSi L (8)

14
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By Assumption B, &;(-), ¢ = 1,...,n, are i.i.d. copies of a square integrable
random function e(v), v € S, such that E[e;(v)|z;] = 0 z;-a.s. for all v €

S4=1. The square integrability follows from the inequality,
ei(v) < s(B,v) + |& vl+n; ol

where 7; is a square integrable selection of M (x;). This selection exists in view
of Assumption B(ii) and can be chosen as the point of M(z;) = E(Y;|z;) C
E(&;|z;) + B nearest to E(;|x;). Note that € does not admit a geometric
interpretation as the support function of a random set.

Denote by C(v,u) = Ele(v)e(u)] the covariance function of ¢ and let o2,
be the supremum of C(v,v) = E[e(v)?] over all v from the unit sphere. Assump-
tion B(ii) guarantees that Y; is uniformly integrably bounded, and implies that
the diameters of all Y;’s are bounded by a deterministic constant. Hence, the
ambiguity range is limited to belong to a deterministic set, and o2, is finite.

It is worth to compare our random sampling assumption with the standard
one for singleton-valued variables. In that context, one has y; = m(xz;) + &;,
and (x;,y;) are assumed i.i.d., and as a consequence ¢; are i.i.d. In our context,
we assume that (x;,Y;) are i.i.d., and as a consequence ¢;(v) are i.i.d.

In dimension d = 1, we have s(Y;,1) = y;u, s(Y;, —1) = —y;1, and Part (i)
of Assumption B requires that y;1, = E[y|z] — €;(—1), y;u = E[yu|z] + (1)
with €;(1) +¢&;(—1) > —(E[yu|z] — E[yL|x]) almost surely. The latter condition
replicates the requirement that P(yy > yr) = 1.

Next, we require the conditional expectation of E[Y |x] to have a sufficiently
smooth support function, thereby allowing for standard expansions used in ob-

taining the asymptotic properties of the local linear estimator.

Assumption C (Theoretical response function). The function M(z), = € R,
is such that s(M(z),v) admits a second derivative s" (M (x),v) in x, uniformly

bounded for all v € ST1.

In dimension d = 1, Assumption C means the second order differentiability

15
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of the end-points of the interval-valued function M (x). Finally, we assume that
the common density f of the independent design points satisfies the following
condition, which is similar to that imposed in Condition 1(ii) of [5] with sin-
gleton responses. This is a standard condition in nonparametric regression; it

guarantees that the design points are not too concentrated in some areas.

Assumption D (Density). The density f is strictly positive at xo and belongs
to the family H(1,v) of Lipschitz functions with constant v > 0, that is,

(@) = F@@")] < yla” — 2|

for all ',z € R.

We measure the quality of M (z¢) as set-valued estimator of M (zo) by the

quadratic loss function defined in (6),

L(M(xo), M(xo))2 = /sd—l (s(M(z0),v) — s(M(xo), v))2 dv.

The mean squared error (MSE) of the estimator is then the expectation of

L(M (x0), M(x0))%. A classic bias-variance decomposition yields

MSE(z0) = / b (v) do + / o2 (v) dv,

gd-1

where b2 (v) and 02 (v) are squared bias and variance, given by

bio (v) = E(E[S(M(xo),v)|a:1, N S(M(Jco),v))Z,

~ 2
o2 (v) :E(S(M(xo),v)—s(E[M(xO)\:cl,...,mn],v)> .

Because E[Y;|z;] = M(x;), we have

E[s(M(xg),v)|x1,...,x,] = Z&S(M(:Bi)m) + ZZ;w(M(a:i),v).

16
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Rearranging the terms, we arrive at

n

b2 (v) = E(Z&(s(M(a:i),v) — 5(M(0),0)) + > _ L7 w(M(a;), U))Q (9)
=1

=1

and
02, () = B( X Li(s(Yi,v) — s(M(w:).v) + é@f (w(¥i, ) ~ w(M (@), v)))
By Assumption B, the variance can be expressed as

o2 (1) = E(é&si(v) + z:z (€w) +ei(—0))) (10)

Differently from the classical case with singleton responses y;, the negative
parts of the weights in (9) play an essential role with set-valued responses. This
is because while the difference between s(M(x;),v) and s(M(xg),v) is small
when x; is close to xg, the width w(M (x;),v) does not vanish as x; becomes
closer to xg. Thus, the bias increases by a constant and may not tend to zero if
some weights are negative and not close to zero. Much of our asymptotic analysis
is concerned with establishing the asymptotic behavior of these negative weights.

The methodology that we propose for local linear regression smoothing can
be applied also in the case of local polynomial regression models with p > 2. In
this case, however, extra care is required to show that the negative weights are

asymptotically negligible.

4. Asymptotic properties of the set-valued estimators

In the local linear regression setting, negative weights may appear in (9) and
hence affect the bias in the case of set-valued data. Following [5], in order to
avoid zero in the denominator of the local linear estimator, we redefine ¢; by
letting

0 — Kin 82 — (T — 0)8$1
;=

(11)

n 8280 —s7+n4’
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We use 0 and O to denote the deterministic order of magnitude uniformly
in f € H(1,7y). For a sequence {z,,n > 1} of random variables determined

through the design points and the observations, write z,, = O, (a,) if

sup  Elz,|" = O(ay,).
fFeH (1)
The notation o,.(a,,) is defined similarly. We then have O,.(a,,)O,(bn) = O, /2(a,by),
and

zn =Ez, + O.(E|z, — Ezn|r)1/r.

To determine the contribution to the bias resulting from the negative weights,
w  we first derive the expected sum of the squared weights ¢2. Proofs of the fol-

lowing results are given in Appendix A.

