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Coloring the Voronoi tessellation of lattices

Mathieu Dutour Sikirić, David A. Madore, Philippe Moustrou and Frank Vallentin

Abstract

In this paper we define the chromatic number of a lattice: It is the least number of colors one
needs to color the interiors of the cells of the Voronoi tessellation of a lattice so that no two cells
sharing a facet are of the same color.

We compute the chromatic number of the root lattices, their duals, and of the Leech lattice,
we consider the chromatic number of lattices of Voronoi’s first kind, and we investigate the
asymptotic behavior of the chromatic number of lattices when the dimension tends to infinity.

We introduce a spectral lower bound for the chromatic number of lattices in spirit of Hoffman’s
bound for finite graphs. We compute this bound for the root lattices and relate it to the character
theory of the corresponding Lie groups.
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1. Introduction

Let Λ ⊆ Rn be an n-dimensional lattice in n-dimensional Euclidean space. One can tessellate
space by lattice translates of the lattice’ Voronoi cell, which is defined as

V (Λ) = {x ∈ Rn : ‖x‖ � ‖x− v‖ for all v ∈ Λ}.
By V (Λ)◦ we denote the topological interior of V (Λ). Now we consider translates v + V (Λ)◦,
with v ∈ L, as colored tiles of an n-dimensional mosaic in which one has infinitesimal small
interstices between the mosaic tiles. How many colors does one need at least to get a colorful
mosaic? In a colorful mosaic two neighboring tiles receive different colors. This defines the
chromatic number χ(Λ) of the lattice.
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Figure 1 (colour online). Optimal coloring of the hexagonal lattice, χ(A2) = 3.

More formally, we can also define the chromatic number of a lattice in graph-theoretical
terms: Two distinct lattice translates of Voronoi cells v + V (Λ) and w + V (Λ), with v �= w, are
defining neighboring tiles whenever they share a facet, that is, their intersection is a polytope
of maximal dimension n− 1. The differences v − w are called strict Voronoi vectors and the set
of these vectors is denoted by Vor(Λ). Now the chromatic number of Λ equals the chromatic
number of the Cayley graph on the additive group Λ with generating set Vor(Λ):

χ(Λ) = χ(Cayley(Λ,Vor(Λ))).

Here, the set of vertices of the Cayley graph are all elements of Λ and two vertices v, w are
adjacent whenever the difference v − w lies in the set of strict Voronoi vectors Vor(Λ). Note
that the Cayley graph is an r-regular infinite graph with r = |Vor(Λ)|.

In Section 2.1 we recall all the definitions and properties of lattices, their Voronoi cells, and
the Voronoi vectors, which we need later.

The chromatic number of a lattice seems to be a natural parameter. However, to the best of
the authors’ knowledge, see [39] and [25], χ(Λ) has not been considered before. The aim of this
paper is to start a systematic investigation of it. Then, the following questions immediately
come to mind.

1.1. Determination of the chromatic number

What is the chromatic number of some interesting lattices? How to find lower and upper
bounds? Is there an algorithm to determine χ(Λ) for a given lattice Λ?

For instance, it is obvious that the chromatic number of the integer lattice Zn is two, an
optimal coloring is given by the black/white checkerboard pattern; see also Theorem 2.5.

We discuss simple lower and upper bounds for the chromatic number of a general lattice in
Sections 2.2 and 2.3. For instance, we show that χ(Λ) is at most 2n.

All two- and 3-dimensional lattices are of Voronoi’s first kind. We consider the chromatic
number of this class of lattices in Section 3 where we compute the chromatic number of all
3-dimensional lattices. It would be interesting to have a better understanding of the chromatic
number of this class of lattices.

One of the most important classes of lattices are the root lattices. We recall the definitions
and classification in Section 2.4. One main result of our paper is the determination of the
chromatic number of all root lattices and their duals. Table 1 summarizes our results.

Note that we currently do not know the numerical value of χ(Dn). We only know that it is
equal to the chromatic number of the (finite) vertex–edge graph of the half-cube polytope

1
2
Hn = conv

{
x ∈ {0, 1}n :

n∑
k=1

xk is even

}
,
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which at the moment is only known up to dimension n = 9: For n = 4,5,6,7,8,9 we have
χ( 1

2Hn) = 4, 8, 8, 8, 8 and 13 (see [35]).
For the proof we use a generalization of a lower bound for the chromatic number of finite

graphs originally due to Hoffman [28]. Hoffman’s bound is based on spectral considerations:
Let A ∈ RV×V be the adjacency matrix of a finite graph G = (V,E). Let m(A) be the smallest
eigenvalue of A and, respectively, let M(A) be the largest eigenvalue of A, then

χ(G) � 1 − M(A)
m(A)

.

Bachoc, DeCorte, Oliveira, and Vallentin [2] showed how to generalize the spectral bound (and
its weighted variant due to Lovász [38]) from finite to infinite graphs. In Section 5.1 we review
this generalization and specialize it to χ(Λ). Here, classical Fourier analysis is used. We show
in Corollary 5.2 that

χ(Λ) � 1 −
⎛⎝ inf

x∈Rn

1
|Vor(Λ)|

∑
u∈Vor(Λ)

e2πiu·x

⎞⎠−1

,

holds.
In Section 5 we compute this bound for all irreducible root lattices. Surprisingly, the result

of this computation can already be found in an Oberwolfach report by Serre [49] albeit in a
different language and with a different motivation. In his report Serre computed all critical
values of the characters of the adjoint representation of compact Lie groups. However, the
report does not contain proofs. In Section 5.2 we provide proofs for the easy cases An and
Dn. The cases E6, E7, and E8 are much harder and we give Serre’s proof in Appendix B after
recalling relevant facts about compact Lie groups in Appendix A. We sketch an alternative,
computational proof, which is based on optimization, in particular using sum of squares for
the cases E7 and E8 at the end of Section 5.2. The case E6 is easier and does not require
computer assistance.

Then, in Section 6, we construct several efficient colorings of irreducible root lattices.
It would be nice to know the chromatic number of more important lattices. Following

the book [14] by Conway and Sloane the next candidates, one should consider are the 12-
dimensional Coxeter–Todd lattice K12 and the 16-dimensional Barnes–Wall lattice BW16. We
expect that the spectral lower bound gives a close approximation to the chromatic number.

We show in Section 4.1 that the chromatic number of the Leech lattice Λ24 in 24 dimensions
is 4096. This is a consequence of the sphere packing optimality of Λ24. It would be nice to have
an independent (spectral) proof of this fact.

Table 1. The chromatic number of important lattices, in particular the (irreducible) root lattices
and their duals.

Lattice Chromatic number

Zn 2 Section 1, Theorem 2.5, Section 3
An n + 1 Theorem 3.6, Theorem 5.3
A∗
n n + 1 Theorem 3.6

Dn χ( 1
2
Hn) Theorem 6.1

D∗
n 4 Section 1

E6 9 Section 5.2.4, Theorem 6.3, Theorem B.2
E∗

6 16 Theorem 6.4
E7 14 Section 5.2.3, Theorem 6.3, Theorem B.4
E∗

7 16 Theorem 6.4
E8 16 Section 4.1, Section 5.2.3, Theorem 6.3, Theorem B.3
Λ24 4096 Section 4.1
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Going back to general lattices: At the moment we do not know whether there is a finite
algorithm to compute the chromatic number of a lattice which is given for example by a basis.
Determining the strict Voronoi vectors — and thus the Cayley graph Cayley(Λ,Vor(Λ)) and
the Voronoi cell V (Λ) — is possible by a finite algorithm, see, for example, [20], although
it can occupy exponential space (and therefore needs exponential time). The theorem of de
Bruijn and Erdös [10] implies that the chromatic number of Λ is equal to the largest chromatic
number of all finite subgraphs of Λ. This shows that the decision problem: “Is χ(Λ) � k?” is
at least semidecidable.

1.2. Generic and extremal behavior of the chromatic number

What is χ(Λ) of a random n-dimensional lattice? How fast can χ(Λ) grow depending on the
dimension n?

In Section 4.2 we prove that the chromatic number of a generic n-dimensional lattice grows
exponentially with the dimension. There we show that there are n-dimensional lattices Λn

with

χ(Λn) � 2 · 2(0.0990...−o(1))n.

It would be very interesting to understand the extremal behavior.

2. Background and first observations

2.1. Lattices, Voronoi cells, and Voronoi vectors

A lattice Λ is a discrete free Z-module in an n-dimensional Euclidean space. If its rank is
strictly lower than n, then Λ also defines a lattice in its linear span over R. We implicitly
identify these two lattices, and assume for the following definitions that Λ is a full-rank lattice
in Rn. We denote by Λ∗ the dual lattice of Λ:

Λ∗ = {x ∈ Rn : x · y ∈ Z for all y ∈ Λ},
where x · y denotes the standard Euclidean scalar product between x and y. A fundamental
region of Λ is a region R ⊂ Rn such that for any u �= v ∈ Λ, the volume of (u + R) ∩ (v + R)
is 0, and Rn =

⋃
v∈Λ(v + R). The volume vol(Rn/Λ) of Λ is defined as the volume of any of

its fundamental region. A fundamental region of particular interest is the Voronoi cell of Λ:

V (Λ) = {x ∈ Rn : ‖x‖ � ‖x− v‖ for all v ∈ Λ}.
A vector u ∈ Λ \ {0} is called a strict Voronoi vector, or sometimes a “relevant” vector, if the
intersection (u + V (Λ)) ∩ V (Λ) is a facet, a face of dimension n− 1, of V (Λ). By a well-known
characterization of Voronoi (see for example [14, Chapter 21, Theorem 10] or [13]), the set of
these vectors is

Vor(Λ) = {u ∈ Λ \ {0} : ±u only shortest vectors in u + 2Λ}. (1)

Now the chromatic number of Λ equals the chromatic number of the Cayley graph on the
additive group Λ with generating set Vor(Λ):

χ(Λ) = χ(Cayley(Λ,Vor(Λ))).

Here, the set of vertices of the Cayley graph are all elements of Λ and two vertices v, w are
adjacent whenever the difference v − w lies in the set of strict Voronoi vectors Vor(Λ).
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2.2. Simple upper bounds for the chromatic number

One can color a lattice Λ periodically by using translates of one of its sublattices Λ′ which
does not contain Voronoi vectors. More precisely it is enough to color the vertices of the graph
G = (V,E) with

V = Λ/Λ′ and E = {{v + Λ′, w + Λ′} : v − w + u ∈ Vor(Λ) for some u ∈ Λ′}.

This immediately gives the following upper bound on χ(Λ).

Lemma 2.1. Let Λ′ ⊂ Λ be a sublattice of Λ with Λ′ ∩ Vor(Λ) = ∅. Then, χ(Λ) is at most
|Λ/Λ′|.

Sometimes, we can improve this bound by coloring the vertices of the graph G = (V,E)
greedily. This shows, see, for example, [6, Chapter V.1], that

χ(Λ) � χ(G) � Δ(G) + 1, (2)

where Δ(G) is the largest degree of a vertex in G.
Now we take Λ′ = 2Λ. Lemma 2.1 implies that χ(Λ) � 2n. If the number of Voronoi vectors

is not maximal, if |Vor(Λ)| < 2(2n − 1), then we can improve this bound by using (2).

Lemma 2.2. The chromatic number of Λ is at most |Vor(Λ)|/2 + 1.

For generic lattices, the number of Voronoi vectors is 2(2n − 1), so that Lemma 2.2 also gives
an upper bound of 2n for the chromatic number of Λ.

2.3. Simple lower bounds for the chromatic number

For a general graph G one has χ(G) � χ(H) for every induced subgraph H of G. In particular,
when choosing H to be a largest complete subgraph of G, we have χ(G) � ω(G), where ω(G)
is the clique number of G.

Canonical finite induced subgraphs of Cayley(Λ,Vor(Λ)) are the vertex-edge graphs of
Delaunay polytopes of Λ. A Delaunay polytope of the lattice Λ is defined as follows: Let x
be a vertex of the Voronoi cell V (Λ). Consider all vectors v1, . . . , vm ∈ Λ so that x is contained
in all the translates v1 + V (Λ), . . . , vm + V (Λ). Then, the convex hull P = conv{v1, . . . , vm} of
v1, . . . , vm is a Delaunay polytope of Λ. Clearly, all edges of P lie in Vor(Λ).

Lemma 2.3. The chromatic number of a lattice Λ is at least the chromatic number of the
vertex–edge graph of any Delaunay polytope of Λ.

2.4. Root lattices and their duals

One of the most important classes of lattices are the root lattices. Assume that Λ ⊆ Rn is an
even lattice, that is, we have v · v ∈ 2Z for all v ∈ Λ. Lattice vectors v ∈ Λ with v · v = 2 are
called root vectors, or simply roots. A root latticeΛ ⊆ Rn is an even lattice which is spanned
by roots. Root lattices have been classified by Witt in 1941, see, for example, [22, Section 1.4],
and they are orthogonal direct sums of the irreducible root lattices An, Dn, E6, E7, and E8. The
strict Voronoi vectors of root lattices are precisely the root vectors [14, Chapter 21, § 3.A] (and,
in fact, this condition that only the shortest nonzero vectors are relevant characterizes root
lattices, see [47]). Also, the combinatorial description of the Voronoi cells of root lattices is well
known: it is described in more detail in [41]. Here we recall the definitions of the irreducible
root lattices and their duals.
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Living inside the hyperplane Π := {x ∈ Rn+1 :
∑n

k=0 xk = 0} (the coordinates being here
numbered 0 through n), the irreducible root lattice An is defined as

An =

{
x ∈ Zn+1 :

n∑
k=0

xk = 0

}
.

