
Minimizing network bandwidth under latency
constraints: The single node case

Jiayi Song, Roch Guérin
Washington University in St. Louis

(jiayisong,guerin)@wustl.edu

Henry Sariowan
Google, USA

hsariowan@google.com

Abstract—Much of today’s traffic flows between datacenters
over private networks. The operators of those networks have
access to detailed traffic profiles with performance goals that
need to be met as efficiently as possible, e.g., realizing latency
guarantees with minimal network bandwidth. Of particular
interest is the extent to which traffic (re)shaping can be of benefit.
The paper focuses on the most basic network configuration,
namely, a single link network, with extensions to more general,
multi-node networks discussed in a companion paper. The main
results are in the form of optimal solutions for different types
of schedulers of varying complexity. They demonstrate how
judicious traffic shaping can help lower complexity schedulers
perform nearly as well as more complex ones.

Index Terms—latency, bandwidth, optimization, shaping

I. INTRODUCTION

The networks that connect datacenters are now on par
with those from major Internet Service Providers (ISPs) [1].
Furthermore, unlike the public Internet where providers have
limited information and control on end-user traffic, datacenter
operators have explicit contractual relationships with their
users/customers. These are typically in the form of traffic
contracts such as token buckets [2, Section 4.2], and Service
Level Objectives/Agreements (SLOs/SLAs) expressing rate
and latency targets. When combined with the centralized
control that technologies such as Software Defined Networking
(SDN) enable, fine tuning of performance is now not only
possible [3], but also highly desirable to minimize cost [4].

The paper assumes such an environment with datacenters
inter-connected by links under the purview of an operator with
both knowledge and control of individual traffic flows (or flow
aggregates) traversing the network. Flows are assigned traffic
contracts and corresponding latency bounds1 with a central
controller responsible for orchestrating how they are mapped
to network resources [5]. In such a setting, the paper seeks to
answer the following question: “What is the minimum network
bandwidth required to meet the latency targets of a given set
of flows?” The type of scheduler used in the network affects
the answer, and we consider options of varying complexity.

We note that this question is the dual of the traditional
call admission problem that asks whether performance goals
can be met given the available network capacity. The added

The work of the first two authors was supported in part by a gift from
Google and by NSF grant CNS 2006530.

1We note that the deterministic nature of both is largely meant to facilitate
the validation of contractual agreements.

complexity in this dual problem is in the exploration of
possible configurations in handling individual flows (how to
best map each flow to scheduling decisions).

This paper represents a first step in investigating this prob-
lem, and focuses on the most basic network configuration,
namely, a single node and link (hop). Its contributions are
in formulating optimal solutions for schedulers of different
complexity in the single hop case, i.e., a dynamic priority
(service curve-based) scheduler, followed by static priority
and first-in-first-out (fifo) schedulers that are considerably
easier to implement. Of interest is the “cost of simplicity”
in terms of the additional bandwidth required. For the latter
two schedulers, another question of interest is the improve-
ments that may be feasible from reshaping flows on ingress.
Reshaping adds an access delay component, but makes flows
easier (smoother) to handle. The paper identifies optimal
ingress traffic (re)shaping configurations that minimize the link
bandwidth required to meet end-to-end deadlines (inclusive of
shaping delays) under both schedulers.

The rest of this paper is structured as follows. Section II
offers a brief review of related works. Section III introduces
our one-hop “network” model and associated optimization,
with Sections IV to VI devoted to deriving solutions for
schedulers of different complexity. Section VII quantifies the
relative benefits of each approach, starting with a simple
“two-flow” configuration that helps identify trends, before
considering more general multi-flow scenarios. Section VIII
summarizes the paper’s findings and identifies extensions. Due
to lack of space, proofs and ancillary results are in [6].

II. RELATED WORKS

There is a vast literature on traffic engineering and schedul-
ing in data centers, but it has been mainly focused on
optimizing performance rather than minimizing cost (under
performance constraints), as we do. From that perspective,
works such as [5], [7], [8] and [9] are closest conceptually.

