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Abstract:We construct a new family of lattice packings for superballs in three dimensions (unit balls for the
lp3 norm) with p ∈ (1, 1.58]. We conjecture that the family also exists for p ∈ (1.58, log2 3 = 1.5849625 . . .].
Like in the densest lattice packing of regular octahedra, each superball in our family of lattice packings has
14 neighbors.
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1 Introduction
Finding dense packings of spheres in n-dimensional Euclidean space is one of the most central problems in
discrete geometry. In this paper, we consider lattice packings of superballs in dimension three. Superballs are
unit balls for the ℓpn norm:

B
p
n = {x ∈ ℝn : ‖x‖p ≤ 1} where ‖x‖p = (

n
∑
i=1
|xi|p)

1/p
.

We distinguish between three different kinds of packings which are increasingly restrictive: congruent
packings, translative packings, and lattice packings. LetK be a convex body inℝn. ByK∘ we denote its topo-
logical interior. We consider the special orthogonal group SO(n) = {A ∈ ℝn×n : AAT = In , det A = 1}, and In
denotes the identity matrix.

A congruent packing ofK is defined as

P = ⋃
i∈ℕ
(xi + AiK) with (xi , Ai) ∈ ℝn × SO(n),

where (xi + AiK
∘) ∩ (xj + AjK

∘) = 0 whenever i ̸= j. Translative packings are congruent packings without
rotations, i.e. allmatricesAi are equal to In. Moreover, if the set {xi : i ∈ ℕ} forms a lattice (a discrete subgroup
ofℝn), then we call this packing a lattice packing.

The (upper) density of a congruent packing P is defined as

δ(P) = lim sup
r→∞

sup
c∈ℝn

vol(B(c, r) ∩ P)
vol B(c, r) ,

where B(c, r) = {x ∈ ℝn : ‖x − c‖2 ≤ r} is the Euclidean ball of radius r with center c.
In this paperwe considermainly lattice packings of superballs in three dimensions. The two-dimensional

casewas already discussed byMinkowski [14]. However, until today the problem is not completely solved. For
a brief survey we refer to [17, Remark 1.7].

Jiao, Stillinger, and Torquato [10; 11] determined four families of dense superball packings in three di-
mensions via computer simulations. They divided the possible values of p into four regimes:

p ∈ [1,∞) = [1, log2 3 = 1.5849 . . .] ∪ [log2 3, 2] ∪ [2, 2.3018 . . .] ∪ [2.3018 . . . ,∞).
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For every regime they found a family of lattices which defines dense lattice packings for Bp
3. The family for

the first regime [1, log2 3] they call the𝕆1 lattices, and𝕆0,ℂ0,ℂ1 correspondingly for the second, third, and
fourth regime. In their approach, they even allowed for congruent packings, but it turned out that the dens-
est congruent packings they obtained were lattice packings. They conjectured that they found the densest
congruent packings ofBp

3 for all values of p.
However, Ni, Gantapara, de Graaf, van Roij, and Dijkstra [15] found, also via computer simulations,

denser lattice packings for superballs in the second regime. Also for p = 1.4, which falls into the first regime,
they give one lattice for which they claim (but see Section 3) that it is denser than the corresponding𝕆1 lat-
tice. They report (see page 8830 in [15]) that due to numerical instabilities they could not investigate values
p < 1.4.

In this paper, we use a method of Minkowski [13] to identify candidates for locally densest lattice pack-
ings ofBp

3. Minkowski applied this method to determine the densest lattice packing of regular octahedraB1
3.

Starting fromMinkowski’s latticewe found a family of new lattice packings for the first regimewhich is denser
than the𝕆1 lattices, see Table 1. Here, each superball in our family of lattice packings has 14 neighbors, like
in the densest lattice packing of regular octahedra. We also found new lattice packings in the second regime
which are denser than the 𝕆0 lattices, see Table 2. For the third and fourth regime the densest lattices we
found are the ℂ0 lattices, respectively the ℂ1 lattices.

p Packing density of 𝕆1 lattices Packing density of new family

1 18/19 = 0.94736 . . . 0.94736 . . .
1.1 0.90461 . . . 0.90913 . . .
1.2 0.87121 . . . 0.87861 . . .
1.3 0.84516 . . . 0.85375 . . .
1.4 0.82497 . . . 0.83284 . . .
1.5 0.80948 . . . 0.81395 . . .
log2 3 0.79594 . . . 0.79594 . . .