The dual lattice A∗
n naturally lives in the vector space Π∗ dual to Π, which can be identified

with the quotient of Rn+1 by the diagonal line {(t, . . . , t) : t ∈ R}. But we can identify Π∗ with
Π itself by choosing the representatives (x0, . . . , xn) of Rn+1 modulo the diagonal which belong
to Π.

For every n � 4, the irreducible root lattice Dn is defined as

Dn =

{
x ∈ Zn :

n∑
k=1

xk is even

}
and its dual lattice D∗

n equals
D∗

n = Zn ∪ ((1/2, . . . , 1/2) + Zn).
The root lattice E8 can be constructed as the union of two translates of the lattice D8:

E8 = D8 ∪ ((1/2, . . . , 1/2) + D8).
The lattice E8 is unimodular, that is, E∗

8 = E8. The lattice E7 (respectively, E6) can be defined
as a 7-dimensional (respectively, 6-dimensional) sublattice of E8:

E7 = {(x1, . . . , x8) ∈ E8 : x7 = x8}
and

E6 = {(x1, . . . , x8) ∈ E8 : x6 = x7 = x8}.
Then, if we define

u =
1
4
(1, 1, 1, 1, 1, 1,−3,−3) and v =

1
3
(0,−2,−2, 1, 1, 1, 1, 0),

the dual lattices of E7 and E6 are

E∗
7 = E7 ∪ (u + E7) and E∗

6 = E6 ∪ (v + E6) ∪ (−v + E6).

2.5. The chromatic number of an orthogonal sum of lattices

Eichler [24] showed that one can decompose every lattice as a pairwise orthogonal sum of
indecomposable lattices and that this decomposition is unique up to permutation of the
summand; Kneser [34] gave a constructive and much simpler proof of Eichler’s result.

We prove that the chromatic number of a lattice is the maximum of the chromatic numbers
of its orthogonal summands.

This reduces in particular the study of the chromatic number of root lattices to the irreducible
root lattices An, Dn, E6, E7, and E8.

Lemma 2.4. Let Λ ⊆ Rn be a lattice which can be written as the orthogonal direct sum of
lattices Λ1, . . . ,Λm ⊆ Rn:

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm, with m ∈ N,

so that every lattice vector v ∈ Λ can be uniquely decomposed as v = v1 + · · · + vm with vi ∈ Λi

and vi is orthogonal to vj whenever i �= j. Then,

Vor(Λ) =
m⋃
i=1

Vor(Λi).

Proof. By induction, we may assume that Λ = Λ1 ⊥ Λ2.
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Every v ∈ Vor(Λ) we can write as v = v1 + v2 with vi ∈ Vi. If both v1 and v2 are nonzero,
then w = v1 − v2 is different from ±v. It lies in v + 2Λ and satisfies ‖w‖ = ‖v‖, yielding a
contradiction. So v = vi for i ∈ {1, 2}. In particular, ±vi must be the only minimal vectors in
vi + 2Λi, so that v ∈ Vor(Λi).

Conversely, let, for instance, v1 ∈ Vor(Λ1), and let w ∈ v1 + 2Λ. Let us write w = v1 +
2(u1 + u2) = (v1 + 2u1) + 2u2 for ui ∈ Λi. Since v1 ∈ Vor(Λ1), we have ‖v1 + 2u1‖ � ‖v1‖, with
equality if and only if v1 + 2u1 = ±v1. Thus,

‖w‖2 = ‖v1 + 2u1‖2 + ‖2u2‖2 � ‖v1 + 2u1‖2 � ‖v1‖2

with equality if and only if u2 = 0 and v1 + 2u1 = ±v1, namely, w = ±v1. So v1 ∈ Vor(Λ). �

Theorem 2.5. Let Λ be a lattice such that

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm, with m ∈ N.
Then,

χ(Λ) = max
i∈{1,...,m}

χ(Λi).

Proof. We again assume Λ = Λ1 ⊥ Λ2.
By Lemma 2.4, Vor(Λ) = Vor(Λ1) ∪ Vor(Λ2), and so Cayley(Λ,Vor(Λi)) is a subgraph of

Cayley(Λ,Vor(Λ)). Hence, χ(Λ) � max{χ(Λ1), χ(Λ2)}.
Conversely, let k = max{χ(Λ1), χ(Λ2)}. By definition, for i ∈ {1, 2}, there is a proper coloring

ci : Λi → Z/kZ such that if vi − v′i ∈ Vor(Λi), then ci(vi) �= ci(v′i). We shall show that

c : Λ → Z/kZ

v1 + v2 �→ c1(v1) + c2(v2) mod k

is a proper coloring of Λ. For this let u, v ∈ Λ such that v = u + w with w ∈ Vor(Λ). Following
Lemma 2.4, w ∈ Vor(Λ1) ∪ Vor(Λ2). Assume, for instance, that w = w1 ∈ Vor(Λ1). Then, we
write u = u1 + u2 with ui ∈ Λi, and

c(v) = c1(u1 + w1) + c2(u2) �= c1(u1) + c2(u2) = c(u) mod k.

So c is a proper coloring of Λ and χ(Λ) � k. �

3. On the chromatic number of lattices of Voronoi’s first kind

In this section we give lower and upper bounds for the chromatic number of lattices of Voronoi’s
first kind. Lattices of Voronoi’s first kind form a nice class of lattices: All lattices in dimensions
2 and 3 belong to this class as well as An and A∗

n. Our lower and upper bounds coincide for all
these cases. For dimension 4 and greater the bounds can differ. We like to pose the question
of computing the chromatic number of a lattice of Voronoi’s first kind as an open problem.

3.1. Definitions and first examples

Lattices of Voronoi’s first kind are treated in detail for example in [15]. Here we start by
collecting some facts about them.

Definition 3.1. A lattice Λ is called a lattice of Voronoi’s first kind if it admits an obtuse
superbasis: There exist lattice vectors v0, v1, . . . , vn such that:

(1) the set {v1, . . . , vn} forms a basis of Λ,
(2) we have v0 + v1 + · · · + vn = 0,
(3) for every 0 � i < j � n, the vectors vi and vj enclose an obtuse angle, vi · vj � 0.
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The lattices An and A∗
n are of Voronoi’s first kind. The lattice An possesses an obtuse

superbasis. Let e1, e2, . . . , en+1 be the canonical basis of Rn+1. For 1 � i � n, let vi = ei − ei+1,
and let v0 = en+1 − e1. Then {v0, . . . , vn} is an obtuse superbasis of An. The dual lattice A∗

n

possesses a strictly obtuse superbasis. Let

v0 =
(
− n

n + 1
,

1
n + 1

, . . . ,
1

n + 1

)
, . . . , vn =

(
1

n + 1
, . . . ,

1
n + 1

,− n

n + 1

)
.

Then {v0, . . . , vn} is an obtuse superbasis:

vi · vj = −1 for every 0 � i < j � n.

If Λ is a lattice of Voronoi’s first kind, then it is known (see [15]) that

Vor(Λ) ⊆
{
vI =

∑
i∈I

vi : I ⊆ {0, . . . , n}, I �= ∅, I �= {0, . . . , n}
}
.

This immediately gives an upper bound for the chromatic number.

Lemma 3.2. Let Λ be a lattice of Voronoi’s first kind, with an obtuse superbasis {v0, . . . , vn}.
Then, χ(Λ) is at most n + 1.

Proof. By definition {v1, . . . , vn} is a basis of Λ. Let us show that the linear map

c : Λ → Z/(n + 1)Z

n∑
i=1

xivi �→
n∑

i=1

xi mod (n + 1)

is a proper coloring of Λ. Because of linearity it is enough to check that it does not vanish on
the strict Voronoi vectors. Let vI be such a vector. If 0 ∈ I we replace vI by −vI = v{0,...,n}\I
(by Definition 3.1 (2)) to make sure that 0 /∈ I. Since I is nontrivial, 0 < |I| < n + 1. In other
words, c(vI) �= 0. �

With this lemma it is easy to see that the chromatic numbers of An and of its dual A∗
n are

both equal to n + 1. For An and for every 1 � i < j � n, the vector v{i,i+1,...,j} = ei − ej+1 is
a minimal vector, and thus is a strict Voronoi vector. So,

{0, v{1}, v{1,2}, . . . , v{1,...,n}} (3)

is a clique in Cayley(An,Vor(An)) and so χ(An) � n + 1. For A∗
n we know (see [15]) that every

vI is a strict Voronoi vector. Again, (3) is a clique, and χ(A∗
n) � n + 1.

3.2. Interpretation in terms of graphs and more general results

In order to get a better understanding of the chromatic number of lattices of Voronoi’s first
kind, we need to know which vectors vI are strict Voronoi vectors.

Let Λ be a lattice of Voronoi’s first kind with superbasis {v0, . . . , vn}.

Definition 3.3. The Delaunay graph D(Λ, {v0, . . . , vn}) is an undirected graph with vertex
set {0, . . . , n} and where i and j are connected by an edge whenever vi · vj < 0.

The combinatorics of the Delaunay graph D(Λ, {v0, . . . , vn}) determines the Cayley graph
Cayley(Λ,Vor(Λ)). Recall some standard terminology in graph theory. Let G = (V,E) be a
graph, a subset of the vertex set U ⊆ V defines a cut by

δ(U) = {e ∈ E : |e ∩ U | = 1}.
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Figure 2 (colour online). Constructing a clique in Cayley(Λ,Vor(Λ)) from the Delaunay graph
D(Λ, {v0, . . . , vn}).

The strict Voronoi vectors of Λ are the vI such that the cut δ(I) is minimal with respect to
inclusion, see, for example, [20] or [52]. The minimal cuts are also known to be the ones such
that, when removing the edges of the cut, the number of connected components in the graph
increases by one.

A connected graph G = (V,E) is called biconnected (a block) if it remains connected when
we remove any of its vertices. One can decompose every connected graph into biconnected
components (block decomposition). The set of edges E can be uniquely written as a disjoint
union E =

⋃m
i=1 Ei such that the subgraph Gi of G induced by Ei is a maximal biconnected

subgraph of G. Let Gi, with i = 1, . . . ,m, be the biconnected components of the Delaunay graph
D(Λ, {v0, . . . , vn}). Then, there exist lattices Λi of Voronoi’s first kind with obtuse superbasis
Bi such that

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm and D(Λi,Bi) = Gi

holds, see, for example, [45, Chapter 4, Chapter 5]. Then Theorem 2.5 and Lemma 3.2 yield
the following upper bound for the chromatic number of Λ.

Corollary 3.4. Let Λ be a lattice of Voronoi’s first kind with obtuse superbasis
{v0, . . . , vn}. Let Gi, 1 � i � m, be the biconnected components of the Delaunay graph
D(Λ, {v0, . . . , vn}). Then,

χ(Λ) � max
i=1,...,m

|V (Gi)| + 1.

Now we go for lower bounds. Recall that a cycle in a graph is a collection of vertices i1, . . . , il
such that |{i1, . . . , il}| = l and such that ij is connected to ij+1, where indices are computed
modulo l. Its length is equal to l.

Theorem 3.5. Let Λ be a lattice of Voronoi’s first kind with obtuse superbasis {v0, . . . , vn}.
Then, the chromatic number of Λ is at least the maximal length of a cycle in the Delaunay
graph D(Λ, {v0, . . . , vn}).

Proof. Up to a permutation of the indices, we may assume that {0, 1, . . . , σ − 1} is a cycle
C in D(Λ, {v0, . . . , vn}). We shall construct a clique of Cayley(Λ,Vor(Λ)) of size σ.

For any k in {0, . . . , n}, we say that c ∈ C is a connector between k and C if there exists
a path γ = (k1 = k, k2, . . . , ks = c) in D(Λ, {v0, . . . , vn}) such that c is the only vertex on the
path that belongs to C.

Let 0 � � � σ − 1. We define the set I� as the subset of all vertices k in {0, . . . , n} such that
every connector from k to C is in {0, 1, . . . , �}. In particular, for � = σ − 1, Iσ−1 = {0, . . . , n}.
An example is depicted in Figure 2. Then, if we define u� = vI� for all 0 � � � σ − 1, then for
every 0 � i < j � σ − 1,

uj − ui = vIj\Ii .

In order to show that the set {u1, u2, . . . , uσ} is a clique in Cayley(Λ,Vor(Λ)), we need to
prove that for every 0 � i < j � σ − 1, the vector vIj\Ii is in Vor(Λ). Equivalently, since
D(Λ, {v0, . . . , vn}) is connected, we need to check that both Ij \ Ii and its complementary
in {0, . . . , n} induce connected subgraphs of D(Λ, {v0, . . . , vn}).
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Figure 3. In the inequality σ � χ � n + 1, both bounds can be sharp.

Take k in Ij \ Ii. Since k is not in Ii, there is a connector between k and C which is not
in {0, . . . , i}; but since k is in Ij , this connector must be in {i + 1, . . . , j}. So k, as well as all
the vertices in this path, are in Ij \ Ii and are connected to {i + 1, . . . , j}, which is obviously
connected and included in Ij \ Ii. Regarding the complementary set, take k not in Ij \ Ii. Then
either k is not in Ij , and there is a connector between k and C in {j + 1, . . . , σ − 1}, or k is in
Ii, and every connector between k and C is in {0, . . . , i}. Thus for every such k, one can find
a path made of vertices not in Ij \ Ii, going to {j + 1, . . . , σ − 1} ∪ {0, . . . , i}. �

Theorem 3.6. χ(An) = χ(A∗
n) = n + 1.

Proof. For A∗
n the Delaunay graph D(A∗

n, {v0, . . . , vn}) is the complete graph Kn+1. For An

the Delaunay graph D(An, {v0, . . . , vn}) is a cycle of length n + 1. In both cases, our upper
bound and lower bound coincide. �

Example 3.7. In general, our upper bound differs from the lower bound. Both bounds can
be attained: On the left of Figure 3, the longest cycle has size 4 and one can find a coloring of
the corresponding 5-dimensional lattice with four colors, whereas the lattice associated with the
graph depicted on the right of Figure 3, whose longest has size 5, has chromatic number 6. This
can be seen by computing the chromatic number of a small subgraph of Cayley(Λ,Vor(Λ)).