Proposition 4.1. Let h, — 0 and nh,, — o0 as n — oco. Under Assumptions

A and D,
= 1 1
EZK? = () /K2(z) dz—l—o(m). (12)

i=1
Next, we obtain the second moment of the sum of the negative weights.

Proposition 4.2. Let h,, — 0 and nh,, — 00 asn — co. Under Assumptions A

and D, for sufficiently large r,
n 2 1
E(21€> = h—nO((l/\/nhn) ).

With this result in hand, we can derive the mean squared error of our esti-
mator. As the mean squared error converges to zero as n increases to infinity,

35 this result yields consistency of our estimator as well as its rate of convergence.

Theorem 4.3. Under Assumptions A, B, C, and D, if h,, = en™? with 0 <
B <1 and a constant ¢ > 0, the mean squared error of the local linear estimator

(7) is

MSE () = w /SUF1 SH(M(.’EQ),’U>2 dv + W /KQ(Z) dz+ o (hi + nlhn) .
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We conclude this section by deriving a limit theorem for the support function
of the estimators as processes on the unit sphere. In turn, this limit theorem
can be used to build error tubes for the estimator as explained in Section 5.
Let ¢(v), v € S™71, be a centered Gaussian process on the unit sphere with the

covariance

Bloc)] = G [ K i (13)

Theorem 4.4. Assume that h,, = cn™? with 0 < B < 1, and fix xo € I. Under

Assumptions A, B, C, and D, the stochastic process

\/nhn<5pN1@myv)4A4@m)ﬂghi;y%AJ@mxlo\@IK)

constructed using the local linear estimator in (7) converges in distribution in the
space of continuous functions on S*~1 with the uniform metric to the Gaussian

process (.

5. Cross-validation and error tubes

Cross-validation. In the classical setting, where the observation pairs (x;, y;)
are real-valued, one typically chooses the bandwidth h,, to minimize the leave-

one-out cross-validation score, defined as

where 1y (z) = 37_, Yl (i (z) and

0 if j =14,
Bj,(fi)(x) =

0, (z) .,
S @ L F

This procedure assigns weight zero to x; and renormalizes the other weights to
sum to one.

Following the same idea, we define the cross-validation score for the set-
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valued responses Y; as
1 — .
CV = p ; /Sd_l(s(YZ—,v) - s(M(_i)(:ci),v))2 dv, (14)

where M(_i) (z) = Z;-lzl Y;l; —iy(x). Ifoneisinterested in a specific projection
in direction v, the above expression simplifies by removing the integral.

IfY; = [y, yiu] C R, (14) turns into

n

CV = %Z (yiL - M(—iL)(xi))2 + (yiv — M(,ZU) (wi))Q), (15)

i=1

where M(,ZL) (z;) and M(,Z-U) (z;) denote the lower and upper bounds of M(,i) (z;).

We denote by h,, cv the bandwidth that minimizes (15) (or (14), depending on
the application).

Error tubes. The optimal bandwidth which minimizes the MSE in Theo-
rem 4.3 is Ay, mse = Cn~Y/°, with some constant C' that does not depend on
n. However, such a choice of bandwidth implies nh?> 4 0 and the leading bias
term in Theorem 4.4 does not vanish, as in the classical case for singleton-valued
outcomes. Similarly to that case, one can use undersmoothing as an approach
to bias reduction. In Section 6 we illustrate the impact of undersmoothing on
the error tubes that we describe next.

Rather than undersmooth, we propose to report statistical uncertainty in
our estimates in the form of pointwise error tubes — an analog of error bands
for singleton-valued data. Specifically, for each value zy considered we propose
to report the set

C(zo) = M (o) +

Ca
B, 16
e (16)

o

where B = {b: ||b]| < 1} is the unit ball. In (16) ¢, is chosen so that

p < max {C(v)}y > ca) =a, (17)

vt [jof=1

where ( is the centered Gaussian process with covariance kernel (13), see Theo-
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rem 4.4. The critical value ¢, can be obtained by simulation, or can be estimated
using the bootstrap. Validity of the bootstrap can be formally established as in
Proposition 2.1 of [8] [see also 31, Theorem 4.13]. It follows from Theorem 4.4
that

lim P max {s(M(zg),v) — s(M(zp),v)

n—0o0 (v: [|[v]|=1

. ls”(M(mo),v) Varg —s(C(xq),v)} 4 = O) >1—a.

"2
(18)

If one is interested in a specific projection in direction v, a valid error band for
s(M(zg),v) is obtained by replacing (16) with

s(M (zg),v) — CZ;L) ,S(M(mo),v)—i- \;% . (19)

where ¢, is obtained as in (17) replacing the maximization over v with |jv|| =1
by a fixed direction v.

Existing methods of bias correction (other than undersmoothing, the effect
of which we are already investigating in our Monte Carlo exercise) could be
extended to the case of set-valued outcomes. However, we do not report such
findings here,® because any form of bias reduction may result in an empty

estimator, which we regard as an undesirable feature as discussed in Remark 3.1.

