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Abstract The study of knots and links from a probabilistic viewpoint provides
insight into the behavior of “typical” knots, and opens avenues for new construc-
tions of knots and other topological objects with interesting properties. The knotting
of random curves arises also in applications to the natural sciences, such as in the
context of the structure of polymers. We present here several known and new
randomized models of knots and links. We review the main known results on the
knot distribution in each model. We discuss the nature of these models and the
properties of the knots they produce. Of particular interest to us are finite type
invariants of random knots, and the recently studied Petaluma model. We report on
rigorous results and numerical experiments concerning the asymptotic distribution
of such knot invariants. Our approach raises questions of universality and classifi-
cation of the various random knot models.
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1 Knots

There is an increasing interest in random knots by both topologists and probabilists,
as well as researchers from other disciplines. Our aim in this survey article is to
provide an accessible overview of the many different approaches to this topic.
We start with a very brief introduction to knot theory, and in Sect. 2 we describe
the motivation to introduce randomness into this field. The various models are
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surveyed in Sect. 3, and some specific aspects are further discussed in Sect. 4. Some
thoughts and open problems are presented in Sect. 5.

Intuitively, a knot is a simple closed curve in the three dimensional space,
considered up to continuous deformations without self-crossing. More formally, a
knot is a smoothly embedded oriented circle ST R3, with the equivalence relation
of ambient isotopies of R®. A link is a disjoint union of several such embedded
circles, called components, with the same equivalence. An alternative definition
uses polygonal paths without the smoothness condition. There are several good
general introductions to knot theory such as Adams (1994) or Lickorish (1997).

Knots and links can also be described via planar diagrams, which are their
generic projections to R%. The projection is injective except for a finite number of
traverse double points. Each such crossing point is decorated to indicate which
preimage is over and which is under, with respect to the direction of the projection.
See Fig. 1 for diagrams of some well-known knots and links.

The set of nonequivalent knots is infinite, without much structure and
organization. Some order arise from the operation of connected sum of knots,
&# 8B = B8, for example. A theorem by Schubert (Lickorish 1997, Chap-
ter 2) states that every knot can be uniquely decomposed as a connected sum of
prime knots, which are knot that cannot be decomposed further. However, there are
infinitely many nonequivalent prime knots as well.

A problem that motivated much of the developments in knot theory since its early
days was finding and tabulating all prime knots that can be represented by diagrams
with a small number of crossings. As of today, knot tables with up to 16 crossings
have been compiled (Jim Hoste et al. 1998). This classification mission called for
tools for telling whether or not two given knots are equivalent, even though
represented differently.

O & &S

Unknot Left Trefoil Right Trefoil Figure Eight
Unlink Hopf Link Whitehead Link Borromean Rings

Fig. 1 Selected knot and link diagrams
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By the classical Reidemeister theorem (Lickorish 1997, Chapter 1), two
diagrams define equivalent knots if and only if one can be transformed into the
other by a sequence of local moves of three types:

(D) twisting the curve at some point —~ <~ -—Q,

(II) sliding one part of the curve under an adjacent part < X‘/‘, or

(I1D) sliding under an adjacent crossing 7R

As for the complementary purpose of distinguishing one knot from another, a
wide variety of knot invariants were defined. Here one constructs a well-defined
function from the set of all knots to any other set, that attains different values for the
two knots in question. Either representation, by diagrams or by curves in R*, may be
used to define invariants, as long as one shows that it respects equivalence. In a
broader perspective, knot invariants may be viewed as tools to classify knots and
understand their properties.

We mention some important knot invariants. The crossing number c(K) is the
least number of crossing points in a diagram of a knot K. The genus g(K) is the least
genus of an embedded oriented compact surface with boundary K. Several other
invariants, such as the bridge number, unknotting number, and stick number (Adams
1994), are similarly defined by taking the minimum value of some complexity
measure over certain descriptions of the knot.

It is conjectured that knots can be fully classified by Vassiliev’s finite type
invariants (Vassiliev 1990; Bar-Natan 1995b; Chmutov et al. 2012). See Sect. 4.1
for a definition. This infinite collection of numerical invariants includes Gauss’s
linking number and the Casson invariant, coefficients of the Alexander—Conway
polynomial, the modified Jones polynomial, and the Kontsevich integral.

Other invariants are defined via properties of the knot complement, such as its
fundamental group m; (R* \ K), the knot group of K. A knot is called hyperbolic if
its complement can be given a metric of constant negative curvature. In this case
Vol(S* \ K), the hyperbolic volume of K, is a well-defined and useful knot
invariant (Thurston 1978).

2 Randomness
There are several motivations to study randomized knot models. They emerge from

different perspectives. Below we mention several aspects and applications of knot
theory where it is natural to adopt a probabilistic point of view.

2.1 Study typical knots
As metioned, the space of knots is infinite and poorly structured. Usually, the

particular examples of knots one considers are either very simple with only a few
crossings, or they are explicit constructions of knots of quite specific forms. These
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can be members of well-known families such as torus knots, pretzel knots, and
rational knots, or ad hoc constructions tailored for the problem under investigation.

Similarly, often one considers knots of some particular type, such as alternating
or hyperbolic. Do these classes represent the general case, and if so in what sense?

It is natural and desirable to understand what typical knots are like and what
properties they tend to have.

We specify a probability distribution over knots in search of a framework to
investigate such questions. Often we consider a sequence of such distributions,
supported on increasingly larger sets of knots. These distributions may be defined
via random planar diagrams or random curves in R>, but ultimately only the
resulting knot type is considered.

Rather than focus on particular constructions and classes, we ask what knot
properties hold with high probability. Knot invariants become random variables on
the probability space, and we study their distribution and interrelations.

It is not apriori clear which distributions, or models of random knots, are worth
studying. It is reasonable to require that every knot have positive probability. We
also do not want the measure to be highly concentrated on some overly specific class
of knots. At present it remains debatable how good any concrete distribution that
one suggests is.

2.2 Probabilistic existence proofs

A more definite goal of studying random knot models is the application of the
probabilistic method in knot theory. The basic idea is to prove the existence of
certain objects by showing that in some random model they occur with positive
probability. This influential methodology has yielded many unexpected results in
combinatorics and other fields (Alon and Spencer 2000). In many cases, the
existence of objects with some given properties can be established using
probabilistic methods, while finding matching explicit constructions remains
elusive.

To illustrate this idea, consider the Jones polynomial Vk(t) € Z[t,t~!]. The
discovery of this important knot invariant in 1984 was hailed as a breakthrough in
the field (Lickorish 1997, Chapter 3). By definition Vypknot(f) =1, and it is
unknown whether there exists a non-trivial knot K for which Vg(7) = 1 (Jones
2000). It is believed though, that if such knots exist, then they are plentiful. If so, it
is reasonable to expect that in some random model it should be possible to prove the
probability of this trivial Jones polynomial is strictly larger than that of the unknot.

For this approach to work we clearly need a random model that allows us to
estimate the probability of the relevant events and the distributions of the invariants
at hand.

