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Abstract The study of knots and links from a probabilistic viewpoint provides

insight into the behavior of ‘‘typical’’ knots, and opens avenues for new construc-

tions of knots and other topological objects with interesting properties. The knotting

of random curves arises also in applications to the natural sciences, such as in the

context of the structure of polymers. We present here several known and new

randomized models of knots and links. We review the main known results on the

knot distribution in each model. We discuss the nature of these models and the

properties of the knots they produce. Of particular interest to us are finite type

invariants of random knots, and the recently studied Petaluma model. We report on

rigorous results and numerical experiments concerning the asymptotic distribution

of such knot invariants. Our approach raises questions of universality and classifi-

cation of the various random knot models.
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Mathematics Subject Classification 57M25 � 60B05

1 Knots

There is an increasing interest in random knots by both topologists and probabilists,

as well as researchers from other disciplines. Our aim in this survey article is to

provide an accessible overview of the many different approaches to this topic.

We start with a very brief introduction to knot theory, and in Sect. 2 we describe

the motivation to introduce randomness into this field. The various models are
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surveyed in Sect. 3, and some specific aspects are further discussed in Sect. 4. Some

thoughts and open problems are presented in Sect. 5.

Intuitively, a knot is a simple closed curve in the three dimensional space,

considered up to continuous deformations without self-crossing. More formally, a

knot is a smoothly embedded oriented circle S1,!R3, with the equivalence relation

of ambient isotopies of R3. A link is a disjoint union of several such embedded

circles, called components, with the same equivalence. An alternative definition

uses polygonal paths without the smoothness condition. There are several good

general introductions to knot theory such as Adams (1994) or Lickorish (1997).

Knots and links can also be described via planar diagrams, which are their

generic projections to R2. The projection is injective except for a finite number of

traverse double points. Each such crossing point is decorated to indicate which

preimage is over and which is under, with respect to the direction of the projection.

See Fig. 1 for diagrams of some well-known knots and links.

The set of nonequivalent knots is infinite, without much structure and

organization. Some order arise from the operation of connected sum of knots,

# = for example. A theorem by Schubert (Lickorish 1997, Chap-

ter 2) states that every knot can be uniquely decomposed as a connected sum of

prime knots, which are knot that cannot be decomposed further. However, there are

infinitely many nonequivalent prime knots as well.

A problem that motivated much of the developments in knot theory since its early

days was finding and tabulating all prime knots that can be represented by diagrams

with a small number of crossings. As of today, knot tables with up to 16 crossings

have been compiled (Jim Hoste et al. 1998). This classification mission called for

tools for telling whether or not two given knots are equivalent, even though

represented differently.

Unknot Left Trefoil Right Trefoil Figure Eight

Unlink Hopf Link Whitehead Link Borromean Rings

Fig. 1 Selected knot and link diagrams
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By the classical Reidemeister theorem (Lickorish 1997, Chapter 1), two

diagrams define equivalent knots if and only if one can be transformed into the

other by a sequence of local moves of three types:

(I) twisting the curve at some point ↔ ,

(II) sliding one part of the curve under an adjacent part ↔ , or

(III) sliding under an adjacent crossing ↔ .

As for the complementary purpose of distinguishing one knot from another, a

wide variety of knot invariants were defined. Here one constructs a well-defined

function from the set of all knots to any other set, that attains different values for the

two knots in question. Either representation, by diagrams or by curves in R3, may be

used to define invariants, as long as one shows that it respects equivalence. In a

broader perspective, knot invariants may be viewed as tools to classify knots and

understand their properties.

We mention some important knot invariants. The crossing number c(K) is the

least number of crossing points in a diagram of a knot K. The genus g(K) is the least

genus of an embedded oriented compact surface with boundary K. Several other

invariants, such as the bridge number, unknotting number, and stick number (Adams

1994), are similarly defined by taking the minimum value of some complexity

measure over certain descriptions of the knot.

It is conjectured that knots can be fully classified by Vassiliev’s finite type

invariants (Vassiliev 1990; Bar-Natan 1995b; Chmutov et al. 2012). See Sect. 4.1

for a definition. This infinite collection of numerical invariants includes Gauss’s

linking number and the Casson invariant, coefficients of the Alexander–Conway

polynomial, the modified Jones polynomial, and the Kontsevich integral.

Other invariants are defined via properties of the knot complement, such as its

fundamental group p1ðR3 n KÞ, the knot group of K. A knot is called hyperbolic if

its complement can be given a metric of constant negative curvature. In this case

VolðS3 n KÞ, the hyperbolic volume of K, is a well-defined and useful knot

invariant (Thurston 1978).

2 Randomness

There are several motivations to study randomized knot models. They emerge from

different perspectives. Below we mention several aspects and applications of knot

theory where it is natural to adopt a probabilistic point of view.

2.1 Study typical knots

As metioned, the space of knots is infinite and poorly structured. Usually, the

particular examples of knots one considers are either very simple with only a few

crossings, or they are explicit constructions of knots of quite specific forms. These
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can be members of well-known families such as torus knots, pretzel knots, and

rational knots, or ad hoc constructions tailored for the problem under investigation.

Similarly, often one considers knots of some particular type, such as alternating

or hyperbolic. Do these classes represent the general case, and if so in what sense?

It is natural and desirable to understand what typical knots are like and what

properties they tend to have.

We specify a probability distribution over knots in search of a framework to

investigate such questions. Often we consider a sequence of such distributions,

supported on increasingly larger sets of knots. These distributions may be defined

via random planar diagrams or random curves in R3, but ultimately only the

resulting knot type is considered.

Rather than focus on particular constructions and classes, we ask what knot

properties hold with high probability. Knot invariants become random variables on

the probability space, and we study their distribution and interrelations.

It is not apriori clear which distributions, or models of random knots, are worth

studying. It is reasonable to require that every knot have positive probability. We

also do not want the measure to be highly concentrated on some overly specific class

of knots. At present it remains debatable how good any concrete distribution that

one suggests is.

2.2 Probabilistic existence proofs

A more definite goal of studying random knot models is the application of the

probabilistic method in knot theory. The basic idea is to prove the existence of

certain objects by showing that in some random model they occur with positive

probability. This influential methodology has yielded many unexpected results in

combinatorics and other fields (Alon and Spencer 2000). In many cases, the

existence of objects with some given properties can be established using

probabilistic methods, while finding matching explicit constructions remains

elusive.

To illustrate this idea, consider the Jones polynomial VKðtÞ 2 Z t; t�1½ �. The

discovery of this important knot invariant in 1984 was hailed as a breakthrough in

the field (Lickorish 1997, Chapter 3). By definition VunknotðtÞ ¼ 1, and it is

unknown whether there exists a non-trivial knot K for which VKðtÞ ¼ 1 (Jones

2000). It is believed though, that if such knots exist, then they are plentiful. If so, it

is reasonable to expect that in some random model it should be possible to prove the

probability of this trivial Jones polynomial is strictly larger than that of the unknot.

For this approach to work we clearly need a random model that allows us to

estimate the probability of the relevant events and the distributions of the invariants

at hand.

Random knot models come handy also in computer experiments, where one non-

exhaustively searches for a specific exemplar to demonstrate some properties, thus

providing explicit examples and counterexamples in a more direct way.