6. Monte Carlo Simulations

We perform a simulation study for the case that d = 1 and for the case that

d = 2. In the first case, we use the following data generating process (DGP1):

yr, = 0.90 + 1.27x + 5.18x% — ¢,

yu = 0.90 + 1.27x + 10.18z> + ¢y,

3 Although these are available from the authors upon request.
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Table 1: Coverage probability at 95% nominal level using cross-validation for DGP1.

sample zo Coverage of Coverage of Coverage of M(z9)  Coverage of M(zo)
size M (z0) E(M(xo))  with h =1/2h, cy  with h = 1/3h, cv
-0.4 0.8315 0.8245 0.9055 0.9695
200 0 0.8855 0.8550 0.8565 0.9515
0.2 0.9330 0.9270 0.9865 0.9980
0.4 0.9270 0.9040 0.9255 0.9875
-0.4 0.8580 0.8485 0.9300 0.9790
500 0 0.9245 0.9095 0.9710 0.9920
0.2 0.9240 0.9200 0.9710 0.9950
0.4 0.9340 0.9145 0.9180 0.9760
-0.4 0.8910 0.8760 0.9430 0.9845
1000 0 0.9035 0.8935 0.9360 0.9830
0.2 0.9230 0.9210 0.9570 0.9890
0.4 0.9225 0.9125 0.9125 0.9760
-0.4 0.88200 0.8710 0.9450 0.9835
2000 0 0.9020 0.8915 0.9390 0.9870
0.2 0.9320 0.9125 0.9525 0.9900
0.4 0.9335 0.9170 0.9635 0.9915

with  drawn from a Beta distribution with support shifted to be [—1,1] and
with shape parameters (2,4), and ¢, and ey drawn independently from a Uni-
form distribution on [0, 1]. We let the sample size n = 200, 500, 1000, 2000. For
values of xy = 0,0.2,0.4,0.6 we evaluate the coverage probability of the error
tubes in equation (16).

We compare different implementations of the error tubes, and in Table 1
we report: (i) coverage probability of the true set M (zg) by the error tube
(meaning that the true set is a subset of the tube) in (16) computed using the
cross-validation bandwidth (column 3); (ii) coverage probability as in (18), with
the error tube in (16) computed using the cross-validation bandwidth (column
4); (iii) same exercise as in (i) but using undersmoothed bandwidths (columns
5 and 6). The results are based on 200 Monte Carlo replications.

In these simulations, the asymptotic bias does not affect the ability of the er-
ror tube in (16) to cover the true set M (z0) compared to E[M ()], see columns
(3) and (4) of the table. If we undersmooth the bandwidth, the confidence in-

terval enlarges substantially and coverage of the true set becomes conservative.
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In Appendix E we report the results of two additional simulation studies that
vary the expressions for E(yp|z) and E(yuy|x), as well as the distribution of e,
(to be Beta(2,2) instead of Uniform(0,1)). Qualitatively the results are similar
to what we report here.

We also perform a simulation study for the case that d = 2 with the following

data generating process (DGP2):

0.90 + 1.27x + 10.18x2
0.60 — 1.00x — 5.18x?

where B is a ball of radius 1 centered at the random vector £, and £ is uniformly
distributed on the unit ball in R2. As in the previous simulation, « is drawn
from a Beta distribution with support shifted to be [—1,1] and with shape
parameters (2,4). We let the sample size n = 200, 500, 1000, 2000. For values
of g = 0,0.2,0.4,0.6 we evaluate the coverage probability of the error bands
in equation (19) for v = (1,0),v = (1,1)/v2, and v = (0,1). To conserve
space, we report the results for v = (1,0) in Table 2 here, and for v = (1,1)/v/2
and v = (0, 1), respectively, in Tables E.6 and E.7 in Appendix E. Overall the
results are qualitatively similar to those reported for DGP1: once the bandwidth

is undersmoothed and sample size is sufficiently large, coverage becomes valid.

7. Empirical Application

We demonstrate the usefulness of our approach with an empirical illustration
that studies the association between cancer treatment outcomes and certain gene
expression measures.

A key outcome of interest in cancer treatment research is the progression-free
survival (PFS), which is defined as the time measured in months from baseline
until tumor progression or death (whichever occurs first). Tumor progression is
defined as an increase in the diameter of the tumor lesions of 20% compared with

the smallest diameters of all previous tumor assessments or the appearance of
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Table 2: Coverage probability at 95% nominal level using cross-validation for DGP2 with
v =(1,0).

sample xzo Coverage of Coverage of  Coverage of M(z9)  Coverage of M(zo)
size M (o) E(M(z0))  with h=1/2h, cv  with h = 1/3h, cv
-0.4 0.8290 0.8395 0.8960 0.9725
200 0 0.8515 0.8760 0.8525 0.9530
0.2 0.9290 0.9360 0.9840 0.9985
0.4 0.9085 0.9290 0.9220 0.9835
-0.4 0.8580 0.8665 0.9345 0.9805
500 0 0.9195 0.9275 0.9745 0.9960
0.2 0.9260 0.9325 0.9730 0.9945
0.4 0.9210 0.9270 0.8965 0.9675
-0.4 0.8830 0.8910 0.9315 0.9820
1000 0 0.9055 0.9125 0.9330 0.9785
0.2 0.9210 0.9255 0.9425 0.9875
0.4 0.9325 0.9345 0.9120 0.9725
-0.4 0.8805 0.8835 0.9495 0.9875
2000 0 0.8900 0.8985 0.9355 0.9860
0.2 0.9220 0.9300 0.9490 0.9915
0.4 0.9270 0.9360 0.9595 0.9900

new lesions, as measured by CT-scans or MRIs (this is called RECIST criterion
in the medical literature, see [32]). However, due to ethical and cost constraints,
CT-scans and MRIs cannot be performed daily, but rather scheduled every 3 to
6 months. Hence, the PFS of patients can only be measured by intervals (with
the true PFS falling between the last assessment without tumor progression
and the assessment with progression), and no information is available on the
distribution of true PFS within the interval. In contrast, the PFS of patients
who died without tumor progression is measured exactly.