Random knot models come handy also in computer experiments, where one non-
exhaustively searches for a specific exemplar to demonstrate some properties, thus
providing explicit examples and counterexamples in a more direct way.
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Models of random knots 267

2.3 Knots in nature

The occurrence of knots and links in the natural sciences has been a fruitful source
for several studies of randomized knot models.

Most prominently, biologists are interested in the three-dimensional shape of
proteins, DNA and RNA molecules (Fig. 2). Their geometric and topological
features affect their functionality in a variety of biological processes, such as protein
folding and DNA replication and transcription. Physicists and chemists look into the
formation of entanglements in polymeric materials. The topological structure of
such substances is reflected macroscopically in its features, such as elasticity,
viscosity, diffusion rate, and purity of crystallization. There is plenty of literature on
the modeling of knots in thread-like molecules. Find some expositions and surveys
in Wasserman and Cozzarelli (1986), Vologodskii (1992), Sumners (1992),
Sumners (1995), Grosberg et al. (1997), Bates and Maxwell (2005), Orlandini
and Whittington (2007), McLeish (2008), Fenlon (2008), Buck (2009), Sumners
et al. (2009), Micheletti et al. (2011) and Lim and Jackson (2015).

Numerous numerical simulations and experiments have been preformed to
investigate the topological properties of such filamentary molecules. These involved
the invention of several mathematical models that produce random paths in R* to
simulate the conformation of molecules in natural environments. In particular, such
a model defines a distribution over knot types, often parametrized by the length of
the path.

Naturally, these models are designated to emulate natural features and processes,
with different degrees of simplification. Most often they incorporate physical
constraints such as non-zero thickness, self interaction, restricted bending, and
spatial confinement. Additionally, this line of research calls for random models that
can be easily sampled in numerical studies.

The study of knotted structures in three-dimensional fields dates back to early
fluid dynamics and Kelvin’s vortex atom hypothesis (von Helmholtz 1867; Kelvin
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Fig. 2 Knotted DNA. Figure is courtesy of Wasserman et al. (1985)
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1867). Knots and links are formed in a three-dimensional flow u : R* — R* by the
vortex lines that follow V x u, or similarly by the nodal set y =0 of a
wavefunction y : R — C.

In current research, such knotting phenomena are theoretically analyzed,
numerically simulated, and experimentally created or identified in various physical
systems. To mention some examples: knotted vortices in classical fluid flow (Kleck-
ner and Irvine 2013) and in superfluids (Hall et al. 2016; Kleckner et al. 2016),
optical vortices in laser beams (Dennis et al. 2010), magnetic fields in plasma
(Berger 1999), superposition of states in quantum mechanics (Berry 2001), and also
nonlinear waves in biological and chemical excitable media (Winfree and Strogatz
1984).

It seems that the generation of such knotted fields is often dominated by random
factors, and it would be interesting to investigate what knots and links are likely to
occur in such circumstances. Indeed, a recent work (Taylor and Dennis 2016)
simulates random quantum wavefunctions in different potentials, and study the
complexity of the vortex knots that show up.

Finally, knots form at random in many objects of everyday practice, from
extension cords, ropes, and garden hoses (Raymer and Smith 2007) to umbilical
cords (Goriely 2005; Hershkovitz et al. 2001) and eels (Zintzen et al. 2011).

2.4 Computational aspects

The study of random knot models is also motivated by the important role of
randomness in the design and analysis of algorithms and in computational
complexity theory (Mitzenmacher and Upfal 2005).

It is a central computational challenge in knot theory to determine how hard it is
to detect unknots, and more generally to decide the equivalence of two given
knots (Haken 1961; Hass et al. 1999; Kuperberg 2014; Lackenby 2016). Specif-
ically it is interesting to bound the number of Reidemeister moves that yield the
equivalence of two representations (Hass and Nowik 2010; Lackenby 2015; Coward
and Lackenby 2014). It is generally believed that some of these problems are hard,
and consequently cryptosystems were proposed that are based on such prob-
lems (Farhi et al. 2012). To this end it is necessary to know the complexity of
typical instances of problems. Random knot models are clearly needed in such
pursuits.

The computation of various invariants also leads to interesting complexity
problems. Hardness results are known for the knot genus (Agol et al. 2006;
Lackenby 2016) and for the Jones polynomial (Jaeger et al. 1990; Aharonov et al.
2009; Kuperberg 2009). Other invariants such as the Alexander—-Conway polyno-
mial and finite type invariants are computable in polynomial time (Alexander 1928;
Bar-Natan 1995a; Chmutov et al. 2012). Many such algorithms are implemented in
software packages, such as SnapPy (Culler et al. 2016), KnotTheory (Bar-Natan
et al. 2016b) and KnotScape (Hoste and Thistlethwaite 2016). These are used in
practice for the compilation of knot databases and are important tools in research
and applications (Bar-Natan et al. 2016a; Cha and Livingston 2016; Jim Hoste et al.
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1998). Random knot models could serve as the basis for average-case analysis of
such algorithms.

2.5 Random 3-manifolds

The probabilistic method has had a great success in many areas. The study of
random knots can be viewed as part of a broader research effort to apply this
approach to the study of geometric and topological objects.

In recent years, there have been interesting developments in the study of random
simplicial complexes (Linial and Meshulam 2006; Adler et al. 2010; Kahle 2016),
random groups (Gromov 2003; Ollivier 2005), random manifolds (Brooks et al.
2004; Dunfield and Thurston 2006; Pippenger and Schleich 2006; Farber and
Kappeler 2008), and more.

In particular, several models for random 3-manifolds have been presented and
studied in the past decade (Dunfield and Thurston 2006; Lutz 2008; Maher 2010;
Kowalski 2010; Dunfield and Wong 2011; Maher et al. 2011; Maher 2012;
Lubotzky et al. 2016; Rivin 2014). Since every closed orientable 3-manifold can be
generated by performing Dehn surgeries on links in S* (Lickorish 1997, Chapter 12),
models for random links give rise to random 3-manifold whose properties are
interesting to study (Even-Zohar et al. 2017b).

In another direction, random knot models may extend to knotted 2-spheres or
other surfaces in a 4-sphere, and further to randomly embedded manifolds in higher
dimensions (Soteros et al. 2012; Atapour et al. 2015).

3 Models

Before listing some specific models, a few words on the general framework. A
random knot model is a distribution over the set of all knots, which we represent by
a random variable K. We usually consider a sequence K, of such distributions,
where n € N naturally appears in the construction. This parameter n can often be
viewed as a complexity measure of the typical resulting knots. All unspecified
asymptotic statements that we make here are w.r.t. n — o0.

Variations abound: We also encounter some multi-parameter constructions and
some models that yield random links of any number of components, or focus on
some subclass such as prime or alternating knots.