266 C. Even-Zohar

123



2.3 Knots in nature

The occurrence of knots and links in the natural sciences has been a fruitful source

for several studies of randomized knot models.

Most prominently, biologists are interested in the three-dimensional shape of

proteins, DNA and RNA molecules (Fig. 2). Their geometric and topological

features affect their functionality in a variety of biological processes, such as protein

folding and DNA replication and transcription. Physicists and chemists look into the

formation of entanglements in polymeric materials. The topological structure of

such substances is reflected macroscopically in its features, such as elasticity,

viscosity, diffusion rate, and purity of crystallization. There is plenty of literature on

the modeling of knots in thread-like molecules. Find some expositions and surveys

in Wasserman and Cozzarelli (1986), Vologodskii (1992), Sumners (1992),

Sumners (1995), Grosberg et al. (1997), Bates and Maxwell (2005), Orlandini

and Whittington (2007), McLeish (2008), Fenlon (2008), Buck (2009), Sumners

et al. (2009), Micheletti et al. (2011) and Lim and Jackson (2015).

Numerous numerical simulations and experiments have been preformed to

investigate the topological properties of such filamentary molecules. These involved

the invention of several mathematical models that produce random paths in R3 to

simulate the conformation of molecules in natural environments. In particular, such

a model defines a distribution over knot types, often parametrized by the length of

the path.

Naturally, these models are designated to emulate natural features and processes,

with different degrees of simplification. Most often they incorporate physical

constraints such as non-zero thickness, self interaction, restricted bending, and

spatial confinement. Additionally, this line of research calls for random models that

can be easily sampled in numerical studies.

The study of knotted structures in three-dimensional fields dates back to early

fluid dynamics and Kelvin’s vortex atom hypothesis (von Helmholtz 1867; Kelvin

Fig. 2 Knotted DNA. Figure is courtesy of Wasserman et al. (1985)
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1867). Knots and links are formed in a three-dimensional flow u : R3 ! R3 by the

vortex lines that follow r� u, or similarly by the nodal set w ¼ 0 of a

wavefunction w : R3 ! C.

In current research, such knotting phenomena are theoretically analyzed,

numerically simulated, and experimentally created or identified in various physical

systems. To mention some examples: knotted vortices in classical fluid flow (Kleck-

ner and Irvine 2013) and in superfluids (Hall et al. 2016; Kleckner et al. 2016),

optical vortices in laser beams (Dennis et al. 2010), magnetic fields in plasma

(Berger 1999), superposition of states in quantum mechanics (Berry 2001), and also

nonlinear waves in biological and chemical excitable media (Winfree and Strogatz

1984).

It seems that the generation of such knotted fields is often dominated by random

factors, and it would be interesting to investigate what knots and links are likely to

occur in such circumstances. Indeed, a recent work (Taylor and Dennis 2016)

simulates random quantum wavefunctions in different potentials, and study the

complexity of the vortex knots that show up.

Finally, knots form at random in many objects of everyday practice, from

extension cords, ropes, and garden hoses (Raymer and Smith 2007) to umbilical

cords (Goriely 2005; Hershkovitz et al. 2001) and eels (Zintzen et al. 2011).

2.4 Computational aspects

The study of random knot models is also motivated by the important role of

randomness in the design and analysis of algorithms and in computational

complexity theory (Mitzenmacher and Upfal 2005).

It is a central computational challenge in knot theory to determine how hard it is

to detect unknots, and more generally to decide the equivalence of two given

knots (Haken 1961; Hass et al. 1999; Kuperberg 2014; Lackenby 2016). Specif-

ically it is interesting to bound the number of Reidemeister moves that yield the

equivalence of two representations (Hass and Nowik 2010; Lackenby 2015; Coward

and Lackenby 2014). It is generally believed that some of these problems are hard,

and consequently cryptosystems were proposed that are based on such prob-

lems (Farhi et al. 2012). To this end it is necessary to know the complexity of

typical instances of problems. Random knot models are clearly needed in such

pursuits.

The computation of various invariants also leads to interesting complexity

problems. Hardness results are known for the knot genus (Agol et al. 2006;

Lackenby 2016) and for the Jones polynomial (Jaeger et al. 1990; Aharonov et al.

2009; Kuperberg 2009). Other invariants such as the Alexander–Conway polyno-

mial and finite type invariants are computable in polynomial time (Alexander 1928;

Bar-Natan 1995a; Chmutov et al. 2012). Many such algorithms are implemented in

software packages, such as SnapPy (Culler et al. 2016), KnotTheory (Bar-Natan

et al. 2016b) and KnotScape (Hoste and Thistlethwaite 2016). These are used in

practice for the compilation of knot databases and are important tools in research

and applications (Bar-Natan et al. 2016a; Cha and Livingston 2016; Jim Hoste et al.
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1998). Random knot models could serve as the basis for average-case analysis of

such algorithms.

2.5 Random 3-manifolds

The probabilistic method has had a great success in many areas. The study of

random knots can be viewed as part of a broader research effort to apply this

approach to the study of geometric and topological objects.

In recent years, there have been interesting developments in the study of random

simplicial complexes (Linial and Meshulam 2006; Adler et al. 2010; Kahle 2016),

random groups (Gromov 2003; Ollivier 2005), random manifolds (Brooks et al.

2004; Dunfield and Thurston 2006; Pippenger and Schleich 2006; Farber and

Kappeler 2008), and more.

In particular, several models for random 3-manifolds have been presented and

studied in the past decade (Dunfield and Thurston 2006; Lutz 2008; Maher 2010;

Kowalski 2010; Dunfield and Wong 2011; Maher et al. 2011; Maher 2012;

Lubotzky et al. 2016; Rivin 2014). Since every closed orientable 3-manifold can be

generated by performing Dehn surgeries on links in S3 (Lickorish 1997, Chapter 12),

models for random links give rise to random 3-manifold whose properties are

interesting to study (Even-Zohar et al. 2017b).

In another direction, random knot models may extend to knotted 2-spheres or

other surfaces in a 4-sphere, and further to randomly embedded manifolds in higher

dimensions (Soteros et al. 2012; Atapour et al. 2015).

3 Models

Before listing some specific models, a few words on the general framework. A

random knot model is a distribution over the set of all knots, which we represent by

a random variable K. We usually consider a sequence Kn of such distributions,

where n 2 N naturally appears in the construction. This parameter n can often be

viewed as a complexity measure of the typical resulting knots. All unspecified

asymptotic statements that we make here are w.r.t. n ! 1.

Variations abound: We also encounter some multi-parameter constructions and

some models that yield random links of any number of components, or focus on

some subclass such as prime or alternating knots.

3.1 Self-avoiding grid walk

As usual, a walk on the three-dimensional lattice Z3 is a sequence fX0; . . .;Xng such

that X0 ¼ ð0; 0; 0Þ and ðXiþ1 � XiÞ 2 fð� 1; 0; 0Þ; ð0;� 1; 0Þ; ð0; 0;� 1Þg. Consider

n-step walks that are closed, with Xn ¼ X0, and self-avoiding, so that Xi 6¼ Xj for any

other pair of points. Connecting the points of such a walk yields an n-segment

polygonal path, that represents a knot. See Fig. 3 for two examples.
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Random self-avoiding walks (SAW) on Z3 were suggested as a model for

polymeric molecules, and their knotting properties have been studied over the past

decades in varying degrees of rigor. In the grid walk model a random knot Kn is

obtained by sampling from the uniform distribution of all closed self-avoiding n-

step walks. Every knot appears in this model for n large enough.

