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EXACT SEMIDEFINITE PROGRAMMING BOUNDS FOR PACKING
PROBLEMS\ast 
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Abstract. In this paper we give an algorithm to round the floating point output of a semidefinite
programming solver to a solution over the rationals or a quadratic extension of the rationals. This
algorithm does not require the solution to be strictly feasible and works for large problems. We
apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that
certain optimal packing configurations are unique up to rotations. In particular, we show that the
configuration coming from the \sansE 8 root lattice is the unique optimal code with minimal angular
distance \pi /3 on the hemisphere in R8, and we prove that the three-point bound for the (3, 8, \vargamma )-
spherical code, where \vargamma is such that cos\vargamma = (2

\surd 
2 - 1)/7, is sharp by rounding to Q[

\surd 
2]. We also use

our machinery to compute sharp upper bounds on the number of spheres that can be packed into a
larger sphere.
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1. Introduction. In this paper we consider the problem of extracting an exact
solution from the output of a numerical semidefinite programming solver. A par-
ticularly fitting application domain for this is extremal geometry, including packing
problems where we ask for the size of a largest independent set in a graph whose set
of vertices is a compact space. A typical example is the \vargamma -spherical code problem,
where the vertex set is the unit sphere, and two distinct vertices x and y are adjacent
when the inner product between x and y is at most cos\vargamma . The strongest known upper
bounds often use semidefinite programming [2, 14, 16], which is an extension of linear
programming where one optimizes over positive semidefinite matrices satisfying lin-
ear constraints. Since semidefinite programs are solved in floating point arithmetic,
turning the numerical bounds into rigorous upper bounds requires additional work.

To prove that a packing configuration of size N is optimal, we just need any upper
bound in the interval [N,N + 1). In this case, extracting a rigorous bound is easy,
because it is enough to prove the existence of an exact solution of the semidefinite
program whose objective is close to the objective of the floating point solution, which
means we simply need to round a strictly feasible solution. However, if we want
to prove uniqueness of such a configuration (see section 2.3), or if we aim at solving
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1434 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

more general problems in extremal geometry where the optimal value is not an integer
(for instance, energy minimization problems [9, 12]), then we need an exact bound.
Extremal geometry thus provides large semidefinite programming problems where
we look for an exact optimal solution that may lie on the boundary of the positive
semidefinite matrix cone.

For the problem of finding exact sum of squares decompositions of polynomials,
there exist several hybrid numeric-symbolic algorithms [37, 8, 23, 24, 31], and some of
them [23, 24] can be applied for special instances of polynomials that are not strictly
feasible. For general semidefinite programs, as required in our context, there exist
symbolic algorithms [20, 33, 21], but they cannot be used for the size of problems
we consider. Other approaches rely on facial reduction: While [27] provides an exact
method for sum of squares decompositions, more general techniques such as [36] re-
main purely numerical. We propose a hybrid numeric-symbolic algorithm, which can
be related to facial reduction, and is able to tackle large semidefinite problems arising
in extremal geometry, where the optimal solutions are not necessarily strictly feasible.

Since we consider problems where we have a candidate optimal configuration for
which we have a numerically sharp semidefinite programming bound, we can include
the objective value as a linear constraint, and we are only looking for a solution of
the corresponding feasibility problem. The semidefinite programming solver returns
a near feasible solution of this semidefinite program, given as a list of matrices whose
entries are floating point numbers. For this solution the linear constraints are almost
satisfied, and the eigenvalues of the matrices are positive or close to zero (but not
necessarily nonnegative). If we expect to find a feasible solution with entries in a
given field, the challenge consists in turning the floating point values into elements of
this field in such a way that the linear constraints are satisfied and the matrices are
positive semidefinite.

The solver gives an approximate solution in the relative interior of the feasible
set. This means that if the feasible set has the same dimension as the affine space
defined by the linear constraints, the near zero eigenvalues will become exactly zero
after projecting the approximate solution into the affine space. Since any positive
eigenvalue bounded away from zero will remain positive after a small perturbation of
the matrix entries, we thus find an exact feasible solution simply by projecting the
approximate solution into the affine space. In prior works, the approach has been
to include additional linear constraints coming from the complementary slackness
conditions of an optimal configuration in the hope that the above condition becomes
valid [9, 3]. However, in general, there is no guarantee at all that this works, and
we were not able to prove Theorem 4.2 with this approach, which was the original
motivation for this project.

In this paper we develop a general procedure to extract an exact optimal solu-
tion from the numerical optimal solution of a semidefinite program. Our main idea
is the following: We want to understand the eigenvectors corresponding to near-zero
eigenvalues, in order to force these eigenvalues to become exactly zero after rounding.
This task seems to be challenging, since the kernels can be big, and the solver does
not take into account their structure: Even if these linear spaces afford a basis over
the algebraic field we want to round to, computing a basis in floating point arithmetic
will only provide messy approximations of linear real combinations of such vectors.
In order to extract a suitable basis from these numerical approximations, we use the
Lenstra--Lenstra--Lov\'asz (LLL) algorithm to detect equations that have to be satisfied
by the kernel vectors. This provides all additional linear constraints that will ensure
the semidefiniteness of the matrices after rounding. In general, even if the constraints
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EXACT SEMIDEFINITE PROGRAMMING BOUNDS 1435

and the objective are rational, an optimal solution of a semidefinite program might
require high algebraic degree [34]. However, for every problem we considered, the
semidefinite program and the conditions implied by an optimal configuration were
defined over the same field (which was either the field of rational numbers or a qua-
dratic field), and we were able to find an exact optimal solution over this field.

A fundamental approach to compute upper bounds on the size of spherical \vargamma -
codes is the linear programming bound of Delsarte, Goethals, and Seidel [15]. Even if
the semidefinite programming three-point bound by Bachoc and Vallentin [2] provides
stronger bounds, there are very few known cases where the semidefinite programming
bound is sharp while the linear programming bound is not. One such example is
given in [3], where Bachoc and Vallentin prove optimality and uniqueness of the
Petersen code by using adhoc techniques to show that their bound is sharp. Our
rounding procedure directly turns a numerical solution of the semidefinite program
into an exact rational solution, and we recover the uniqueness of the Petersen code;
see section 4.2.

In [40], Sch\"utte and van der Waerden prove optimality of the \vargamma -code in S2 with
cardinality 8 and cos\vargamma = (2

\surd 
2  - 1)/7, and Danzer [11] proves uniqueness up to

rotations. The proofs of these results are purely geometric and quite technical. Still,
in [3] Bachoc and Vallentin mention that their numerical computations suggest that
the semidefinite programming bound is tight. However, they do not provide an exact
optimal solution, and due to the value of cos \vargamma it seems that there is no optimal
rational solution. With the adaptation of our approach to quadratic fields, we obtain
an optimal solution over Q[

\surd 
2]. Based on our optimal solution, we give a simplified

uniqueness proof in section 4.2.
An even more challenging problem is to determine the optimal size of a spherical

code in a spherical cap, where the spherical cap with center e \in Sn - 1 and angle \phi is
defined by

Capn - 1(e, \phi ) =
\bigl\{ 
x \in Sn - 1 : e \cdot x \geq cos(\phi )

\bigr\} 
.

In this situation, the linear programming bound cannot be applied, but in [4] Bachoc
and Vallentin adapt their three-point bound, which becomes a two-point bound in
this context, to get semidefinite programming upper bounds. For the hemisphere
Capn - 1(e, \pi /2), they got a numerically sharp bound for n = 8, which is closely related
to the famous \sansE 8 lattice: The 240 minimal vectors of \sansE \sanseight give the unique optimal
spherical \pi /3-code in dimension 8 [22, 41, 5]. If e is any of these minimal vectors,
the intersection of this configuration with Cap7(e, \pi /2) is a \pi /3-code of cardinality
183. Bachoc and Vallentin get a numerical bound very close to 183, which proves
the optimality of this configuration. Moreover they conjecture that this is the only
optimal configuration up to isometry. Here by using our machinery, we provide an
exact optimal rational solution and prove this conjecture; see section 4.1.

To find more sharp bounds, we also apply our techniques to the similar problem
of packing unit spheres in a larger sphere, which has connections to material science,
radio-surgical treatments, and communication theory; see [32]. We use our machinery
of rounding to rationals and quadratic fields to find several exact sharp bounds, and
we also use this to give families of sharp bounds for all dimensions; see section 4.3.