3.1 Self-avoiding grid walk

As usual, a walk on the three-dimensional lattice Z° is a sequence {Xj, ..., X, } such
that Xo = (0,0,0) and (X;11 — X;) € {(£1,0,0),(0,£1,0), (0,0, 1)}. Consider
n-step walks that are closed, with X,, = Xy, and self-avoiding, so that X; # X for any
other pair of points. Connecting the points of such a walk yields an n-segment
polygonal path, that represents a knot. See Fig. 3 for two examples.
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Fig. 3 The trefoil and figure-eight knots as 30-step walks on Z°
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Random self-avoiding walks (SAW) on Z* were suggested as a model for
polymeric molecules, and their knotting properties have been studied over the past
decades in varying degrees of rigor. In the grid walk model a random knot K,, is
obtained by sampling from the uniform distribution of all closed self-avoiding n-
step walks. Every knot appears in this model for n large enough.

It was conjectured by Delbruck (1961) that K,, is knotted with high probability.
This was observed in numerical simulations (Crippen 1974; Frank-Kamenetskii
et al. 1975), and proved by Sumners and Whittington (1988) and by Pippenger
(1989). Using Kesten’s pattern theorem (1963), they showed that the unknot
appears with exponentially small probability in n. Moreover, every prime knot
appears in the decomposition of K, with multiplicity ©(n), except for an
exponentially small probability (Soteros et al. 1992).

Let K] be a uniformly random connected component of K,, conditioned on K,
being knotted. Note that K, is a natural model for random prime knots, and it is
suggestive that K/, converges in distribution, and yields a random model for all
prime knots.

It is of interest to study self-avoiding walks and the resulting knots on other
lattices (Janse van Rensburg and Whittington 1990). Also extensions to random
2-component links, and the effect of confinement within a box or a tube, are
considered and analyzed (Orlandini et al. 1994; Soteros et al. 1999; Atapour et al.
2010). Madras and Slade’s book (2013) offers a rigorous analysis of Monte Carlo
sampling methods for self avoiding walks.

3.2 Polygonal walks

In the study of polymers, random polygonal paths in R? also play a prominent role.
Again we create a closed self-avoiding path by joining n straight segments, but these
are now distributed according to some continuous law. Two common choices for the
distribution of the segments are the equilateral with uniform distribution on the
2-sphere, and the Gaussian with standard 3-normal distribution (see Fig. 4).

That the walk is self-avoiding is usually satisfied with probability one, but more
care is needed to make sure that the walk is closed. Details of this vary with the
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Fig. 4 A closed polygon that
realizes the trefoil in R®

specific model and sampling method. We remain brief and only mention that it is
possible to guarantee this in the Gaussian model by adding a constant drift.

It was conjectured by Frisch and Wasserman (1961) that polygonal walks are
also unknotted with vanishing probability. Numerical simulations suggested
exponential decay in n for various different polygonal models (des Cloizeaux and
Mehta 1979; Bret 1980; Michels and Wiegel 1982, 1986; Koniaris and Muthukumar
1991). Diao et al. (1994) proved exp(—n*) for some ¢ > 0 for Gaussian-steps
polygons. This was extended to equilateral polygons (Diao 1995) and other
models (Janse et al. 2007).

General polygonal walks have an advantage over grid walks, in being space-
isotropic. This is more realistic for polymers, and more robust to variations. Here to
simulate effects of excluded volume constraints, one often replaces segments with
rods and points with beads of positive radius. It is also interesting to consider
polygons packed in a confined space such as a cube or a tube. Other variations of the
model allow simulating bending rigidity, tension, pressure, thermodynamic entropy,
and interaction between particles. See Micheletti et al. (2011) for a thorough
review.

For numerical experiments, such models are often approximately sampled via
Markov chains in the configuration space, with a variety of local and global moves
based on re-ordering, rotation, reflection, and more (Alvarado et al. 2011). There is
currently much activity in search of faster rigorous sampling algorithms, with new
techniques from symplectic geometry (Cantarella and Shonkwiler 2016; Cantarella
et al. 2016) and convexity (Chapman 2016a).

The resulting knots were classified for large samples in the various experiments.
It turns out that, in several polygonal and grid models, the frequency at which a knot
K occurs is well approximated by P[K, = K] = Cx(n/N)™e~"/¥), The constant N
depends only on the model, while for every knot K the exponents ox seem to be
universal among different models (Deguchi and Tsurusaki 1994, 1997; Orlandini
et al. 1998; Millett and Rawdon 2005; Janse et al. 2011). Further experiments
indicated that the mth most frequent knot appears with probability of
order m~'7> (Cantarella et al. 2016).
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3.3 Smoothed Brownian motion

A substantially less studied subject is knotting from non-piecewise-linear three-
dimensional random walks. A random polygon in the Gaussian model can be
viewed as a linear interpolation between a finite number of points from a continuous
Brownian bridge taken at constant time intervals. However, Brownian motion
cannot model a knot as it is self-intersecting with probability one. Moreover,
Kendall (1979) showed that it would contain infinitely many knots of all types, in
the sense of being contained in such knotted tubes. Is there a smooth model that
avoids these problems but captures the behavior of Brownian motion other than in
small scale?

The worm-like loop (Grosberg 2000) from polymer physics is a conituum model
that takes curvature into account. A smooth closed curve in R? is given weight

proportional to exp ( —0 [ ¢ ||2ds), where r(s) is its arc-length parametrization and ¢

is a typical length of persistence to bending. A more general model of statistical
mechanics, designated for ribbons, takes care of the bending direction and
persistence to twisting as well (Kessler and Rabin 2003). It is known how to
approximately sample from this model for open paths but not for closed ones.

In the search of a more numerically accessible model for worm-like loops,
Rappaport et al. (2006) and Rappaport and Rabin (2007) suggested the following
mathematical model. One way to construct a Brownian bridge in R® is by the
following Fourier series, with wy = 1.

o0

() =Y

k=1

~| =

(Zy coskt + Zj sin ki) Zy,Z;, ~ 3-normal iid.

To obtain a smooth approximation, one can truncate the sum by wy = 14<, or by
wy = e /" Computer simulations of the second choice show an exponential decay

of the unknotting probability (Rappaport et al. 2006). It is interesting to observe that

the cut-off factor wy = e~ */ n* s equivalent to smoothing the Brownian motion by
convolution with a narrow Gaussian, which seems to be an appealing choice.

Recent works (Westenberger 2016; Rivin 2016) study the case of polynomially
decaying coefficients wy = k=%, where o« € R. For « > 0.5 they derive bounds on
the expected crossing number of a random knot, and on the variance of the linking
number of a random link.

The parametrization of knots by a finite sum of cosines yields Fourier
knots (Buck 1994; Trautwein 1995; Kauffman 1998). As shown by Lamm
(2012), every knot can be obtained by taking x(¢) = cos(kyt + ¢,),
y(t) = cos(kyt + ¢,), and a finite sum of such cosines for z(#). This was recently
improved by Soret and Ville (2016), who showed that a sum of two cosines is
sufficient. Taking a single cosine, z(t) = cos(k,t + ¢.) defines the well-studied
Lissajous knots (Bogle et al. 1994; Jones and Przytycki 1998; Lamm 1997; Hoste
and Zirbel 2006). In Boocher et al. (2009) and Rivin (2016) experiments on random
Fourier and Lissajous knots are reported.
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3.4 Random jump

In the above random walk models the typical step length is small compared with the
diameter of the whole embedded path. Millett (2000) suggests polygonal models
where each point Xi, ..., X, € R? is independently sampled from some distribution,
such as the uniform distribution on the cube [0, 1]3, or a spherically symmetric
distribution with a uniform radius in [0, 1]. To this end any rich enough distribution
that almost surely avoids self-intersections will do, such as the 3-normal
distribution, or uniform on the unit sphere (O’Rourke 2011).