It was conjectured by Delbruck (1961) that Kn is knotted with high probability.

This was observed in numerical simulations (Crippen 1974; Frank-Kamenetskii

et al. 1975), and proved by Sumners and Whittington (1988) and by Pippenger

(1989). Using Kesten’s pattern theorem (1963), they showed that the unknot

appears with exponentially small probability in n. Moreover, every prime knot

appears in the decomposition of Kn with multiplicity HðnÞ, except for an

exponentially small probability (Soteros et al. 1992).

Let K 0
n be a uniformly random connected component of Kn, conditioned on Kn

being knotted. Note that K 0
n is a natural model for random prime knots, and it is

suggestive that K 0
n converges in distribution, and yields a random model for all

prime knots.

It is of interest to study self-avoiding walks and the resulting knots on other

lattices (Janse van Rensburg and Whittington 1990). Also extensions to random

2-component links, and the effect of confinement within a box or a tube, are

considered and analyzed (Orlandini et al. 1994; Soteros et al. 1999; Atapour et al.

2010). Madras and Slade’s book (2013) offers a rigorous analysis of Monte Carlo

sampling methods for self avoiding walks.

3.2 Polygonal walks

In the study of polymers, random polygonal paths in R3 also play a prominent role.

Again we create a closed self-avoiding path by joining n straight segments, but these

are now distributed according to some continuous law. Two common choices for the

distribution of the segments are the equilateral with uniform distribution on the

2-sphere, and the Gaussian with standard 3-normal distribution (see Fig. 4).

That the walk is self-avoiding is usually satisfied with probability one, but more

care is needed to make sure that the walk is closed. Details of this vary with the

Fig. 3 The trefoil and figure-eight knots as 30-step walks on Z3
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specific model and sampling method. We remain brief and only mention that it is

possible to guarantee this in the Gaussian model by adding a constant drift.

It was conjectured by Frisch and Wasserman (1961) that polygonal walks are

also unknotted with vanishing probability. Numerical simulations suggested

exponential decay in n for various different polygonal models (des Cloizeaux and

Mehta 1979; Bret 1980; Michels and Wiegel 1982, 1986; Koniaris and Muthukumar

1991). Diao et al. (1994) proved expð�neÞ for some e[ 0 for Gaussian-steps

polygons. This was extended to equilateral polygons (Diao 1995) and other

models (Janse et al. 2007).

General polygonal walks have an advantage over grid walks, in being space-

isotropic. This is more realistic for polymers, and more robust to variations. Here to

simulate effects of excluded volume constraints, one often replaces segments with

rods and points with beads of positive radius. It is also interesting to consider

polygons packed in a confined space such as a cube or a tube. Other variations of the

model allow simulating bending rigidity, tension, pressure, thermodynamic entropy,

and interaction between particles. See Micheletti et al. (2011) for a thorough

review.

For numerical experiments, such models are often approximately sampled via

Markov chains in the configuration space, with a variety of local and global moves

based on re-ordering, rotation, reflection, and more (Alvarado et al. 2011). There is

currently much activity in search of faster rigorous sampling algorithms, with new

techniques from symplectic geometry (Cantarella and Shonkwiler 2016; Cantarella

et al. 2016) and convexity (Chapman 2016a).

The resulting knots were classified for large samples in the various experiments.

It turns out that, in several polygonal and grid models, the frequency at which a knot

K occurs is well approximated by P½Kn ¼ K� ¼ CK n=Nð ÞaK e�ðn=NÞ. The constant N

depends only on the model, while for every knot K the exponents aK seem to be

universal among different models (Deguchi and Tsurusaki 1994, 1997; Orlandini

et al. 1998; Millett and Rawdon 2005; Janse et al. 2011). Further experiments

indicated that the mth most frequent knot appears with probability of

order m�1:75 (Cantarella et al. 2016).

Fig. 4 A closed polygon that

realizes the trefoil in R3
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3.3 Smoothed Brownian motion

A substantially less studied subject is knotting from non-piecewise-linear three-

dimensional random walks. A random polygon in the Gaussian model can be

viewed as a linear interpolation between a finite number of points from a continuous

Brownian bridge taken at constant time intervals. However, Brownian motion

cannot model a knot as it is self-intersecting with probability one. Moreover,

Kendall (1979) showed that it would contain infinitely many knots of all types, in

the sense of being contained in such knotted tubes. Is there a smooth model that

avoids these problems but captures the behavior of Brownian motion other than in

small scale?

The worm-like loop (Grosberg 2000) from polymer physics is a conituum model

that takes curvature into account. A smooth closed curve in R3 is given weight

proportional to exp �‘
R
k€rk2

ds
� �

, where rðsÞ is its arc-length parametrization and ‘

is a typical length of persistence to bending. A more general model of statistical

mechanics, designated for ribbons, takes care of the bending direction and

persistence to twisting as well (Kessler and Rabin 2003). It is known how to

approximately sample from this model for open paths but not for closed ones.

In the search of a more numerically accessible model for worm-like loops,

Rappaport et al. (2006) and Rappaport and Rabin (2007) suggested the following

mathematical model. One way to construct a Brownian bridge in R3 is by the

following Fourier series, with wk ¼ 1.

rðtÞ ¼
X1

k¼1

wk

k
Zk cos kt þ Z0

k sin kt
� �

Zk;Z
0
k � 3-normal iid.

To obtain a smooth approximation, one can truncate the sum by wk ¼ 1k� n or by

wk ¼ e�k=n. Computer simulations of the second choice show an exponential decay

of the unknotting probability (Rappaport et al. 2006). It is interesting to observe that

the cut-off factor wk ¼ e�ðk=nÞ2

is equivalent to smoothing the Brownian motion by

convolution with a narrow Gaussian, which seems to be an appealing choice.

Recent works (Westenberger 2016; Rivin 2016) study the case of polynomially

decaying coefficients wk ¼ k�a, where a 2 R. For a[ 0:5 they derive bounds on

the expected crossing number of a random knot, and on the variance of the linking

number of a random link.

The parametrization of knots by a finite sum of cosines yields Fourier

knots (Buck 1994; Trautwein 1995; Kauffman 1998). As shown by Lamm

(2012), every knot can be obtained by taking xðtÞ ¼ cosðkxt þ /xÞ,
yðtÞ ¼ cosðkyt þ /yÞ, and a finite sum of such cosines for z(t). This was recently

improved by Soret and Ville (2016), who showed that a sum of two cosines is

sufficient. Taking a single cosine, zðtÞ ¼ cosðkzt þ /zÞ defines the well-studied

Lissajous knots (Bogle et al. 1994; Jones and Przytycki 1998; Lamm 1997; Hoste

and Zirbel 2006). In Boocher et al. (2009) and Rivin (2016) experiments on random

Fourier and Lissajous knots are reported.
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3.4 Random jump

In the above random walk models the typical step length is small compared with the

diameter of the whole embedded path. Millett (2000) suggests polygonal models

where each point X1; . . .;Xn 2 R3 is independently sampled from some distribution,

such as the uniform distribution on the cube ½0; 1�3, or a spherically symmetric

distribution with a uniform radius in [0, 1]. To this end any rich enough distribution

that almost surely avoids self-intersections will do, such as the 3-normal

distribution, or uniform on the unit sphere (O’Rourke 2011).