2. Semidefinite programming bounds for packing problems.

2.1. Characterizations of invariant kernels. In section 2.2 we give a deriva-
tion of the semidefinite programming bounds we use in this paper. For this we need
to characterize certain invariant positive definite kernels.
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1436 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

We start with the well-known case of O(n)-invariant kernels on the sphere. Let
K be a positive definite kernel on Sn - 1, by which we mean it is a continuous function
from Sn - 1 \times Sn - 1 to R for which the matrices\bigl( 

K(xi, xj)
\bigr) m
i,j=1

are positive semidefinite for all m \geq 0 and x1, . . . , xm \in Sn - 1. Such a kernel is said
to be O(n)-invariant if K(\gamma x, \gamma y) = K(x, y) for all \gamma \in O(n) and x, y \in Sn - 1. For
each k \geq 0, let Pn

k be the degree k ultraspherical polynomial for Sn - 1 normalized
such that Pn

k (1) = 1. These are also known as the Gegenbauer polynomials with
parameter n/2  - 1. The functions (x, y) \mapsto \rightarrow Pn

k (x \cdot y) are O(n)-invariant positive
definite kernels on Sn - 1, and Schoenberg's characterization says that each positive
definite O(n)-invariant kernel on Sn - 1 is of the form

K(x, y) =
\infty \sum 
k=0

ckP
n
k (x \cdot y)

for nonnegative numbers ck \geq 0, where convergence is uniform and absolute [39].
Bachoc and Vallentin give a characterization for the O(n  - 1)-invariant kernels

on the sphere [2]. As they observe in [4], this also provides a characterization for the
O(n - 1)-invariant kernels on a spherical cap,

Capn - 1(e, \varphi ) =
\bigl\{ 
x \in Sn - 1 : x \cdot e \geq cos(\varphi )

\bigr\} 
,

where we view O(n - 1) as the stabilizer subgroup of O(n) with respect to some fixed
point e \in Sn - 1.

To state the proposition we define the matrix Y n
k (u, v, t) by

Y n
k (u, v, t)i,i\prime = uivi

\prime 
((1 - u2)(1 - v2))k/2Pn - 1

k

\Biggl( 
t - uv\sqrt{} 

(1 - u2)(1 - v2)

\Biggr) 

and its symmetrization

Y n
k (u, v, t) =

Y n
k (u, v, t) + Y n

k (v, u, t)

2
.

Given a topological space X we use the notation \scrC (X\times X) for the space of continuous
functions X \times X \rightarrow R and \scrC (X \times X)\succeq 0 for the cone of positive definite kernels on X.
Furthermore, we denote by \langle A,B\rangle the trace inner product Trace(AB\sansT ).

The following proposition is by Bachoc and Vallentin [2], where the last part
about the uniform limit follows immediately from their work in combination with
Theorem A.8 from [12].

Proposition 2.1. Let e \in Sn - 1. For each integer d \geq 0 and positive semidefinite
matrices Fk \in R(d - k+1)\times (d - k+1), k = 0, . . . , d, the function

(x, y) \mapsto \rightarrow 
d\sum 

k=0

\Bigl\langle 
Fk, Y n

k (x \cdot e, y \cdot e, x \cdot y)
\Bigr\rangle 

is a StabO(n)(e)-invariant positive definite kernel on Sn - 1, and each StabO(n)(e)-
invariant positive definite kernel on Sn - 1 is the uniform limit of such kernels.
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EXACT SEMIDEFINITE PROGRAMMING BOUNDS 1437

Define the ball Bn(R) = \{ x \in Rn : \| x\| \leq R\} . The following result is an
adaptation of the above result with the sphere Sn - 1 replaced by the ball Bn(R). Let\bigl( 

Zn
k (u, v, t)

\bigr) 
i,i\prime 

= uivi
\prime 
(uv)kPn

k

\biggl( 
t

uv

\biggr) 
,

and set

Zn
k (u, v, t) =

Zn
k (u, v, t) + Zn

k (v, u, t)

2
.

Proposition 2.2. Let R > 0. For each integer d \geq 0 and positive semidefinite
matrices Fk \in R(d - k+1)\times (d - k+1), k = 0, . . . , d, the function

(x, y) \mapsto \rightarrow 
d\sum 

k=0

\Bigl\langle 
Fk, Zn

k (\| x\| , \| y\| , x \cdot y)
\Bigr\rangle 

is an O(n)-invariant positive definite kernel on Bn(R), and each O(n)-invariant pos-
itive definite kernel on Bn(R) is the uniform limit of such kernels.

Proof. By [12, Theorem A.8] we need to show that the Zn
k are the zonal matrices

for the space Bn(R) with the action of O(n). For this we define an orthonormal basis
Y n
k,j(x), j \in [dk], for the space of (real-valued) spherical harmonics of degree k, which

are the homogeneous polynomials of degree k in n variables that vanish under the
Laplacian, and we set

ek,i,j(x) = \| x\| k+i Y n
k,j

\biggl( 
x

\| x\| 

\biggr) 
, k \geq 0, i \geq 0, j \in [dk].

The span of the functions ek,i,j is dense in the space of continuous functions on
Bn(R). Moreover, these functions are symmetry adapted in the sense that there
exists O(n)-equivariant linear maps Ti,i\prime with Tk,i,i\prime ek,i,j = ek,i\prime ,j . This means these
functions form a symmetry adapted system as required by [12, Theorem A.8], except
that the functions are orthonormal for an O(n)-invariant inner product as opposed
to an O(n)-invariant measure on Bn(R), but the proof in [12] still works with this
weaker condition. Alternatively, instead of \| x\| k+i, we could use Pk+i(2\| x\| /R  - 1),
where Pk+i is the Legendre polynomial of degree k + i. Then the polynomials ek,i,j
would be orthogonal with respect to the Lebesgue measure on Bn(R). For the sake
of simplicity, we use monomials.

The zonal matrices corresponding to the above symmetry adapted system are
defined as

Zn
k (x, y)i,i\prime =

\sum 
j\in dk

ek,i,j(x)ek,i\prime ,j(y),

so the proof follows by the addition theorem for spherical harmonics:\sum 
j\in dk

Y n
k,j

\biggl( 
x

\| x\| 

\biggr) 
Y n
k,j

\biggl( 
y

\| y\| 

\biggr) 
= Pn

k

\biggl( 
x

\| x\| 
\cdot y

\| y\| 

\biggr) 
.

2.2. Derivation of the semidefinite programming bounds. In this paper
we give upper bounds for the cardinality of codes in spheres, codes in spherical caps,
and codes in balls. The semidefinite programming formulations for spheres and spher-
ical caps are not new, but for completeness we show how these are derived from the
general two- and three-point bounds. This puts everything, including our new semi-
definite programming bounds for codes in balls, in a common framework. In addition
it allows us to discuss in detail and supported by computations how the three-point
bounds relate to the two-point bounds.
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1438 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

2.2.1. Two-point bounds. The Lov\'asz \vargamma -number is a semidefinite program-
ming upper bound on the independence number of a finite graph, where the indepen-
dence number is the size of a largest subset of the vertices where no two vertices are
adjacent. In [1] this is generalized to the spherical code graph G = (V,E), which is
the graph with vertex set V = Sn - 1 where two distinct vertices x and y are adjacent
if x \cdot y > cos(\vargamma ). This immediately generalizes to a compact topological packing graph
G = (V,E), which is a graph whose vertex set V is a compact Hausdorff topological
space where each finite clique is a subset of an open clique (which in particular forces
the independence number to be finite) [14]. This gives the optimization problem

\vargamma (G) = inf
\bigl\{ 
M \in R : K \in \scrC (V \times V )\succeq 0,(2.1)

K(x, x) \leq M  - 1 for x \in V,

K(x, y) \leq  - 1 for \{ x, y\} \not \in E
\bigr\} 
.

By integrating over the symmetry group \Gamma of the graph G, one sees that we can
restrict to \Gamma -invariant kernels without affecting the optimal objective value. In [1] it
is shown that for the spherical code graph, Schoenberg's characterization reduces this
to the Delsarte linear programming bound [15].

To consider \vargamma -codes in a spherical cap one just takes a spherical code graph and
restricts the vertex set to Capn - 1(e, \varphi ). By doing this, the symmetry group reduces
from O(n) to O(n  - 1). So instead of Schoenberg's characterization, Bachoc and
Vallentin use Proposition 2.1 to derive the following formulation:

inf
\bigl\{ 
M \in R : F0, . . . , Fd \succeq 0,(2.2)

F (u, u, 1) \leq M  - 1 for cos(\varphi ) \leq u \leq 1,

F (u, v, t) \leq  - 1 for (u, v, t) \in \Theta 
\bigr\} 
,

where

F (u, v, t) =
d\sum 

k=0

\bigl\langle 
Fk, Y n

k (u, v, t)
\bigr\rangle 

and

\Theta =
\bigl\{ 
(u, v, t) : cos(\varphi ) \leq u, v \leq 1,  - 1 \leq t \leq cos(\vargamma ),

1 + 2uvt - u2  - v2  - t2 \geq 0
\bigr\} 
.

Problem (2.2) is not yet a semidefinite program because we have infinitely many
inequality constraints. However, since these are polynomial inequality constraints we
can formulate, for each integer \delta > 0, a semidefinite programming upper bound by
replacing each constraint of the form

p \geq 0 on S :=
\bigl\{ 
x \in Rn : gi(x) \geq 0 for i \in [m]

\bigr\} 
,

where p, g1, . . . , gm are polynomials, by the condition that there are sum-of-squares
polynomials q0 of degree 2\delta and qi of degree 2\delta  - deg(gi) such that

p(x) = q0(x) + g1(x)q1(x) + \cdot \cdot \cdot + gm(x)qm(x).