Table 1: Packing density of 𝕆1 lattices (see [10; 11]) and of our new family
(see Section 3 and Section 4). When p = 1 we obtained the lattice which
determines the densest lattice packing of regular octahedra (see [13]) and
when p = log2 3 we obtain the body centered cubic lattice.

p Packing density of 𝕆0 lattices Packing density of new lattices

log2 3 0.79594 . . . 0.79594 . . .
1.6 0.79084 . . . 0.79084 . . .
1.7 0.76567 . . . 0.76610 . . .
1.8 0.75126 . . . 0.75303 . . .
1.9 0.74364 . . . 0.74550 . . .
2 π/√18 = 0.74048 . . . 0.74048 . . .

Table 2: Packing density of𝕆0 lattices (see [10; 11]) and of the new lattices
(see [15] and see Section 3). When p = 2 we obtain the face centered cubic
lattice.

The structure of the paper is as follows: We first explain Minkowski’s method and how we approached
it computationally in Section 2. Section 3 contains a report on some of our findings, in particular new lattice
packings in the first and second regime. Section 4 provides a computer-assisted proof proving that the family
of new dense lattice packings exists for p ∈ [1, 1.58]. We end with Section 5 by posing some conjectures and
open problems.
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2 Determination of lattice packings by local optimization
Let Λ be a lattice so that P = ⋃x∈Λ(x + K) forms a lattice packing of the convex body K, i.e. for all distinct
lattice vectors x, y ∈ Λ we have

(x +K∘) ∩ (y +K∘) = 0. (1)

Then, Λ is called a packing lattice. From (1) it immediately follows that a packing lattice is characterized by

Λ ∩ (K −K)∘ = 0, whereK −K = {x − y : x, y ∈ K}

is the difference body ofK. In other words, Λ is a packing lattice forK if and only if the condition

‖x‖K−K ≥ 1 for all x ∈ Λ \ {0}

holds; here
‖x‖L = inf{λ :

1
λ
x ∈ L}

is theMinkowski norm of x defined by a centrally symmetric convex body L.
The general linear group of degree n over a ring R is defined as

GLn(R) = {B ∈ Rn×n : ∃A ∈ Rn×n : AB = BA = In}.

A matrix B ∈ GLn(ℝ) with linearly independent column vectors b1, . . . , bn specifies a lattice Λ by taking all
integral linear combinations of b1, . . . , bn:

Λ = ℤb1 + ⋅ ⋅ ⋅ +ℤbn = Bℤn .

Two matrices B, B󸀠 ∈ GLn(ℝ) determine the same lattice if and only if there is a matrix U ∈ GLn(ℤ) such that
BU = B󸀠. Matrix B also gives a fundamental domain F of Λ by F = {∑ni=1 αibi : αi ∈ [0, 1], i = 1, . . . , n}. Then,
the volume of a fundamental domain of Λ is vol(ℝn/Λ) = vol F = |det(B) |. The density of a lattice packing
P = ⋃x∈Λ(x +K) is

δ(P) = volK
vol(ℝn/Λ) =

volK
|det B | .

So one can state the problem of finding a densest lattice packing of a convex body K as the following mini-
mization problem:

minimize |det B | so that B ∈ GL3(ℝ)/GL3(ℤ),
‖Bu‖K−K ≥ 1 for all u ∈ ℤn \ {0}.