By sampling X1; . . .;Xn and Y1; . . .; Ym independently with the same 3-dimen-

sional distribution, the above extends to two-component links (Arsuaga et al.

2007a), and similarly for any number of components (Fig. 5).

We still do not know how likely it is to encounter the unknot in the random jump

model. Numerical experiments indicate that this probability vanishes faster than

expð�OðnÞÞ (Millett 2000; Arsuaga et al. 2007b). This provides evidence for a

strong form of the above-mentioned Delbruck–Frisch–Wasserman conjecture in this

model. Similar conclusions seem to apply to any fixed knot. Experiments with the

cube model suggest that the expected knot determinant is x exp n2ð Þ. It is proposed

in Arsuaga et al. (2007b) that most knots in this model are prime. It was

suggested (Thurston 2011) that the expected crossing number in the spherical case

is Hðn2Þ.
Consider the linking number Lmn of a random two-component link with n and m

segments. It is known (Arsuaga et al. 2007a; Flapan and Kozai 2016) that its

variance is HðnmÞ, and it is conjectured that Lmn=
ffiffiffiffiffiffi
nm

p
converges in distribution to a

Gaussian (Panagiotou et al. 2010; Karadayi 2010). Based on our analysis of the

Petaluma model (Even-Zohar et al. 2016) we tend to doubt this conjecture. Rather,

we suspect that the tails of the limit distribution decay exponentially.

A knot in the unit ball A two-component link in the cube

Fig. 5 The random jump model
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A more symmetric variant of the random jump model has been suggested (Wise

2016), which takes place in S3 visualized as the unit sphere in R4. A sequence of

uniformly random points can be connected along the geodesics, which are the great

circles.

These random jump or uniform random polygon (URP) models, were originally

proposed to illustrate the effect of spatial constraints on knotted molecules (Millett

2000). In some bacteriophages, for example, a circular DNA molecule is densely

packed inside a spherical capsid. Experiments show that more complex knots are

likely to be produced, compared to unconstrained DNA of similar length in free

solution (Arsuaga et al. 2002). The observed distribution is also biased towards

chiral knots and especially torus knots (Arsuaga et al. 2005).

The explanation of these findings requires more realistic simulations that take

into account various biophysical features, see e.g. Micheletti et al. (2008) and

Marenduzzo et al. (2009). However, the simplicity of the random jump model

makes it amenable for rigorous mathematical analysis, while it is arguably a

prototype of a polygonal model in spatial confinement (Arsuaga et al. 2007b).

3.5 The Petaluma model

We now abandon random polygons, and move to more combinatorially oriented

models. We start with the Petaluma model, studied by the author and collabora-

tors (Even-Zohar 2017; Even-Zohar et al. 2016, 2017a).

Adams et al. (2015a, b) have shown that every knot or link can be positioned so

that its planar projection is injective except for a single point. Several projected

strands may smoothly traverse this point of the über-crossing projection, each

originating at a different height. Moreover, every knot has a petal projection, where

the loops that emanate from the multi-crossing point have disjoint interiors.

Consequently, petal projections are represented by a rose-shaped curve with an odd

number of petals, as in Fig. 6a.

In order to reconstruct the original knot we need only the relative ordering of the

heights of the strands above the multi-crossing point. This information can be

encoded by a permutation r 2 S2nþ1. We generate a random knot K2nþ1 in the

9-petal 12-petal 2-component 24-petal 3-component(a) (b) (c)

Fig. 6 Petal diagrams for knots and links
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Petaluma model by picking r uniformly at random (Even-Zohar et al. 2016). By the

construction of Adams et al., every knot K is obtained with positive probability for

n large enough.

The Petaluma model extends to k-component links, by considering petal

diagrams with k components as in Fig. 6. In Even-Zohar (2017) we study its

extension to framed knots, which can be thought as knotted oriented ribbons.

In Even-Zohar et al. (2016), Even-Zohar (2017) we explicitly find the limiting

distribution of the linking number of a two-component link, as well as the limiting

distribution of the writhe of a random framed knot. We similarly present formulas

for the moments of the Casson invariant c2 and another finite type invariant

appearing in the Jones polynomial. We elaborate on finite type invariants of random

knots in the Petaluma model in Sect. 4 below.

As we show in a recent paper (Even-Zohar et al. 2017a), every particular knot

appears in this model with vanishing probability. We conjecture that this probability

decays at least exponentially with n, but currently the best bounds we have are

Xðn�nÞ�P½K2nþ1¼K� �Oðn�0:1Þ.
It is of interest to understand the relation between the crossing number c(K) of a

knot and the least number of petals p(K) needed to represent it. We show in Even-

Zohar et al. (2017a) that pðKÞ�OðcðKÞÞ, and this bound is tight by results of

Adams et al. (2015a). They have also shown that cðKÞ�Oðp2ðKÞÞ, which is also

tight.

Numerical simulations for n� 100 suggest that most knots in the Petaluma model

are prime, and even hyperbolic. See Sect. 4.4 for more details, and further results by

Adams (2017), Adams and Kehne (2016) and Kehne (2016). They went on to extend

the Petaluma model to the Überluma which contains all diagrams of one multi-

crossing, allowing for nested loops.

3.6 Random grid diagrams

Grid diagrams are a useful kind of regular knot diagrams. They describe all knots

and links in a simple way (Brunn 1987; Cromwell 1998). A grid diagram consists

of n horizontal segments and n vertical segments, where vertical segments always

pass over horizontal ones. Each of the integers in f1; . . .; ng appears as the x-

coordinates of exactly one vertical segment. Likewise for the y-coordinates of the

horizontal segments.

A grid diagram is encoded by a pair of permutations q;r 2 Sn for these

horizontal and vertical coordinates respectively. We alternately take steps of the

form ðqi; riÞ ! ðqi; riþ1Þ ! ðqiþ1; riþ1Þ and so on. See Even-Zohar et al. (2016)

for more details, and Fig. 7a for an example.

A random knot in the random grid model is obtained by taking q and r
independently uniformly at random. Extensions to k-component links are easy and

we omit further details. A similar model that produces links of varying number of

components was considered in a scheme for quantum money (Farhi et al. 2012).

We numerically compare the distribution of c2 for the Petaluma and grid models,

and find that they share many features, see Sect. 5. As observed in Adams et al.
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(2015a), the Petaluma model is contained in the grid model, and obtained by

conditioning on qðkÞ ¼ nk mod ð2nþ 1Þ.
Some preliminary work on precise moments’ computation for finite type

invariants in the random grid model has been done by Gal Lavi, Tahl Nowik, and

the author (Lavi and Nowik 2016). We report that E½c2� ¼ n2=288 þ OðnÞ and

V ½c2� ¼ 7n4=194400 þ Oðn3Þ, which are of the same orders as in the Petaluma

model, cf. Sect. 4.