This is a semidefinite constraint because if b\delta (x) is a vector whose entries form a
basis for the polynomials in R[x1, . . . , xn] of total degree at most \delta , then a polynomial q
of degree 2\delta is a sum-of-squares polynomial if and only if there is a positive semidefinite
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EXACT SEMIDEFINITE PROGRAMMING BOUNDS 1439

matrix Q such that q(x) = \langle Q, b\delta (x)b\delta (x)
\sansT \rangle . It follows from Putinar's theorem [38]

that we get arbitrary good upper approximations by taking \delta sufficiently large. In
the univariate case, for deg(p) = 2d, it is sufficient to take \delta = d, and in practice we
set \delta = d also in the multivariate case.

Concretely, we replace the first polynomial inequality constraint in (2.2) by

F (u, u, 1) - M + 1 +
\bigl\langle 
Q1, b\delta (u)b\delta (u)

\sansT 
\bigr\rangle 

+ (u - cos\varphi )(1 - u)
\bigl\langle 
Q2, b\delta  - 1(u)b\delta  - 1(u)

\sansT 
\bigr\rangle 
= 0,

where Q1 and Q2 are positive semidefinite matrices.
To replace the second polynomial inequality constraint in (2.2) we first observe

that by construction F (u, v, t) = F (v, u, t) for all u, v, t, and we can exploit this
symmetry to get a more efficient sums-of-squares characterization.

We have
R[u, v, t] = R[u+ v, uv, t]\oplus (u - v)R[u+ v, uv, t],

where R[u+ v, uv, t] is the ring of invariant polynomials. Let b\delta = b\delta (u+ v, uv, t) be
a vector whose entries form a basis for the space of polynomials in R[u + v, uv, t] of
total degree (in the variables u, v, t) at most \delta . It follows that any sum-of-squares
polynomial q(u, v, t) of degree 2\delta that satisfies q(u, v, t) = q(v, u, t) for all u, v, t is of
the form

(2.3) q(u, v, t) =
\bigl\langle 
X1, b\delta b

\sansT 
\delta 

\bigr\rangle 
+ (u - v)2

\bigl\langle 
X2, b\delta  - 1b

\sansT 
\delta  - 1

\bigr\rangle 
,

where X1 and X2 are positive semidefinite matrices.
We can now replace the second polynomial constraint in (2.2) by

F (u, v, t) + 1 + q1(u, v, t)(2.4)

+ [(u - cos(\varphi ))(1 - u) + (v  - cos(\varphi ))(1 - v)]q2(u, v, t)

+ (u - cos(\varphi ))(1 - u)(v  - cos(\varphi ))(1 - v)q3(u, v, t)

+ (t+ 1)(cos(\vargamma ) - t)q4(u, v, t)

+ (1 + 2uvt - u2  - v2  - t2)q5(u, v, t) = 0,

where each qi is a sum-of-squares polynomial of the form (2.3), with \delta = d for q1,
\delta = d - 1 for q2 and q4, and \delta = d - 2 for q3 and q5.

Note that this symmetric formulation is quite a bit better than a naive formu-
lation not exploiting the uv-symmetry. For example, for the \pi /3-code problem in
Cap7(e, \pi /2) we need to take d = 9, and by using the symmetries we reduce the the
system from 110376 variables to 37651 variables.

We now give the direct proof that (2.2) gives a valid upper bound, since we will
need the details of this proof in section 2.3.

Lemma 2.3. The objective value of any feasible solution of (2.2) is an upper bound
on the maximal size of a \vargamma -code in Capn - 1(e, \varphi ).

Proof. Suppose C is a \vargamma -code in Capn - 1(e, \varphi ) and (M,F0, . . . , Fd) is a feasible
solution to (2.2). On the one hand we have

S :=
d\sum 

k=0

\Bigl\langle 
Fk,

\sum 
x,y\in C

Y n
k (x \cdot e, y \cdot e, x \cdot y)

\Bigr\rangle 
\geq 0,

since for every k = 0, . . . , d, the matrices Fk and
\sum 

x,y\in C Y n
k (x\cdot e, y \cdot e, x\cdot y) are positive

semidefinite. On the other hand, since the conditions in (2.2) are satisfied, we have
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1440 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

S =
\sum 
x\in C

d\sum 
k=0

\bigl\langle 
Fk, Y n

k (x \cdot e, x \cdot e, 1)
\bigr\rangle 
+
\sum 

x,y\in C
x\not =y

d\sum 
k=0

\bigl\langle 
Fk, Y n

k (x \cdot e, y \cdot e, x \cdot y)
\bigr\rangle 

\leq 
\sum 
x\in C

(M  - 1) +
\sum 

x,y\in C
x\not =y

( - 1) = | C| (M  - 1) - | C| (| C|  - 1) = | C| (M  - | C| ).

The inequality | C| \leq M follows immediately.

Now we consider the problem of packing spheres of radius r into a sphere of radius
R. Here we consider the graph with vertex set Bn(R - r), where two distinct vertices
x and y are adjacent if \| x - y\| < 2r. Using Proposition 2.2, the optimization problem
\vargamma (G) reduces to

inf\{ M \in R : F0, . . . , Fd \succeq 0,(2.5)

F (u, u, u2) \leq M  - 1 for 0 \leq u \leq R - r,

F (u, v, t) \leq  - 1 for (u, v, t) \in \Omega \} ,

where

F (u, v, t) =
d\sum 

k=0

\Bigl\langle 
Fk, Zn

k (u, v, t)
\Bigr\rangle 

and

\Omega =
\bigl\{ 
(u, v, t) : 0 \leq u, v \leq R - r,  - uv \leq t \leq uv, u2 + v2  - 2t - 4r2 \geq 0

\bigr\} 
.

The polynomial inequality constraints can now be replaced by sums-of-squares con-
straints in the same way as above.

2.2.2. Three-point bounds. Fix a point e \in Sn - 1. Since Capn - 1(e, \pi ) =
Sn - 1, the linear programming bound (2.1) for spherical codes and the semidefinite
programming bound (2.2) for spherical caps give the same bound when \varphi = \pi , but of
course (2.2) is much more difficult to compute since it uses less symmetry.

The semidefinite programming bound for spherical caps looks rather similar to
the three-point bound for spherical codes; both use Proposition 2.1. Before we give
the derivation of the three-point bound, we first mention that improved bounds can
already be obtained by computing the two-point bound (2.2) for Capn - 1(e, \pi  - \vargamma )
and then adding 1 to the resulting value. This gives an upper bound because we
can always rotate a spherical code so that the point  - e is in the code. Although
this usually only gives a small improvement, in dimension 4 it gives the upper bound
24.983 for d = 10, which shows that the Lov\'asz \vargamma -number is actually already enough
to prove the optimality of the 24-cell for the kissing number problem.

Of course, for spherical code problems it is better to use the three-point bound,
because it is equally difficult to compute and gives better bounds. To get the full three-
point bound we have to also derive constraints coming from functions on V \times V \times V ,
where V = Sn - 1. We follow the derivation from [13], where a general formulation for
k-point bounds is given. For k = 3 we get

inf
\bigl\{ 
M \in R : T \in \scrC (V \times V \times I1)\succeq 0,(2.6)

B3T (S) \leq M  - 1 for S \in I=1,

B3T (S) \leq  - 2 for S \in I=2,

B3T (S) \leq 0 for S \in I=3

\bigr\} 
,
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where I=k is the set of independent sets of cardinality k in the spherical code graph,
and Ik is the union of I=i for 0 \leq i \leq k. Here B3 : \scrC (V \times V \times I1)sym \rightarrow \scrC (I3 \setminus \{ \emptyset \} ) is
the operator defined by

(2.7) B3T (S) =
\sum 
Q\subseteq S
| Q| \leq 1

\sum 
x,y\in S

Q\cup \{ x,y\} =S

T (x, y,Q).

In (2.6) we can restrict to O(n)-invariant functions. As shown in [13], using Proposi-
tion 2.1, problem (2.6) then reduces to the Bachoc--Vallentin bound: Set

T (x, y, \emptyset ) =
d\sum 

k=0

akP
n
k (x \cdot y)

and

T (x, y, \{ z\} ) =
d\sum 

k=0

\Bigl\langle 
Fk, S

n
k (x \cdot z, y \cdot z, x \cdot y)

\Bigr\rangle 
,

where

Sn
k =

1

6

\sum 
\sigma \in S3

\sigma Y n
k

in which we sum over the permutations on three elements and each element \sigma \in S3

acts on Y n
k by permuting its arguments. Then, (2.6) reduces to

inf
\bigl\{ 
M \in R : a0, . . . , ad \geq 0, F0, . . . , Fd \succeq 0,(2.8)

d\sum 
k=0

ak + F (1, 1, 1) \leq M  - 1,

d\sum 
k=0

akP
n
k (u) + 3F (u, u, 1) \leq  - 1 for  - 1 \leq u \leq cos(\vargamma ),

F (u, v, t) \leq 0 for (u, v, t) \in \Delta 
\bigr\} 
,

where

F (u, v, t) =
d\sum 

k=0

\Bigl\langle 
Fk, S

n
k (u, v, t)

\Bigr\rangle 
and

\Delta =
\bigl\{ 
(u, v, t) :  - 1 \leq u, v, t \leq cos(\vargamma ), 1 + 2uvt - u2  - v2  - t2 \geq 0

\bigr\} 
.