It follows from Mahler’s selection theorem that the minimum is attained, see [6, Theorem 30.1].
Two distinct translates x+K and y+K are called neighbors in a lattice packingP if they have a nonempty

intersection. The number of neighbors coincides for all translates. Howmany neighbors canK have at most?
Minkowski showed thatK has at most 3n −1 neighbors and ifK is strictly convex, then the number of neigh-
bors is bounded by 2n+1 − 2, see [6, Theorem 30.2]. Swinnerton–Dyer proved that when a lattice Λ achieves
a density which is locally maximal, thenK has at least n(n + 1) neighbors, see [6, Theorem 30.3].

Let B ∈ GL3(ℝ) be a matrix defining a locally densest lattice packing Λ = Bℤ3 ofK. Minkowski [13] (see
also [7, §32], [1], [9]) showed that after performing a suitable GL3(ℤ)-transformation to Bwe can reduce to the
following three cases.
Case (I): Bu +K with u ∈ U1 are neighbors ofK, where

U1 = {±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1), ±(1, −1, 0), ±(0, 1, −1), ±(1, 0, −1)},

but ±(−1, 1, 1), ±(1, −1, 1), ±(1, 1, −1) are not.
Case (II): Bu +K, with u ∈ U2, are neighbors ofK, where

U2 = {±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1), ±(1, 1, 0), ±(0, 1, 1), ±(1, 0, 1)},

but ±(1, 1, 1) are not.
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Figure 1: On the left: A part of a lattice packing for Blog2 33 satisfying Case (III). On the right: Seven of fourteen neighbors of the
packing. Contact points are labeled in red.

Case (III): Bu +K, with u ∈ U3, are neighbors ofK, where U3 = U2 ∪ {±(1, 1, 1)}.

Fromnowon,we are interested in lattice packings of superballs in three dimensions.Weperforma rescal-
ing by setting K = 1

2B
p
3 so that ‖x‖ 12Bp

3−
1
2B

p
3
= ‖x‖p. Note that scaling K only scales the packing lattices but

does not effect the packing density.
For each of the three cases (I), (II), and (III), we can numerically find critical points of the following finite

nonlinear optimization problem

minimize det B so that B ∈ GL3(ℝ), det B > 0,
‖Bu‖p = 1 for all u ∈ Ui ,

(2)

for i = 1, 2, 3, in order to identify candidates for locally densest lattice packings.
After finding a matrix B which is a feasible solution of this optimization problem, we have to check

whether B indeed defines a packing lattice for Bp
3. For this it suffices to verify that ‖Bu‖p ≥ 1 holds for only

finitely many vectors u ∈ ℤn \ {0} as the following lemma shows; see also Dieter [3].

Lemma 2.1. Suppose that p, q ∈ [1,∞) satisfy the relation 1
p +

1
q = 1 and suppose that a matrix B ∈ GLn(ℝ) is

given. If u = (u1, . . . , un) ∈ ℤn is such that ‖Bu‖p ≤ μ for some nonnegative number μ, then

|ui| ≤ ‖B−1i ‖qμ for all i = 1, . . . , n,

where B−1i is the i-th row vector of B−1.

Proof. We apply the triangle inequality and Hölder’s inequality, and get

|ui| = |B−1i Bu| ≤
n
∑
j=1
|B−1i,j (Bu)j| ≤ ‖B

−1
i ‖q‖Bu‖p ≤ ‖B

−1
i ‖qμ. ✷

If 1 < p < 2 and if B ∈ GL3(ℝ) satisfies the equality conditions of Case (III)

‖Bu‖p = 1 for all u ∈ U3,

then this extra check is not necessary, as the next lemma shows. This is a consequence of Hanner’s inequal-
ity [8]

‖x + y‖pp + ‖x − y‖
p
p ≥ (‖x‖p + ‖y‖p)p +

󵄨󵄨󵄨󵄨‖x‖p − ‖y‖p
󵄨󵄨󵄨󵄨
p , (3)

which holds for all 1 < p < 2 and all x, y ∈ ℝn.