3.3. Application: the chromatic number of 3-dimensional lattices

Every lattice in dimensions 2 and 3 is of Voronoi’s first kind, see [15]. We can compute the
chromatic number of these lattices by applying our bounds which coincide in these cases, see
Table 2.

Table 2. The chromatic number of 3-dimensional lattices.
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4. Sphere packing lower bounds

In this section we prove lower bounds for the chromatic number of a lattice by considering
connections to the classical sphere packing problem.

A subset P of Rn defines a packing of unit spheres if the distance between all pairs of distinct
points in P is at least 2. Define the center density of P as the number of points in P per unit
volume, more precisely the (upper) center density of P is defined as

δ(P) = lim sup
R→∞

|P ∩ [−R,R]n|
vol[−R,R]n

,

where [−R,R]n is the regular n-dimensional cube with side length 2R. The largest center
density of a packing of unit spheres in Rn is

δRn = sup{δ(P) : P ⊆ Rn defines a packing of unit spheres}.

Theorem 4.1. Let Λ be an n-dimensional lattice which defines a packing of unit spheres.
Let ρ be a positive real number so that all strict Voronoi vectors of Λ have length strictly less
than ρ. Then,

χ(Λ) �
(ρ

2

)n δ(Λ)
δRn

.

Proof. Suppose that the chromatic number of Λ equals k. Then one can decompose Λ into
k color classes C1, . . . , Ck. We may assume that the first color class C1 has the largest density
among these color classes. In particular, inequality

kδ(C1) � δ(Λ)

holds. Then for all v, w ∈ C1 with v �= w we have ‖v − w‖ � ρ. Hence, 2
ρC1 defines a packing

of unit spheres. So,

δRn � δ

(
2
ρ
C1

)
=
(ρ

2

)n
δ(C1),

and the claim of the theorem follows by combining the two inequalities above. �

The following lemma gives a lower bound for ρ.

Lemma 4.2. Let Λ be an n-dimensional lattice which defines a packing of unit spheres. If
v ∈ Λ \ {0} is not a strict Voronoi vector, then ‖v‖ �

√
8.

Proof. By Voronoi’s characterization of strict Voronoi vectors (1), there is a lattice vector
w ∈ v + 2Λ with w �= ±v and ‖w‖ � ‖v‖. We may assume that v · w � 0; otherwise, we replace
w by its negative −w. Define u = 1

2 (v − w) ∈ Λ \ {0}. Then,

4‖u‖2 = ‖v − w‖2 = ‖v‖2 − 2v · w + ‖w‖2 � ‖v‖2 + ‖w‖2 � 2‖v‖2.

So, ‖v‖ �
√

2‖u‖ �
√

8, since ‖u‖ � 2. �

4.1. First application: chromatic number of E8 and of the Leech lattice

Theorem 4.3. The chromatic number of the Leech lattice Λ24 equals 4096.

Proof. It is known that the strict Voronoi vectors of Λ24 are all vectors v ∈ Λ24 with v · v ∈
{4, 6}, see [14]. Dong, Li, Mason, and Norton showed [18, Theorem 4.1] that one can find an
isometric copy of

√
2Λ24 as a sublattice Γ of Λ24; in [43] Nebe and Parker classified all 16
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orbits of such sublattices under the action of the automorphism group of Λ24. Clearly, such a
sublattice Γ has index 212 = 4096 and any nonzero vector v in this sublattice satisfies v · v � 8.
Hence, we can color Λ24 by using the 4096 cosets v + Γ as color classes, with v ∈ Λ24. Thus,
χ(Λ24) � 4096.

For the lower bound, we apply Theorem 4.1. The Leech lattice defines the densest sphere
packing in dimension 24, see [12], δ(Λ24) = δR24 . We can apply Theorem 4.1 with ρ =

√
8 and

get

χ(Λ24) �
(√

8
2

)24

= 4096. �

Similarly, one can show χ(E8) = 16 by using the fact that E8 is the densest sphere packing
in dimension 8, see [55].

4.2. Second application: exponential growth of the chromatic number

In this section we investigate the asymptotic behavior of the chromatic number of lattices when
the dimension tends to infinity.

For a lattice Λ ⊂ Rn, we denote by μ = μ(Λ) the norm of its smallest nonzero vector. Then
2
μΛ defines a packing of unit spheres, and we extend the notation δ(Λ) for the center density
of this packing by

δ(Λ) := δ

(
2
μ

Λ
)

=
1

vol
(
Rn/( 2

μΛ)
) =

μn

2n · vol(Rn/Λ)
.

The best upper bound known for δRn is the Kabatiansky–Levenshtein bound, [30], which
states

δRn � 2(−0.5990...+o(1))n · V −1
n ,

where Vn is the volume of the n-dimensional unit ball. So by using Theorem 4.1 and Lemma 4.2,
we get, for any lattice Λ ⊂ Rn,

χ(Λ) � (
√

2)n · 2(0.5990...−o(1))n · Vn · δ(Λ) = 2(1.0990...−o(1))n · Vn · δ(Λ). (4)

Let us now recall Siegel’s mean value theorem (see [50]): For any lattice Λ ⊂ Rn and any
r > 0, we denote by NΛ(r) the number of nonzero lattice vectors of Λ in the open ball B(r)
having radius r. The Siegel mean value theorem states that the expected value of NΛ(r) in a
random lattice Λ of volume 1 is

E[NΛ(r)] = vol(B(r)).

To compute the expectation one uses the Haar measure on SLn(R)/SLn(Z).
This equality implies two remarkable consequences: First, by choosing rn such that

vol(B(rn)) = 2, it proves the existence of a lattice Λn with strictly less than two nonzero
vectors in B(rn). Since such a vector would come with its opposite, the minimum of Λn has to
be at least rn, and therefore the density of Λn satisfies

δ(Λn) �
(rn

2

)n
=

vol(B(rn))
2n · Vn

=
2

2n · Vn
,

which essentially is the Minkowski–Hlawka lower bound for lattice sphere packings (see [27]).
The second consequence concerns the density of a random lattice: Let us fix ε > 0, and rn
such that vol(B(rn)) = 2 · (1 + ε)−n. Following the previous idea, whenever NΛn

(rn) < 2, the
density of Λn satisfies

δ(Λn) � 2
(2(1 + ε))n · Vn

.
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By using Siegel’s mean value theorem and Markov’s inequality, we prove that this happens
with high probability when n grows:

P[NΛn
(rn) � 2] � E[NΛn

(rn)]
2

=
1

(1 + ε)n
→ 0,

if n tends to infinity.
Combined with (4), these observations provide:

Theorem 4.4. With high probability, the chromatic number of a random n-dimensional
lattice grows exponentially in n. Moreover, there are n-dimensional lattices Λn with

χ(Λn) � 2 · 2(0.0990...−o(1))n.

Note that the Minkowski–Hlawka lower bound has been improved, in such a way that the
constant 2 in the numerator could be replaced with some quasi-linear function in n, see [48],
[4], [53], [54]. Even though any random lattice should be dense, and consequently should have
an exponential chromatic number, to date there is no efficient way to construct such a lattice:
The only algorithms for this purpose run in exponential time with respect to the dimension
(see [42]).

However, explicit examples of subexponential growth are known. For n � 3 the cut polytope
CUTn (see [17]) is an n(n− 1)/2-dimensional polytope which is a Delaunay polytope of lattice
(see [16]). The vertex–edge graph of CUTn is the complete graph on 2n−1 vertices. Thus we
get an infinite family of Delaunay polytope with chromatic number lower bounded by 2O(

√
n).

We think that it is an interesting question to construct explicit families of lattices whose
chromatic number grows exponentially with the dimension.

5. Spectral lower bounds

In this section we derive a lower bound for the chromatic number of a lattice where we apply the
generalization of Hoffman’s bound as developed by Bachoc, DeCorte, Oliveira, and Vallentin
[2]. In Section 5.1 we recall some terminology and facts from [2]. Then we compute the spectral
bound for the irreducible root lattices case by case in Section 5.2. Table 3 summarizes the
results obtained.

5.1. Setup

For an n-dimensional lattice Λ ⊆ Rn define the (complex) Hilbert space

�2(Λ) =

{
f : Λ → C :

∑
u∈Λ

|f(u)|2 < ∞
}

Table 3. The spectral lower bounds on the chromatic number for the irreducible root lattices.

Lattice Spectral lower bound

An n + 1 Theorem 5.3
Dn n, when n even Theorem 5.4

n + 1, when n odd Theorem 5.4
E6 9 Theorem B.2, Section 5.2.4
E7 10 Theorem B.4, Section 5.2.3
E8 16 Theorem B.3, Section 5.2.3
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which has inner product

〈f, g〉 =
∑
u∈Λ

f(u)g(u).

The convolution of two elements f, g ∈ �2(Λ) is f ∗ g ∈ �2(Λ) defined by

(f ∗ g)(v) =
∑
u∈Λ

f(u)g(v − u).

Assume that μ ∈ �2(Λ) is real-valued, that its support is contained in Vor(Λ), and that it
satisfies μ(v) = μ(−v) for all v ∈ Λ. Consider the convolution operator

Aμ : �2(Λ) → �2(Λ)

defined by

Aμf(v) =
∑

u∈Vor(Λ)

μ(u)f(v − u) = (μ ∗ f)(v).

In a certain sense, Aμ is a weighted adjacency operator of Cayley(Λ,Vor(Λ)). It is easy to
verify that Aμ is a bounded and self-adjoint operator. Its numerical range is

W (Aμ) = {〈Aμf, f〉 : f ∈ �2(Λ), 〈f, f〉 = 1}.
The numerical range is known to be an interval in R. By

m(Aμ) = inf{〈Aμf, f〉 : f ∈ �2(Λ), 〈f, f〉 = 1},
M(Aμ) = sup{〈Aμf, f〉 : f ∈ �2(Λ), 〈f, f〉 = 1}

we denote the endpoints of the interval W (Aμ).
We say that a subset I ⊆ Λ is an independent set of the operator Aμ if 〈Aμf, f〉 = 0 for each

f ∈ �2(Λ) which vanishes outside of I. The chromatic number of Aμ is the smallest number k
so that one can partition Λ into k independent sets. By [2, Theorem 2.3] one has the following
lower bound for χ(Aμ):

1 − M(Aμ)
m(Aμ)

� χ(Aμ).

Since every independent set of Cayley(Λ,Vor(Λ)) is also an independent set of the operator
Aμ, we see that

χ(Aμ) � χ(Cayley(Λ,Vor(Λ))) = χ(Λ).

Therefore, we are interested in determining the parameters m(Aμ) and M(Aμ) and in
choosing μ so that the bound becomes as large as possible.

For determining m(Aμ) and M(Aμ) for a given convolution operator Aμ, we apply standard
facts from Fourier analysis, in particular the Parseval identity, the theorem of Riesz–Fischer,
and the fact that the Fourier transform of a convolution is a product.

The only nonstandard item here is that in standard texts on Fourier analysis, see, for
example, [21], the role of primal and dual spaces is interchanged. In order not to confuse the
reader (and to some extend not to confuse the authors) we consider a new n-dimensional lattice
Γ. In our context Γ will play the role of the dual lattice Λ∗. When Γ = Λ∗, then Γ∗ = (Λ∗)∗ = Λ.

Consider the Hilbert space of square-integrable Γ-periodic functions

L2(Rn/Γ) =

{
F : Rn/Γ → C :

∫
Rn/Γ

|F (x)|2 dx < ∞
}
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with inner product

(F,G) =
∫
Rn/Γ

F (x)G(x) dx,

where we normalize the Lebesgue measure dx so that the n-dimensional volume of a
fundamental domain vol(Rn/Γ) equals 1. The exponential functions

Ev : x �→ e2πiv·x with v ∈ Γ∗

form a complete orthonormal system for L2(Rn/Γ). We define the Fourier coefficient of F at v
by

F̂ (v) = (F,Ev) with v ∈ Γ∗.

By Parseval’s identity and by the Riesz–Fischer theorem, the map

̂: L2(Rn/Γ) → �2(Γ∗), F̂ (v) = (F,Ev)

is an isometry:

(F,G) = 〈F̂ , Ĝ〉 for all F,G ∈ L2(Rn/Γ).

We consider two functions f, g ∈ �2(Γ∗). By the isometry of ̂ there are functions F,G ∈
L2(Rn/Γ) with

F̂ = f and Ĝ = g.

Furthermore,

(f ∗ g)(v) = F̂ ·G(v).

Back to the lattice Λ = Γ∗ and the convolution operator Aμ. For μ = Ĝ, f = F̂ ∈ �2(Λ), we
have

G(x) =
∑

u∈Vor(Λ)

μ(u)e2πiu·x,

and

〈Aμf, f〉 = 〈μ ∗ f, f〉 = 〈Ĝ · F , F̂ 〉 = (GF,F )

=
∫
Rn/Λ∗

∑
u∈Vor(Λ)

μ(u)e2πiu·x|F (x)|2 dx.

Hence, by choosing two appropriate sequences (see [2, Section 3.1])) approximating the
corresponding Dirac measures, we see

m(Aμ) = inf

⎧⎨⎩ ∑
u∈Vor(Λ)

μ(u)e2πiu·x : x ∈ Rn/Λ∗

⎫⎬⎭,

M(Aμ) = sup

⎧⎨⎩ ∑
u∈Vor(Λ)

μ(u)e2πiu·x : x ∈ Rn/Λ∗

⎫⎬⎭.