Analogously to the two-point bound, we can use sums-of-squares relaxations to
formulate semidefinite programming upper bounds. For this we write the last condi-
tion as

F (u, v, t) + q0(u, v, t) + p(u)q1(u, v, t) + p(v)q2(u, v, t)

+ p(t)q3(u, v, t) + (1 + 2uvt - u2  - v2  - t2)q4(u, v, t) = 0,

where p(u) = (cos(\theta ) - u)(1 - u) and q0, . . . , q4 are sum-of-squares polynomials.
The function F (u, v, t) is symmetric in u, v, t, and as in [30] we can use this

symmetry to give a more efficient characterization using [19]. First we reformulate
the sums-of-squares factorization as
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F (u, v, t) + q0(u, v, t) +
4\sum 

i=1

siqi(u, v, t) = 0,

where

s1 = p(u) + p(v) + p(t), s2 = p(u)p(v) + p(u)p(t) + p(v)p(t),

s3 = p(u)p(v)p(t), s4 = 1 + 2uvt - u2  - v2  - t2.

Now, without loss of generality, we may assume the sum-of-squares polynomials
q0, . . . , q4 to be symmetric in u, v, t. Let

\theta 1 = u+ v + t, \theta 2 = uv + ut+ vt, \theta 3 = uvt,

and let b\delta = b\delta (\theta 1, \theta 2, \theta 3) be a vector whose entries form a basis for the space of
polynomials in the invariant ring R[\theta 1, \theta 2, \theta 3] of total degree (in the variables u, v, t)
at most \delta . By [19], for each S3-invariant sum-of-squares polynomial p of degree 2\delta 
there are positive semidefinite matrices Q1, Q2, Q3 such that

p(u, v, t) =
\Bigl\langle 
Q1, b\delta b

\sansT 
\delta \otimes \Pi 1

\Bigr\rangle 
+
\Bigl\langle 
Q2, b\delta  - 3b

\sansT 
\delta  - 3 \otimes \Pi 2

\Bigr\rangle 
+
\Bigl\langle 
Q3, b\delta  - 2b

\sansT 
\delta  - 2 \otimes \Pi 3

\Bigr\rangle 
,

where

\Pi 1 = 1, \Pi 2 = \theta 21\theta 
2
2  - 4\theta 32  - 4\theta 31\theta 3 + 18\theta 1\theta 2\theta 3  - 27\theta 23,

\Pi 3 =

\biggl( 
2\theta 21  - 6\theta 2  - \theta 1\theta 2 + 9\theta 3

 - \theta 1\theta 2 + 9\theta 3 2\theta 22  - 6\theta 1\theta 3

\biggr) 
.

Lemma 2.4. The optimal value of the semidefinite program given in ( 2.8) is an
upper bound on the maximal size of a \vargamma -code in Sn - 1.

Proof. Let (M,a0, . . . , ad, F0, . . . , Fd) be a feasible solution of problem (2.8), and
let C be a \vargamma -code in Sn - 1.

For each k \in \{ 0, . . . , d\} , the matrices
\sum 

(x,y,z)\in C3 Y n
k (x \cdot z, y \cdot z, x \cdot y)\rangle and Fk are

positive semidefinite, so

S :=
\sum 

(x,y,z)\in C3

F (x \cdot z, y \cdot z, x \cdot y) =
d\sum 

k=0

\Bigl\langle 
Fk,

\sum 
(x,y,z)\in C3

Y n
k (x \cdot z, y \cdot z, x \cdot y)

\Bigr\rangle 
\geq 0.

On the other hand, S is equal to

| C| F (1, 1, 1) +
\sum 

(x,z)\in C2

x\not =z

3 F (x \cdot z, x \cdot z, 1) +
\sum 

(x,y,z)\in C3

x\not =z,y \not =z,x\not =y

F (x \cdot z, y \cdot z, x \cdot y).

In the above equation, we use that F (u, v, t) is invariant under the permutations of
(u, v, t). Since F has to satisfy the constraints in (2.8), we get

S \leq | C| 

\Biggl( 
M  - 1 - 

d\sum 
k=0

ak

\Biggr) 
 - | C| (| C|  - 1) - 

\sum 
x,y\in C

\Biggl( 
d\sum 

k=0

akP
n
k (x \cdot y)

\Biggr) 

\leq | C| (M  - 1) - | C| (| C|  - 1) - 
d\sum 

k=0

ak

\left(    | C| +
\sum 

(x,y)\in C2

x\not =y

Pn
k (x \cdot y)

\right)    D
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\leq | C| (M  - 1) - | C| (| C|  - 1) - 
d\sum 

k=0

ak
\sum 

x,y\in C

Pn
k (x \cdot y)

\leq | C| (M  - 1) - | C| (| C|  - 1).

So we have shown 0 \leq S \leq | C| (M  - 1) - | C| (| C|  - 1), which implies | C| \leq M .

2.3. Information from exact sharp solutions. Since all our programs give
upper bounds on the size of optimal configurations, which has to be an integer, one
might wonder why we are interested in exact bounds. Indeed, if we already know a
configuration \scrC of M points, any upper bound strictly lower than M + 1 ensures the
optimality of \scrC .

First, these bounds are a priori only upper bounds on the independence number
of the corresponding graph, and it is interesting to point out when these bounds give
exactly the independence number. For example, Bachoc and Vallentin proved in [3]
that for \vargamma -codes in four dimensions, where cos \vargamma = 1/6, the three-point bound gives
exactly 10 (even though the two-point bound is not sharp here).

The second interest is geometric: from the proof of Lemma 2.3, we can see that
any feasible solution reaching M as objective value provides additional information
regarding optimal solutions. For any code C such that | C| = M , all the inequalities
in the proof of Lemma 2.3 have to be equalities. We get the so-called complementary
slackness conditions.

Corollary 2.5. Let (M,F0, . . . , Fd) be a feasible solution to (2.2). If C is a
\vargamma -code in Sn - 1 with cardinality | C| = M , then the following equalities hold:

(i) for every k = 0, . . . , d,\Bigl\langle 
Fk,

\sum 
x,y\in C

Y n
k (x \cdot e, y \cdot e, x \cdot y)

\Bigr\rangle 
= 0;

(ii) for every x in C,
F (x \cdot e, x \cdot e, 1) = M  - 1;

(iii) for every distinct x, y in C,

F (x \cdot e, y \cdot e, x \cdot y) =  - 1.

Conditions (ii) and (iii) are of special interest. If we define the polynomial

P (u) = F (u, u, 1) - (M  - 1),

then for every point x in an optimal code, the inner product e \cdot x is in the set R of
roots of P . This gives finitely many possibilities for these inner products. Then, for
every u, v \in R, we can define

Pu,v(t) = F (u, v, t) + 1,

and for every pair of distinct points (x, y) in an optimal code, the inner product x \cdot y
has to be a root of one such polynomial. With this procedure, we get all the possible
inner products occuring in the configuration. Once that we get all the possible triples
(u, v, t), we can even use (i) to get the number of occurences of each triple by solving
a linear system.

If we consider the semidefinite programming bound in (2.5) for the number of
spheres that can be packed in a given sphere, we will get the possible norms of the
centers of the spheres and the possible inner products among these centers.
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Analogously, three-point bounds also provide complementary slackness condi-
tions. From Lemma 2.4, we get the following.

Corollary 2.6. Let (M,a0, . . . , ad, F0, . . . , Fd) be a feasible solution of the semi-
definite program ( 2.8). Let C be a \vargamma -code in Sn - 1. If M = | C| , then the following
properties hold:

(i)
d\sum 

k=0

ak + F (1, 1, 1) = M  - 1;

(ii) for each two distinct x, y \in C,

d\sum 
k=0

akP
n
k (u) + 3F (x \cdot y, x \cdot y, 1) =  - 1;

(iii) for each three distinct x, y, z \in C,

F (x \cdot z, y \cdot z, x \cdot y) = 0;

(iv) for each k \in \{ 0, . . . , d\} ,\Bigl\langle 
Fk,

\sum 
(x,y,z)\in C3

Y n
k (x \cdot z, y \cdot z, x \cdot y)

\Bigr\rangle 
= 0;

(v) for each k \in \{ 0, . . . , d\} ,

ak
\sum 

x,y\in C

Pn
k (x \cdot y) = 0.

In this situation, the procedure described above also gives the possible inner
products among points in optimal codes and the distribution of the triples (u, v, t).

In several cases, this information turns out to be enough to prove the uniqueness
of optimal configurations, as we will see in section 4.

On the other hand, if we have a candidate optimal configuration and the bound is
sharp, then any optimal solution of the semidefinite program will satisfy the comple-
mentary slackness conditions implied by this configuration. Adding these conditions
to the semidefinite program usually results in a faster convergence of the interior point
method. The complementary slackness conditions can be important to get an exact
optimal solution. In the next section, we give an automatic procedure to extract an
exact optimal solution from a numerical optimal floating point solution.