Two grid diagrams of the same knot can be related by a finite sequence of

Cromwell moves, which are local operations of three types, similar to the

Reidemeister moves (Cromwell 1995). Witte et al. (2016) estimate the average

writhe of a knot over its n� n grids, using a Markov chain of these moves. See

also Farhi et al. (2012).

We find a nice interpretation of the grid model in a common group-dynamic

game named the human knot (Adams 1994). A group of n two-handed participants

stand in a circle. Each player chooses the next one at random and then they hold

hands, until the last player holds the free hand of the first one. Their goal is to

simplify the knot to a circle without letting their hands go, which is of course not

always possible.

To analyze this game, we introduce the assumption of transitivity. Namely,

connected pairs of hands are ordered from bottom to top. See Fig. 7b, where the

players correspond to axial segments on a cylinder, and connections are horizontal

chords at different heights. If this ordering is uniformly random, then this

construction is equivalent to a random grid diagram. Horizontal and vertical

segments correspond to chords and players respectively. The permutation q records

the order at which players are connected, and r represents the relative order of the

hands’ heights.
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A grid digram for ρ, σ ∈ S10 The corresponding human knot(a) (b)

Fig. 7 Here q ¼ ð4; 0; 6; 2; 9; 3; 8; 5; 1; 7Þ and r ¼ ð9; 3; 6; 1; 5; 0; 8; 4; 7; 2Þ
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A related model, based on the human knot game, was suggested by Cohen

(2007), who conducted computer experiments to study the distribution of the

resulting knots.

3.7 Random planar diagrams

Planar diagrams are routinely used to represent knots and to investigate them.

Naturally, this suggests the study of random knots by sampling diagrams with a

given number of crossings. Such models were studied by several authors (Schaeffer

and Zinn-Justin 2004; Diao et al. 2005, 2010; Dunfield et al. 2014; Cantarella et al.

2016), with various sampling methods.

To this end, we start with a generic smooth immersion of S1 into R2 with

n traverse double points, considered up to diffeomorphism of the plane, as in Fig. 8.

This yields a 4-regular plane graph, where loops and multiple edges are allowed.

Then each vertex is assigned either of the two possible crossing signs.

The number of n-vertex 4-valent graphs in R2 is asymptotically exponential in

n. However, an algorithm by Schaeffer and Zinn-Justin (2004); Brinkmann (2007)

uniformly samples such graphs with a base point, by generating a random rooted

binary tree and matching leaves to non-leaves in some clever way. Some of the

resulting graphs correspond to curves with several components, which is a problem

if one is interested only in knots rather than links. One can either reject (Dunfield

et al. 2014; Cantarella et al. 2016) these curves, or modify (Diao et al. 2005, 2010)

them, but this, however, ruins uniformity.

Some delicate issues of symmetry arise. Namely, do we care about orientation

and mirror images? Should we distinguish between different planar diagrams which

are equivalent in the sphere S2? Do we want a base point on some edge? Finally, are

different n-vertex graphs to be weighted equally or according to the number of non-

equivalent diagrams they give rise to, which might be smaller than 2n due to

symmetries? However, all subtleties of this sort become negligible as n grows (Rich-

mond and Wormald 1995; Chapman 2016c).

A recent advance in the study of this model is the establishment of a pattern

theorem for diagrams by Chapman (2016b, c). This extends pattern theorems for

The underlying graph The knot diagram(A) (B)

Fig. 8 A random assignment of crossings to an 11-vertex 4-regular plane graph
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planar maps (Bender et al. 1992), and parallels the above-mentioned results for grid

and polygonal knots. Chapman showed that small sub-diagrams appear HðnÞ times

in an n-crossing knot or link diagram, except for an exponentially small probability.

In particular, as n grows the diagram contains a 3-crossing trefoil summand and is

hence nontrivial with high probability. Similar results hold if one restricts to prime

diagram, ones whose underlying graph is 4-edges-connected.

Numerical experiments tell us more. Dunfield et al. (2014) and Obeidin (2016) study

random links, knots, and prime connected summands of knots in this model. Their results

suggest that several invariants, including the hyperbolic volume, grow linearly with n.

Cantarella et al. (2016) and Chapman (2016c) precisely compute knot probabilities for

n� 10, and study their behavior for larger n based on random samples. The methods

used in these experiments are implemented into publicly available software packages:

plCurve (Ashton et al. 2016) and SnapPy (Culler et al. 2016).

3.8 Random planar curves

Other models generate a random 4-regular plane graph in various ways, and then

assign crossing signs uniformly at random. For example, Diao et al. (2010)

randomly add n non-intersecting chords inside and outside an n-vertex cycle, to

make it 4-regular, and then toss a coin to decide each crossing.

In the following random-crossing constructions the underlying graph is generated

by sampling polygonal curves in the plane.

• Equilateral closed polygons in R2 (Michels and Wiegel 1989).

• Closed SAW in Z2 with diagonal crossings: or ; (Guitter and Orlandini

1999).

• Jumps between uniform points in the square ½0; 1�2 (Arsuaga et al. 2007b; Diao

et al. 2010).

• A chain of chords between uniform points around the circle (Cohen 2007).

• The griddle: Random grid diagrams with randomized crossings (Even-Zohar

et al. 2017b).

There are close connections between the finite type invariants of such knots and

those of the underlying curve (Polyak 1998). For example, the expected value of the

Casson invariant c2 is one eighth the defect, a first-order invariant of the curve. In

the griddle model we calculated E½c2� ¼ E½defect�=8 ¼ n2=144 þ OðnÞ and

V ½c2� ¼ n4=7776 þ Oðn3Þ, though V ½defect� ¼ 29n3=4050 þ Oðn2Þ (Even-Zohar

et al. 2017b).

Finally, we note that given a 4-valent graph in the plane, exactly two sign

assignments produce an alternating link diagram, where over-crossings and under-

crossings alternate as one travels along the link. Diao et al. (2005), Arsuaga et al.

(2007b) and Diao et al. (2010) and Obeidin (2016) used this observation to

construct models for prime alternating knots and links. Except for the (2, n)-torus

these are hyperbolic links, whose volume can be read off the diagram up to a

multiplicative constant (Lackenby 2004). Taking the uniform distribution over

278 C. Even-Zohar

123



prime alternating link diagrams, the expected hyperbolic volume is linear in the

crossing number (Obeidin 2016).

3.9 The knot table model

The crossing number is perhaps the most popular measure for knot complexity.

Historically, prime knots are tabulated and nomenclated according to their crossing

number, as reflected in the widely used Alexander-Briggs–Rolfsen knot nota-

tion (Alexander and Briggs 1926; Rolfsen 1976). See also Fig. 9.

Consequently, many investigators find it quite natural to generate random prime

knots by uniformly sampling from knot tables with up to n crossings. If one cares

about chirality and orientation, these can be decided by further coin flips.