We summarize our considerations in the following theorem.
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Theorem 5.1. Let Λ ⊆ Rn be an n-dimensional lattice. Suppose that μ ∈ �2(Λ) is real-
valued, μ(v) = μ(−v) for all v ∈ Λ, and the support of μ is contained in Vor(Λ). Then,

χ(Λ) � 1 −
sup

x∈Rn/Λ∗

∑
u∈Vor(Λ)

μ(u)e2πiu·x

inf
x∈Rn/Λ∗

∑
u∈Vor(Λ)

μ(u)e2πiu·x .

If we uniformly choose

μ(v) =

{
1/|Vor(Λ)|, for v ∈ Vor(Λ),
0, otherwise,

then the bound in the previous theorem simplifies to the following generalization of the Hoffman
bound for infinite graphs.

Corollary 5.2. Let Λ ⊆ Rn be an n-dimensional lattice. Then,

χ(Λ) � 1 −
⎛⎝ inf

x∈Rn/Λ∗

1
|Vor(Λ)|

∑
u∈Vor(Λ)

e2πiu·x

⎞⎠−1

.

5.2. Computing the spectral bound for irreducible root lattices

In this section we compute the lower bound given by Corollary 5.2 for each of the irreducible
root lattices. By the classification of Witt, these are the families of lattices An, Dn and the
three sporadic lattices E6, E7, and E8.

As recalled in Section 2.4, the set Vor(Λ) of strict Voronoi vectors for a root lattice Λ
is simply its set of roots. Now the latter constitutes a root system (sometimes known as a
“crystallographic” root system, but these are the only ones which we will consider): see A.9; the
root systems are themselves classified, [29, § 11], and the ones which arise from root lattices are
known as “simply laced” or “A-D-E” root systems. (We will review the simply laced irreducible
root systems below along with the corresponding lattices.)

Computing the lower bound of Corollary 5.2 for an irreducible root lattice is therefore
equivalent to finding the smallest value attained by the Fourier transform of a simply laced
irreducible root system. Here, a finite set Φ ⊆ Rn defines the function FΦ : x �→∑

u∈Φ e2πiu·x

on Rn which is the Fourier transform of the sum of delta measures concentrated on the elements
of Φ. Let us emphasize that since Φ is a (crystallographic!) root system, this function is, in
fact, a trigonometric polynomial; and since Φ is symmetric (Φ = −Φ), it is real.

Now this reformulation affords a link with representation theory (the required facts of which
are recalled in Appendix A). Namely, if Φ is a (reduced, but not necessarily simply laced)
root system of rank n, then the function n + FΦ is “essentially” the character of the adjoint
representation of the — say, simply connected — compact real Lie group GΦ associated with Φ
(namely SLn+1 in the case of An, or Spin2n in the case of Dn, or one of the exceptional Lie
groups E6,E7,E8 in the case of the correspondingly named E6,E7,E8); the precise statement
and explanation of why the two problems are equivalent is given in Proposition A.13.

The problem of computing our spectral lower bound is therefore essentially that of computing
the least value attained by the adjoint character of a simple compact real Lie group of type A-
D-E. The values in question have been considered and computed by Serre in [49, Theorem
3’]. In Table 3 we state Serre’s result in the form in which it is useful for the main part of
the paper.

Again, the equivalence of the result as stated here with that as stated in Serre’s note is
provided by Proposition A.13.
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Serre’s note does not contain a proof of the stated result.† In this paper we provide one for
the A-D-E case. We treat An and Dn in Theorem 5.3 and Theorem 5.4 below, and we defer
the case En to Appendix B. For E7 and E8 we suggest an alternative proof technique based on
sums of squares and semidefinite optimization in Section 5.2.3. Using the link to the chromatic
number of lattices, the case E6 turns out to be the easiest of the En cases. We treat it in
Section 5.2.4.

5.2.1. An. The irreducible root lattice An has n(n + 1) roots

R(An) = {er − es : 0 � r, s � n, r �= s},
where er denotes the rth standard unit vector in Rn+1.

Theorem 5.3. The critical values of FAn
are n(n + 1) and −(n + 1). In particular, χ(An) �

n + 1.

Proof. Given x ∈ Rn+1 such that x0 + · · · + xn = 0, we define z0, . . . , zn by zr = e2πixr , so
that z0 · · · zn = 1. The sum

S = FAn
(x) =

∑
u∈R(An)

e2πiu·x

is equal to

S =
∑
r 	=s

zr/zs

=
∑
r,s

zr/zs − (n + 1)

=

(∑
r

zr

)(∑
s

1/zs

)
− (n + 1)

=

(∑
r

zr

)(∑
s
zs

)
− (n + 1)

=

∣∣∣∣∣∑
r

zr

∣∣∣∣∣
2

− (n + 1).

Clearly |∑r zr|2 critical values are 0 (when
∑

i zi = 0) and (n + 1)2 (when all zi are identical).
The critical values can be obtained when z0 · · · zn = 1, for example by the (n + 1)-th roots of
unity‡ or by z0 = · · · = zn = 1. Then, the lower bound on χ(An) follows from Corollary 5.2. �

5.2.2. Dn. The irreducible root lattice Dn has 2n(n− 1) roots

R(Dn) = {±(er + es) : 1 � r, s � n, r �= s} ∪ {±(er − es) : 1 � r, s � n, r �= s}.

†Serre writes: “The classical groups are easy enough, but F4, E6, E7 and E8 are not (especially E6, which I
owe to Alain Connes). I hope there is a better proof.”

‡For example, we have zr = e2πi/(n+1) for all r, by letting x1 = · · · = xn = 1/(n + 1) and x0 = 1/(n + 1) −
1 = −n/(n + 1). More explicitly, we have a bijection between the set of all x ∈ Rn+1 with x0 + · · · + xn = 0,
modulo the lattice dual to An and the set of complex vectors (z0, . . . , zn) which all lie on the unit circle,
and whose product equals 1, modulo (ζ, . . . , ζ) where ζ is some (n + 1)th root of unity obtained by taking
(x0, . . . , xn) to zr = e2πixr .
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Theorem 5.4. The critical values of FDn
are:{−2(n− 1) if

n is odd

}
∪
⎧⎨⎩2 (n1−n−1)

2

1−no
− 2n1 − 2n−1 where n1, n−1, no ∈ Z+,

n1 + n−1 + no = n with no = 0 or
∣∣∣n1−n−1

no−1

∣∣∣ < 1

⎫⎬⎭.

In particular,

inf
x∈Rn

FDn
(x) =

{
−2n, n even,

−2(n− 1), n odd,

and χ(Dn) � n for even n, and χ(Dn) � n + 1 for odd n.

Proof. By the symmetries of the function, we can restrict ourselves to 0 � xi � 1/2. We
consider the sum

S =
∑

u∈R(Dn)

e2πiu·x

= 2
∑

1�r<s�n

(cos(2πxr + 2πxs) + cos(2πxr − 2πxs))

= 4
∑

1�r<s�n

cos(2πxr) cos(2πxs)

= 2

(
W 2 −

n∑
r=1

(cos(2πxr))2
)
.

where W =
∑n

r=1 cos(2πxr). To find the critical values we compute the gradient of S (as a
function of the xr), which is

∂S

∂xr
= −8π sin(2πxr)(W − cos(2πxr)), r = 1, . . . , n.

Let x be a critical point. Define S1, S−1, and So the set of i ∈ {1, . . . , n} such that xi = 0,
xi = 1/2 and 0 < xi < 1/2 so that cos(2πxi) = 1 or cos(2πxi) = −1 or cos(2πxi) ∈ (−1, 1).

For i ∈ So we have W = cos(2πxi). Thus, |W | < 1 if So �= ∅.
We define n1 = |S1|, n−1 = |S−1| and no = |So| and we have n1 + n−1 + no = n, and

W = cos(0)n1 + cos(π)n−1 + noW. (5)

If no = 1 we have

S = 2

⎛⎝W 2 −W 2 −
∑

r∈S−1∪S1

(cos(2πxr))2

⎞⎠ = −2(n− 1).

If no �= 1, then the equation for W (5) gives

W =
n1 − n−1

1 − no
.

The value of the function is then

S = 2
(
W 2 − (n1 + n−1 + noW

2)
)

= 2 (n1−n−1)
2

1−no
− 2n1 − 2n−1.

The lower bound on χ(Dn) then follows from Corollary 5.2. �
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5.2.3. E7, E8, and sums of squares. We start by giving an alternative construction of the
E8 lattice which is based on lifting the (extended) Hamming code H8, which is the vector space
over the finite field F2 (consisting of the elements 0 and 1) spanned by the rows of the matrix

G =

⎛⎜⎜⎜⎝
1000 0111
0100 1011
0010 1101
0001 1110

⎞⎟⎟⎟⎠ ∈ F4×8
2 ,

It consists of 24 = 16 code words:
0000 | 0000 1000 | 0111 1100 | 1100 0111 | 1000 1111 | 1111

0100 | 1011 1010 | 1010 1011 | 0100
0010 | 1101 1001 | 1001 1101 | 0010
0001 | 1110 0110 | 0110 1110 | 0001

0101 | 0101
0011 | 0011

We can define the lattice E8 by the following lifting construction (which is usually called
Construction A):

E8 =
{

1√
2
x : x ∈ Z8, x mod 2 ∈ H8

}
.

Now it is immediate to see that E8 has 240 shortest (nonzero) vectors:

16 = 24 vectors: ±√
2ei, i = 1, . . . , 8

224 = 24 · 14 vectors: 1√
2

∑8
j=1(±cj)ej , c ∈ H8 and wt(c) = 4,

where e1, . . . , e8 are the standard basis vectors of R8 and where wt(c) = |{i : ci �= 0}| denotes
the Hamming weight of a code word c.

Observe that the lower bound χ(E8) � 16 is implied through the spectral bound by the
following inequality (Theorem B.3 gives a stronger result by providing a complete list of all
critical values):

S(x) =
8∑

i=1

2 cos(2π
√

2xi) +
∑

c∈H8,wt(c)=4

∑
±

cos

⎛⎝2π
1√
2

8∑
j=1

(±cj)xj

⎞⎠+ 16 � 0.

for all x ∈ R8.
To simplify the formula we apply a change of variables by setting T (x) = S(

√
2

2π x). Then,

T (x) =
8∑

i=1

2 cos(2xi) +
∑

c∈H8,wt(c)=4

∑
±

cos

⎛⎝ 8∑
j=1

(±cj)xj

⎞⎠+ 16.

Applying the cosine addition formula multiple times, we get

T (x) = 4
8∑

i=1

cos(xi)2 +
∑

c∈H8,wt(c)=4

16
8∏

j=1

cos(cjxj).

Function T is globally nonnegative if and only if the polynomial

p(t) =
8∑

i=1

t2i + 4
∑

c∈H8,wt(c)=4,supp c={i,j,k,l}
titjtktl
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is nonnegative on the cube t ∈ [−1,+1]8. This nonnegativity can be verified algorithmically.
By

Σn,d = {p ∈ R[x1, . . . , xn] : deg p � d, there are p1, . . . , pm ∈ R[x1, . . . , xn] :

p = p2
1 + · · · + p2

m}
denote the cone of real polynomials in n indeterminates of degree at most d. One can verify
membership in this cone by using semidefinite optimization, see, for example, [37]. We checked
numerically (up to machine precision) that there are polynomials

q ∈ Σ8,8, q1, . . . , q8 ∈ Σ8,6

so that the following identity holds true:

p(t) = q(t) +
8∑

i=1

(1 − t2i )qi(t).

It is interesting to observe that using smaller degree did not work.
One can easily modify this proof technique for the case E7 to show χ(E7) � 10. To define E7

we apply Construction A on the [7,3,4] code H∗
7, which one obtains from H8 by deleting its

first coordinate. Here one shows that the polynomial
7∑

i=1

t2i + 4
∑

c∈H∗
7 ,wt(c)=4,supp c={i,j,k,l}

titjtktl

is nonnegative on the cube t ∈ [−1,+1]7 again using sum of squares.

5.2.4. E6. The E6 lattice we can handle without computer as follows: In the proof of
Theorem 6.3 we shall color E6 with nine colors. On the other hand, the Schläfli polytope is a
Delaunay polytope of E6 whose vertex–edge graph — the Schläfli graph on 27 vertices having
216 edges — is a finite subgraph of Cayley(E6,Vor(E6)). It is known, see, for example, [5,
Chapter 8, page 55] that the Hoffman bound of the Schläfli graph equals nine. It is also known,
see [3, Section 10.1], that the Hoffman bound of an infinite edge transitive graph is at least the
Hoffman bound of any of its finite subgraphs. Hence, the spectral bound of E6 equals nine.

6. The chromatic number of irreducible root lattices and their duals

In this section, we complete our study of the chromatic number of irreducible root lattices and
their duals. The knowledge that we use about Delaunay polytopes of root lattices can be found
in [17, Section 14.3]. Our claims regarding the sublattices that we consider and the colorings
of certain small graphs can be conveniently checked with computer assistance, for example, by
using Magma [7] or Polyhedral [19].

When we cannot directly compute the chromatic number of a graph, we apply other methods,
computationally easier, in order to get lower and upper bounds. A lower bound for the
chromatic number of a graph G = (V,E) is given by its fractional chromatic number: Denote
by IG the set of all independent sets of G. The fractional chromatic number of G is the solution
of the following linear program:

min

{∑
I∈IG

λI : λI ∈ R�0 for I ∈ IG,
∑

I∈IG with v∈I

λI � 1 for v ∈ V

}
.

If G affords symmetries, one can use them to reduce the number of variables of this linear
program. Regarding upper bounds, given a number k of colors and a graph G, proving the
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existence of a k-coloring of G can be turned into a satisfiability problem, that can be solved,
for instance, by using Minisat [23].

6.1. Dn and its dual

The half cube 1
2Hn, sometimes also called the parity polytope, is defined as

1
2
Hn = conv

{
x ∈ {0, 1}n :

∑
i

xi = 0 mod 2

}
.