3. The rounding procedure. In general, the fact that a semidefinite program
is defined over a given algebraic field does not ensure that the optimal solution can
be defined over the same field. In fact, even if the constraints and the objective are
rational, an optimal solution might require high algebraic degree [34]. However, for
each packing problem that we considered where we have a sharp bound, we were able
to find an optimal solution over the same field that is required to define the semidefinite
program and to formulate the complementary slackness conditions coming from the
optimal solution. We first focus on the problem of finding a rational optimal solution
and extend this to quadratic fields in section 3.4.
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We work with semidefinite programs in block form:

inf
\Bigl\{ l\sum 

i=1

\langle Ci,Xi\rangle : X1, . . . , Xl \succeq 0,

l\sum 
i=1

\langle Ai,j , Xi\rangle = bj for j = 1, . . . ,m
\Bigr\} 
,

where the symmetric matrices Ci and Ai,j and the scalars bj are all rational.
First, since we already know the optimal objective value, we do not solve the

semidefinite program as an optimization problem, but we add a linear constraint
enforcing the objective value and solve the problem as a feasibility problem. One
advantage of this is that by rounding the floating point solution from the semidefinite
programming solver to a rational solution, such that all linear equations are satisfied,
the objective value will automatically be correct. A second advantage is that the
numerical interior point solver we use (SDPA-GMP [18]) gives an approximate solution
in the relative interior of the feasible set when solving a feasibility problem, which will
be important in section 3.2. When rounding we have to make sure that the obtained
rational matrices are positive semidefinite and satisfy all linear equations.

3.1. Rounding in the affine space. Let X\ast 
1 , . . . , X

\ast 
l be the (high precision)

floating point output of the semidefinite programming solver. Because of floating
point arithmetic they do not satisfy the linear constraints

l\sum 
i=1

\langle Ai,j , Xi\rangle = bj for j = 1, . . . ,m

exactly. First we want an exact solution to the above equations that is close to
the approximate solution X\ast 

1 , . . . , X
\ast 
l . We rewrite the above linear conditions as the

linear system Ax = b, so that the concatenation x\ast of vec(X\ast 
i ) for i = 1, . . . , l is an

approximate solution of this system. Here vec is the vectorization operator that turns
a symmetric matrix into a column vector.

We want to find a vector that satisfies the linear system Ax = b exactly and is
close to x\ast . One natural way to do it is the following: We transform the system Ax = b
into reduced row echelon form, which can be done in rational arithmetic. Then, when
solving this system by backsubstitution, for each free variable that we encounter,
we use a rational approximation (possibly with some upper bound on the size of the
denominator) of the corresponding entry of x\ast . We obtain an optimal rational solution
of the semidefinite program that satisfies all linear constraints exactly.

In our applications, the linear systems we are dealing with can be large, even after
exploiting the symmetries in the sums-of-squares formulation. We therefore write the
system as a linear system over the integers and use the Kannan--Bachem algorithm
[25] as implemented in [17], which can solve the biggest system we consider in this
paper within eight hours on a normal desktop computer.

By continuity of roots, the eigenvalues of the blocks in the rounded solution will
be close to the eigenvalues of the blocks in the floating point approximate solution. If
the floating point solution did not have near zero eigenvalues, then we would be done.
However, in our situation, the matrices X\ast 

i have many eigenvalues close to zero, so
that the rounded solution typically has negative eigenvalues.

Since we already solved the problem as a feasibility problem, the solution we are
working with lies in the relative interior of the feasible set of our feasibility problem.
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This means there exists no solution that has fewer near zero eigenvalues. Even if we
somehow manage to obtain a solver output X\ast 

1 , . . . , X
\ast 
l where all near zero eigenvalues

are positive, for example, by adding constraints of the form X - \varepsilon I \succeq 0, then the above
rounding procedure is likely to turn some of these into negative numbers. Instead of
trying to make these eigenvalues positive, our strategy consists in forcing them to be
exactly zero by adding some linear constraints.

3.2. Kernel detection. One approach to find these rational linear constraints
is to use the complementary slackness condition from Corollary 2.5 or Corollary 2.6
arising from a candidate optimal packing configuration.

In [3], after a slight reformulation of the semidefinite program and some additional
work (see section 4.2), these linear constraints are sufficient to get an exact bound.
However, in general, especially when the matrices involved are large (see section 4.1),
this approach does not provide all the linear constraints, even if we also include con-
straints coming from the derivatives. We therefore propose an automated procedure
to find all necessary linear conditions.

By computing the kernel of X\ast 
i in high precision floating point arithmetic, we

get the eigenvectors corresponding to the near zero eigenvalues. We list these vectors
as the columns of the matrix Ni. These vectors are typically not approximations of
rational vectors themselves, but approximations of real linear combinations of rational
vectors, without any control on the coefficients. Hence there is no point in trying to
round them to rational vectors. Instead, we try to extract a rational basis of this
kernel by searching for integer equations defining this linear space. To do so, we use
the function \sansl \sansi \sansn \sansd \sanse \sansp from Nemo [17] that uses the LLL algorithm [28] to find an integer
linear combination of the rows of Ni that is close to the zero vector. We remove
one row of Ni whose coefficient in this linear combination is nonzero and repeat
the procedure to find another integer linear equation, linearly independent from the
previous one. We continue until we found the right number of equations. Let Mi be
the matrix with these integer relations as its rows. Then we can compute a basis for
the nullspace of Mi in rational arithmetic, and these vectors will be the kernel vectors
of the rounded version of the matrix X\ast 

i .

3.3. Rounding and checking. For each kernel basis vector for X\ast 
i that we

find we add the constraints Xiv = 0 to the linear system Ax = b. If there indeed
exist rational bases for the kernel of each matrix in the solution, then by performing
the rounding procedure mentioned above on this extended semidefinite program, we
find positive semidefinite matrices that satisfy all linear constraints exactly. Due to
the new linear equations, we make sure that the rounded matrices have no negative
eigenvalues.

We have to verify that this is indeed a solution. First the linear constraints
can be verified in rational arithmetic. Then we need to verify that the matrices are
positive semidefinite. To do so, we compute their characteristic polynomial and use
the property that a real-rooted polynomial f(t) has no negative roots if and only if
( - 1)deg ff( - t) has only nonnegative coefficients.

Using this approach, we find an optimal rational solution for all considered
packing problems where our semidefinite programming bound is sharp and where
the complementary slackness conditions implied by an optimal configuration are
rational.

3.4. Extension to quadratic fields. Finally we extend the above approach to
the case where we want to round over a quadratic field, which is a natural thing to try
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EXACT SEMIDEFINITE PROGRAMMING BOUNDS 1447

whenever the semidefinite program and/or the complementary slackness conditions
arising from an optimal configuration are defined over such a field.

We first describe how the rounding part from section 3.1 can be adapted. In this
situation, A and b of the linear system Ax = b are defined over Q[

\surd 
\ell ]. We have

an approximate floating point solution x\ast , and we are looking for an exact solution
x = x1 + x2

\surd 
\ell over Q[

\surd 
\ell ] that is close to x\ast . After writing A = A1 + A2

\surd 
\ell and

b = b1 + b2
\surd 
\ell with the entries of A1, A2, b1, b2 rational, we want to find an exact

solution of the following rational linear system:

(3.1)

\biggl( 
A1 \ell A2

A2 A1

\biggr) \biggl( 
x1

x2

\biggr) 
=

\biggl( 
b1
b2

\biggr) 
such that x1+x2

\surd 
\ell \approx x\ast . To do this, we first need to extract from x\ast an approximate

solution (x\ast 
1, x

\ast 
2) of the above linear system such that x\ast 

1 + x\ast 
2

\surd 
\ell \approx x\ast . To find these

vectors we write

x\ast 
1 = y and x\ast 

2 =
1\surd 
\ell 
(x\ast  - y)

and solve the linear system\biggl( 
A1  - 

\surd 
\ell A2\surd 

\ell A2  - A1

\biggr) 
y =

\biggl( 
b1  - 

\surd 
\ell A2x

\ast 
\surd 
\ell b2  - A1x

\ast 

\biggr) 
for y in floating point arithmetic. We now reduce the rational linear system (3.1) to
reduced row echelon form and use backsubstitution to find a rational vector satisfying
this system, where for each free variable we use a rational approximation of the
corresponding entry in (x\ast 

1, x
\ast 
2).

To find the kernel constraints we again first compute an arbitrary basis for the
kernel of X\ast 

i in high precision floating point arithmetic and list the vectors as the
columns of the matrix Ni. Then we set

Mi =

\biggl( 
Ni\surd 
\ell Ni

\biggr) 
and use the LLL algorithm to find an integer linear combination (\lambda , \mu ) such that
(\lambda , \mu )\sansT Mi \approx 0. Once we find the right number of equations, we can build the matrix
H, with rows (\lambda , \ell \mu )\sansT and (\mu , \lambda )\sansT , for each equation (\lambda , \mu ) that we find. By construc-
tion, every vector (u, v) in the kernel of H satisfies X\ast 

i (u + v
\surd 
\ell ) \approx 0, and we want

u + v
\surd 
\ell to be in the kernel of the rounded version Xi,1 + Xi,2

\surd 
\ell of X\ast 

i . So every
vector in a basis of the kernel of H provides two equations

Xi,1u+ \ell Xi,2v = 0, Xi,2u+Xi,1v = 0

that we add to the linear system (3.1), taking into account the block structure. Finally,
we can apply the rounding procedure in order to get an optimal solution over Q[

\surd 
\ell ].