It is known that there are exponentially many knots with n crossings (Ernst and

Sumners 1987; Welsh 1991; Carl Sundberg and Morwen Thistlethwaite 1998), but

the exact count is known only for small n (Jim Hoste et al. 1998). The difficulties in

recognition and enumeration of n-crossing knots make this model less suitable for

precise computations, though it is known that most knots are not rational (Ernst and

Sumners 1987), nor are most links alternating (Thistlethwaite 1998).

The vast majority of knots with up to n� 16 are hyperbolic, which may suggest

that their asymptotic proportion tends to 1. This is however not likely to be true, in

view of a recent surprising result of Malyutin (2016). He assumes the plausible, but

still unproven, conjecture that the crossing number is weakly monotone with respect

to connected sum. The crux of his proof is the addition of small satellite

configurations to existing diagrams.

3.10 Random braids

It goes back to Alexander that every knot or link is the closure of some

braid (Lickorish 1997). Namely, it can be represented by some m intertwining

Fig. 9 Excerpt from Tait’s original table of knots with up to 8 crossings (Tait 1884). Note that unlike the
discussed model it contains only alternating knots, with several equivalent diagrams for some of them
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strings that monotonously go from left to right, and close at some canonical way as

in Fig. 10. Such braids form a group Bm, with generators fr�1
i g1� i\m that

correspond to swapping strings i and iþ 1, and appropriate relations.

There is recent interest in generating knots by random walk in the braid group.

This parallels well-known constructions of random 3-manifolds (Dunfield and

Thurston 2006) and more.

Such a model is defined in terms of a probability distribution on a finite subset of

the braid group Bm, such as the generators r�1
i . A random knot is obtained by n-step

random walk in these generators, with some standard closure as depicted in Fig. 10.

The context of Markov Chains on groups proves useful in the analysis of this

model (Nechaev et al. 1996).

This definition yields random links of a varying number of components. For fixed

m and large n we obtain knots with probability about 1/m. Additionally, only links

of braid index or bridge index at most m appear, according to the closure

convention. Remarkably, random knots and links in this setting are hyperbolic with

high probability (Malyutin 2012; Ma 2013, 2014; Tetsuya Ito 2015; Ichihara and

Yoshida 2015; Ichihara and Ma 2016).

3.11 Crisscross constructions

This family of random models includes several constructions in which a planar

curve is explicitly specified, and all randomness comes from the choice of crossing

signs, sampled independently and uniformly at random.

One source for such models is planar Lissajous curves (Lissajous 1897),

illustrated in Fig. 11. These closed curves are parametrized by ðcosðat þ /Þ, cos btÞ
where t 2 ½0; 2p� with ratio b : a 2 Q and a phase shift / 2 R. We also consider the

open curve ðcos at; cos btÞ where t 2 ½0; p�, being closed from the outside. These

curves are plane isotopic to the polygonal trajectory of a billiard ball in ½0; 1�2, fired

at slope b / a (Jones and Przytycki 1998).

The three-dimensional analogues of these curves constitute Lissajous knots

(Bogle et al. 1994; Lamm 1997; Jones and Przytycki 1998) and Harmonic

Knots (Comstock 1897; Koseleff and Pecker 2011), but these families do not

contain all knots. However, planar Lissajous curves with suitable crossing signs do

give rise to all knots. This underlies the construction of the above-mentioned

σ1 σ1 σ−1
2 σ−1

2 σ1 σ−1
2 σ−1

1 σ2 σ1 σ1 σ1 σ−1
3 σ2 σ2 σ−1

3 σ3 σ−1
1 σ−1

2 σ1

erusolCtalP)B(erusolCecarT)A(

Fig. 10 Random knots in the braid model
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Fourier Knots (Buck 1994; Trautwein 1995; Kauffman 1998; Hoste and Zirbel

2006; Lamm 2012; Soret and Ville 2016) and Chebyshev Knots (Koseleff and

Pecker 2011), as well as the next random construction, the billiard table model

suggested by Cohen and Krishnan (2015).

A random knot Kb:a is thus obtained by randomizing the crossing signs, as in

Fig. 11. It can also be regarded as a special case of the random braid model. For

example, the case a ¼ 5 as in Fig. 11b is generated by the 16 elements

fr�1 r�3 r�2 r�4 g with the uniform distribution.

In Cohen et al. (2016) we study the asymptotic properties of Kn:3, which yields

random two-bridge knots, also known as rational knots (Kauffman and Lam-

bropoulou 2004). We show that the probability of obtaining any particular knot is

ðaþ oð1ÞÞn for a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=323

p
	 0:945, and the crossing number is ðbþ oð1ÞÞn in

probability, for b ¼ ð
ffiffiffi
5

p
� 1Þ=4 	 0:309.

We remark that, without restricting to fixed diagrams, other random models arise

from the highly developed theory of rational knots. In particular, a random braid in

fr1; r�1
2 gH 
 B4 yields a rational knot by its Conway symbol (Conway 1970).

See Ernst and Sumners (1987) and Diao et al. (2010) for corresponding results.

Star diagrams are obtained from ð2nþ 1Þ-petal diagrams by straightening the

segments between petal tips. See Fig. 12a, b. A random knot in the star model is

generated by randomizing the ðn� 1Þð2nþ 1Þ crossings. Star diagrams are plane

isotopic to closed n-braids (Adams et al. 2015a), as demonstrated in Fig. 12b, c.

5:9oitarfo,nepO)B(2:3oitarfo,desolC)A(

Fig. 11 Billiard table diagrams from Lissajous curves

diarBratS)B(lateP)A( (C)

Fig. 12 From petal diagrams to regular knot diagrams
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The star model yields all knots, since the Petaluma model does, but with quite

different distribution. We show in Even-Zohar et al. (2016) that its expected Casson

invariant is E½c2� ¼ n3=12 þ Oðn2Þ with a standard deviation of n2=
ffiffiffiffiffi
24

p
þ Oðn3=2Þ.

This means that c2 drifts away from zero.

Chang and Erickson (2015) consider a generalization of the star model. They

define the flat torus diagram T(p, q) as the closed braid ðr1r2 � � � rp�1Þq, and assign

crossing signs at random. The star model is Tðn; 2nþ 1Þ, as shown in Fig. 12c for

n ¼ 4. Following Hayashi et al. (2012), they show that the expected Casson

invariant of Tðnþ 1; nÞ is Hð�n3Þ. It is conceivable that this latter model contains

all knots as well.

The probability space in such crisscross models consists of 2c crossing states.

Some invariants are more accessible in this simple setting, as they are computable by

summation over 2c local configurations at the c crossings. One important example is

the Kauffman Bracket (1987), and its connections to statistical physics (Kauffman

1988; Jones 1989; Wu 1992).

For crisscross diagrams on the 2-dimensional lattice, rather similar to the above

ones, the degree distribution of the Jones polynomial is analyzed in terms of the

Potts model from statistical mechanics (Grosberg and Nechaev 1992; Nechaev

1996; Vasilyev and Nechaev 2001).

3.12 Miscellanea

We have attempted to cover the main themes of random knot models. Of course, our

list of models and results is not completely exhaustive, neither historical, and to

some extent reflects our own viewpoint. To conclude, we mention some random

ideas in further directions.