By sampling Xi,...,X, and Y,...,Y,, independently with the same 3-dimen-
sional distribution, the above extends to two-component links (Arsuaga et al.
2007a), and similarly for any number of components (Fig. 5).

We still do not know how likely it is to encounter the unknot in the random jump
model. Numerical experiments indicate that this probability vanishes faster than
exp(—O(n)) (Millett 2000; Arsuaga et al. 2007b). This provides evidence for a
strong form of the above-mentioned Delbruck—Frisch—Wasserman conjecture in this
model. Similar conclusions seem to apply to any fixed knot. Experiments with the
cube model suggest that the expected knot determinant is w(exp n?). It is proposed
in Arsuaga et al. (2007b) that most knots in this model are prime. It was
suggested (Thurston 2011) that the expected crossing number in the spherical case
is ©(n?).

Consider the linking number L,,, of a random two-component link with n and m
segments. It is known (Arsuaga et al. 2007a; Flapan and Kozai 2016) that its
variance is @ (nm), and it is conjectured that L,,, /+/nm converges in distribution to a
Gaussian (Panagiotou et al. 2010; Karadayi 2010). Based on our analysis of the
Petaluma model (Even-Zohar et al. 2016) we tend to doubt this conjecture. Rather,
we suspect that the tails of the limit distribution decay exponentially.

A knot in the unit ball A two-component link in the cube

Fig. 5 The random jump model
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274 C. Even-Zohar

A more symmetric variant of the random jump model has been suggested (Wise
2016), which takes place in > visualized as the unit sphere in R*. A sequence of
uniformly random points can be connected along the geodesics, which are the great
circles.

These random jump or uniform random polygon (URP) models, were originally
proposed to illustrate the effect of spatial constraints on knotted molecules (Millett
2000). In some bacteriophages, for example, a circular DNA molecule is densely
packed inside a spherical capsid. Experiments show that more complex knots are
likely to be produced, compared to unconstrained DNA of similar length in free
solution (Arsuaga et al. 2002). The observed distribution is also biased towards
chiral knots and especially torus knots (Arsuaga et al. 2005).

The explanation of these findings requires more realistic simulations that take
into account various biophysical features, see e.g. Micheletti et al. (2008) and
Marenduzzo et al. (2009). However, the simplicity of the random jump model
makes it amenable for rigorous mathematical analysis, while it is arguably a
prototype of a polygonal model in spatial confinement (Arsuaga et al. 2007b).

3.5 The Petaluma model

We now abandon random polygons, and move to more combinatorially oriented
models. We start with the Petaluma model, studied by the author and collabora-
tors (Even-Zohar 2017; Even-Zohar et al. 2016, 2017a).

Adams et al. (2015a, b) have shown that every knot or link can be positioned so
that its planar projection is injective except for a single point. Several projected
strands may smoothly traverse this point of the iiber-crossing projection, each
originating at a different height. Moreover, every knot has a petal projection, where
the loops that emanate from the multi-crossing point have disjoint interiors.
Consequently, petal projections are represented by a rose-shaped curve with an odd
number of petals, as in Fig. 6a.

In order to reconstruct the original knot we need only the relative ordering of the
heights of the strands above the multi-crossing point. This information can be
encoded by a permutation ¢ € S,;. We generate a random knot Kj,.; in the

&
7

(a) 9-petal (b) 12-petal 2-component (¢) 24-petal 3-component

Fig. 6 Petal diagrams for knots and links
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Petaluma model by picking ¢ uniformly at random (Even-Zohar et al. 2016). By the
construction of Adams et al., every knot K is obtained with positive probability for
n large enough.

The Petaluma model extends to k-component links, by considering petal
diagrams with k& components as in Fig. 6. In Even-Zohar (2017) we study its
extension to framed knots, which can be thought as knotted oriented ribbons.

In Even-Zohar et al. (2016), Even-Zohar (2017) we explicitly find the limiting
distribution of the linking number of a two-component link, as well as the limiting
distribution of the writhe of a random framed knot. We similarly present formulas
for the moments of the Casson invariant ¢, and another finite type invariant
appearing in the Jones polynomial. We elaborate on finite type invariants of random
knots in the Petaluma model in Sect. 4 below.

As we show in a recent paper (Even-Zohar et al. 2017a), every particular knot
appears in this model with vanishing probability. We conjecture that this probability
decays at least exponentially with n, but currently the best bounds we have are
Q(n™") < P[Kap1=K] < O(n™ ).

It is of interest to understand the relation between the crossing number ¢(K) of a
knot and the least number of petals p(K) needed to represent it. We show in Even-
Zohar et al. (2017a) that p(K) <O(c(K)), and this bound is tight by results of
Adams et al. (2015a). They have also shown that ¢(K) < O(p*(K)), which is also
tight.

Numerical simulations for n < 100 suggest that most knots in the Petaluma model
are prime, and even hyperbolic. See Sect. 4.4 for more details, and further results by
Adams (2017), Adams and Kehne (2016) and Kehne (2016). They went on to extend
the Petaluma model to the Uberluma which contains all diagrams of one multi-
crossing, allowing for nested loops.

3.6 Random grid diagrams

Grid diagrams are a useful kind of regular knot diagrams. They describe all knots
and links in a simple way (Brunn 1987; Cromwell 1998). A grid diagram consists
of n horizontal segments and n vertical segments, where vertical segments always
pass over horizontal ones. Each of the integers in {1,...,n} appears as the x-
coordinates of exactly one vertical segment. Likewise for the y-coordinates of the
horizontal segments.

A grid diagram is encoded by a pair of permutations p,c € S, for these
horizontal and vertical coordinates respectively. We alternately take steps of the
form (p;, 0;) — (p;, 6ix1) = (Piy1,0i+1) and so on. See Even-Zohar et al. (2016)
for more details, and Fig. 7a for an example.

A random knot in the random grid model is obtained by taking p and o
independently uniformly at random. Extensions to k-component links are easy and
we omit further details. A similar model that produces links of varying number of
components was considered in a scheme for quantum money (Farhi et al. 2012).

We numerically compare the distribution of ¢, for the Petaluma and grid models,
and find that they share many features, see Sect. 5. As observed in Adams et al.
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(a) A grid digram for p,o € Syp (b) The corresponding human knot

Fig. 7 Here p = (4,0,6,2,9,3,8,5,1,7) and ¢ = (9,3,6,1,5,0,8,4,7,2)

(2015a), the Petaluma model is contained in the grid model, and obtained by
conditioning on p(k) = nk mod (2n + 1).