There is no theoretical objection to generalizing the above procedure to higher
degree algebraic number fields. However, one issue is that the number of variables in
the rational system (3.1) will be multiplied by the degree of the extension. It would
then be interesting to investigate alternative methods to this step in the procedure,
where the linear algebra is done directly over the number field.
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1448 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

4. Applications. In this section we determine exact sharp semidefinite pro-
gramming bounds for packing problems, and we describe how to prove the uniqueness
of some optimal configurations by using the information obtained from complementary
slackness.

The code for setting up the semidefinite programs, for running the rounding
procedure, and for rigorously checking the rounded solution can be found in the
ancillary files from the \sansa \sansr \sansX \sansi \sansv .\sanso \sansr \sansg e-print archive. This program runs in Julia 1.1.0 [7]
and uses the computer algebra system Nemo [17]. See the included README.txt file
for information on how to run the code.

4.1. Codes in spherical caps. In 1979, Odlyzko and Sloane [35] and, indepen-
dently. Levenshtein [29] proved that the maximal size of a \pi /3-code in S7 is 240. Such
a spherical code C is given by the minimal vectors of the root lattice \sansE 8. Moreover,
in 1981 Bannai and Sloane [6] showed that the maximal \pi /3-code in S7 is unique up
to isometry. Let e be an arbitrary element of C; then C \cap Cap7(e, \pi /2) is a \pi /3-code
on the hemisphere Cap7(e, \pi /2) with cardinality 183. In 2009, Bachoc and Vallentin
[4] proved that the maximal size of such a code is indeed 183. Here we prove that a
\pi /3-code in Cap7(e, \pi /2) with maximal size is unique up to isometry.

Lemma 4.1. Let C be a \pi /3-code in Cap7(e, \pi /2) with cardinality 183. Then
(i) for every c \in C,

e \cdot c \in \{ 0, 1/2, 1\} ;

(ii) for any distinct c, c\prime \in C,

c \cdot c\prime \in \{  - 1,\pm 1/2, 0\} .

Proof. Let (F0, . . . , F9) be the exact optimal solution obtained by applying our
rounding procedure to the floating point output (available as \sansone \sanseight \sansthree \sansp \sanso \sansi \sansn \sanst \sanss .\sansj \sansl \sanss in the arXiv
version of this paper) that we obtained by solving (2.2) for d = 9, and consider

F (u, v, t) =

9\sum 
k=0

\langle Fk, Y n
k (u, v, t)\rangle .

Let us first prove (i). Since C in an optimal configuration, following (ii) in Corol-
lary 2.5, every c \in C has to satisfy

F (e \cdot c, e \cdot c, 1) = 182.

This means that e \cdot c has to be a root of the univariate polynomial

g(u) = F (u, u, 1) - 182

located in \Delta 0 = [0, 1]. By computing its Sturm sequence, we check that the polynomial
g has exactly three distinct roots in the interval ( - \varepsilon , 1] for a fixed, arbitrary, small
enough \varepsilon > 0. Since g(0) = g(1/2) = g(1) = 0, g cannot have any further roots in
[0, 1].

In order to prove (ii), consider any distinct c, c\prime in C. Following (iii) in Corollary
2.5, we have

F (e \cdot c, e \cdot c\prime , c \cdot c\prime ) =  - 1.

Due to (i), e \cdot c and e \cdot c\prime have to be in \{ 0, 1/2, 1\} . As a consequence, c \cdot c\prime is a root of
the univariate polynomial

h(t) = F (u0, v0, t) + 1
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for some u0, v0 \in \{ 0, 1/2, 1\} . Moreover

c \cdot c\prime \in \{ t \in R : (u0, v0, t) \in \Delta \} .

Using the same procedure involving the Sturm sequence, we check that all those
possible roots lie in \{  - 1,\pm 1/2, 0\} .

Due to the properties given in Lemma 4.1, we can prove that \sansE 8 provides the
unique optimal \pi /3-code in Cap7(e, \pi /2).

Theorem 4.2. There is, up to rotations fixing the point e, a unique \pi /3-code in
Cap7(e, \pi /2) with 183 elements.

Proof. Let L0 be the additive subgroup of R8 spanned by C. If x and y are two
vectors in L0, according to (ii) in Lemma 4.1, the inner product

\surd 
2x \cdot 

\surd 
2y is an

integer. So the additive subgroup L =
\surd 
2L0 is an integral lattice. Moreover, since

it is spanned by a set of vectors v such that v \cdot v = 2, L has to be a root lattice.
Due to the classification of root lattices by Kneser [26], L can be written as a direct
sum of the irreducible root lattices \sansA d,\sansD d,\sansE 6,\sansE 7,\sansE 8. Assume that L = \oplus k

i=1Li for
some k, where Li is an irreducible root lattice for every i = 1, . . . , k. We denote by ri
the number of roots of Li and by di its rank. The number of roots of the irreducible
root lattices is well known (see [10]), and if Li is not \sansE 8, then we have ri/di < 183/8.
Hence if L is not \sansE 8, its number of roots r satisfies

r =
k\sum 

i=1

ri =
k\sum 

i=1

di
ri
di

< 183.

So L = \sansE 8.
There are 240 roots in \sansE 8. Among the corresponding 240 points of L0 in S7, let n1

and n2 be the numbers of points lying, respectively, on the equator \{ x \in S7 : x \cdot e = 0\} 
of S7 and on the strict upper hemisphere \{ x \in S7 : x \cdot e > 0\} . By symmetry we have
n1+2n2 = 240. On the other hand, on the same hemisphere we cannot have more than
the 183 points coming from C, so n1 + n2 = 183. Thus the strict upper hemisphere
of S7 contains exactly n2 = 57 elements of C. Suppose that e is not in C. Then,
following (i) in Lemma 4.1, 57 elements of the code would lie in \{ x \in S7 : x \cdot e = 1/2\} .
This would give a \vargamma -code in S6 with 57 elements, where \vargamma is such that cos\vargamma = 1/3.
Bannai and Sloane [6, Theorem 9] proved that such a code does not exist. So e has
to be an element of C, and C is the configuration that we expect.

One might wonder whether this approach can be used in dimension 24. However,
whereas the Leech lattice \Lambda 24 provides a configuration with 144855 points on the
hemisphere, the best upper bound that we obtained numerically is only 158611, with
d = 13.

4.2. Spherical codes. In [3], Bachoc and Vallentin proved the following theo-
rem.

Theorem 4.3. The Petersen code is, up to symmetry, the unique \vargamma -code in S3

of cardinality 10, where \vargamma is such that cos\vargamma = 1/6.

Their approach, based on semidefinite optimization, consists of three steps: First,
they provide an exact optimal solution for a slightly different formulation of problem
(2.8). From this solution, they derive the three-point distance distribution of an op-
timal code. Finally they prove that the Petersen code is the only code satisfying
this distribution. However, the way they obtain their exact optimal solution is not
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1450 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

straightforward. First of all, their new formulation of problem (2.8) gives further
information about the solution matrices (F0, F1, F2), in case they provide an optimal
solution. These properties help to determine an exact optimal solution of their semi-
definite program, after several steps and various computations. However, the strategy
that they use seem to apply only in this specific situation, especially because for this
problem the corresponding solution of problem (2.8) is small, since taking d = 2 is
sufficient.

In our framework, the first step of their approach gets much easier: we can directly
solve problem (2.8) and turn the approximate solution from the solver into an exact
optimal solution by using our rounding procedure. Then we need to check that our
solution also implies the three-point distance distribution of an optimal code.

Proof of Theorem 4.3. Let C be a \vargamma -code in S3 with cardinality 10, where \vargamma is
such that cos\vargamma = 1/6. The three-point distance distribution of C is defined by

\alpha (u, v, t) =
1

| C| 
\bigm| \bigm| \bigl\{ (c, c\prime , c\prime \prime ) \in C3 : c \cdot c\prime = u, c \cdot c\prime \prime = v, c\prime \cdot c\prime \prime = t

\bigr\} \bigm| \bigm| .
In order to determine this distribution, we first need to know the possible inner

products between the elements of C. Let (M,a0, . . . , ad, F0, . . . , Fd) be the exact
optimal solution obtained by applying our rounding procedure to the floating point
output (available as \sansone \sanszero \sansp \sanso \sansi \sansn \sanst \sanss .\sansj \sansl \sanss in the arXiv version of this paper) that we obtained
by solving (2.8) for d = 6. Using the complementary slackness condition given in (ii)
in Corollary 2.6, the inner product between two distinct elements of C must be a root
of the polynomial

d\sum 
k=0

akP
n
k (u) + 3

d\sum 
k=0

\langle Fk, Y n
k (u, u, 1)\rangle + 1

located between  - 1 and 1/6. By using a Sturm sequence, we check that the only
possible roots are  - 2/3 and 1/6.

Now, due to symmetries, the three-point distance distribution of C is defined by
the six values

\alpha (1, 1, 1), \alpha (1/6, 1/6, 1), \alpha ( - 2/3, - 2/3, 1),
\alpha (1/6, 1/6, 1/6), \alpha ( - 2/3, 1/6, 1/6), \alpha ( - 2/3, - 2/3, 1/6).