The question that we focus on in this paper is part of a subproject of the
Swiss Cancer Research Group (SAKK) 19/09 for anti-cancer treatment regi-
mens described in [33]. This subproject is concerned with finding, out of a total
of 202 investigated genes, those whose baseline expression affects patient’s PFS
differently in two treatment arms described below. Genes expression is evalu-
ated by isolating RNA from baseline tumor tissue sections and processing it for

gene expression analysis using the Nanostring nCounter® System (Nanostring
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Technologies), including 6 housekeeping genes.* The gene expression measure
that we report and use for our analysis is the log, of the output of Nanostring.

It is worth mentioning that classical statistical methods of survival analysis,
such as Cox regression or the accelerated failure time model, can also be ap-
plied to this data (and we do so below). These models are typically implemented
with a parametric or semi-parametric specification of the hazard rate to con-
struct the likelihood function. For example, the Cox proportional hazard model
[34] assumes a hazard rate that is constant over time, and the resulting survival
data follow a Markovian process; the accelerated failure time model posits an
acceleration factor that is constant over time. The probability of censoring can
then be calculated based on the functional form assumption. For example, the
PFS variable in our example is usually treated as an interval censored data,
for which one can construct the likelihood function and obtain point identified
estimates of the model’s parameters, and then back out the implied conditional
expectation of the treatment outcome given gene expression. In contrast, our
method provides a consistent estimator of the set of admissible values for the
conditional expectation of treatment outcome given gene expression, as well as
1 — « pointwise confidence bands for it as in (16), without making any assump-
tion on how PFS is distributed over the measured intervals that it is known to
belong to, nor how it is related to the genes, as these assumptions may fail to
hold in a given application.?

We use a novel dataset that follows 132 patients who were accrued between
November 2010 and July 2014 to the SAKK 19/09 clinical trial for anti-cancer
treatment regimens described in [33]. These patients are affected by advanced
non-squamous non-small cell lung cancer and present an epidermal growth factor
receptor (EGFR) of the wild type. Excluding 3 patients with protocol violations,
77 patients were treated with the drug Bevacizumab plus chemotherapy (C1)

and 52 were treated with chemotherapy alone (C2). The question of interest

4See https://wuw.nanostring.com for a description of this method.
5[35] point out that individual heterogeneity and hazard rate cannot be jointly non-
parametrically point identified.
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Table 3: Descriptive statistics for interval-valued PFS and genes PTGS2 and CDC25A; y de-
notes the progression-free survival (time from baseline until tumor progression or death), yy, is
last assessment without tumor progression, and yy is the assessment with tumor progression.

variable mean stdErr max min N
YL 7.62 9.08 52.40 0 95
Yu 9.25 9.65 55.16 0.23 95
CDC25A 7.23 2.76 14.22 0 95
PTGS2 8.66 1.90 13.37 2.86 95

of the SAKK 19/09 subproject that we revisit in this section is whether the
gene expression of PTGS2 (COX2) at baseline affects differently patient’s PFS
in the two treatment arms. The gene PTGS2 (COX2) is frequently expressed
in lung cancer patients and the drug Bevacizumab directly interacts with the
COX2 pathway. One speculates that in patients with a high expression of
COX2 the tumor cells are predominately dependent on this signaling pathway
for proliferation and the use of Bevacizumab has a more pronounced effect.
Vice-versa, if COX2 is only expressed at a low level, this could reflect a tumor
that is not dependent on this inflammatory pathway and therefore the use of
Bevacizumab is not beneficial. Another gene of interest (whose effect on cancer
treatment efficacy has not been previously analyzed) is CDC25A, which is a
key regulator of the cells cycles. One speculates that overexpression of gene

CDC25A is associated with a poorer prognosis with regard to its biological role.

In our analysis, y = PFS, yr is the time of the last assessment without
tumor progression, and yy is the time of the assessment with tumor progres-
sion. Table 3 reports descriptive statistics for these data. The sample used
for the analysis is constituted by 99 patients, from which four were excluded
because they were still alive at the last follow up (and therefore for these pa-

tients y;u = 00). Of the sample used for our analysis, 58 patients were treated
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following protocol C1, and 37 following protocol C2. Because durations are
non-negative by definition while local linear regression smoothers may yield neg-
ative predictions, we work with the natural logarithm of our data, adjusted as

follows

gx = In(yx +0.033), k=L,U

where we add 0.033 because for some individuals y;, = 0. The choice of 0.033 is
motivated by the unit of measure for y, which is months: following the conven-
tion in the medical literature, we add one day (approximately 0.033 months).

The results of the analysis are reported in the top panels of Figure 2 for the
gene PTGS2 (COX2), with panel A reporting the results using the Accelerated
Failure Time (AFT) model, and Panel B reporting our set-valued local linear
regression estimator. The bottom panels of Figure 2 report the results for the
gene CDC25A, with panel C reporting the results using the AFT model, and
Panel D reporting our set-valued local linear regression estimator.

We first comment on the comparison between the standard AFT model and
our set-valued estimator in terms of the shape of the predicted conditional PFS.
For the PTGS2 (COX2) gene, the patterns are similar, although we uncover a
more markedly nonlinear relation (especially for treatment C1). For the gene
CDC25A, the pattern uncovered by the AFT method and out method are similar
for treatment C2, but for treatment C1 we uncover a remarkably more nonlinear
relationship.