Some preliminary work on precise moments’ computation for finite type
invariants in the random grid model has been done by Gal Lavi, Tahl Nowik, and
the author (Lavi and Nowik 2016). We report that E[c;] = n*>/288 + O(n) and
V]ca] = 7n* /194400 + O(n®), which are of the same orders as in the Petaluma
model, cf. Sect. 4.

Two grid diagrams of the same knot can be related by a finite sequence of
Cromwell moves, which are local operations of three types, similar to the
Reidemeister moves (Cromwell 1995). Witte et al. (2016) estimate the average
writhe of a knot over its n X n grids, using a Markov chain of these moves. See
also Farhi et al. (2012).

We find a nice interpretation of the grid model in a common group-dynamic
game named the human knot (Adams 1994). A group of n two-handed participants
stand in a circle. Each player chooses the next one at random and then they hold
hands, until the last player holds the free hand of the first one. Their goal is to
simplify the knot to a circle without letting their hands go, which is of course not
always possible.

To analyze this game, we introduce the assumption of transitivity. Namely,
connected pairs of hands are ordered from bottom to top. See Fig. 7b, where the
players correspond to axial segments on a cylinder, and connections are horizontal
chords at different heights. If this ordering is uniformly random, then this
construction is equivalent to a random grid diagram. Horizontal and vertical
segments correspond to chords and players respectively. The permutation p records
the order at which players are connected, and ¢ represents the relative order of the
hands’ heights.
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A related model, based on the human knot game, was suggested by Cohen
(2007), who conducted computer experiments to study the distribution of the
resulting knots.

3.7 Random planar diagrams

Planar diagrams are routinely used to represent knots and to investigate them.
Naturally, this suggests the study of random knots by sampling diagrams with a
given number of crossings. Such models were studied by several authors (Schaeffer
and Zinn-Justin 2004; Diao et al. 2005, 2010; Dunfield et al. 2014; Cantarella et al.
2016), with various sampling methods.

To this end, we start with a generic smooth immersion of S! into R?* with
n traverse double points, considered up to diffeomorphism of the plane, as in Fig. 8.
This yields a 4-regular plane graph, where loops and multiple edges are allowed.
Then each vertex is assigned either of the two possible crossing signs.

The number of n-vertex 4-valent graphs in R? is asymptotically exponential in
n. However, an algorithm by Schaeffer and Zinn-Justin (2004); Brinkmann (2007)
uniformly samples such graphs with a base point, by generating a random rooted
binary tree and matching leaves to non-leaves in some clever way. Some of the
resulting graphs correspond to curves with several components, which is a problem
if one is interested only in knots rather than links. One can either reject (Dunfield
et al. 2014; Cantarella et al. 2016) these curves, or modify (Diao et al. 2005, 2010)
them, but this, however, ruins uniformity.

Some delicate issues of symmetry arise. Namely, do we care about orientation
and mirror images? Should we distinguish between different planar diagrams which
are equivalent in the sphere $>? Do we want a base point on some edge? Finally, are
different n-vertex graphs to be weighted equally or according to the number of non-
equivalent diagrams they give rise to, which might be smaller than 2" due to
symmetries? However, all subtleties of this sort become negligible as n grows (Rich-
mond and Wormald 1995; Chapman 2016c).

A recent advance in the study of this model is the establishment of a pattern
theorem for diagrams by Chapman (2016b, c¢). This extends pattern theorems for

(A) The underlying graph (B) The knot diagram

Fig. 8 A random assignment of crossings to an 11-vertex 4-regular plane graph
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planar maps (Bender et al. 1992), and parallels the above-mentioned results for grid
and polygonal knots. Chapman showed that small sub-diagrams appear ®(n) times
in an n-crossing knot or link diagram, except for an exponentially small probability.
In particular, as n grows the diagram contains a 3-crossing trefoil summand and is
hence nontrivial with high probability. Similar results hold if one restricts to prime
diagram, ones whose underlying graph is 4-edges-connected.

Numerical experiments tell us more. Dunfield et al. (2014) and Obeidin (2016) study
random links, knots, and prime connected summands of knots in this model. Their results
suggest that several invariants, including the hyperbolic volume, grow linearly with n.
Cantarella et al. (2016) and Chapman (2016c¢) precisely compute knot probabilities for
n < 10, and study their behavior for larger n based on random samples. The methods
used in these experiments are implemented into publicly available software packages:
plCurve (Ashton et al. 2016) and SnapPy (Culler et al. 2016).

3.8 Random planar curves

Other models generate a random 4-regular plane graph in various ways, and then
assign crossing signs uniformly at random. For example, Diao et al. (2010)
randomly add n non-intersecting chords inside and outside an n-vertex cycle, to
make it 4-regular, and then toss a coin to decide each crossing.

In the following random-crossing constructions the underlying graph is generated
by sampling polygonal curves in the plane.

e Equilateral closed polygons in R?> (Michels and Wiegel 1989).

e Closed SAW in Z* with diagonal crossings:x or x; (Guitter and Orlandini
1999).

e Jumps between uniform points in the square [0, 1]2 (Arsuaga et al. 2007b; Diao
et al. 2010).
A chain of chords between uniform points around the circle (Cohen 2007).
The griddle: Random grid diagrams with randomized crossings (Even-Zohar
et al. 2017b).

There are close connections between the finite type invariants of such knots and
those of the underlying curve (Polyak 1998). For example, the expected value of the
Casson invariant c; is one eighth the defect, a first-order invariant of the curve. In
the griddle model we calculated E[c,] = E[defect]/8 =n?/144 + O(n) and
V[ca] = n*/7776 + O(n?), though V|defect] = 29n*/4050 + O(n?) (Even-Zohar
et al. 2017b).

Finally, we note that given a 4-valent graph in the plane, exactly two sign
assignments produce an alternating link diagram, where over-crossings and under-
crossings alternate as one travels along the link. Diao et al. (2005), Arsuaga et al.
(2007b) and Diao et al. (2010) and Obeidin (2016) used this observation to
construct models for prime alternating knots and links. Except for the (2, n)-torus
these are hyperbolic links, whose volume can be read off the diagram up to a
multiplicative constant (Lackenby 2004). Taking the uniform distribution over
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prime alternating link diagrams, the expected hyperbolic volume is linear in the
crossing number (Obeidin 2016).

3.9 The knot table model

The crossing number is perhaps the most popular measure for knot complexity.
Historically, prime knots are tabulated and nomenclated according to their crossing
number, as reflected in the widely used Alexander-Briggs—Rolfsen knot nota-
tion (Alexander and Briggs 1926; Rolfsen 1976). See also Fig. 9.

Consequently, many investigators find it quite natural to generate random prime
knots by uniformly sampling from knot tables with up to n crossings. If one cares
about chirality and orientation, these can be decided by further coin flips.