It is one of the two Delaunay polytopes of the root lattice Dn.

Theorem 6.1. For all n � 4 we have χ(Dn) = χ(1
2Hn), where we consider the vertex–edge

graph of the half cube.

Proof. The inequality χ(Dn) � χ(1
2Hn) comes from the fact that 1

2Hn is a Delaunay
polytope of χ(Dn).

Let c be a proper coloring of 1
2Hn. We extend it to Dn by giving to any x ∈ Dn the color

c(x mod 2). Assume that two vectors x1 and x2 are adjacent in Cayley(Dn,Vor(Dn)). Since
the relevant vectors of Dn are of the form ±ei ± ej , the difference x1 − x2 mod 2 is also such a
vector, so that x1 mod 2 and x2 mod 2 are adjacent in 1

2Hn, and c(x1 mod 2) �= c(x2 mod 2).
Hence, χ(Dn) � χ(1

2Hn). �

Theorem 6.2. For every n � 4, the chromatic number of D∗
n is 4.

Proof. The relevant vectors of the lattice D∗
n = Zn ∪ ((1/2, . . . , 1/2) + Zn) are the 2n

vectors ±ei and the 2n vectors of the form (±1/2, . . . ,±1/2). The four vectors 0, (1, 0, . . . , 0),
(1/2, . . . , 1/2), and (1/2, . . . , 1/2,−1/2) define a clique in Cayley(D∗

n,Vor(D∗
n)); and the unique

way to color D∗
n with four colors is by coloring each copy of Zn with two different colors. �

6.2. E6,E7,E8, and their duals

Theorem 6.3. We have χ(E6) = 9, χ(E7) = 14 and χ(E8) = 16.

Proof. By Theorem 6.1 we know that χ(D8) = 8. So one can color the root lattice E8 =
D8 ∪ ((1/2, . . . , 1/2)) + D8) with 16 colors. The lower bound from Theorem B.3 concludes the
case of E8.

For E7 there are two orbits of Delaunay polytopes. One of them is the Gosset polytope with
56 vertices, whose vertex–edge graph has chromatic number 14, which shows that χ(E7) � 14.
Moreover, we have a lamination of E7 over the lattice A6:

E7 =
⋃
n∈Z

(nu + A6) for some u ∈ E7.

If v and w belong to two layers which differ by an even index, then v − w is not a relevant
vector. Following Section 3, we know that χ(A6) = 7. Thus we can color the even layers by
colors in {1, . . . 7} and the odd layers by colors in {8, . . . , 14}. This proves that χ(E7) = 14.

The unique Delaunay polytope of E6 is the Schläfli polytope whose vertex-edge graph is the
Schläfli graph with 27 vertices. It is well known that its chromatic number is 9, so that χ(E6) �
9. There is just one orbit of independent triples of vertices. Moreover, there are just two orbits
of colorings with nine colors of the Schäfli graph: one orbit of size 160 and another of size 40. Let
us take a coloring from the orbit of size 40. It is composed of nine different triples of elements.
For each such triple {v1, v2, v3} we consider the set of vectors {v1 − v2, v2 − v3, v3 − v1}. Since
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we have nine triples, this gives in total 27 vectors. Those vectors span a sublattice L of E6

of index 9. It turns out that none of the relevant vectors of E6 belongs to L. Thus following
Lemma 2.1, χ(E6) � 9. �

Theorem 6.4. The chromatic number of E∗
n is 16 for n = 6, 7.

Proof. Upon rescaling to an integral lattice, the norms of the vectors of E∗
6 are 4, 6, 10, and

so on. The norms of the relevant vectors are 4 and 6. We consider the 432 vectors of norm
10 and enumerate the sublattices of E∗

6 of dimension 6 spanned by those vectors that do not
contain any relevant vector. We found 1393 orbits of such lattices. Exactly one of them is of
index 16 which proves that χ(E∗

6) � 16.
The lower bound is obtained in the following way. We consider the graph formed by the

origin 0 and the 126 relevant vectors with two vectors adjacent if their difference is a relevant
vector. The fractional chromatic number of this graph is 77/5. Thus χ(E∗

6) � �77/5� = 16.
The lower bound on the chromatic number of E∗

7 is obtained by the same technique as for E∗
6.

The upper bound is obtained in the following way: Consider the quotient E∗
7/4E∗

7 with 16 384
elements. One coloring with 16 colors can be obtained by solving the satisfiability problem
using Minisat. �

Appendix A. Recollections on compact Lie groups

In this section, we collect, for the benefit of the unfamiliar reader, without proof but with
references, a few facts about semisimple compact Lie groups and representation theory. All of
the following results are standard, although it is not easy to find them conveniently stated in
a single place, so we hope that this compendium will be helpful.

The main reason for this appendix insofar as the present paper is concerned is to explain
the reason behind the reformulation which we give in Theorem B.1 of Serre’s [49, Theorem 3’],
namely, the connection between the Fourier transform of a root system Φ and the character of
the adjoint representation of the Lie groups associated with Φ: this is provided by A.13. We
have, however, stated a few additional results which are not strictly necessary toward that goal
but which, we hope, help give a clearer overall picture. The secondary reason for this appendix
is to provide the necessary framework for Appendix B (although the latter could, in principle,
be reworded so as to eliminate all mentions of Lie groups just like we did for Theorem B.1, we
believe that this would be unnecessarily contrived).

Remark A.1. We have chosen to focus these recollections on semisimple compact real Lie
groups, but the classification and representation theory of semisimple complex Lie groups is
identical (Weyl’s “unitarian trick”, cf. [32, § 6.2] and [26, § 26]): we simply mention that the
role of the tangent Lie algebra t to a maximal torus in what follows is played, in the complex
setting, by Cartan subalgebras h of g ([32, Definition 6.32] and [26, § 14.1 and Appendix D]).

A.2. A compact (real) Lie group is a compact connected real smooth manifold G, together
with a group structure on G such that the multiplication and inverse maps are smooth (C∞).
The tangent space g at the identity 1 of G is then endowed with a linear action Ad of G,
called the adjoint representation of G, defined by letting Ad(g) : g → g (for g ∈ G) be the
differential at 1 of u �→ gug−1; this in turn defines a linear map ad(x) : g → g for x ∈ g by
letting ad: g → L(g, g) (where L(U, V ) stands for the vector space of linear maps between two
vector spaces U and V ) be the differential at 1 of Ad: G → L(g, g) itself (see [26, § 8.1]): writing
[x, y] for ad(x)(y), this gives g the structure of a (real) Lie algebra (simply known as the Lie
algebra of G).
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We also recall the exponential map exp: g → G, which takes x ∈ g to the value at 1
of the unique smooth group homomorphism R → G (a.k.a. “1-parameter subgroup”) whose
differential at the origin is x. While exp is not a group homomorphism in general, it is one
whenever G is abelian (whenever the Lie bracket of g vanishes; otherwise, the so-called Baker–
Campbell–Hausdorff formula expresses the relation of exp(x) exp(y) to an exponential). Rather
than using the exponential, we will find it more convenient to use the function e : x �→ exp(2πx);
just as exp itself, the function e in question is surjective (cf. A.5 below).

The Killing form B : g× g → g is the bilinear form B(x, y) = tr(ad(x) ◦ ad(y)), which is
G-invariant; in the real compact case in which we placed ourselves, this form is negative
semidefinite ([32, Theorem 6.10] or [1, Theorem 2.13]), and we say that G or g is semisimple
when B is nondegenerate ([26, Proposition C10], [32, Theorem 5.53]), that is, negative definite
in the real compact case.

As an example, the group SO2n of (2n) × (2n) real orthogonal matrices with determinant +1
is a compact real Lie group, whose Lie algebra so2n consists of antisymmetric (2n) × (2n)
matrices, the Lie bracket [x, y] being the usual xy − yx, and the Killing form on so2n is given
by B(x, y) = 2(n− 1) tr(xy), so that so2n is semisimple if and only if n � 2.

A.3. If G is a compact Lie group with Lie algebra g, the map taking a connected closed
subgroup H of G to its Lie algebra seen as a subalgebra h of g (that is, a vector subspace
closed under the Lie bracket) is a bijection ([32, Theorem 3.40]).

Two simply connected compact Lie groups are isomorphic if and only if their Lie algebras are
isomorphic ([32, Theorem 3.43]); thus, two compact Lie groups with isomorphic Lie algebras
have isomorphic universal coverings: they are then said to be isogenous. (We note that, for the
purposes of this paper, isogenous Lie groups are an irrelevant complication.) Beware, however,
that the universal covering of a compact Lie group need not be compact as the case of tori shows.

Conversely, any real Lie algebra with a negative semidefinite Killing form is the Lie algebra of
some compact Lie group (unique up to isogeny, by the previous paragraph). We return in A.14
to the question of which Lie groups are possible in the semisimple case.

A.4. If G is a compact Lie group, a torus in G is an abelian connected closed subgroup of G,
or equivalently, one whose Lie algebra is abelian (meaning that its Lie bracket is trivial). A
maximal torus, of course, is a torus that is maximal for inclusion; by A.3, maximal tori of G
are in bijection with maximal abelian Lie subalgebras of the Lie algebra g of G.

As an example, a maximal torus in SO2n is given by the block diagonal matrices whose
diagonal blocks are 2 × 2 rotation matrices.

Crucial results by Cartan concerning maximal tori of compact Lie groups are ([11, Theorems
16.4 and 16.5] or [1, Theorem 2.15] or [33, Corollaries 4.35 and 4.46]): (a) every element of
G belongs to some maximal torus and (b) all maximal tori of G are conjugate; in particular,
each element of G is conjugate to some element of any fixed maximal torus of G.

The dimension of some (any) maximal torus T in G (or equivalently, of its Lie algebra) is
known as the rank of G. The quotient NG(T )/T of the normalizer of T (in G) by T itself is
known as the Weyl group W of G: so a W -orbit in T is precisely a full set of G-conjugate
elements of T , and the set of conjugacy classes in G can be identified (as a set) with T/W .
We note that W acts as a group of automorphisms of T , so it also acts (linearly) on the Lie
algebra t of T and (by inverse transpose) on the dual t∗ of t.

A.5. If T is an abstract torus, that is, an abelian compact Lie group, and t is its Lie algebra,
the map x �→ e(x) := exp(2πx) (in other words the differentiable group homomorphism t → T
whose differential at 0 is 2π times the identity) defines a surjective homomorphism t → T ,
whose kernel is a discrete subgroup Γ of t. Thus, we can identify T with t/Γ (as a differentiable
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group), and functions on T with Γ-periodic functions on t. We will call Γ the period lattice of
the torus T .

A.6. If G is a compact Lie group, a (finite-dimensional) representation of G on a finite-
dimensional complex vector space V is a differentiable linear action of G on V , that is,
a differentiable group homomorphism ρ : G → GL(V ). The character of said representation
is the map g �→ tr ρ(g) (a differentiable function on G, invariant under conjugation). The
representation is said to be irreducible when the only G-invariant subspaces of V are 0 and V .
It turns out that every representation of G is a direct sum of irreducible representations ([32,
Theorem 4.40]); and a representation is characterized (up to isomorphism) by its character
([11, Theorem 2.5] or [32, Theorem 4.46]).

Furthermore, although we will not use this, it might be worth pointing out the Peter–Weyl
theorem: the characters of the irreducible representations of G form a Hilbert orthonormal
basis for the closed subspace consisting of conjugation-invariant functions in the Hilbert space
L2(G) of square-integrable functions on G ([32, Theorem 4.50]; incidentally, these functions
are also eigenvalues of the Laplace–Beltrami operator on G seen as a Riemannian manifold).

Among the representations of G, the adjoint representation (defined in A.2 above as a map
Ad: G → GL(g), which we see as an action on the complexified vector space gC := g⊗R C)
is of particular importance; its character g �→ tr Ad(g) is called the character of the adjoint
representation, or simply the adjoint character, of G; the adjoint representation is irreducible
if and only if G is simple (this can be taken as a definition†).

A.7. Representation theory on a torus T is well known: writing T = t/Γ through x �→ e(x) :=
exp(2πx) as in A.5, the irreducible characters of T are of the form e(λ) : e(x) �→ exp(2πiλ(x))
with λ ranging over the lattice Γ∗ dual to Γ (in the vector space t∗ dual to t), which we call
the character lattice of T . The corresponding representations are all 1-dimensional (acting by
multiplication by the character just defined). In other words, the irreducible representations
of T are indexed by Γ∗, and the orthonormal basis of characters of T predicted by the Peter–
Weyl theorem is the usual Fourier basis on T = t/Γ. (As mentioned in A.5, we write e(λ)
both for the function T → C defined earlier, and for the Γ-periodic function t → C given by
x �→ exp(2πiλ(x)).)

We note that the ring of linear combinations (over Z, respectvely, C) of the e(λ), or character
ring (respectively, character C-algebra) of T (cf. A.19 below), is the group ring (respectively,
group C-algebra) of the lattice Γ∗. (Choosing a basis for Γ∗ shows that this is a ring of Laurent
polynomials.)

A.8. If now G is a compact Lie group and T is a maximal torus in G with corresponding Lie
algebras t ⊆ g, given a representation V of G having character χ, we can restrict them to T and
consider the Fourier decomposition of χ|T , that is, its decomposition χ|T =

∑
λ∈Γ∗ mλe(λ) in

terms of the characters e(λ) (for λ ∈ Γ∗) defined in the previous paragraph: clearly mλ is the
dimension of the subspace V λ of V consisting of those z ∈ V such that ρ(u)(z) = e(λ)(u) for
each u ∈ T . In particular, mλ ∈ N. The λ such that mλ > 0 are known as the weights of the
representation V (or of the character χ), and we emphasize that they belong to Γ∗; the value
mλ is known as the multiplicity of the weight λ (in V or in χ), and the subspace V λ on which
T acts through e(λ) is known as the weight (eigen)space; we note that the weight space can
be defined at the Lie algebra level as the set of z such that dρ1(x)(z) = iλ(x) z for all x ∈ t
(where dρ1 is the differential of ρ at 1; compare [32, Definition 8.1]: we have added a factor i
here for convenience in the compact case, but it is a matter of convention).