The results of the AFT analysis suggest that the use of Bevacizumab in
cancer treatment is quite beneficial for patients with moderate to relatively high
(6-10) expression of gene PTGS2 (COX2), although the benefit seems to taper
off at extremely high levels of the gene. Similarly, at medium to high levels (6-12)
of expression of gene CDC25A the use of Bevacizumab seems beneficial, while
at low levels of the gene the two treatment arm’s effects are not significantly
different. Our results, however, suggest that these findings might result from

the functional form assumptions: for the gene PTGS2 (COX2) we find that
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for patients with moderate to relatively high (6-10) levels of the gene the set-
valued estimates are consistent with a beneficial effect of Bevacizumab, but
the confidence bands overlap, suggesting that the difference is not statistically
significant. For the gene CDC25A we find that for CDC25A levels between 9
and 10, Bevacizumab is (statisticall significantly) beneficial, but not at other
levels of gene expression.

We note, however, that the results of this analysis are retrospective. To
confirm the medical findings, a prospective randomized clinical trial needs to
be carried out. We also highlight a drawback of our method: it is not able
to handle survival data censored on the right, where the observations become
half-lines unbounded on the right. In our example such observations have been

eliminated.

8. Conclusions

This paper has introduced local linear regression smoothing for set-valued
data. We have established consistency of the set-valued estimator, derived its
mean squared error, and its (pointwise) asymptotic distribution. We have ex-
tended the cross-validation method for bandwidth selection to the case of set-
valued local linear regression, and examined the finite sample properties of our
estimator in a Monte Carlo exercise. We have illustrated the usefulness of our
method in an empirical illustration studying the effect of gene expression on

cancer therapy outcomes.
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Figure 2: Results of the analysis for the genes PTGS2 and CDC25A (log, of the Nanostring
output)

Appendix A. Proofs of Main Results

Proof of Proposition 4.1. Our proof builds on [5, Egs. (6.4), (6.6) and (6.13)].
Since the kernel is assumed to have a compact support, we have [ 2%"K(z)dz <

oo for all » > 0. For any integer r > 1,

s; =Es; + K710, (1//nhy,), j=0,1,2, (A1)
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as n — 00, hy, — 0 and nh,, — co. The expectations of s; can be calculated as

follows:

Eso — hn/K(z)f(zhn +ag)ds = hn/K(z)(f(aco) + O(hn)) dz = holf (20) + O(hn)],
Es; — h2 / 2K (2)f(2hn + 30) dz = h;i/zK(z)(f(xo) + O(hn)) dz = K2O(hn),

Esy = h3 / 22K (2)f(2hy + x0) dz = h3 / 22K (2)(f(x0) + O(hy)) dz = B3 (f(x0) Varg +O(hy,)).

In view of (A.1), for an integer r > 1,

» . 1
s = hitt (f(xo)/zﬂK(z) dz + O, (hy, + )), i=0,1,2. (A.2)
vnh,,
Thus,
So = hnf($0)(1 + (97«(1)), (Ag)
s1 = ho.(1), (A.4)
So = hif(.]?o) VarK(l + Or(l)). (A5)
It is easy to see that
- 8280 — 87
Z& T sysg—s24nt
i=1 220 1
Moreover, for a sufficiently large r,
hi 1

- (1), A6
s280 —s7+n~*  f(xg)? Varg +or(1) (A-6)

cf. [5, Eq. (6.6)]. In view of (A.3), (A.4), and (A.5),

8980 — 87 = hi: f(20)? Varg (1 + o,(1)). (A7)
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By (11),

Zez D i Kin(s2 — (mz —20)81)% _ 835 4 (2828187 + sis3)
n2(s280 — 82 +n—4)2 n(sesg — 82 +n4)2  n(sesg — 82 +n=4)2’

(A.8)

where
RS +1 2 .
= R ) =W (fao) [ AR d o). j=0.12
Furthermore, (A.2) implies that
s3sh = hZLfS(xO)(VarK)2/K2(z) dz + hlo,s(1).

Combining this with (A.6) and letting » = 4, we obtain

838 AT f3(xo)(Vark)? [[K?(z)dz R
= (i 7) - oW

(5280 — 87+ -2 S fi(zo) (Varg )2 S

Since [ zK(z)dz =0,
—2898187 = h! (f(x0) Varg +(98(1))Og(1)(f($0)/ZjKQ(Z) dz+0o4(1)) = hT 0a(1).

Analogously, s?s5 = hl 02(1). Both these terms are as small as the minor term

of s3sj. Therefore, (A.8) is dominated by its first term, whence (12) holds. O

Proof of Proposition 4.2. By definition, ¢; < 0 if and only if so — (@; —x¢)s1 < 0.
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Hence,

E(if)z = E(i —0i1{sy — (z; — x0)81 < 0})2 < nE(ié?l{sz — (i — z0)81 < 0})

< nE<Ze§1{32 < cKhn|sl}> = nE<1{32 < cxhnlsi|} Zef)

i=1 i=1
1/2

< n\/P(SQ < cihy|s1]) (E(ié?) > , (A.9)

where the second inequality relies on Assumption A and the last one follows

from the Chebyshev inequality. Using (A.2), we have, for an integer r > 1,

s1= 2 (O(h) + 0. (1/V/nhy) ).
s =h3 (f(xo) Varg +O(hy) + OT(I/M)).