It is known that there are exponentially many knots with n crossings (Ernst and
Sumners 1987; Welsh 1991; Carl Sundberg and Morwen Thistlethwaite 1998), but
the exact count is known only for small # (Jim Hoste et al. 1998). The difficulties in
recognition and enumeration of n-crossing knots make this model less suitable for
precise computations, though it is known that most knots are not rational (Ernst and
Sumners 1987), nor are most links alternating (Thistlethwaite 1998).

The vast majority of knots with up to n <16 are hyperbolic, which may suggest
that their asymptotic proportion tends to 1. This is however not likely to be true, in
view of a recent surprising result of Malyutin (2016). He assumes the plausible, but
still unproven, conjecture that the crossing number is weakly monotone with respect
to connected sum. The crux of his proof is the addition of small satellite
configurations to existing diagrams.

3.10 Random braids

It goes back to Alexander that every knot or link is the closure of some
braid (Lickorish 1997). Namely, it can be represented by some m intertwining

THE FIRST SEVEN ORDERS OF KNOTTINESS
1 Two forms 1 Two forms

?éil@'%%,@ai,,!,%iﬁ%@m@ o 06
REIAOGSnelnd

v ‘I’h-fm mnmma ’l\vu forms Xl M fcmns

W ssgens b
526005

Fig. 9 Excerpt from Tait’s original table of knots with up to 8 crossings (Tait 1884). Note that unlike the
discussed model it contains only alternating knots, with several equivalent diagrams for some of them
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strings that monotonously go from left to right, and close at some canonical way as
in Fig. 10. Such braids form a group B,, with generators {¢i'},_,_, that
correspond to swapping strings i and i + 1, and appropriate relations.

There is recent interest in generating knots by random walk in the braid group.
This parallels well-known constructions of random 3-manifolds (Dunfield and
Thurston 2006) and more.

Such a model is defined in terms of a probability distribution on a finite subset of
the braid group B,,, such as the generators o;-'. A random knot is obtained by n-step
random walk in these generators, with some standard closure as depicted in Fig. 10.
The context of Markov Chains on groups proves useful in the analysis of this
model (Nechaev et al. 1996).

This definition yields random links of a varying number of components. For fixed
m and large n we obtain knots with probability about 1/m. Additionally, only links
of braid index or bridge index at most m appear, according to the closure
convention. Remarkably, random knots and links in this setting are hyperbolic with
high probability (Malyutin 2012; Ma 2013, 2014; Tetsuya Ito 2015; Ichihara and
Yoshida 2015; Ichihara and Ma 2016).

3.11 Crisscross constructions

This family of random models includes several constructions in which a planar
curve is explicitly specified, and all randomness comes from the choice of crossing
signs, sampled independently and uniformly at random.

One source for such models is planar Lissajous curves (Lissajous 1897),
illustrated in Fig. 11. These closed curves are parametrized by (cos(at + ¢), cos bt)
where ¢ € [0, 2n] with ratio b:a € Q and a phase shift ¢ € R. We also consider the
open curve (cosat,cosbt) where t € [0, 7], being closed from the outside. These

curves are plane isotopic to the polygonal trajectory of a billiard ball in [0, 1]2, fired
at slope b / a (Jones and Przytycki 1998).

The three-dimensional analogues of these curves constitute Lissajous knots
(Bogle et al. 1994; Lamm 1997; Jones and Przytycki 1998) and Harmonic
Knots (Comstock 1897; Koseleff and Pecker 2011), but these families do not
contain all knots. However, planar Lissajous curves with suitable crossing signs do
give rise to all knots. This underlies the construction of the above-mentioned

—— N —
o =%

-1 _-1 -1 _-1 -1 -1 -1 _-1
0,010 0y 0,0, 0] 0900 0103 090503 0307 05 0

(A) Trace Closure (B) Plat Closure

Fig. 10 Random knots in the braid model
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(A) Closed, of ratio 3 : 2 (B) Open, of ratio 9: 5

Fig. 11 Billiard table diagrams from Lissajous curves

Fourier Knots (Buck 1994; Trautwein 1995; Kauffman 1998; Hoste and Zirbel
2006; Lamm 2012; Soret and Ville 2016) and Chebyshev Knots (Koseleff and
Pecker 2011), as well as the next random construction, the billiard table model
suggested by Cohen and Krishnan (2015).

A random knot Kj., is thus obtained by randomizing the crossing signs, as in
Fig. 11. It can also be regarded as a special case of the random braid model. For
example, the case ¢ =35 as in Fig. 11b is generated by the 16 elements
{ofo505 6} with the uniform distribution.

In Cohen et al. (2016) we study the asymptotic properties of K.z, which yields
random two-bridge knots, also known as rational knots (Kauffman and Lam-
bropoulou 2004). We show that the probability of obtaining any particular knot is

(o + 0(1))" for o = §/27/32 = 0.945, and the crossing number is (f + o(1))n in
probability, for f = (v/5 — 1)/4 ~ 0.309.

We remark that, without restricting to fixed diagrams, other random models arise
from the highly developed theory of rational knots. In particular, a random braid in

{o1,0; 1}* C By yields a rational knot by its Conway symbol (Conway 1970).
See Ernst and Sumners (1987) and Diao et al. (2010) for corresponding results.
Star diagrams are obtained from (2n + 1)-petal diagrams by straightening the
segments between petal tips. See Fig. 12a, b. A random knot in the star model is
generated by randomizing the (n — 1)(2n + 1) crossings. Star diagrams are plane
isotopic to closed n-braids (Adams et al. 2015a), as demonstrated in Fig. 12b, c.

(A) Petal

Fig. 12 From petal diagrams to regular knot diagrams
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The star model yields all knots, since the Petaluma model does, but with quite
different distribution. We show in Even-Zohar et al. (2016) that its expected Casson
invariant is E[cy] = n®/12 + O(n?) with a standard deviation of n?/+/24 + O(n/?).
This means that ¢, drifts away from zero.

Chang and Erickson (2015) consider a generalization of the star model. They
define the flat torus diagram T(p, g) as the closed braid (o0, - - - ,_1)?, and assign
crossing signs at random. The star model is T(n,2n + 1), as shown in Fig. 12¢ for
n = 4. Following Hayashi et al. (2012), they show that the expected Casson
invariant of T'(n + 1,n) is @(—n?). It is conceivable that this latter model contains
all knots as well.

The probability space in such crisscross models consists of 2¢ crossing states.
Some invariants are more accessible in this simple setting, as they are computable by
summation over 2¢ local configurations at the ¢ crossings. One important example is
the Kauffman Bracket (1987), and its connections to statistical physics (Kauffman
1988; Jones 1989; Wu 1992).

For crisscross diagrams on the 2-dimensional lattice, rather similar to the above
ones, the degree distribution of the Jones polynomial is analyzed in terms of the
Potts model from statistical mechanics (Grosberg and Nechaev 1992; Nechaev
1996; Vasilyev and Nechaev 2001).

3.12 Miscellanea

We have attempted to cover the main themes of random knot models. Of course, our
list of models and results is not completely exhaustive, neither historical, and to
some extent reflects our own viewpoint. To conclude, we mention some random
ideas in further directions.