We already know \alpha (1, 1, 1) = 1. By combining equation
\sum 

u \alpha (u, u, 1) = 10
with the complementary slackness conditions given by (v) in Corollary 2.6, we get
\alpha (1/6, 1/6, 1) = 6 and \alpha ( - 2/3, - 2/3, 1) = 3. Then by solving the linear system
involving

\sum 
u,v,t \alpha (u, v, t) = 100 together with the equations given by (iv) in Corollary

2.6, we get

\alpha (1/6, 1/6, 1/6) = 18, \alpha ( - 2/3, 1/6, 1/6) = 12, \alpha ( - 2/3, - 2/3, 1/6) = 6.

So we recovered the distribution described in [3], and we can apply their last
argument to prove that C has to be the Petersen code.

The optimal value of the program (2.8) is an upper bound on the cardinality of
a \vargamma -code in S2 where \vargamma is such that cos\vargamma = (2

\surd 
2  - 1)/7. By using our rounding

approach we obtain an exact solution with value 8. Sch\"utte and van der Waerden
[40] proved that this is the optimal value. The square antiprism provides a spherical
code with 8 points in S2. Due to Danzer [11] this code is unique up to symmetry. His
proof relies on heavy geometric arguments: For example, understanding the angles and
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distances which may occur in such a configuration requires a very technical analysis.
Here we recover this information thanks to the complementary slackness conditions
and provide a new proof of the uniqueness of such a code.

Theorem 4.4. The largest \vargamma -code in S2 with cos\vargamma = (2
\surd 
2  - 1)/7 is unique up

to symmetry.

Proof. Let (M,a0, . . . , ad, F0, . . . , Fd) be the exact optimal solution obtained by
applying our rounding procedure to the floating point output (available as \sanseight \sansp \sanso \sansi \sansn \sanst \sanss .\sansj \sansl \sanss 
in the arXiv version of this paper) that we obtained by solving (2.8) for d = 7.
Furthermore, let C be an optimal spherical code. Due to the complementary slackness
condition given in (ii) in Corollary 2.6, the real roots of the polynomial

d\sum 
k=0

akP
n
k (u) + 3

d\sum 
k=0

\langle Fk, Y n
k (u, u, 1)\rangle + 1

located between  - 1 and 2
\surd 
2 - 1
7 give the possible inner products between two points

in C. By using its Sturm sequence, we can check that the only inner products are

(2
\surd 
2 - 1)/7,  - 3(2

\surd 
2 - 1)/7,  - (2

\surd 
2 - 1)2/7.

As in the proof of Theorem 4.3, the exact solution, together with the comple-
mentary slackness condition (v) in Corollary 2.6 and the properties of the three-point
distribution, gives

\alpha (1, 1, 1) = 1, \alpha (v, v, 1) = 4,

\alpha ( - 3v, - 3v, 1) = 2, \alpha 
\Bigl( 
(1 - 2

\surd 
2)v, (1 - 2

\surd 
2)v, 1

\Bigr) 
= 1,

where v = (2
\surd 
2 - 1)/7.

This is already enough information for proving the uniqueness of the configuration.
We want to show that C is, up to rotations, the squared antiprism S8. We label with
c1, . . . , c8 the vertices of S8, as depicted in Figure 1.

Up to symmetry, we may assume that c1 is in C. The possible inner products
imply that for any c \in C, the distance between c and c1 is among

\delta 1 =
\surd 
2 - 2v, \delta 2 =

\sqrt{} 
2 - 2(1 - 2

\surd 
2)v, \delta 3 =

\surd 
2 + 6v.

c1

c8

c2

c5

c3

c4

c7

c6

Fig. 1. The squared antiprism.
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1452 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

Note that \delta 1 < \delta 2 < \delta 3. In Figure 1, the points c2, c3, c4, and c5, depicted in red, are
at distance \delta 1 from c1, the blue point c8 is at distance \delta 2 from c1, and the green points
c6 and c7 are at distance \delta 3 from c1. For every c \in C, we define the circle \scrC \delta 1(c) made
of the points of S2 at distance \delta 1 from c1. On the one hand, since \alpha (v, v, 1) = 4, on
average over C, the circle \scrC \delta 1(c) contains four points of C. On the other hand, it is
straightforward to check that one cannot put more than four points on such a circle
without violating the distance constraints. This means that for every c \in C, there
are exactly four elements of the code C in \scrC \delta 1(c).

In particular, \scrC \delta 1(c1) contains four points of C. In fact, there is, up to rotations,
only one way to put four compatible points on such a circle. Hence, we may assume
that these four points are c2, c3, c4, and c5 (see Figure 2).

Three points remain. On the circle \scrC \delta 1(c3), we already know three points out of
four. This leaves two possibilities for the last codeword on that circle, and the same
situation holds in \scrC \delta 1(c4). This gives four candidates, but among them, only two are
compatible: c6 and c7. Finally, the last remaining point has to lie in the intersection
of \scrC \delta 1(c2) and \scrC \delta 1(c5), and the distance constraints force it to be c8.

4.3. Sphere in sphere packings. The optimal solution of the semidefinite
program (2.5) is an upper bound on the number of spheres of radius r that can
be packed into a sphere of radius R. Using our program we determine exact sharp
solutions for several values of r and R in various dimensions. In this section we show
that we can extract bounds that work for infinitely many different dimensions by
extrapolating from the rounded solutions for a few dimensions. In this way we show
that the Lov\'asz \vargamma -number gives a sharp bound for some families of problems.

Theorem 4.5. The Lov\'asz \vargamma -number gives a sharp bound on the largest number
M of n-dimensional unit spheres that can be packed into a sphere of radius R for

(i) n \geq 2 with R = 2 and M = 2,

(ii) n \geq 2 with R = 2/
\surd 
3 + 1 and M = 3,

(iii) n \geq 2 with R =
\sqrt{} 
2n/(n+ 1) + 1 and M = n+ 1,

(iv) n \geq 2 with R =
\surd 
2 + 1 and M = 2n,

(v) n = 2 with R = 1 +
\sqrt{} 
2
\bigl( 
1 + 1/

\surd 
5
\bigr) 
and M = 5,

(vi) n = 2 with R = 3 and M = 7.

To obtain the proof for (i)--(iv) we first compute an exact sharp solution for several
dimensions. From this we notice we can take the same degree d for each dimension
n, and we make a guess as to what the general solution of the semidefinite program
should be as a function of n. For the sums-of-squares matrices we then compute

δ1

δ3

δ2

c5

c4

c3

c2

Fig. 2. The only four point configuration in \scrC \delta 1 (c).
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the Cholesky decomposition using symbolic mathematics, which gives us the sums-of-
squares decomposition proving that the solution satisfies the right inequalities. Even
if we stated the theorem in an unified way with r = 1, we present some of the proofs
with different scaling in order to simplify the coefficients appearing in the solutions.

Proof. (i) Set M = 2. Define the positive semidefinite matrices

F0 =
2

5

\biggl( 
1  - 1
 - 1 1

\biggr) 
, F1 =

\bigl( 
1
\bigr) 
,

and set

F (u, v, t) :=
1\sum 

k=0

\bigl\langle 
Fk, Zn

k (u, v, t)
\bigr\rangle 
=

2

5

\bigl( 
uv  - u - v + t+ 1

\bigr) 
.

Since

F (u, v, t) =  - 1  - 3

5

\biggl( 
1 - 1

2
(u+ v)

\biggr) 2

 - 7

20
(v  - u)

2

 - u (1 - u) - v (1 - v) - 1

2

\bigl( 
u2 + v2  - 2t - 4

\bigr) 
,

we have F (u, v, t) \leq  - 1 for all u, v, t with 0 \leq u, v \leq 1 and u2 + v2  - 2t  - 4 \geq 0.
Furthermore, since

F (u, u, u2) = 1 - 3

5
(1 - u)

2  - 2u (1 - u) ,

we have F (u, u, u2) \leq M - 1 for all 0 \leq u \leq 1. The tuple (M,F0, F1) thus defines a fea-
sible solution for problem (2.5) with R = 2 and r = 1, which shows the bound is sharp.

(ii) We construct a feasible solution for problem (2.5) for n \geq 2 with r = 2/
\surd 
3

and R = (2/
\surd 
3+1)r = 4/3+2/

\surd 
3: By considering the positive semidefinite matrices

F0 =

\biggl( 
64/81  - 16/27
 - 16/27 4/9

\biggr) 
, F1 =

\bigl( 
9/8
\bigr) 
,

we obtain the function

F (u, v, t) =
1\sum 

k=0

\bigl\langle 
Fk, Zn

k (u, v, t)
\bigr\rangle 
=

64

81
+

4

9
uv  - 16

27
(u+ v) +

9

8
t.

Since the function satisfies the equation

F (u, v, t) =  - 1 - 2 (7/9 - 7/24 (u+ v))
2  - 113/288 (v  - u)

2

 - 9/8u (4/3 - u) - 9/8v (4/3 - v) - 9/16
\bigl( 
u2 + v2  - 2t - 16/3

\bigr) 
,

we have F (u, v, t) \leq  - 1 for all u, v, t with 0 \leq u, v \leq 4/3 and u2 + v2  - 2t - 16/3 \geq 0.
Furthermore,

F (u, u, u2) = 2 - 2 (7/9 - 7/12u)
2  - 9/4u (4/3 - u) ,

so, for all 0 \leq u \leq 4/3, we have F (u, u, u2) \leq 2. The function F (u, v, t) together with
the parameter M = 3 gives a feasible solution for problem (2.5) with r = 2/

\surd 
3 and

R = (2/
\surd 
3 + 1)r.