Hence,

P(s2 < cxhplsi]) (A.10)
< P( f(wo) Vark +O(hn) + O, (1//nhy) < [O(hn)| + ’Or(l/\/nhn) )
= P( f(x0) Varke < O(ha)| + ’Or(l/\/nhn) ). (A.11)

For sufficiently large n, there exist a & with 0 < ¢ < f(zo) Varg so that
|O(hy,)| < & for all sufficiently large n. Building on (A.11), the Markov in-
equality and the definition of O,(a,) yield that

P(ss < cichnlsy]) < P(f(mo)VarK <e+ ‘07(1/\/71/1") )

:P(’O7(1/\/m) > f(xo)VarK —E)
L SWrenan B |0, (1/v/nhn)|" e (1/v/nhn)"

B (f(xo) Varg —§)" ~ (f(wo) Varg —£)"
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for a positive constant ¢,. Therefore,

P(s2 < cxhylsi]) = ((1/\/nh ) ) (A.12)

From the proof of Proposition 4.1 with » = 8, squaring and taking expectation,

(242 - th (/K2 z) (1+ o(1)). (A.13)

Substituting (A.12) and (A.13) into (A.9),

E(é&‘f < }Tln/ KQ(z)dz\/mo((u\/Wy),

which converges to 0 by choosing a sufficiently large r. O

Proof of Theorem 4.3. The squared bias can be written as
b, (v) = E[(b1 +b2)?],

for by = >0 Li(s(M(;),v) — s(M(xo),v)) and by = Y 1| £; w(M (z;),v). We

have

= %an(SQ — (x; — o) 81)(s(M(2;),v) — s(M(z0),v) + 8 (M (o),

= h?lf(x0> VarK an + 04(h?z)7

where

an = h°E (S(M(:fc),v) — (M (x0),v) — s"(M(x9),v)(z — xO)K(w f:nxo)> '

33

v)(xi — o))



By (A.6), and using the definition of 0,., we have

B — E (71, D i1 Kin(82 — (i — 20)81) (Mo (@) — mv(xo))) _ ( Un

2
ht 4+ o(h}),
8280 — 87 +n* f(x0)> n ()

where, taking a Taylor expansion,
1
U, =1 (5 (M) 0) Ve faa)h + o(02)).

Therefore,

1
Eb? = Zs”(M(zo), v)?(Varg )?ht + o(hl), (A.14)

cf. the proof of [5, Theorem 3].

By Proposition 4.2,
Eb2 < wfnaxE(Zé;)Q - hiO((l/\/nhn)T>, (A.15)

where wpax 18 a finite deterministic bound on the width of M () in any direction
v € S resulting from Assumption B. By the Cauchy-Schwarz inequality,
(A.15) and (A.14),

B(biba) < /BB = 5 (" (M (wo),0)? (Vari 2 + o)) > i 20 ( (1)),

which, for sufficiently large r and given that h, = cn=?, is of a smaller order

than ht. Thus,

1 1
/ b2 (v)dv = = / " (M (z0),v)? dv(Varg)?ht + o | h + .
§d—1 0 4 §d—1 nhn
(A.16)
Now we bound the variance of the estimator splitting (10) into the sum of

three terms. By Proposition 4.1, the first term is

E(i&ei(v))g _ EiﬂfC(v,v) = WC(U,U)/KZ(Z) dz+o <nilzn) )
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The second term is

E Z Ll ei(v)(gj(v) +€5(=v)) = 0.

Finally, consider
E( Zﬁ;(ei(v) + <€i(—11)))2 = (C(v,v) +2C(v,—v) + C(—v,—v))E Z(KZ)Q

<402 E i(ff)Q < 4Jr2naXE(Z£;)2
i=1 '
= 4020 1 O((1/V/nha)").

For a large 7, (nh,)(~"/?) is of smaller order than (nh,,)~'. Hence,

1 1
2 dv=—— C d /K2 d —
/Sd—l oy, (v)dv @) s (v,v) dv (2)dz+ 0o o)
and the result follows by adding (A.16) to it. O

Proof of Theorem 4.4. It suffices to establish the convergence of one-dimensional

distributions; the weak convergence of finite dimensional distributions follows
a0 from the Cramér—Wold device, and the functional convergence is established by

bounding the Lipschitz constants of the processes as in [4, Theorem 3.2.1].

First, decompose
s(M,v) — s(M(x0),v) = Z&S(Yi, v) + Zf;w(Y;,v) — s(M(zp),v)
i=1 i=1

= lis(M(x:),0) + > ligi(v) + > _ L7 w(Yi,v) — s(M(x0), v).
i=1 1=1

=1
(A.17)

By Proposition 4.2, noticing that the Ls-convergence implies the convergence
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in probability, and choosing r large enough, we have that

Zéfw()’},v) < wmaXZK; = Op(l/\/nhn).
i=1 i=1

Using a Taylor expansion,

s(M(x;),v) = s(M(x0),v) + (x; — 20)s' (M (z9),v) + %(a}z — Io)ZSH(M(IE()),’U) + R(xg, x;,v),

where the remainder term R(zq, z;,v) is of a smaller order than 1 (z;—20)?s” (M (z), v).

n

Since the local linear estimator satisfies » ;" ; ¢;(x; — xz¢) = 0, we have

Zm(Mm), V) + 3 tiei(v) = 5(M (w0, )

= Zfi(S(M(wi)’U) = s(M(zo),v)) — " (M (z0),v) + Z&si(v)

B L
S280 — 87 +n~*

= i& <;(:cl — x0)%8" (M (x0),v) + R(xo,x;,v) + Ei('U)) — ‘Mj;g_i_n_zls(M(xo),v).
Since for a sequence of {Z,,n > 1} of square integrable random variables
Zy = BZy + Op(VVar Z,),
(A.2) yields that
8j = hzflf(a;o)/zjK(z) dz (1+0,(1)), j=0,1,2,3. (A.18)
By (A.7) and since nh, — oo, we have
8280 — 82 +n~* = ht Varg f2(20) (1 + 0,(1)). (A.19)

Therefore,

Tl_4

mS(M(xo),v) =0, (n_4h;4) =0, (n7°h,?).
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Combining (A.18) and (A.19), we have

Ze < — x0)%s" (M (x0),v) + R(xo, x;,v) +5i(v)>

By the central limit theorem,

1 n
— in€i A21
Yo (A21)

converges in distribution to the centered normal random variable with variance
equal to that of ((v). The combination of (A.17), (A.19), (A.20) and (A.21)
yields the result. O