†A Lie group G is called “simple” when it does not have nontrivial connected normal subgroups: this allows
for a finite center (the term “quasisimple” might be more appropriate).
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Since, as explained in A.4 above, all maximal tori of G are conjugate, the weights and
multiplicities do not depend on the choice of T ; furthermore, they are invariant under the
action of the Weyl group W . Seen as a function on t, the character values are both Γ-periodic
and W -invariant, so they are Γ � W -invariant. (Let us mention here the paper [46], which can
serve as link between the “Fourier” and “Lie group characters” points of view.)

A.9. We temporarily leave aside Lie groups to recall the following definitions and facts
in relation with abstract root systems (see [29, § 9.2], [32, § 7.1], and [8, Chapter VI]). A
(reduced, crystallographic) root system is a set Φ of vectors in a finite-dimensional real vector
space E such that (1) Φ is finite, does not contain 0, and spans E, (2) for every α ∈ Φ, there
exists α∨ in the dual space E∗ of E such that α∨(α) = 2 and such that the (symmetry) map
sα : x �→ x− α∨(x)α leaves Φ stable (it is easy to see that α∨ is uniquely defined, cf. [8,
Chapter VI, § 1, no1, Lemma 1], so that the notation is legitimate), (3) for every α, β ∈ Φ we
have α∨(β) ∈ Z, and (4) if α ∈ Φ and cα ∈ Φ then c ∈ {±1}. The elements of Φ are called roots,
and the α∨ are the coroots. The set Φ∨ := {α∨ : α ∈ Φ} of coroots is itself a root system (with
(α∨)∨ = α), known as the dual root system to Φ. The group generated by the sα is known as
the Weyl group of Φ, and it is finite.

Two root systems Φ ⊆ E and Φ′ ⊆ E′ are said to be isomorphic when there is a linear
isomorphism between E and E′ taking Φ to Φ′. In this case, they have isomorphic dual systems
and isomorphic Weyl groups.

The root system Φ ⊆ E is said to be reducible when it is the union (“sum”) of root systems
Φ1,Φ2 in E1, E2 with E = E1 ⊕ E2, respectively, irreducible otherwise. Every root system can
be written in a unique way as the sum of irreducible root systems, and any sum of root systems
is a root systems.

Given a root system Φ in E, there exists a Euclidean structure on E such that every sα
(and consequently, every element of the Weyl group) is orthogonal; equivalently, a Euclidean
structure which identifies E with its dual E∗ so that each coroot α∨ is proportional to the
corresponding root α. Such a Euclidean structure is said to be compatible with Φ. (The
definition of root systems is often written in a manner that preassumes the Euclidean structure:
in this case, the coroot α∨ associated to α is defined as 2α/‖α‖2.) For Φ irreducible, this
Euclidean structure is unique up to a multiplicative constant, that is, up to the definition of
the lengths of the roots; in the case of the simply laced root system (those in which every root
has the same length), which concerns us in the present paper, the constant is generally chosen
such that the squared root length is 2, so that Φ and Φ∨ can be identified. Nevertheless, it might
be useful for expositional clarity to keep the distinction between Φ and Φ∨ and the greater
generality afforded by the not necessarily simply laced root system, so we do not perform this
identification (but the reader may choose to do so).

Associated with a root system Φ as above are four lattices: the lattice Q := ZΦ ⊆ E generated
by Φ is known as the root lattice, the lattice Q∨ := ZΦ∨ ⊆ E∗ generated by Φ∨ is known as
the coroot lattice; the lattice P := (Q∨)∗ (in E) dual to the coroot lattice is known as the
weight lattice and contains the root lattice; and the lattice P∨ := Q∗ (in E∗) dual to the root
lattice is known as the coweight lattice and contains the coroot lattice. The quotient of the
weight lattice by the root lattice, or equivalently of the coweight lattice by the coroot lattice,
is sometimes known as the fundamental group of Φ for reasons that will be clarified in A.14.

A.10. Continuing the exposition of root systems started in A.9, if h is a linear form on E
such that h(α) �= 0 for each α ∈ Φ, the roots such that h(α) > 0 are then known as the positive
roots, and those such that h(α) < 0 as the negative roots relative to h: a subset Φ+ := {α ∈
Φ : h(α) > 0} which can be obtained in this manner is known as a choice of positive roots
for Φ. The positive roots which cannot be written as sums of other positive roots are known
as simple roots (for this choice of positive roots): it is then a fact that the simple roots form
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Figure A.1. Simply laced Dynkin diagrams with the Bourbaki numbering of their nodes.

a basis of E, and that every positive root is a linear combination of the simple roots with
nonnegative integer coefficients (not all zero); so the choice of positive roots can be defined
equivalently by the set of simple roots. The Weyl group acts simply transitively on the set of
all choices of positive roots (or the set of all choices of simple roots).

The choice of positive roots also gives a choice of positive coroots (defined from h as above
by identifying E with E∗, or by saying that the positive coroots are the coroots associated with
positive roots). The dual basis �1, . . . , �n to the set α∨

1 , . . . , α
∨
n of simple coroots is known as

the set of fundamental weights (for the choice of positive roots); symmetrically, the dual basis
to the set of simple roots is known as the set of fundamental coweights.

The convex cone in E generated by the fundamental weights is known as the closed Weyl
chamber in E corresponding to the choice of positive roots: it is the dual cone to the positive
coroot cone, in other words, it is defined by the inequalities α∨(x) � 0 for all positive coroots
(or equivalently, for all simple coroots) α∨; the open Weyl chamber, defined by the inequalities
α∨(x) > 0, is the interior of the closed Weyl chamber (and the closed Weyl chamber is its
closure). Dually, the cone in E∗ generated by the fundamental coweights, which is the dual
cone to the positive root cone, is also known as the closed Weyl chamber (in E∗). The choice
of a Weyl chamber is equivalent to a choice of positive roots: the Weyl group acts simply
transitively on the set of Weyl chambers.

Given a choice of positive roots Φ+ ⊆ Φ, there exists a unique β ∈ Φ+ such that β + α �∈ Φ+

for all α ∈ Φ+: this is known as the highest root of Φ (relative to this choice of positive roots),
and it belongs to the open Weyl chamber. The (integer) coefficients mi of β on the basis of
simple roots, that is, the mi such that β =

∑n
i=1 miαi where α1, . . . , αn are the simple roots,

often come up in formulae involving G or its root system. It is often more convenient to define
α0 = −β (the lowest root) and m0 = 1 so that

∑n
i=0 miαi = 0.

A.11. Given a root system Φ and a choice of positive roots, we define the Dynkin diagram
of Φ as the graph whose vertices (“nodes”) are the simple roots, two nodes α, β being connected
by a single, double or triple edge, or by no edge at all, according as the angle between them is
2π/3, 3π/4 or 5π/6, or π/2 for no edge at all, these being the only possible values; in the case
of a double or triple edge, it is oriented by pointing from the simple root with the larger norm
to that with the smaller norm. (These constructions rely on a Euclidean structure compatible
with Φ, but are independent of the choice of such a structure.)

The Dynkin diagram of a root system Φ determines the latter up to isomorphism.
Furthermore, all possible irreducible root systems can be classified, with the help of Dynkin
diagrams. The simply laced Dynkin diagrams are shown on Figure A.1.

A.12. We now return to the setup of a compact Lie group G as in A.8, and we furthermore
assume G to be semisimple.

The nonzero weights of the adjoint representation of G are known as the roots of G (or of g),
and each one occurs with multiplicity 1; as for the zero weight space, it is the complexification
of t itself (in other words, its multiplicity is the rank of G). So, writing gα

C
:= {z ∈ gC :

[x, z] = iα(x) z for all x ∈ t} for the weight space of α ∈ Φ acting on gC := g⊗R C, we have
the weight space decomposition gC = tC ⊕⊕α∈Φ gα

C
(compare [33, formula (2.16)] and [32,

Theorem 6.38]).
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The set Φ of these roots is an abstract (reduced, crystallographic) root system ([11,
Theorem 19.2] or [32, Theorem 6.44]), whose Weyl group is that which we have already
associated to G (cf. A.4); it is irreducible if and only if G is simple. Furthermore, this
induces a bijection between the isomorphism classes of semisimple compact Lie algebras and
root systems ([32, Corollary 7.55] or [33, Corollary 7.3]), or equivalently, isogeny classes of
semisimple compact Lie groups or isomorphism classes of semisimple simply connected compact
Lie groups ([26, § 7.3]); we clarify in A.14 below the classification of groups inside an isogeny
class.

Note that, as a set, Φ depends not only on G but also on the choice of the maximal torus T
used to define the weights (cf. A.8), or equivalently, not only on g but also on t: in fact, Φ
is a subset of the dual t∗ of t; however, as an abstract root system, it does not depend on
this choice.

The following proposition follows immediately from what has already been said.

Proposition A.13. If G is a semisimple compact Lie group with rank n, then the range of
values taken by the adjoint character chad of G is precisely the range of the function n + FΦ

where FΦ : x �→∑
α∈Φ e2πiα(x) is the Fourier transform of Φ.

More precisely, if T is a maximal torus in G with Lie algebra t, and u ∈ T is written exp(2πx)
for x ∈ t, then chad(u) = n + FΦ(x) (and we have pointed out in A.4 that each element g of
G is conjugate to an element u of T , which then obviously has chad(g) = chad(u)).

Proof. As explained in A.12, the weights of the adjoint representation are the elements of
Φ each with multiplicity 1, and 0 with multiplicity n, that is, chad |T = n · e(0) +

∑
α∈Φ e(α),

which is precisely the statement of the second paragraph. �

A.14. We briefly clarify the relation between isogenous (cf. A.3) compact Lie groups in the
semisimple case (this subsection is required for completeness, but for the purposes of this paper,
we care only about the simply connected groups):

If G is a semisimple compact Lie group, we have noted that its root system Φ can be defined
directly from its Lie algebra g and that t of a maximal torus T of G (which is the same
as a maximal abelian subalgebra of g, cf. A.4), namely, as the set of nonzero α ∈ t∗ (where
t∗ is the dual vector space to t) such that gα

C
:= {z ∈ g⊗R C : [x, z] = iα(x) z for all x ∈ t}

is nontrivial (cf. A.8). So the root lattice Q := ZΦ and weight lattice P := (ZΦ∨)∗ defined
in A.9, inside t∗, are defined at the Lie algebra level: they depend only on the isogeny class
of G. We have Q ⊆ Γ∗ ⊆ P or equivalently Q∨ ⊆ Γ ⊆ P∨ where Q∨ is the coroot and P∨

the coweight lattice (the inclusion Q ⊆ Γ∗ follows from the fact that the weights of any
representation of G, as defined in A.8, belong to Γ∗, and in particular the roots belong to Γ∗; the
inclusion Q∨ ⊆ Γ follows from the fact that the coroots can also be defined at the Lie algebra
level).

The classification of compact Lie groups having Lie algebra g is then as follows: G is uniquely
defined by giving the lattice Γ satisfying Q ⊆ Γ∗ ⊆ P , or equivalently Q∨ ⊆ Γ ⊆ P∨; and
conversely, for any such Γ, there exists a unique corresponding Lie group G; furthermore, the
fundamental group of G is Abelian, finite, and canonically isomorphic to Γ/Q∨, and the center
Z(G) of G is finite and canonically isomorphic to P∨/Γ. ([44, Chapter 4, § 3, 6o, Theorems
9 and 10]; see also [11, Theorem 23.1] and [33, Corollary 5.109].)

(In particular, the universal covering of a semisimple compact Lie group G is still compact,
and corresponds to taking Γ equal to the coroot lattice Q∨. At the other extreme, the centerless
group G/Z(G) corresponds to taking Γ equal to the coweight lattice P∨; this is also known
as the “adjoint” form, because it is the image of the adjoint representation G → GL(g). The
fundamental group of the adjoint form, or equivalently the center of the universal covering, is
defined at the Lie algebra level, and is P∨/Q∨.)
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Remark A.15. If G is a semisimple compact Lie group with maximal torus T = t/Γ, we
have already pointed out in A.4 that the set of conjugacy classes of G can be identified (as a
set) with T/W , where W is the Weyl group. Lifting to the Lie algebra t of T , it can be identified
with t/(Γ � W ). This point of view is particularly important when G is simply connected (Γ is
the coroot lattice) because then it can be shown that the “affine Weyl group” Γ � W is an
affine Coxeter group, having a fundamental domain, known as the Weyl alcove, which is the
simplex whose vertices are 0 and the �∨

i /mi, where the �∨
i are the fundamental coweights

(cf. A.10) and mi are the coefficients of the highest root (cf. A.10). (See [31, Chapter 11].)

A.16. We now briefly review the classification of irreducible representations of a semisimple
compact Lie group as provided by “highest weight theory.”

As explained in A.8, the weights of a (finite-dimensional) representation V of a semisimple
compact Lie group G (relative to the choice of a maximal torus T ⊆ G) are the λ ∈ Γ∗ such
that V λ := {z ∈ V : (∀u ∈ T )u · z = e(λ)(u)} is nonzero, the multiplicity mλ being dimV λ.
Now fix a choice of positive roots of G (cf. A.10): a highest weight of V (or of its character, χ)
is a weight λ such that λ + α is not a weight for any positive root α; a dominant integral weight
(for G) is a λ ∈ Γ∗ belonging to the closed Weyl chamber, that is, such that λ(α∨) � 0 for each
simple (or equivalently, positive) coroot α∨.