Various models from the natural sciences seek to emulate dynamical processes of

knot formation in real life scenarios. Some studies describe numerical simulations

of a polygonal DNA chain that folds, coils and spools within a cavity, before its two

ends anneal and produce a knot (Arsuaga and Diao 2008; Marenduzzo et al. 2009,

for example). Such dynamical models are important for understanding biological

processes by comparing simulated and observed data, but usually they don’t lend

themselves easily to mathematical analysis.

Other studies (Flammini et al. 2004; Hua et al. 2007; Liu and Chan 2008;

Szafron and Soteros 2011; Cheston et al. 2014) are inspired by the interaction

between DNA and topoisomerase, a specific enzyme that cuts and rejoins strands,

and thus modifies their topological state. Such strand-passage models induce

transition probabilities between knot types, which can be estimated by numerical

simulations, and these lead to a stationary equilibrium distribution over knots.

Finally, Babson and Westenberger study knots obtained from a curve in Rn by

projecting to R3 in a random direction. They relate several of the above

constructions to this original framework (Westenberger 2016).

In principle, any reasonable way to construct or represent knots could be turned

into a random model. Another case in point are trajectories of dynamical systems,

such as three-dimensional billiard (Jones and Przytycki 1998).
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4 A closer look at the Petaluma model

We now focus on random knots and links in the Petaluma model (3.5), and discuss

the distribution of their finite type invariants and hyperbolic volume. First we recall

the definition of finite type invariants, given in terms of singular knots and

links (Birman and Lin 1993).

4.1 Finite type invariants

Unlike a regular knot, which is a smooth embedding of S1 into R3 up to isotopy, a

singular knot is allowed to have finitely many double points of transversal self

intersection. Each of these points can be locally resolved in two well-defined ways:

positive , and negative .

Let v be a knot invariant taking values in some abelian group, usually in Z. The

extension of v to singular knots is given by vðKÞ ¼ vðKþ
p Þ � vðK�

p Þ, where K�
p are

the two resolutions of the singular knot K at the double point p. By recursion, the

value of v on a singular knot with m double points is given by a signed sum of its

value on 2m regular knots. We say that v is a finite type knot invariant of order m if it

vanishes on all singular knots with mþ 1 double points.

This condition is satisfied by several well-studied knot invariants, such as

coefficients of knot polynomials (Bar-Natan 1995a; Chmutov et al. 2012) and the

Kontsevich integral (Bar-Natan 1995b; Chmutov and Duzhin 2001). There is only

one knot invariant of order two, up to affine equivalence—the Casson invariant

c2ðKÞ, which is the coefficient of x2 in the Alexander-Conway polynomial CKðxÞ. It

similarly appears in the modified Jones polynomial, VKðexÞ considered as a power

series in x, which also yields an invariant v3ðKÞ of order three. The number of new

independent finite type invariants grows with the order: 3 invariants of order four, 4

of order five, 9 of order six, etc. Bar-Natan (1995b).

No invariant of knots has order one. However, the Gauss linking number lk(L) is

a classical first order invariant of two-component links. Also the framing number, or

writhe w(K) as in Even-Zohar (2017), is a first order invariant of framed knots.

4.2 Asymptotic distributions

Finite type invariants of random knots and links in the Petaluma model (3.5) have

been studied by Hass, Linial, Nowik, and the author (Even-Zohar et al. 2016; Even-

Zohar 2017). In particular, we have investigated how these invariants scale and

distribute for knots with a large number of petals.

Consider the Casson invariant of a random knot with 2nþ 1 petals. It is not hard

to observe that c2ðK2nþ1Þ ¼ Oð�n4Þ, which is shown to be sharp for torus knots and

other explicit constructions. However, we have found that the typical order of

magnitude of the Casson invariant is actually n2. Indeed, its expectation is

E½c2� ¼ nðn� 1Þ=24, its variance is V ½c2� ¼ 7=960 � n4 þ Oðn3Þ, and such formulas

have been given for all moments, yielding E½ck2� ¼ Hðn2kÞ. We find it intriguing that
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the distribution of the properly normalized Casson invariant c2=n
2 is asymmetric

and not centered at zero, asymptotically as n ! 1.

The third order invariant v3ðK2nþ1Þ is antisymmetric with respect to reflection,

hence its distribution is symmetric around zero. As for its even-order moments, we

have similarly shown E½vk3� ¼ Oðn3kÞ, e.g., V ½v3� ¼ 9298=5443200 � n6 þ Oðn5Þ.
In terms of their moments, c2 grows as n2 and v3 as n3. This naturally suggests

that an mth order invariant of random knots with n petals asymptotically scales

as nm. In Even-Zohar et al. (2016) we conjecture that vmðK2nþ1Þ=nm weakly

converges to a limiting distribution as n ! 1 for every finite type invariant vm of

order m. The existence of continuous limit distributions for c2 and v3 is supported by

computational evidence, as discussed below.

We have established such a limiting distribution in two cases: the linking number

of a random two component link with 2n petals in each component, and the writhe

of a random framed knot with 2nþ 1 petals. Both are first order invariants, and

obtain integer values sharply between �n2. In Even-Zohar et al. (2016) we prove

that lkðL2n;2nÞ=4n converges to the logistic distribution, with density function

f ðtÞ ¼ p= cosh2ð2ptÞ. The normalized writhe wðK2nþ1Þ=n converges to another non

Gaussian limiting distribution, established and described in Even-Zohar (2017).

Our proofs combine the method of moments with careful combinatorial analysis

of the limiting moments of these invariants, expressed via Gauss diagram formulas.

4.3 Numerical experiments

We study the invariants c2ðKnÞ and v3ðKnÞ in the Petaluma model, by computing

their values for a random sample of permutations in Sn. Comparing the results for

various values of n, we observe that as n grows the joint distribution of c2=n
2 and

v3=n
3 seems to converge to a continuous bivariate distribution of a certain shape.

The heat map in Fig. 13 shows the resulting density function of this distribution for

n ¼ 41, which seems to be a good approximation of the conjectured limiting

distribution.

The planar representation of these two invariants follows previous work by

Willerton (2002); Chmutov et al. (2012) and Ohtsuki et al. (2002), who generated

scatter plots of ðc2; v3Þ for all prime knots with up to n crossings. They similarly

obtained fish-shaped figures, although it is unclear how these should scale as the

crossing number grows. The Petaluma model may provide a more concrete way to

catch this fish, in the form of a limit density function defined on R2.

Besides representing the first two finite type invariants of knots, the planar map

u : K 7!ðc2ðKÞ; v3ðKÞÞ has some interesting properties. As observed by Dasbach

et al. (2001), the evaluation of the Jones polynomial at roots of unity near 1 can be

approximated by VKðeihÞ ¼ 1 þ 3c2h
2 þ 6v3h

3iþ Oðh4Þ, and this yields similar fish

graphs for VKðe2pi=NÞ in the complex plane, for N � n.

Note that by the multiplicativity of the Jones polynomial, the map u is additive

with respect to connected sum: uðK#K 0Þ ¼ uðKÞ þ uðK 0Þ in Z2. Using this fact

and some known constructions one can show that as n grows the resulting point set
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of all ðc2=n
2; v3=n

3Þ is dense in R2. We actually conjecture that the limiting

bivariate distribution has positive density everywhere in the plane.