Appendix B. Deterministic design points

When the design points &; = x;, i = 1,...,n, are deterministic®, (9) turns

into

= <Z€i(8(M(ffi),v) — s(M (o), v)) + Z&w(M(ffi)vv)> :
i=1 i=1

Since K(-) has compact support in [—cg, ck], we have ¢; = 0 if |z; — xo| >

cxhy. It is easy to see that all weights are nonnegative if and only if

331 Lo —330
§ Rin § Kzn

’ﬂ

This assumption means that the sample rescaled around each point to lie in

6Because with deterministic design @; = z;,i =1, ...,n, sj,j=0,1,2and kin,i=1,...,n
are also deterministic and we write s; = s; and Kin = Kin.
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the range [—1,1] has the variance that dominates the absolute value of the
expectation. For this, the rescaled points should be sufficiently balanced on the

left and on the right of zy. The assumption can be alternatively expressed as

82>
Ty =K

n

S1
h2
It holds when s1/h% — 0 as n — oo.

By a direct computation, it is possible to show that, in the regular design

case, the weights are nonnegative for all n.

Proposition Appendix B.1. Consider the local linear setting with uni-
form kernel supported on [—ck,ck] and equally spaced (regular) design points
Z1y..., &y on a bounded interval I. If 1/n < cxh, <1, then {;(x9) > 0 for all

i, n and each
xo€l,={xe€l: [x—ckhnx+ckh,) CI}.
In case of deterministic design points in a bounded interval I, the following
assumptions are often imposed; they appear as (LP1)-(LP2) in [3].

Assumption E (Design points). The design points x1,...,x, are such that:

(i) There ezists Ao > 0 such that all eigenvalues of Bpy, are greater than or
equal to Ao for all sufficiently large n and all xo € I.

(ii) There exists ap > 0 such that, for any interval J C I and alln > 1,

% Z 1,,c7 < apmax(Leb(J)/Leb(I),1/n),

i=1
where Leb(-) denotes the Lebesque measure.
We impose the following assumption on the response function.

Assumption F (Theoretical response function). The function M(x), € I, is

defined on a bounded closed interval I C R, and there exists v > 0 such that,
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for all v € ST=1, the derivative of s(M(x),v) with respect to x is Lipschitz with

constant .

The following result is similar to [3, Prop. 1.13] in the singleton-valued data

framework.
Proposition Appendix B.2. If g € I,, ¢; > 0 for all i, and Assump-

tions A, B, E and F are satisfied, then

2 2
by (V)] < 2Chyh? a2 (v) < M
| 0 K Yy, nh

for sufficiently large n and h,, > 1/(2n).
Proposition Appendix B.2 implies

2

2 C©
MSE(z0) < ¢k 022h% + "m#

Therefore, the upper bound is minimized for the bandwidth given by

1
2 5
[ Omax n-
n - 4 4 .92 I
CrY

and the following result holds.

=

Theorem Appendix B.3. If the bandwidth is chosen to be h, = an~s for
a > 0 and Assumptions A, B, E hold, then

limsup sup E[n%L(M(J;),M(m))] <y < o0,

n—oco xo€l,

uniformly over all response functions satisfying Assumption F, where L is the

loss function given by (6), Cy is a constant depending only on v, ag, Ao, T2 axs

Kax and o.

Appendix C. Local constant regression

In the local constant case, the weights ¢; = K;,/(nsg) are always nonneg-

ative. Then the estimator M (z() can be constructed as the convex set whose
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support functions is obtained by calculating the Nadaraya—Watson estimator for
the sample s(Y;,v), i = 1,...,n, in each particular direction v. In other words,
M () is the sum of the observed sets Y; multiplied by nonnegative coefficients
£;. Therefore, the bias and variance of the set-valued local constant estimator
can be obtained similarly to the singleton-valued data case. For this, it suffices
to assume that the function s(M (z),v) is Lipschitz in « with the same constant
for all v, which is equivalent to requiring that M (z), = € I, is Lipschitz in the

Hausdorff metric.

Appendix D. Basic definitions from random set theory

A random compact set Y is a map from (2, F, P) to K(R?) such that
{w: Y(wW)NK#0} g, (D.1)

for each compact set K C R<.
Random sets Yi,...,Y, are said to be independent and identically dis-

tributed if

n

P(YiNK #0,....Y,NK, #0) = [[P(YinK; #0),
i=1
for all Ki,...,K, € KR?) and P(Y; N K # 0) = P(Y; N K # () for all
i#je{l,...,n} and K € K(R?).
We define the Minkowski sum of two compact sets A; and A, in R? elemen-

twise as

A+B={xz+y: z€ A, ye B}.

We let cA = {cx : = € A} denote the scaling of A by ¢ € R. Given a compact

convex set (a convex body) A C R?, the support function of A is

s(A,v) = 51612 v'la, veRY,
a

where v a denotes the scalar product. If A is convex, its support function
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uniquely identifies A, because

A= ﬂ {acRY: v a < s(A,0)} (D.2)

vesd—1
Because s(tA,v) = ts(A,v) for t > 0, the support function is often restricted to
v € S, Note that
s(A1 + Ag,v) = s(A41,v) + s(Aa,v).
The width function of A is defined by

w(A,v) = s(A,v) + s(A, —v) = w(A4, —v), ve st

and it is easy to see that the width function is nonnegative. If d = 1, then A is a
closed interval in R, and the unit sphere S¥~! = {—1,1} consists of two points.
In this case, the width function is the length of the interval.