Various models from the natural sciences seek to emulate dynamical processes of
knot formation in real life scenarios. Some studies describe numerical simulations
of a polygonal DNA chain that folds, coils and spools within a cavity, before its two
ends anneal and produce a knot (Arsuaga and Diao 2008; Marenduzzo et al. 2009,
for example). Such dynamical models are important for understanding biological
processes by comparing simulated and observed data, but usually they don’t lend
themselves easily to mathematical analysis.

Other studies (Flammini et al. 2004; Hua et al. 2007; Liu and Chan 2008;
Szafron and Soteros 2011; Cheston et al. 2014) are inspired by the interaction
between DNA and fopoisomerase, a specific enzyme that cuts and rejoins strands,
and thus modifies their topological state. Such strand-passage models induce
transition probabilities between knot types, which can be estimated by numerical
simulations, and these lead to a stationary equilibrium distribution over knots.

Finally, Babson and Westenberger study knots obtained from a curve in R" by
projecting to R® in a random direction. They relate several of the above
constructions to this original framework (Westenberger 2016).

In principle, any reasonable way to construct or represent knots could be turned
into a random model. Another case in point are trajectories of dynamical systems,
such as three-dimensional billiard (Jones and Przytycki 1998).
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4 A closer look at the Petaluma model

We now focus on random knots and links in the Petaluma model (3.5), and discuss
the distribution of their finite type invariants and hyperbolic volume. First we recall
the definition of finite type invariants, given in terms of singular knots and
links (Birman and Lin 1993).

4.1 Finite type invariants

Unlike a regular knot, which is a smooth embedding of S' into R® up to isotopy, a
singular knot is allowed to have finitely many double points of transversal self
intersection. Each of these points can be locally resolved in two well-defined ways:
positive ¢, and negative .

Let v be a knot invariant taking values in some abelian group, usually in Z. The
extension of v to singular knots is given by v(K) = v(K,") — v(K,"), where Klf: are
the two resolutions of the singular knot K at the double point p. By recursion, the
value of v on a singular knot with m double points is given by a signed sum of its
value on 2™ regular knots. We say that v is a finite type knot invariant of order m if it
vanishes on all singular knots with m 4 1 double points.

This condition is satisfied by several well-studied knot invariants, such as
coefficients of knot polynomials (Bar-Natan 1995a; Chmutov et al. 2012) and the
Kontsevich integral (Bar-Natan 1995b; Chmutov and Duzhin 2001). There is only
one knot invariant of order two, up to affine equivalence—the Casson invariant
c2(K), which is the coefficient of x* in the Alexander-Conway polynomial Cx (x). It
similarly appears in the modified Jones polynomial, Vi (e*) considered as a power
series in x, which also yields an invariant v3(K) of order three. The number of new
independent finite type invariants grows with the order: 3 invariants of order four, 4
of order five, 9 of order six, etc. Bar-Natan (1995b).

No invariant of knots has order one. However, the Gauss linking number lk(L) is
a classical first order invariant of two-component links. Also the framing number, or
writhe w(K) as in Even-Zohar (2017), is a first order invariant of framed knots.

4.2 Asymptotic distributions

Finite type invariants of random knots and links in the Petaluma model (3.5) have
been studied by Hass, Linial, Nowik, and the author (Even-Zohar et al. 2016; Even-
Zohar 2017). In particular, we have investigated how these invariants scale and
distribute for knots with a large number of petals.

Consider the Casson invariant of a random knot with 2n 4 1 petals. It is not hard
to observe that ¢3(Ky,,1) = O(£n*), which is shown to be sharp for torus knots and
other explicit constructions. However, we have found that the typical order of
magnitude of the Casson invariant is actually n?. Indeed, its expectation is
E[ca] = n(n — 1) /24, its variance is V[c;] = 7/960 - n* + O(n*), and such formulas
have been given for all moments, yielding E[c}] = @(n*). We find it intriguing that
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the distribution of the properly normalized Casson invariant ¢;/n’ is asymmetric
and not centered at zero, asymptotically as n — oo.

The third order invariant v3(K,41) is antisymmetric with respect to reflection,
hence its distribution is symmetric around zero. As for its even-order moments, we
have similarly shown E[%] = O(n*), e.g., V[vs] = 9298/5443200 - n° + O(n°).

In terms of their moments, ¢, grows as n”> and v as n°. This naturally suggests
that an mth order invariant of random knots with n petals asymptotically scales
as n”. In Even-Zohar et al. (2016) we conjecture that v, (Ky,.1)/n" weakly
converges to a limiting distribution as n — oo for every finite type invariant v,, of
order m. The existence of continuous limit distributions for ¢, and vj is supported by
computational evidence, as discussed below.

We have established such a limiting distribution in two cases: the linking number
of a random two component link with 2n petals in each component, and the writhe
of a random framed knot with 2n + 1 petals. Both are first order invariants, and
obtain integer values sharply between +n%. In Even-Zohar et al. (2016) we prove
that lk(Lp,2,)/4n converges to the logistic distribution, with density function
f(t) = 1/ cosh?(2nt). The normalized writhe w(Ka,,)/n converges to another non
Gaussian limiting distribution, established and described in Even-Zohar (2017).

Our proofs combine the method of moments with careful combinatorial analysis
of the limiting moments of these invariants, expressed via Gauss diagram formulas.

4.3 Numerical experiments

We study the invariants ¢,(K,) and v3(K,) in the Petaluma model, by computing
their values for a random sample of permutations in S,. Comparing the results for
various values of n, we observe that as n grows the joint distribution of ¢, /n? and
v3/n’ seems to converge to a continuous bivariate distribution of a certain shape.
The heat map in Fig. 13 shows the resulting density function of this distribution for
n =41, which seems to be a good approximation of the conjectured limiting
distribution.

The planar representation of these two invariants follows previous work by
Willerton (2002); Chmutov et al. (2012) and Ohtsuki et al. (2002), who generated
scatter plots of (cz,v3) for all prime knots with up to n crossings. They similarly
obtained fish-shaped figures, although it is unclear how these should scale as the
crossing number grows. The Petaluma model may provide a more concrete way to
catch this fish, in the form of a limit density function defined on R2.

Besides representing the first two finite type invariants of knots, the planar map
¢ : K—(c2(K),v3(K)) has some interesting properties. As observed by Dasbach
et al. (2001), the evaluation of the Jones polynomial at roots of unity near 1 can be
approximated by Vi (e™) = 1 + 3cah* + 6v3h*i + O(h*), and this yields similar fish
graphs for Vi (e?™/V) in the complex plane, for N > n.

Note that by the multiplicativity of the Jones polynomial, the map ¢ is additive
with respect to connected sum: @(K#K’') = ¢(K) + ¢(K’) in Z>. Using this fact
and some known constructions one can show that as n grows the resulting point set
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Joint Density of Invariants in the Petaluma Model
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Fig. 13 The normalized distribution of ¢, and v for a random knot Ky, based on 108 random samples

of all (cy/n?,v3/n®) is dense in R*. We actually conjecture that the limiting
bivariate distribution has positive density everywhere in the plane.