Lemma 2.2. If 1 < p < 2 and if B ∈ GL3(ℝ) satisfies ‖Bu‖p = 1 for all u ∈ U3, then ‖Bu‖p ≥ 1 for all u ∈ ℤn \{0}.

Proof. As a start we consider u = (1, −1, 0). We write u as the sum of two vectors v, w in U3: u = (1, 0, 0) +
(0, −1, 0). Then by Hanner’s inequality (3) we get

‖Bu‖pp = ‖Bv + Bw‖
p
p ≥ (‖Bv‖p + ‖Bw‖p)p +

󵄨󵄨󵄨󵄨‖Bv‖p − ‖Bw‖p
󵄨󵄨󵄨󵄨
p − ‖Bv − Bw‖pp ≥ 2p − 1 ≥ 1.
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The vectors u = (1, 0, −1), (0, 1, −1) can be treated similarly.
Now we consider u = (−1, 1, 1). We write u as u = v + w with v = (0, 1, 1), w = (−1, 0, 0) and apply

Hanner’s inequality to get ‖Bu|pp ≥ 2p −1. Again, the vectors u = (1, −1, 1), (1, 1, −1) can be treated similarly.
So we have ‖Bu‖p ≥ 1 for all u ∈ ℤ3 \{0}with |ui| ≤ 1 andwe proceed by induction. For the inductive step

assume that ‖Bu‖p ≥ 1 for all u ∈ ℤ3 \ {0}with |ui| ≤ M. Let u ∈ ℤ3 with |ui| ≤ M + 1 for all i and |ui| = M + 1
for some i. Define v, w ∈ ℤ3 componentwise by vi = ⌈ ui2 ⌉ and wi = ⌊ ui2 ⌋. Then |vi|, |wi| ≤ M. Hence, by the
induction hypothesis, ‖Bv‖p ≥ 1 and ‖Bw‖p ≥ 1. Since vi − wi ∈ {0, 1}, we have ‖Bv − Bw‖p = 1. Hanner’s
inequality (3) implies the desired inequality ‖Bu‖pp ≥ 2p − 1 ≥ 1. ✷

3 Numerical findings
In order to explore dense lattice packings of superballs in three dimensions we numerically found critical
points of the nonlinear minimization problem (2). We randomly chose a matrix B ∈ GL3(ℝ), where we chose
the matrix entries randomly according to the normal distribution N(0, 1) with mean 0 and variance 1. Then
we applied Newton’s method to B to find a critical point in the neighborhood of B. By applying this procedure
to 10, 000 randomly chosen starting points, we obtained a set of packing lattices. For the implementation
we used the function root of the python package scipy.optimize, see [12]. We determined feasible packing
lattices for each of these three cases.

3.1 First regime. The highest packing densities over all obtained solutionswe found for p = 1, 1.1, 1.2, 1.3,
1.4, 1.5 belong to Case (III). We list them in Table 3 and we analyze them in detail in Section 4. The density
we obtained for p = 1.4 coincides with the value reported in [15], but the basis e1, e2, e3 given in [15, page
8829] does not give a packing lattice since the ℓp3-norm of 2e1 − e2 − e3 is too small.

L1 =(
−0.333333333333 0.166666666667 0.5

0.5 −0.333333333333 0.166666666667
0.166666666667 0.5 −0.333333333333

)

L1.1 =(
−0.364125450067 0.193419513868 0.539049770666
0.539049770666 −0.364125450067 0.193419513867
0.193419513867 0.539049770666 −0.364125450068

)

L1.2 =(
−0.392613644302 0.22381214158 0.569113821114
0.569113821115 −0.392613644298 0.223812141583
0.223812141575 0.569113821114 −0.392613644306

)

L1.3 =(
−0.419839537546 0.260336714788 0.589023079183
0.589023079194 −0.419839537534 0.260336714788
0.260336714754 0.589023079183 −0.419839537578

)

L1.4 =(
−0.446984776893 0.307534456657 0.595696355817
0.595696355844 −0.446984776872 0.307534456649
0.307534456588 0.595696355814 −0.446984776962