Highest weight theory tells us that ([33, Theorem 5.5], [32, § 8.3] or [44, Chapter 4, § 3, 7o,
Theorem 11] or [9, VI.1.7]):

• every irreducible representation of G has a unique highest weight, which is a dominant
integral weight, and its multiplicity is 1;

• if V is an irreducible representation of G with highest weight λ, then the set of weights of
V is the intersection of λ + Q, where Q is the root lattice, and of the convex hull of the
orbit of λ under the Weyl group;

• two irreducible representations of G are isomorphic if and only if they have the same
highest weight (thus, we can speak of “the” irreducible representation with highest
weight λ);

• every dominant integral weight is the highest weight of an irreducible representation of G
(it is unique by the previous point);

• if V and V ′ are irreducible representations of G with the highest weights λ and λ′,
respectively, then V ⊗ V ′ has the highest weight λ + λ′ and has a unique irreducible
factor with that weight ([9, VI.2.8]).

The highest weight of the adjoint representation is the highest root (−α0).

A.17. If G is a semisimple compact Lie group and T a maximal torus of G, then the Weyl
character formula ([32, § 8.5], [33, Theorems 5.75–5.77] or [9, VI.1.7]) expresses the value of
the irreducible character χλ with the highest weight λ (that is, the character of the irreducible
representation with highest weight λ) as the ratio of two skew-W -invariant polynomials on T ,
namely,

chλ =
∑

w∈W sgn(w) e(w(λ + ρ))∑
w∈W sgn(w) e(w(ρ))

,

where W is the Weyl group and sgn: W → {±1} the group homomorphism taking the value
−1 on each reflection sα (that is, sgn(w) is the determinant of w acting on the Lie algebra t
of T ); and the Weyl vectorρ := 1

2

∑
α∈Φ+

α is half the sum of the positive roots, which is also
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the sum
∑n

i=1 �i of the fundamental weights. The denominator of the above expression can
be factored using the Weyl denominator formula:∑

w∈W

sgn(w) e(w(ρ)) =
∏

α∈Φ+

(e(α/2) − e(−α/2)).

A.18. Assuming that G (still a semisimple compact Lie group) is simply connected (so that
Γ∗ is the weight lattice, cf. A.14), the irreducible representations having the fundamental
weights (cf. A.10) as the highest weights are known as fundamental representations, and their
characters as the fundamental characters of G.

A.19. The character ring of a compact Lie group G is the ring generated by the characters
of G (that is, the set of differences χ1 − χ2 between two characters of G) for pointwise sum
and product. Equivalently, if we define a virtual representation of G to be the formal difference
V1 � V2 of two (finite dimensional) representations, identifying V1 � V2 with V ′

1 � V ′
2 whenever

V1 ⊕ V ′
2 and V ′

1 ⊕ V2 are isomorphic (“Grothendieck ring” construction), and if we define the
(virtual) character of V1 � V2 to be χ1 − χ2 where χi is the character of Vi, the character
ring can be defined as the set of virtual representations of G with addition and multiplication
being defined as the direct sum and tensor product (extended in the obvious fashion to virtual
representations).

To put it differently, the character ring of G consists of Z-linear combinations of the
irreducible characters (or representations) of G, the product being defined by the decomposition
into irreducibles of a product of characters (tensor product of representations). One can
similarly define the character C-algebra as the set of C-linear combinations of the irreducible
characters (or representations) of G.

Highest weight theory implies that: (1) for a semisimple compact Lie group G with maximal
torus T , the character ring of G is simply the invariant part under the Weyl group of the
character ring of T (the latter being the group ring of Γ∗, cf. A.7), and (2) when G is,
additionally, simply connected, the character ring is isomorphic to the polynomial algebra,
with coefficients in Z, over indeterminates corresponding to the fundamental representations
([9, VI.2.1 and VI.2.11]). The corresponding statements also hold with complex coefficients
instead of integers.

Remark A.20. If G is a semisimple simply connected compact Lie group with maximal
torus T = t/Γ, then the character C-algebra of G can be identified (via restriction to T ) with
the set of W -invariant trigonometric polynomials on T (with complex coefficients), where W
is the Weyl group, or, lifting to t, of W -invariant (hence Γ � W -invariant) combinations of the
e(λ) for λ ∈ Γ∗. Also note that such functions are entirely defined by their values on the Weyl
alcove (cf. A.15).

If we are mostly interested in the character values on T (they determine those on G by A.4),
and in this paper we are, the irreducible representations of G are something of a needless
complication: the character ring of a semisimple simply connected compact Lie group has a
Z-basis consisting of the sums

∑
λ∈Wλ0

e(λ) for λ ranging over an orbit of the Weyl group W
acting on Γ∗.

A.21. We have recalled in A.4 that every element g of a compact Lie group G belongs to a
maximal torus T ; when the torus in question is unique, the element g is said to be regular.
Assuming that G is semisimple, this is equivalent ([11, Theorem 22.3(ii)]) to saying that g is
not in the kernel of any e(α) for root α ∈ Φ (cf. A.7). Correspondingly, we say that an element
x of the Lie algebra g of G is regular when e(x) is regular, that is, when α(x) �∈ Z for all α ∈ Φ
(this means that x is represented by an element in the interior of the Weyl alcove, cf. A.15;
also compare [9, V.7.8]).
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The following fact is crucial to the proof given in Appendix B:

Proposition A.22. Let G be a semisimple simply connected compact Lie group. If g ∈ G
and T is a maximal torus containing g, then the following are equivalent:

• the element g is regular,
• the differentials d ch1, . . . , d chn of the fundamental characters of G (cf. A.18) are

independent at g,
• the differentials d ch1 |T , . . . , d chn |T of the fundamental characters of G restricted to T

are independent at g.

In a more general context, the equivalence of the first two statements is due to Kostant
([36, Theorem 0.1]) and Steinberg ([51, Theorem 8.1]); however, since we are only considering
compact Lie group, every element g belongs to a maximal torus (that is, is “semisimple”),
making the proof of the equivalence considerably easier and giving the third statement as a
byproduct (as detailed in [51, § 8.2–8.6]).

A.23. We now briefly discuss how a subset of the nodes of the Dynkin diagram of a semisimple
compact Lie group defines a Lie subgroup with the Dynkin diagram defined by the subset in
question (that is, the induced subgraph).

So let G be a semisimple compact Lie group, fix a maximal torus T in G, and let g, t be
the corresponding Lie algebras and Φ the root system of G (cf. A.12); choose a system of
simple roots α1, . . . , αn ∈ Φ (where n is the rank of G). Now if I ⊆ {1, . . . , n}, this defines a
root system ΦI ⊆ Φ, sometimes known as the parabolic subsystem associated to I, namely, the
set ΦI := Φ ∩⊕i∈I Zαi = Φ ∩⊕i∈I Rαi “generated by” the αi for i ∈ I (see [31, § 5.1] for a
discussion, or [40, § 12.1]), so that its Dynkin diagram consists of the nodes of that of Φ labeled
by elements of I.

We now fix such an I and explain how to define a Lie subgroup of G with root system Ψ := ΦI .
See also [1, § 7.3–7.4] for a more detailed and pedagogical account of this construction.

For α ∈ Φ, let gα
C

:= {z ∈ gC : [x, z] = iα(x) z for all x ∈ t} inside gC := g⊗R C be the corre-
sponding weight space. Then (see [33, Corollary 5.94], or [40, Proposition 12.6] in a different
context) lC := tC ⊕⊕α∈Ψ gα

C
is a (complex) Lie subalgebra of gC (sometimes known as a

“parabolic Levi factor”), which can be further factored as a Lie algebra direct sum (that
is, with trivial bracket between the summands) of its center z(lC) =

⋂
α∈Ψ kerα ⊆ tC and its

semisimple subalgebra l′
C

= [lC, lC] = t′
C
⊕⊕α∈Ψ gα

C
where t′

C
is the complex subspace spanned

by the coroots α∨ for α ∈ Ψ (seen as elements of tC). Since lC and l′
C

are stable under complex
conjugation, they define (real!) Lie subalgebras l := lC ∩ g and l′ := l′

C
∩ g of g, hence compact

Lie subgroups L, L′ of G having these Lie algebras (see [33, Theorem 5.114]). Then L′ is a
semisimple Lie subgroup of G having root system Ψ and maximal torus T ′ with Lie algebra t′

(as for L, it is isogenous to the product of L′ with a torus of rank n− #I, so that it has the
same rank n as G).

(In fact, the only properties of Ψ used above are that it is a “closed” subsystem of Φ: see
[40, Definition 13.2 and Theorem 13.6].)

In Appendix B, we will use the above construction in the case where I is the complement of
a single node {i} in the Dynkin diagram.

Appendix B. Serre’s result on characters of compact Lie groups

In this section, we prove the En cases of [49, Theorem 3’]. The proof in the E7 and E8 cases
has been kindly communicated to us by J.-P. Serre and only slightly adapted for symbolic
computation with Sage (J.-P. Serre was able to perform the entire computation by hand and
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we have not attempted to reproduce this feat; any errors in the following expositions are, of
course, entirely our own) and straightforwardly extended to compute all critical values of the
adjoint character; in the E6 case, J.-P. Serre referred us to a proof devised by A. Connes, which
we do not follow here, preferring instead a straightforward analog of the E7 and E8 cases, at
the cost of considerably more computing power (the E6 case does not seem doable by hand
with the technique presented below).

Theorem B.1. If G is a semisimple compact Lie group of type E6, E7, or E8, respec-
tively, and chad its adjoint character (cf. A.6); then infg∈G chad(g) is equal to −3, −7, or
−8, respectively.

(The proof for An and Dn has been given in Theorems 5.3 and 5.4, respectively.)
In each case, we divide the proof in two steps: the reduction step and the computation step,

the second being itself subdivided into an elimination substep and a ruling-out substep.
We will call G the simply connected semisimple compact Lie group of type E6, E7, or E8 as

the case may be, T its maximal torus (cf. A.4) and t the Lie algebra of the latter.
The reduction step uses the trick (†) explained below (and based essentially on A.22) to

reduce the number of variables by observing that any critical point of chad must lie on certain
linear subspaces of t. The computation step then finds the critical values of some polynomial
function h of several variables x1, . . . , xr by elimination theory: there are slight variations in
each of the cases below, but broadly speaking, consider the ideal of C[x1, . . . , xr, y] generated
by ∂h

∂xi
and y − h (defining the — often 0-dimensional — algebraic variety of critical points

of h) and use a Gröbner basis for some elimination order (that is, a monomial order such
that y < xi1

1 · · ·xir
r for all i1, . . . , ir not all zero) to find the projection of this variety on the y

coordinate (represented by a polynomial in y which one factors to find the actual values, which
for some currently mysterious reason happen to be always rational); unfortunately, elimination
theory considers all complex values of x1, . . . , xr, so there are many spurious values, and one
must then consider each computed value, or at least those that are smaller than the actual
minimum, and rule them out by showing that, for some reason, they cannot be realized for real
values x1, . . . , xr (generally by noticing that some other element in the Gröbner basis does not
have roots in the domain considered).

Let us now explain the idea of the reduction step in more detail. We generally follow
Appendix A for notation: for example, we call Φ the root system of G.

The reduction trick (†) is as follows. Suppose that z ∈ t is a critical value of the adjoint
character (which is a fundamental character in each of E6, E7, and E8), or more generally that
it is a critical value of any polynomial in the fundamental characters in which no fundamental
character appears more than once; then the result of Kostant and Steinberg A.22 implies that
z is on a root hyperplane t′ = {α = m} (where α ∈ Φ and m ∈ Z); now the affine Weyl group
Γ � W (cf. A.15) acts transitively on the set of such root hyperplanes and preserves all character
values, so we can assume that the z lies on the root hyperplane {α0 = 0}, where −α0 is the
highest root, which (for Dn, E6, E7, E8) is also one of the fundamental weight, say �i. (This i
can be read by taking the extended Dynkin diagram for Φ: it is the node to which the extender
node attaches.) In other words, the coordinates of z on the basis of coroots α∨

1 , . . . , α
∨
n have a

zero at coordinate i (the one which is measured by �i): so z lives, in fact, in the hyperplane
generated by α∨

j for j �= i. Now, as explained in A.23, the linear subspace t′ of t generated by
α∨
j for j ∈ I (here I := {1, . . . , n} \ {i}) is, in a natural way, the Lie algebra of the maximal

torus T ′ of a semisimple Lie subgroup G′ of G (denoted as L′ in A.23), whose root system Φ′

has a Dynkin diagram obtained from that of Φ by keeping only the roots labeled by an element
of I, so, in our case, by deleting node i. So by restricting the character (initially the adjoint
character of G) to G′, we are left with a character on a Lie group G′ having a rank smaller
by 1. Of course, the character restricted to the subgroup G′ in question is no longer the adjoint
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character, but it can be expressed in terms of the fundamental characters of G′ using standard
tables of “branching rules” or a computer program like Sage† (in fact, branching are typically
given first for the restriction from G to an intermediate subgroup G ⊇ G1 ⊇ G′, maximal in G,
and described through the removal of the node i from the extended Dynkin diagram of G
by means of so-called “Borel-de Siebenthal theory: see [56, § 8.10] or [31, chapter 12]; the
restriction from G1 to G is then straightforward as G is a factor of G1, and we will give both
in what follows).

In what follows, we number the nodes of the Dynkin diagrams as in Bourbaki (cf. Figure A.1).
We write chG

i for the ith fundamental representation of the simple group G and chad for the
adjoint representation: thus, chE6

ad = chE6
2 and chE7

ad = chE7
1 and chE8

ad = chE8
8 . More generally, we

write chλ for the character with highest weight λ (written as a combination of fundamental
weights �i), so that chi is an abbreviation for ch	i

.