Reducing costs while meeting latency performance require-
ments is a goal we share with [7], and so is our reliance on
achieving this goal through careful assignment of workload
priorities and reshaping options. The main difference is in
the cost parameters under consideration, and consequently the
criteria they give rise to. More specifically, [7] is concerned
with minimizing the number of servers needed to accommo-
date a workload with given deadlines, whereas our focus is on

1

minimizing network bandwidth given a set of inter-datacenter
flows and deadlines. As a result, [7] selects token-bucket
parameters to optimize workflow co-location across servers,
while we set them based on their impact on end-to-end flow
deadlines and their ability to constrain flow interactions in the
network; hence minimizing bandwidth.

Lowering network cost while meeting performance targets
is also a goal of [8], albeit in the form of availability rather
than latency. Because latency is not a concern, it departs from
our focus by not considering the possibility of reshaping traffic
flows (through adjusting token bucket parameters). In contrast,
how to best reshape flows is very much a concern of [9], as
is minimizing (network) cost while meeting target deadlines.
Specifically, [9] relotheries on a network/link bandwidth cost
function (based on load percentile) that creates opportunity for
periods of “free” bandwidth. Its goal is then to make shaping
and scheduling decisions that can maximize the amount of
traffic sent during such free periods, and consequently lower
network cost. Our goal is both simpler and more complex.
It is simpler in that we only seek to minimize link capacity
as a substitute for network cost. It is more complex because
(ingress) reshaping decisions affect how flows interact, which
impacts their deadlines. This aspect is absent from [9] that
focuses on meeting long-term traffic volume targets on a single
link (the ISP link whose cost is to be optimized).

Finally, we note that the theory of “network calculus” [10]
involves a similar framework as that of the paper, but its
applicability manifests itself mainly in the multi-node setting
where it offers powerful tools to analyze end-to-end network
performance (see [6] for a brief discussion of relevant results).

III. GENERAL MODEL FORMULATION

In this section, we formulate our problem as an optimization
problem (OPT), which we proceed to solve in Sections IV
to VI under different assumptions regarding the scheduling
mechanism available in the “network” (link).

Consider a set of n flows, where flow i, 1 ≤ i ≤ n, is
associated with an end-to-end packet-level deadline2 di, where
w.l.o.g. we assume d1 > d2 > . . . > dn with d1 < ∞.
The traffic generated by flow i is rate-controlled using a two-
parameter token-bucket (ri, bi), where ri denotes the token
rate and bi the bucket size. The profile of flow i is then defined
as (ri, bi, di). Our goal is to meet the latency requirements
(deadlines) of all n flows at the lowest possible link “cost.”

Our cost metric is link bandwidth. In the simple case
of one-hop (one link) networks illustrated in Fig. 1, we
let R denote the link bandwidth, and define the vectors of
the rates, burst sizes, and deadlines of the flows sharing
the link as r = (r1, r2, . . . , rn), b = (b1, b2, . . . , bn), and
d = (d1, d2, . . . , dn), respectively. For notational simplicity
we omit the scheduler type in the expression for flow i’s
worst-case end-to-end delay, D∗

i (r, b, R). Our optimization
constraint is then D∗

i (r, b, R) ≤ di,∀i, 1 ≤ i ≤ n, i.e., all

2The deadline measures the time between transmission by the source end-
system to reception by the destination end-system.

Fig. 1: A typical one-hop configuration with n flows.

flows meet their deadline, and our optimization OPT is of the
form:

OPT min ∥ R ∥1
s.t D∗

i (r, b, R) ≤ di, ∀i, 1 ≤ i ≤ n.

The next three sections explore solutions to OPT for dif-
ferent schedulers. For simplicity of exposition and analysis,
results are presented using a fluid model. [6] presents a
solution for a static priority scheduler under a packet-based
model, but the results do not contribute additional insight.

IV. DYNAMIC PRIORITIES

We start with the most powerful but most complex mech-
anism, dynamic priorities, where priorities are derived from
general service curves assigned to flows as a function of
their profile (deadline and traffic envelope). We then solve
OPT to characterize the service curves that achieve the lowest
bandwidth while meeting all deadlines.

Towards deriving this result, we first specify a service-
curve assignment Γsc that satisfies all deadlines, identify the
minimum link bandwidth R∗ required to realize Γsc, and show
that any scheduler requires at least R∗. We then show that
an earliest deadline first (EDF) scheduler realizes Γsc and,
therefore, meets all the flow deadlines under R∗.