)

L1.5 =(
−0.475292821919 0.375983627555 0.580059051165
0.580059051205 −0.475292821888 0.375983627545
0.375983627482 0.58005905116 −0.475292821997

)

Table 3:Matrices Lp ∈ GL3(ℝ) giving the densest lattice packing ofB
p
n we found. They all belong to Case (III).
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3.2 Second regime. The highest packing density over all obtained solutions we found for p = 1.6, 1.7, 1.8,
1.9, 2.0 belong to Case (I). We list them in Table 4. We were not able to identify a pattern. The density we
obtained for p = 1.7 coincides with the value reported in [15], but in [15] a corresponding matrix is not given.
For more computational results we refer to the thesis [4] of the first author.

L1.6 =(
−0.000274732684343 0.00144215026174 −0.999980951403

0.509783945989 0.500572697171 −0.499408517681
0.509509213365 −0.499408255119 −0.500850623006

)

L1.7 =(
0.458033772615 0.556735224273 0.553047497039
−0.530691863753 0.577007354869 0.459643833129
−0.0936769789857 −0.0202829019484 0.988672468644

)

L1.8 =(
−0.330208442415 −0.696395141028 0.551458413193
0.624661955256 −0.637870063365 0.316559795406
0.237379400053 −0.0588146621535 0.954027742247

)

L1.9 =(
−0.325366212309 −0.0828873750566 0.930867632285
0.230698700286 0.676231149106 0.66666839749
−0.697856599406 0.59207566084 0.335768664213

)

L2 =(
0.000000000000 0.707106781187 0.707106781187
0.707106781623 0.00000000000 0.70710678075
0.707106781623 0.70710678075 0.000000000000

)

Table 4:Matrices Bp ∈ GL3(ℝ) giving the densest lattice packing ofB
p
n we found. They all belong to Case (I).

L2 determines the face centered cubic lattice which defines a densest sphere packing in three dimensions.

4 A new family of lattice packings
When looking at the numerical solutions we found in the first regime, one immediately comes to the conclu-
sion that the new found lattices belong to a family of lattices which one can easily parametrize.

Consider

L(x, y, z) ∈ GL3(ℝ) with L(x, y, z) =(
−x y z
z −x y
y z −x

) ,

where x, y, z are chosen so that ‖L(x, y, z)u‖p = 1 for all u ∈ U3. This implies

‖L(x, y, z)(1, 0, 0)‖pp = | − x|p + |y|p + |z|p = 1
‖L(x, y, z)(1, 1, 0)‖pp = | − x + y|p + |z − x|p + |y + z|p = 1
‖L(x, y, z)(1, 1, 1)‖pp = 3| − x + y + z|p = 1.

We also have the inequalities z ≥ x ≥ y ≥ 0. Thus x, y, z have to satisfy the following nonlinear system:

z ≥ x ≥ y ≥ 0
xp + yp + zp = 1

(x − y)p + (z − x)p + (y + z)p = 1
3(−x + y + z)p = 1.

(4)

The family of lattices starts at p = 1 with x = 1/3, y = 1/6, z = 1/2, which defines the densest lattice
packing of regular octahedra found by Minkowski. The family ends at p = log2 3 = 1.5849625 . . . with
x = y = z = 1

2 which defines the body centered cubic lattice.
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Wewant to prove that the family indeed exists. When the nonlinear system (4) has a solution, Lemma 2.2
ensures that themembers of the family arepacking lattices for the corresponding superball 12B

p
3.Wewill apply

the following theorem of Cohn, Kumar, and Minton [2, Theorem 3.1], which is an effective implicit function
theorem.

Theorem 4.1. Let V andW be finite-dimensional normed vector spaces overℝ, and suppose that f : B(x0, ε)→
W is a C1 function, where x0 ∈ V and ε > 0. Suppose also that T : W → V is a linear operator such that

‖Df(x) ∘ T − idW‖ < 1 −
‖T‖ ⋅ |f(x0)|

ε
(5)

for all x ∈ B(x0, ε). Then there exists x∗ ∈ B(x0, ε) such that f(x∗) = 0. Moreover, in B(x0, ε) the zero locus
f−1(0) is a C1 submanifold of dimension dim V − dimW .