D
ow

nl
oa

de
d 

11
/0

9/
21

 to
 1

30
.2

29
.1

80
.8

7 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1454 M. DOSTERT, D. DE LAAT, AND P. MOUSTROU

(iii) We construct a feasible solution for problem (2.5) with r =
\sqrt{} 
2n/(n+ 1),

R = (
\sqrt{} 

2n/(n+ 1)+1)r = 2n/(n+1)+
\sqrt{} 

2n/(n+ 1), and n \geq 2: By considering the
positive semidefinite matrices

F0 =

\biggl( 
2n/(n+ 1)  - 1

 - 1 (n+ 1)/(2n)

\biggr) 
, F1 =

\Bigl( 
(n+1)2

4n

\Bigr) 
,

we define the function

F (u, v, t) =
1\sum 

k=0

\bigl\langle 
Fn
k , Z

n
k (u, v, t)

\bigr\rangle 
=

2n

n+ 1
 - u - v +

n+ 1

2n
uv +

(n+ 1)2

4n
t.

Since the equation

 - F (u, v, t) - 1 =

\Biggl( \sqrt{} 
n(n - 1)

n+ 1
+

1

4

\sqrt{} 
n2  - 1

n
(u+ v)

\Biggr) 2

+
n2 + 4n+ 3

16n
(v  - u)2

+ u

\biggl( 
2n

n+ 1
 - u

\biggr) 
(n+ 1)2

4n
+ v

\biggl( 
2n

n+ 1
 - v

\biggr) 
(n+ 1)2

4n

+

\biggl( 
u2 + v2  - 2t - 4

2n

n+ 1

\biggr) 
(n+ 1)2

8n

holds, we have F (u, v, t) \leq  - 1 for all u, v, t with 0 \leq u, v \leq 2n
n+1 and u2 + v2  - 2t  - 

4 2n
n+1 \geq 0. Moreover,

n - F (u, u, u2) =

\Biggl( \sqrt{} 
n(n - 1)

n+ 1
 - 
\sqrt{} 

n2  - 1

4n
u

\Biggr) 2

+ u

\biggl( 
2n

n+ 1
 - u

\biggr) 
(n+ 1)2

2n
,

so F (u, u, u2) \leq n for all 0 \leq u \leq 2n/(n+ 1).
The function F (u, v, t) together with the parameter M = n + 1 gives a feasible

solution for problem (2.5) with r =
\sqrt{} 
2n/(n+ 1) and R = (

\sqrt{} 
2n/(n+ 1) + 1)r.

(iv) The cases n = 2, 3, 4 are done separately through our rounding procedure;
see \sansp \sansr \sanso \sanso \sansf \sanss .\sansj \sansl in the arXiv version of this paper. For n \geq 5 we determine a feasible
solution for (2.5) with r =

\surd 
2 and R = (

\surd 
2 + 1)r = 2 +

\surd 
2. For this we define the

positive semidefinite matrices

F0 =

\left(  0 0 0
0 0 0
0 0 0

\right)  , F1 =

\biggl( 
n  - 1

4n
 - 1

4n
1
16n

\biggr) 
, F2 =

\bigl( 
1
16 (n - 1)

\bigr) 
and set

F (u, v, t) =
2\sum 

k=0

\bigl\langle 
Fk, Zn

k (u, v, t)
\bigr\rangle 

= nt - 1

4
nt(u+ v) +

1

16
nuvt+

1

16
nt2  - 1

16
u2v2.

To prove that F (u, v, t) \leq  - 1 for all (u, v, t) \in \Omega we want to find sum-of-squares
polynomials q1(u, v, t), . . . , q5(u, v, t) such that  - 1 - F (u, v, t) can be written as

q1(u, v, t) + u(2 - u)q2(u, v, t) + v(2 - v)q3(u, v, t)

+ (t+ uv)(uv  - t)q4(u, v, t) + (u2 + v2  - 2t - 8)q5(u, v, t).
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Since 0 \leq u, v \leq 2, the condition  - uv \leq t \leq uv in \Omega holds if  - 4 \leq t \leq 4. Now we can
show that F (u, v, t) \leq  - 1 for all (u, v, t) \in \Omega , since  - 1 - F (u, v, t) is equal to

q1(u, v, t) + u(2 - u)q2(u, v, t) + v(2 - v)q3(u, v, t)

+ (t+ 4)(4 - t)q4(u, v, t) + (u2 + v2  - 2t - 8)q5(u, v, t),

where the sum of squares polynomials q1, . . . , q4 are displayed in Appendix A.
Next, we show F (u, u, u2) \leq 2n - 1 for all 0 \leq u \leq 2. For this we define

f(u) = F (u, u, u2) - 2n+ 1 =
1

16
(2n - 1)u4  - 1

2
nu3 + nu2  - 2n+ 1.

Note that f(2) = 0. It is then sufficient to prove that the polynomial

g(u) = f(u)/(u - 2) =
2n - 1

16
u3 +

 - 2n - 1

8
u2 +

2n - 1

4
u+

2n - 1

2

is positive for every u in [0, 2]. Its discriminant

1

16

\bigl( 
 - 11n4 + 21n3  - 47/4n2 + 5/2n - 1/4

\bigr) 
is negative, since  - 11n4 + 21n3 and  - 47

4 n2 + 5
2n are both negative. Hence g(u) has

only one real root. This root must be negative, because the leading term of g is
positive and g(0) = n  - 1/2 > 0. Thus g is positive for every u \geq 0. In particular
f(u) \leq 0 for all u in [0, 2], for every n \geq 5.

The function F (u, v, t) together with the parameter M = 2n gives a feasible
solution for problem (2.5) with r =

\surd 
2 and R = (

\surd 
2 + 1)r.

(v), (vi) The exact optimal solution, as well as the verification of the solution, can
be obtained by running our program as described in \sansp \sansr \sanso \sanso \sansf \sanss .\sansj \sansl . Here the exact solution
for (v) is over Q[

\surd 
5] and for (vi) over Q.

Appendix A. Sum of squares polynomials for Theorem 4.5.

q1(u, v, t) =
1

14

\biggl( 
35

144
t2  - 151

432
tu - 125

432
tv +

9

4
t

\biggr) 2

+
25

238

\biggl( 
25

144
t2 +

31

432
tu+

119

432
tv

\biggr) 2

+
145

238

\biggl( 
1

16
t2 +

1

8
tu

\biggr) 2

+
1

21

\biggl( 
5

16
tu+

25

16
tv +

7

4
uv  - 15

4
t - 7

2
u

\biggr) 2

+
n - 5

2

\biggl( 
5

192

\bigl( 
3t2  - 2tu+ 8tv

\bigr) 2
+

1

48

\bigl( 
3t2  - 8tu - 10tv + 48t

\bigr) 2
+

21

64

\bigl( 
t2 + 2tu

\bigr) 2
+

1

4
(tu+ 5tv + 8uv  - 12t - 16u)

2

\biggr) 
,
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q2(u, v, t) =
1

7982

\biggl( 
65

8
t+

307

12
u

\biggr) 2

+
2095

117888
t2 +

1

858

\biggl( 
63

8
u - 65

16
v

\biggr) 2

+
1

22

\biggl( 
5

24
u - 25

16
v +

11

2

\biggr) 2

+ (n - 5)

\biggl( 
1

3110

\biggl( 
15

8
t+

311

36
u

\biggr) 2

+
1461

622

\biggl( 
1

24
t

\biggr) 2

+
1

10

\biggl( 
19

72
u - 5

16
v

\biggr) 2

+
3

2

\biggl( 
1

72
u - 5

48
v +

1

2

\biggr) 2\biggr) 
,

q3(u, v, t) =
7

51

\biggl( 
15

16
t+

17

16
u

\biggr) 2

+
1

2

\biggl( 
1

8
t+

5

16
u - 5

12
v

\biggr) 2

+
5

2

\biggl( 
1

16
u+

1

12
v  - 1

2

\biggr) 2

+
n - 5

430

\biggl( 
30

\biggl( 
7

16
t+

43

48
u

\biggr) 2

+ 43

\biggl( 
1

8
t+

5

16
u - 5

12
v

\biggr) 2

+
1837

384
t2

+ 215

\biggl( 
1

16
u+

1

12
v  - 1

2

\biggr) 2\biggr) 
+

23

51

\biggl( 
1

16
t

\biggr) 2

,

q4(u, v, t) =
n - 5

2

\Biggl( \biggl( 
1

16
t

\biggr) 2

+

\biggl( 
13

96
u+

11

96
v  - 1

2

\biggr) 2

+ 23

\biggl( 
1

96
(u - v)

\biggr) 2
\Biggr) 

+
5

512
t2 +

\biggl( 
53

288
u+

55

288
v  - 3

4

\biggr) 2

+ 215

\biggl( 
1

288
(u - v)

\biggr) 2

,

q5(u, v, t) = n

\Biggl( \biggl( 
1

16
t - 1

24
u - 1

12
v +

1

2

\biggr) 2

+

\biggl( 
1

16
t+

1

8
u

\biggr) 2

+
1

72
(u - v)

2

\Biggr) 
.
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