4.4 Hyperbolic volume

We conclude this section with further numerical experiments, concerning the
distribution of the hyperbolic volume in the Petaluma model, as approximated by
the Sage package SnapPy (Culler et al. 2016).

As mentioned in Sect. 3.5, our simulations show that randomly sampled knots
with up to 200 petals are mostly hyperbolic. This trend seems to strengthen with
increasing number of petals, although one must be careful drawing conclusions from
small cases, cf. Malyutin (2016) mentioned in Sect. 3.9.

Figure 14 shows how the empirical hyperbolic volume grows super-linearly with
the number of petals. More speculatively, the volume of an n-petal knot appears to
be concentrated around a curve of the form Anlog Bn, which seemed to fit better
than a linear function, or one of order /2. These experiments have been repeated
by Kehne (2016). They have also proved that the expected volume is at most
4nnlogn, by constructing a pyramid decomposotion of the petal knot
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Hyperbolic Volume in the Petaluma Model
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Fig. 14 The hyperbolic volume per petal grows with the number of petals. This is based on random
samples of 25 knots with 21 to 121 petals. Non-hyperbolic knots (< 2.5%) were omitted

complement (Adams 2017; Adams and Kehne 2016). Any such lower bound would
be of great interest.

5 Discussion

This great variety of approaches for random knot models suggests that we ask how
they differ. Do they exhibit some kind of common properties? By what means
should we compare models? What do they teach us about knot invariants and knot
theory? Below we record some thoughts concerning these questions.

5.1 Local knotting

The Delbruck—Frisch-Wasserman conjecture, that a typical random knot is non-
trivial, has been proved by now in several models. Some insight on their properties
can be gained by comparing the arguments involved in these proofs.

The knottedness of random polygonal and grid walks (3.1, 3.2) is based on the
fact that such knots tend to have many spatially localized connected summands.
This phenomenon can be attributed to the small steps taken in these
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models (Sumners and Whittington 1988; Pippenger 1989; Diao et al. 1994; Diao
1995). We do know, however, that large scale knotting occurs as well (Jungreis
1994; Diao et al. 2001). Also for planar diagrams (3.7), knottedness follows
from the existence of small prime summands in random knot and link
diagrams (Chapman 2016¢). Even for prime knots in the knot
table model (3.9), local configurations of a double figure-eight knot provide a
satellite decomposition (Malyutin 2016).

In contrast to the highly composite knots produced by small-steps models, we
believe that models of non-local nature yield knots with much simpler factorization.
By non-local we mean that the typical step length is comparable to the diameter of
the whole curve.

For example, local entanglements yield only a vanishing probability of order
1/ n? for a trefoil summand in the Petaluma model (3.5). Indeed, its knottedness with
high probability was shown by other means, a coupling argument based on the
effect of random crossing changes on finite type invariants (Even-Zohar et al.
2017a). As mentioned above, numerical experiments indicate that these knots are
mostly hyperbolic, so that any connected sum or satellite-type decomposition might
become rare.

5.2 Dimension

It would be interesting to further distinguish knot models from each other by their
asymptotic topological features. On the other hand, it would be very interesting to
discover universal phenomena and parameters that hold for a variety of different
models.

We shall venture some speculations along these lines. As a first step, consider the
following three classes of random models.

1D Grid walks (3.1), polygonal walks (3.2), and smoothed Brownian motion (3.3).
2D Random planar diagrams (3.7), the griddle (3.8), knot table (3.9), and star (3.11).

3D Random jumps (3.4), the Petaluma (3.5), and grid diagrams (3.6).

This classification attempts to grasp the “dimension”, or general shape, of the
actual spatial curves constructed by the different models, in some loose and
undefined sense. It is a fundamental challenge to characterize such a classification
precisely.

Would it be possible to reconstruct the class to which some random model
belongs, by looking only at the asymptotics of the topological invariants of the
resulting knots?
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5.3 Comparing invariants

Our computations and experiments (Even-Zohar et al. 2016, 2017b) show that the
asymptotic distributions of the Casson invariant in models of the third class share
several important features. In Fig. 15, we exhibit numerically generated histograms
of the Casson invariant for three models: Petaluma (3.5), grid (3.6), and several
random jump models (3.4). They all seem to converge to continuous unimodal limit
distributions on R, with two-sided exponentially decaying tails, strictly positive
expectations and similarly asymmetric shapes.

Even though models of the second class also seem to converge to distributions of
similar shapes around their expectations, their main terms are inconsistent. In the

griddle (3.8) model E[cy]/+/V[c2] = ©(1), while in the star (3.11) model
Elc]/+/Ve2] = O(n).

We hope that extending such comparisons to other invariants would shed more
light on the above questions of classification and universality.

Comparison of Distributions
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Fig. 15 The distribution of ¢,(K,)/n? in several random knot models, for n = 80 or 81, based on

10% random samples each, and normalized to have variance one. Only the star histogram was shifted to
compensate for its rightward drift
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5.4 Open problems

Models of the third class outlined above seem especially interesting from a knot-
theoretic point of view. They presumably avoid phenomena of local knotting or
“flatness”, and their finite type invariants seem to follow well-behaved
distributions.

We close our review by listing some of the desired features of these random
models, which are yet to be established.

Conjecture Let K, be a random knot, sampled from any of the following models:
Random Jump (3.4), Petaluma (3.5), Grid (3.6). Then,

e With high probability K, is prime, and even hyperbolic.

e With high probability K, is non-alternating.

e The typical crossing number is super-linear: E[c(K,)] = w(n).

e The probability of every knot K is sub-exponential: P[K,=K] = ¢~ ("),
e Any finite type invariant of order m has typical order of magnitude n”™.

5.5 Implementation details

We include here some information about the numerical results that are firstly
reported in this paper.

The generation of random knots in various models was performed by a C++
program, available at Even-Zohar (2016b). The computation of finite type
invariants, as in Sects. 4.3 and 5.3, was carried out using Gauss diagram
Sformulas (Chmutov et al. 2012), which can be evaluated in polynomial time. The
computations were distributed on up to 168 processors in the computing facilities of
the School of Computer Science and Engineering at HUJI. They were supported by
ERC 339096.

The formulas for invariants of random grid and griddle knots with 2n segments in
Sects. 3.6 and 3.8, were derived by automated case analysis of the many possible
configurations of the involved crossings. It was implemented in a Python program,
available at Even-Zohar (2016a). These computations took several hours on a PC.

The data in Fig. 14 was obtained from the Sage software SnapPy (Culler et al.
2016), that approximates the hyperbolic volume of a link by finding a triangulation
of its complement with compatible hyperbolic structure. In order to make the
random samples suitable as input for the program, we first converted them from
petal diagrams to braids, as shown in Fig. 12. Some concerns regarding the
verification of hyperbolicity and the stability of the computed volume are discussed
by Kehne (2016). Our results are available, together with the source code that
generated them, at Even-Zohar (2016¢). The computation took several days on
a PC.
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