In this theorem, ‖ ⋅ ‖ denotes the operator norm, Df(x) is the Jacobian of f at x, and idW is the identity
operator onW, and B(x0, ε) ⊆ V is the open ball with center x0 and radius ε, where the distance is measured
using the norm of V.

Theorem 4.2. The nonlinear system (4) has a unique solution (x∗(p), y∗(p), z∗(p)) for all p ∈ [1, 1.58]. In
particular, the matrix L(x∗(p), y∗(p), z∗(p)) defines a packing lattice for 1

2B
p
3 .

Proof. Our proof is computer assisted. We use interval arithmetic as implemented in the free open source
mathematics software system SageMath [16].

Define the function fp : B((x0, y0, z0), ε)→ ℝ3 by

fp(x, y, z) =(
xp + yp + zp − 1

(x − y)p + (z − x)p + (y + z)p − 1
3(−x + y + z)p − 1

) .

The Jacobian Dfp(x, y, z) of fp equals

p(
xp−1 yp−1 zp−1

(x − y)p−1 − (z − x)p−1 −(x − y)p−1 + (y + z)p−1 (z − x)p−1 + (y + z)p−1

−3(−x + y + z)p−1 3(−x + y + z)p−1 3(−x + y + z)p−1
) .

As norms we choose the ℓ∞3 norm for the domain, as well as for the codomain. Then the ℓ∞3 operator norm is
the maximum of the ℓ13 norms of the rows of the considered matrix.

Now we subdivide the interval [1.1.58] in smaller subintervals and for every subinterval we choose an
ε > 0 and a starting point (x0, y0, z0)which we found by the numerical solution of the nonlinear system (4).

Our choice of ε > 0 and using the ℓ∞3 norm ensures that the ball B((x0, y0, z0), ε) lies in the region
z ≥ x ≥ y ≥ 0. We set T = Dfp(x0, y0, z0)−1 and verify that inequality (5) is satisfied for all p in the subin-
terval and for all (x, y, z) ∈ B((x0, y0, z0), ε). Then, the assumptions of Theorem 4.1 are satisfied and we can
conclude that the nonlinear system (4) has a unique solution (x∗(p), y∗(p), z∗(p)) for all p in the subinterval.
The verification of (5) uses interval arithmetic. Our Sage function verify is only a few lines long and can be
found in Appendix A of this paper.

For example,we choose the subinterval [1, 1.01], the starting point (x0, y0, z0) = (13 ,
1
6 ,

1
2 ), and ε = 0.03.

For T we choose

T =(

1
2 0 −16
1
2 −

1
2

1
6

0 1
2 0
) .

Then, Sage computes

‖Dfp(x, y, z)T − I3‖ ∈ [0.00000000000000000, 0.035585437892437462]

and
1 −
‖T‖ ⋅ |fp(x0, y0, z0)|

ε
∈ [0.60895579575438163, 1.0000000000000000]
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for all (x, y, z) ∈ B((x0, y0, z0), ε) and for all p ∈ [1, 1.01]. This shows that (4) has a unique solution for each
p ∈ [1, 1.01].

More examples of our choices can be found in Appendix B; all choices can be found as ancillary file from
the arXiv.org e-print archive. ✷

We conjecture that the family of lattices also exists for p ∈ (1.58, log2 3 = 1.5849625007 . . .]. We could
enlarge the interval for which Theorem 4.2 holds by increasing the precision and by using smaller subin-
tervals. For example, running the following Sage code shows that the lattice exists for p ∈ [1.5849625,
1.5849625 + 10−10].

verify(1.5849625, 0.499999999842, 0.499999124646, 0.500000875038, 0.0000002,
0.0000000001)

However, when p approaches log2 3, then the Jacobian approaches

Dflog2 3(
1
2
, 1
2
, 1
2) = log3 2(

2
3

2
3

2
3

0 1 1
−2 2 2

)

which is singular. Furthermore, there is no ε > 0 so that the ball B((12 ,
1
2 ,

1
2 ), ε) is contained in the region

z ≥ x ≥ y. Currently, we do not know how to modify the approach to be able to handle these two difficulties.