525 A random convex compact set Y is amap from (€2, F, P) to K¢ (R?) satisfying
equation (D.1). Its measurability is equivalent to the fact that s(Y,v) is a

random variable for each v € R4,
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Appendix E. Additional simulation results

Table E.4: Coverage probability at 95% nominal level using cross-validation for a modified
DGP1 with yr, = 0.90 + 1.27z + 10.182? — €1, yu = 0.90 + 1.27x + 10.1822 + ¢y, and
er, ey ~H% Uniforml0,1].

sample zo Coverage of Coverage of Coverage of M(xz9)  Coverage of M(xo)
size M (o) E(M(z0))  with h =1/2h, cv  with h = 1/3h, cv
-0.4 0.8630 0.8540 0.9165 0.9690
200 0 0.8965 0.8865 0.8790 0.9520
0.2 0.9465 0.9405 0.9825 0.9980
0.4 0.9330 0.9215 0.9200 0.9745
-0.4 0.8705 0.8595 0.9290 0.9755
500 0 0.9460 0.9410 0.9760 0.9935
0.2 0.9315 0.9280 0.9655 0.9910
0.4 0.9415 0.9320 0.9260 0.9800
-0.4 0.9070 0.9040 0.9525 0.9855
1000 0 0.8990 0.8985 0.9175 0.9695
0.2 0.9205 0.9160 0.9425 0.9760
0.4 0.8965 0.8940 0.9090 0.9570
-0.4 0.8970 0.8925 0.9440 0.9820
2000 0 0.9305 0.9290 0.9585 0.9865
0.2 0.9230 0.9215 0.9425 0.9815
0.4 0.8925 0.8935 0.9040 0.9600
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Table E.5: Coverage probability at 95% nominal level using cross-validation for a modified
DGP1 with yr, = 0.90 + 1.27x — €1, yu = 0.90 4 1.27x + 10.18z2 + €r7, €, ~ Beta(2,2) and
ey ~ Uniform(0,1).

sample zo Coverage of Coverage of  Coverage of M(z9)  Coverage of M(zo)
size M (o) E(M(z0))  with h =1/2hn oy with h = 1/3hy ov
-0.4 0.6510 0.8945 0.9515 0.9865
200 0 0.6610 0.9125 0.9050 0.9770
0.2 0.7495 0.9600 0.9920 0.9995
0.4 0.7210 0.9565 0.9680 0.9960
-0.4 0.6255 0.8945 0.9575 0.9875
500 0 0.7200 0.9445 0.9870 0.9995
0.2 0.7355 0.9605 0.9825 0.9985
0.4 0.7155 0.9575 0.9525 0.9880
-0.4 0.6345 0.9175 0.9660 0.9955
1000 0 0.6485 0.9330 0.9625 0.9895
0.2 0.6960 0.9580 0.9715 0.9945
0.4 0.7025 0.9535 0.9545 0.9870
-0.4 0.6195 0.9255 0.9710 0.9935
2000 0 0.6290 0.9360 0.9610 0.9905
0.2 0.6605 0.9500 0.9750 0.9935
0.4 0.6755 0.9600 0.9785 0.9955

Table E.6: Coverage probability at 95% nominal level using cross-validation for DGP2 with

v=(1,1)/v2.

sample zo Coverage of Coverage of Coverage of M(zg) Coverage of M(zo)
size M (z0) E(M(xo))  with h =1/2h, oy  with h = 1/3h, cv
-0.4 0.8225 0.9475 0.9490 0.9870
200 0 0.8150 0.9370 0.9400 0.9820
0.2 0.7825 0.9170 0.9330 0.9835
0.4 0.7310 0.9020 0.9265 0.9815
-0.4 0.8445 0.9495 0.9635 0.9890
500 0 0.7655 0.9195 0.9525 0.9895
0.2 0.7385 0.9150 0.9410 0.9830
0.4 0.6820 0.8745 0.9475 0.9890
-0.4 0.8230 0.9500 0.9595 0.9895
1000 0 0.7945 0.9350 0.9455 0.9825
0.2 0.7270 0.9185 0.9580 0.9900
0.4 0.6830 0.8645 0.9290 0.9825
-0.4 0.7965 0.9440 0.9480 0.9900
2000 0 0.7925 0.9430 0.9390 0.9860
0.2 0.7485 0.9370 0.9390 0.9845
0.4 0.7370 0.9250 0.9515 0.9890
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Table E.7: Coverage probability at 95% nominal level using cross-validation for DGP2 with
v=(0,1).
sample xzo Coverage of Coverage of  Coverage of M(z9)  Coverage of M(zo)
size M(:L‘()) E(M(xo)) with h = 1/2hn,CV with h = 1/3hn,CV
-0.4 0.8395 0.9450 0.9485 0.9875
200 0 0.8085 0.9160 0.9230 0.9765
0.2 0.7815 0.9090 0.9445 0.9840
0.4 0.7405 0.8945 0.9310 0.9820
-0.4 0.8020 0.9395 0.9530 0.9875
500 0 0.7995 0.9330 0.9545 0.9905
0.2 0.7550 0.9210 0.9380 0.9805
0.4 0.7215 0.9025 0.9495 0.9875
-0.4 0.8175 0.9485 0.9560 0.9905
1000 0 0.7900 0.9405 0.9420 0.9870
0.2 0.7290 0.9345 0.9535 0.9865
0.4 0.7070 0.8830 0.9415 0.9895
-0.4 0.7945 0.9440 0.9475 0.9895
2000 0 0.7935 0.9430 0.9395 0.9860
0.2 0.7495 0.9375 0.9400 0.9845
0.4 0.7355 0.9245 0.9515 0.9890
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