4.4 Hyperbolic volume

We conclude this section with further numerical experiments, concerning the

distribution of the hyperbolic volume in the Petaluma model, as approximated by

the Sage package SnapPy (Culler et al. 2016).

As mentioned in Sect. 3.5, our simulations show that randomly sampled knots

with up to 200 petals are mostly hyperbolic. This trend seems to strengthen with

increasing number of petals, although one must be careful drawing conclusions from

small cases, cf. Malyutin (2016) mentioned in Sect. 3.9.

Figure 14 shows how the empirical hyperbolic volume grows super-linearly with

the number of petals. More speculatively, the volume of an n-petal knot appears to

be concentrated around a curve of the form An logBn, which seemed to fit better

than a linear function, or one of order n3=2. These experiments have been repeated

by Kehne (2016). They have also proved that the expected volume is at most

4p n log n, by constructing a pyramid decomposotion of the petal knot

Fig. 13 The normalized distribution of c2 and v3 for a random knot K41, based on 108 random samples
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complement (Adams 2017; Adams and Kehne 2016). Any such lower bound would

be of great interest.

5 Discussion

This great variety of approaches for random knot models suggests that we ask how

they differ. Do they exhibit some kind of common properties? By what means

should we compare models? What do they teach us about knot invariants and knot

theory? Below we record some thoughts concerning these questions.

5.1 Local knotting

The Delbruck–Frisch–Wasserman conjecture, that a typical random knot is non-

trivial, has been proved by now in several models. Some insight on their properties

can be gained by comparing the arguments involved in these proofs.

The knottedness of random polygonal and grid walks (3.1, 3.2) is based on the

fact that such knots tend to have many spatially localized connected summands.

This phenomenon can be attributed to the small steps taken in these

Fig. 14 The hyperbolic volume per petal grows with the number of petals. This is based on random
samples of 25 knots with 21 to 121 petals. Non-hyperbolic knots (\ 2.5%) were omitted
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models (Sumners and Whittington 1988; Pippenger 1989; Diao et al. 1994; Diao

1995). We do know, however, that large scale knotting occurs as well (Jungreis

1994; Diao et al. 2001). Also for planar diagrams (3.7), knottedness follows

from the existence of small prime summands in random knot and link

diagrams (Chapman 2016c). Even for prime knots in the knot

table model (3.9), local configurations of a double figure-eight knot provide a

satellite decomposition (Malyutin 2016).

In contrast to the highly composite knots produced by small-steps models, we

believe that models of non-local nature yield knots with much simpler factorization.

By non-local we mean that the typical step length is comparable to the diameter of

the whole curve.

For example, local entanglements yield only a vanishing probability of order

1=n3 for a trefoil summand in the Petaluma model (3.5). Indeed, its knottedness with

high probability was shown by other means, a coupling argument based on the

effect of random crossing changes on finite type invariants (Even-Zohar et al.

2017a). As mentioned above, numerical experiments indicate that these knots are

mostly hyperbolic, so that any connected sum or satellite-type decomposition might

become rare.

5.2 Dimension

It would be interesting to further distinguish knot models from each other by their

asymptotic topological features. On the other hand, it would be very interesting to

discover universal phenomena and parameters that hold for a variety of different

models.

We shall venture some speculations along these lines. As a first step, consider the

following three classes of random models.

1D Grid walks (3.1), polygonal walks (3.2), and smoothed Brownian motion (3.3).

2D Random planar diagrams (3.7), the griddle (3.8), knot table (3.9), and star (3.11).

3D Random jumps (3.4), the Petaluma (3.5), and grid diagrams (3.6).

This classification attempts to grasp the ‘‘dimension’’, or general shape, of the

actual spatial curves constructed by the different models, in some loose and

undefined sense. It is a fundamental challenge to characterize such a classification

precisely.

Would it be possible to reconstruct the class to which some random model

belongs, by looking only at the asymptotics of the topological invariants of the

resulting knots?
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5.3 Comparing invariants

Our computations and experiments (Even-Zohar et al. 2016, 2017b) show that the

asymptotic distributions of the Casson invariant in models of the third class share

several important features. In Fig. 15, we exhibit numerically generated histograms

of the Casson invariant for three models: Petaluma (3.5), grid (3.6), and several

random jump models (3.4). They all seem to converge to continuous unimodal limit

distributions on R, with two-sided exponentially decaying tails, strictly positive

expectations and similarly asymmetric shapes.

Even though models of the second class also seem to converge to distributions of

similar shapes around their expectations, their main terms are inconsistent. In the

griddle (3.8) model E½c2�=
ffiffiffiffiffiffiffiffiffiffiffi
V ½c2�

p
¼ Hð1Þ, while in the star (3.11) model

E½c2�=
ffiffiffiffiffiffiffiffiffiffiffi
V ½c2�

p
¼ HðnÞ.

We hope that extending such comparisons to other invariants would shed more

light on the above questions of classification and universality.

Fig. 15 The distribution of c2ðKnÞ=n2 in several random knot models, for n ¼ 80 or 81, based on

108 random samples each, and normalized to have variance one. Only the star histogram was shifted to
compensate for its rightward drift
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5.4 Open problems

Models of the third class outlined above seem especially interesting from a knot-

theoretic point of view. They presumably avoid phenomena of local knotting or

‘‘flatness’’, and their finite type invariants seem to follow well-behaved

distributions.

We close our review by listing some of the desired features of these random

models, which are yet to be established.

Conjecture Let Kn be a random knot, sampled from any of the following models:

Random Jump (3.4), Petaluma (3.5), Grid (3.6). Then,

• With high probability Kn is prime, and even hyperbolic.

• With high probability Kn is non-alternating.

• The typical crossing number is super-linear: E½cðKnÞ� ¼ xðnÞ.
• The probability of every knot K is sub-exponential: P½Kn¼K� ¼ e�xðnÞ.
• Any finite type invariant of order m has typical order of magnitude nm.

5.5 Implementation details

We include here some information about the numerical results that are firstly

reported in this paper.

The generation of random knots in various models was performed by a C??

program, available at Even-Zohar (2016b). The computation of finite type

invariants, as in Sects. 4.3 and 5.3, was carried out using Gauss diagram

formulas (Chmutov et al. 2012), which can be evaluated in polynomial time. The

computations were distributed on up to 168 processors in the computing facilities of

the School of Computer Science and Engineering at HUJI. They were supported by

ERC 339096.

The formulas for invariants of random grid and griddle knots with 2n segments in

Sects. 3.6 and 3.8, were derived by automated case analysis of the many possible

configurations of the involved crossings. It was implemented in a Python program,

available at Even-Zohar (2016a). These computations took several hours on a PC.

The data in Fig. 14 was obtained from the Sage software SnapPy (Culler et al.

2016), that approximates the hyperbolic volume of a link by finding a triangulation

of its complement with compatible hyperbolic structure. In order to make the

random samples suitable as input for the program, we first converted them from

petal diagrams to braids, as shown in Fig. 12. Some concerns regarding the

verification of hyperbolicity and the stability of the computed volume are discussed

by Kehne (2016). Our results are available, together with the source code that

generated them, at Even-Zohar (2016c). The computation took several days on

a PC.
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