5 Conjectures and open problems
Based on Section 3 we pose the following conjectures and open problems:

(1) The family of lattices determined by (4) exists for all p ∈ (1.58, log2 3].
(2) The lattices we found in the first regime, and the ones found by Jiao, Stillinger, and Torquato [10] in the

third and fourth regime give the densest lattice packings of superballs for the corresponding p.
(3) It would be interesting to develop a better understanding of the densest known lattices in the second

regime.
(4) Is there a value of p ̸=∞ for which the upper bound for translative packings of superballs determined

in [5] matches the corresponding lower bound?
(5) For p > log2 3 there are no lattices which fall into Case (II) or into Case (III).
(6) What is the largest value of p ≤ 2 so that the kissing number ofBp

3 superballs is strictly larger than 12?
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A Source code for the proof of Theorem 4.2
We used the following program written in Sage in the proof of Theorem 4.2.

def f(p,x,y,z):
return vector([x^p+y^p+z^p-1, (x-y)^p+(z-x)^p+(y+z)^p-1, 3*(-x+y+z)^p-1])

def Df(p,x,y,z):
pm = p-1
return p*Matrix([[x^pm, y^pm, z^pm],

[(x-y)^pm-(z-x)^pm, -(x-y)^pm+(y+z)^pm, (z-x)^pm+(y+z)^pm],
[-3*(-x+y+z)^pm, 3*(-x+y+z)^pm, 3*(-x+y+z)^pm]])

def linfinitynorm(A):
return max([A.row(0).norm(1),A.row(1).norm(1),A.row(2).norm(1)])

def verify(p0,x0,y0,z0,eps,peps):
p = RIF(p0,p0+peps)
x = RIF(x0-eps,x0+eps)
y = RIF(y0-eps,y0+eps)
z = RIF(z0-eps,z0+eps)
T = Df(p0,x0,y0,z0)^(-1)
A = Df(p,x,y,z)*T - identity_matrix(3)
lhs = linfinitynorm(A)
rhs = 1 - linfinitynorm(T)*f(p,x0,y0,z0).norm(infinity)/eps
print(lhs.str(style=’brackets’)+’<’+rhs.str(style=’brackets’)+’:’+str(lhs < rhs))

B Examples of choices made in the proof of Theorem 4.2
verify(1.0, 0.333333333333, 0.166666666667, 0.5, 0.03, 0.01)
verify(1.01, 0.336543320255, 0.169227330456, 0.504294897412, 0.03, 0.01)
verify(1.02, 0.339721855623, 0.171809715243, 0.508503843298, 0.03, 0.01)

...

verify(1.5, 0.475292821919, 0.375983627555, 0.580059051165, 0.03, 0.01)
verify(1.51, 0.47822053429, 0.384961182567, 0.576346694842, 0.03, 0.01)
verify(1.52, 0.481163698665, 0.394556223383, 0.572012690078, 0.006, 0.001)
verify(1.521, 0.48145875646, 0.395553814361, 0.571540873724, 0.006, 0.001)
verify(1.522, 0.481753934423, 0.396558835694, 0.571061553436, 0.006, 0.001)
verify(1.523, 0.482049228267, 0.39757142775, 0.570574584849, 0.006, 0.001)

...

verify(1.577, 0.497880292399, 0.472696125604, 0.523437325276, 0.006, 0.001)
verify(1.578, 0.498157887988, 0.475000219764, 0.521630841401, 0.006, 0.001)
verify(1.579, 0.498433446144, 0.477421354522, 0.519705097786, 0.006, 0.001)
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