Theorem B.2. The set of critical values of chE6
ad is −3, −2, 6, 14, and 78. We therefore

have infx FE6 = −9 and χ(E6) � 9.

Proof. If z is a critical point of chE6
ad = chE6

2 , that is, if the differential d chE6
2 vanishes there,

then by (†) we can assume that z belongs to (the Lie algebra t of the maximal torus of) the
Lie subgroup A5 defined by removing node 2 from the Dynkin diagram of E6.

Now chE6
2 |A5 = 2 chA5

3 + chA5
1 chA5

5 +2. In more details, the branching rule for the maximal
subgroup A1 × A5 of E6 gives: chE6

2 |A1×A5 = chA1
	1

chA5
	3

+ chA5
	1+	5

+ chA1
2	1

as witnessed by Sage:

sage: E6 = WeylCharacterRing(”E6”, style=”coroots”)
sage: br = branching_rule(E6, ”A1xA5”,”extended”)
sage: br.branch(E6(E6.fundamental_weights()[2]))
A1xA5(1,0,0,1,0,0) + A1xA5(2,0,0,0,0,0) + A1xA5(0,1,0,0,0,1)

We then observe that

chA5
	1+	5

= chA5
1 chA5

5 −1

and that

chA1
2	1

= (chA1
1 )2 − 1,

so that

chE6
2 |A1×A5 = chA1

1 chA5
3 +(chA5

1 chA5
5 −1) + ((chA1

1 )2 − 1).

Evaluating at the identity of A1 (where chA1
1 = 2), we get

chE6
2 |A5 = 2 chA5

3 + chA5
1 chA5

5 +2

as announced.
Now the fundamental characters chi of A5 are the elementary symmetric functions σi of

six variables u0, . . . , u5 ranging over the unit circle U := {u ∈ C : |u| = 1} and constrained by
u0u1u2u3u4u5 = 1 (the eigenvalues of the element of SU 6). This means that we are to compute
the critical values of h := 2σ3 + σ1σ5 + 2 over {(u0, . . . , u5) ∈ U6 : u0u1u2u3u4u5 = 1} (which
is the maximal torus of A5).

This concludes the reduction step (which is simpler in the case of E6 than for E7,E8), and we
now proceed to the computation step (which, compared to E7,E8, has fewer cases to consider,
but is computationally more challenging).

By elimination theory, we can compute the critical values for u0, . . . , u5 ranging over C6

subject to u0u1u2u3u4u5 = 1: consider the ideal of C[u0, . . . , u5, y] generated by ui
∂h
∂ui

− u0
∂h
∂u0

†http://doc.sagemath.org/html/en/thematic tutorials/lie/branching rules.html

http://doc.sagemath.org/html/en/thematic_tutorials/lie/branching_rules.html
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for i = 1, . . . , 5 (because saying that dh is proportional to d(u0 · · ·u5) means ui
∂h
∂ui

= u0
∂h
∂u0

)
and also y − h; and perform elimination of the variables u0, . . . , u5 (by computing a Gröbner
basis for a monomial order for which y < ui0

0 · · ·ui5
5 for any i0, . . . , i5 not all zero) in this ideal

to obtain the projection on the y coordinate of the critical points.
By computing the Gröbner basis of the corresponding ideal, we obtain that the resulting set

of possible critical values is −66, −3, −2, 6, 14, and 78.
Now the critical value −66 cannot be attained on

{(u0, . . . , u5) ∈ U6 : u0u1u2u3u4u5 = 1}.
We add the inequality y + 66 to the ideal and recompute a Gröbner basis. In this basis we have
σ3

5 = −63.
And this is impossible because σ5 is the sum of the u−1

i , which can only take the value 6 in
absolute value, provided that all the ui are equal to 1 and the same sixth root of unity ζ, in
which case σ1 = 6ζ and σ5 = 6ζ−1 and σ3 = 20ζ3 and by checking the possible ζ, one notices
that h = 2σ3 + σ1 σ5 + 2 does not, in fact, take the value −66.

The value −3, on the other hand, is attained, namely, when three of the ui are equal to one
primitive cube root of unity and the other three are equal to the other. So it is its minimum
and so a critical value.

By further Gröbner basis computation we obtain, the 78 is attained only at ui = 1. We also
obtained that the critical value 14 is attained only with four ui set at −1 and two ui set at 1.
The critical value 6 is attained only by fixing two ui at 1, two at ei2π/3, and two at e−2iπ/3.
The critical value −2 corresponds to a manifold of dimension 2. This manifold is the point
with four ui set at 1 and two ui set at −1.

From the formula FE6(x) = chE6
ad(x) − 6, we get infx FE6(x) = −9 and then using Corol-

lary 5.2χ(E6) � 1 − (−9/72)−1 = 9. �

Theorem B.3. The set of critical values of chE8
ad is −8, −4, − 104

27 , − 57
16 , −3, −2, 0, 5, 24,

248. We therefore have infx FE8 = −16 and χ(E8) � 16.

Proof. If z is a critical point of chE8
ad = chE8

8 , that is, if the differential d chE8
8 vanishes there,

then by (†) we can assume that z belongs to (the Lie algebra t of the maximal torus of) the
Lie subgroup E7 defined by removing node 8 from the Dynkin diagram of E8.

Now

chE8
8 |E7 = chE7

1 +2 chE7
7 +3 (from chE8

8 |A1×E7 = chE7
1 + chA1

1 chE7
7 +((chA1

1 )2 − 1)).

Now since neither chE7
1 nor chE7

7 appear more than once (or with any exponent) in
chE7

1 +2 chE7
7 +3, we can apply (†) again: at a point z where the differential of this expression

vanishes, the differentials of the fundamental characters are not independent, so z belongs to
(the Lie algebra t of the maximal torus of) the Lie subgroup D6 defined by removing node 1
from the Dynkin diagram of E7.

We have

chE7
1 |D6 = chD6

2 +2 chD6
5 +3 (from chE7

1 |A1×D6 = chD6
2 + chA1

1 chD6
5 +((chA1

1 )2 − 1))

and

chE7
7 |D6 = chD6

6 +2 chD6
1 (from chE7

7 |A1×D6 = chD6
6 + chA1

1 chD6
1 ),

giving:

chE8
ad |D6 = chD6

2 +2 chD6
5 +2 chD6

6 +4 chD6
1 +6.

Again, there are no multiple occurrences of the various chD6
i , so we can apply (†) one more

time: at a point z where the differential of this expression vanishes, the differentials of the
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fundamental characters are not independent, so z belongs to (the Lie algebra t of the maximal
torus of) the Lie subgroup D4 × A1 defined by removing node 2 from the Dynkin diagram of
D6.

Here the branching gets more complicated: We use

sage: WeylCharacterRing(”D6”).maximal_subgroups()

within Sage to find the correct rule for branching to A1 × A1 × D4, and in principle the two A1

factors are not symmetric (although in the end it turns out that they are, up to a symmetry
of D4), so one must use br.describe() to chop off the correct A1 factor (call it A◦

1 in what
follows). We find:

• chD6
2 |A1×D4 = chD4

2 +2 chA1
1 chD4

1 +((chA1
1 )2 − 1) + 3 (from chD6

2 |A◦
1×A1×D4 = chD4

2 + chA◦
1

1

chA1
1 chD4

1 +((chA1
1 )2 − 1) + ((chA◦

1
1 )2 − 1)).

• chD6
5 |A1×D4 = chA1

1 chD4
4 +2 chD4

3 (from chD6
5 |A◦

1×A1×D4 = chA1
1 chD4

4 + chA◦
1

1 chD4
3 ).

• chD6
6 |A1×D4 = chA1

1 chD4
3 +2 chD4

4 (from chD6
5 |A◦

1×A1×D4 = chA1
1 chD4

3 + chA◦
1

1 chD4
4 ).

• chD6
1 |A1×D4 = chD4

1 +2 chA1
1 (from chD6

1 |A◦
1×A1×D4 = chD4

1 + chA◦
1

1 chA1
1 ).

Finally, we get:

chE8
ad |A1×D4 = chD4

2 +2 chA1
1 chD4

1 +2 chA1
1 chD4

4 +2 chA1
1 chD4

3 +4 chD4
1 +4 chD4

4 +4 chD4
3

+ (chA1
1 )2 + 8(chA1

1 ) + 8.

We can now apply the reduction trick (†) one last time, for the D4 factor: since chA1
1 is

obviously independent from the chD4
i , at a point z where the differential of the expression

chE8
ad |A1×D4 above vanishes, the differentials of the fundamental characters chD4

i are not
independent, so z belongs to (the Lie algebra t of the maximal torus of) the Lie subgroup
A1 × (A1)3 defined by removing node 2 from the Dynkin diagram of D4.

To compute this restriction, first examine the restriction of D4 to the maximal subgroup
A1 × A1 × A1 × A1 of D4 (seen by extending the Dynkin diagram of D4 and removing the node
connected to the four others): if we call t1, . . . , t4, the (single) fundamental characters of the
various A1 factors, numbered in the same way as the nodes of the extended diagram of D4 from
which they come (except that t2 comes from the extending node), then chD4

1 |(A1)4 = t1t2 + t3t4
and chD4

3 |(A1)4 = t1t4 + t2t3 and chD4
4 |(A1)4 = t1t3 + t2t4 and finally

chD4
2 |(A1)4 = t1t2t3t4 + t21 + t22 + t23 + t24 − 4.

Finally, restricting chE8
ad to A1 × (A1)3 (the first A1 factor being the factor A1 in A1 × D4

earlier and the other three coming from nodes 1,3,4 of D4 as described in the previous
paragraphs), we have

chE8
ad |A1×(A1)3 = 2σ3 + σ2

1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4,

where s is the fundamental character from the first A1 factor and σi are the elementary
symmetric functions in the fundamental characters t1, t3, t4 of the three other A1 factors.

We now need to find the critical values of this function

h = 2σ3 + σ2
1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4.

There is one subtlety, however: “critical” means that for each ti, as well as for s, we either have
∂h
∂ti

= 0 (respectively, ∂h
∂s = 0) or ti = ±2 (respectively, s = ±2). Indeed, each ti (as well as s)

is a character of A1, so it is u + u−1 for the two eigenvalues u, u−1 of the element of SU 2 in
question, so the critical values of ti itself are ±2.



COLORING THE VORONOI TESSELLATION OF LATTICES 1169

This concludes the reduction step for E8. The computation step is then to use elimination
theory, in each possible case depending on how many of the ti satisfy ∂h

∂ti
= 0 and how many

satisfy ti = 2 and ti = −2, and similarly for s, to find the corresponding values of h = 2σ3 +
σ2

1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4.
For this, we must consider 10 × 3 = 30 cases according to constraints placed on the ti (which

can be set equal to +2 or to −2 or to satisfy ∂h
∂ti

= 0, which we denote as “ti = ∂” for short) and
on s (similarly s = +2 or s = −2 or s = ∂). In each case, we consider the ideal of C[s, t1, t3, t4, y]
generated by the ti − 2 or ti + 2 or ∂h

∂ti
as the case may be, and similarly for s, and also

y − h; and perform elimination of the variables s, t1, t3, t4 (by computing a Gröbner basis for a
monomial order for which y < sjti11 ti33 ti44 for any j, i1, i3, i4 not all zero) in this ideal to obtain
the projection on the y coordinate of the critical points.

By considering all cases we find that the set of possible critical values is −652, −27, −12,
− 64

7 , −8, −4, − 104
27 , − 57

16 , −3, −2, 0, 5, 24, and 248. For each such value and each possible
critical value, we compute the manifold which turns out to be always 0-dimensional. The points
of those manifolds can be enumerated and we obtain the list of critical values by keeping only
the values for which at least one of the point has |t1|, |t3|, |t4|, |s| � 2.

From the formula FE8(x) = chE8
ad(x) − 8, we get infx FE8(x) = −16 and then using Corol-

lary 5.2χ(E8) � 1 − (−16/240)−1 = 16. �

Theorem B.4. The set of critical values of chE7
ad is −7, −3, −2, 1, 17

5 , 5, 25, 133. We
therefore have infx FE7 = −14 and χ(E7) � 10.

Proof. We have chE7
ad = chE7

1 and all the reduction step has already been explained above in
the E8 case: we get

chE7
ad |A1×D4 = chD4

2 +2 chA1
1 chD4

1 +2 chA1
1 chD4

4 +4 chD4
3 +(chA1

1 )2 + 5,

so that

chE7
ad |A1×(A1)4 = 2(σ3 − σ2) + σ2

1 + 2s(t1 + t4)(t3 + 2) + 4(t1t4 + 2t3) + s2 + 5.

The computation step is then similar to E8, except there is now less symmetry between the
ti (one can only exchange t1 and t4): one must therefore distinguish 3 × 3 × 6 cases.

By computing a Gröbner basis we obtain that the set of possible critical values is −191,
−11, −35/4, −7, −3, −2, 1, 17

5 , 5, 25, and 133. For each case and critical value we compute
the corresponding manifold and its complex points. In each case except one, the manifold is
0-dimensional and for two 0-dimensional cases, the computation of the points does not finish.
Those three problematic cases occur for the value −2.

For the other cases we compute the points and keep only the values for which one of the
points has |t1|, |t3|, |t4|, |s| � 2. It turns out that the value −2 is attained by one of those
points and so the three problematic cases do not prevent us from concluding that −2 is a
critical value.

From the formula FE7(x) = chE7
ad(x) − 7 we get infx FE7(x) = −14 and then using Corol-

lary 5.2χ(E7) � 1 − (−14/126)−1 = 10. �

One possible extension of this work could be to consider the nonsimply laced diagrams, that
is, Bn, Cn, F4, and G2.
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19. M. Dutour Sikirić, Polyhedral, a package for handling polytopes and lattices. http://mathieudutour.
altervista.org/Polyhedral/index.html.
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