Proposition 1. Consider a one-hop network shared by n
token-bucket controlled flows, where flow i, 1 ≤ i ≤ n,
has a traffic contract of (ri, bi) and a deadline of di, with
d1 > d2 > ... > dn and d1 < ∞. Consider a service-curve
assignment Γsc that allocates flow i a service curve of

SCi(t) =

{︄
0 when t < di,

bi + ri(t− di) otherwise.
(1)

Then
1) For any flow i, 1 ≤ i ≤ n, SCi(t) ensures a worst-case

end-to-end delay no larger than di.
2) Realizing Γsc requires a link bandwidth of at least

R∗ = max
1≤h≤n

{︄
n∑︂

i=1

ri,

∑︁n
i=h bi + ri(dh − di)

dh

}︄
. (2)

3) Any scheduling mechanism capable of meeting all the
flows’ deadlines requires a bandwidth of at least R∗.

The optimality of Γsc is intuitive. Recall that a service
curve is a lower bound on the service received by a flow.
Eq. (1) assigns service to a flow at a rate exactly equal to its
input rate, but delayed by its deadline, i.e., provided at the
latest possible time. Conversely, any mechanism Γ̂ that meets
all flows’ deadlines must by time t have provided flow i a
cumulative service at least equal to the amount of data that
flow i may have generated by time t − di, which is exactly
SCi(t). Hence the mechanism must offer flow i a service curveˆ︃SCi(t) ≥ SCi(t),∀t.

Next, we identify at least one mechanism capable of realiz-
ing the services curves of Eq. (1) under R∗, and consequently
providing a solution to OPT for schedulers that support
dynamic priorities.

Proposition 2. Consider a one-hop network shared by n
token-bucket controlled flows, where flow i, 1 ≤ i ≤ n,
has a traffic contract of (ri, bi) and a deadline of di, with
d1 > d2 > ... > dn and d1 < ∞. The earliest deadline first
(EDF) scheduler realizes Γsc under a link bandwidth of R∗.

We note that the optimality of EDF is intuitive, as mini-
mizing the required bandwidth is the dual problem to maxi-
mizing the schedulable region for which EDF’s optimality is
known [11].

Note also that Γsc specifies a non-linear (piece-wise-linear)
service curve for each flow. Given the popularity and sim-
plicity of linear service curves, i.e., rate-based schedulers,
it is tempting to investigate whether such schedulers, e.g.,
GPS [12], could be used instead. Unfortunately, it is easy to
find scenarios where linear service curves perform worse.

In the next section, we consider simpler, static priority
schedulers; first used alone (Section V-A) and then combined
with an ingress (re)shaper (Section V-B). As is intuitive given
their optimality and formally shown in [6], reshaping is of no
benefit with the dynamic priority schedulers of this section.

V. STATIC PRIORITIES

Though dynamic priorities are efficient and may be real-
izable [13], [14], they are expensive and not feasible in all
environments. It is, therefore, of interest to explore simpler
alternatives to offer service differentiation, and to quantify the
resulting trade-off between efficacy and complexity. For that
purpose, we consider next a static priority scheme with flows
assigned a fixed priority as a function of their deadline.

As before, we consider a single-hop scenario with n flows
with profiles (ri, bi, di), 1 ≤ i ≤ n, sharing a common
network link. The question we first address is how to assign
(static) priorities to each flow given their profile and the
goal of OPT of minimizing the link bandwidth required to
meet all deadlines? The next proposition offers a partial and
somewhat intuitive answer to this question by establishing that
the minimum link bandwidth can be achieved by giving flows
with shorter deadlines a higher priority. Formally,

Proposition 3. Consider a one-hop network shared by n
token-bucket controlled flows, where flow i, 1 ≤ i ≤ n,
has a traffic contract of (ri, bi) and a deadline of di, with
d1 > d2 > ... > dn and d1 < ∞. Under a static-priority
scheduler, there exists an assignment of flows to priorities that
minimizes link bandwidth while meeting all flows’ deadlines
such that flow i is assigned a priority strictly greater than that
of flow j only if di < dj .

We note that while Proposition 3 states that network link
bandwidth can be minimized by assigning flows to priorities in
the order of their deadline, it neither rules out other mappings
nor does it imply that flows with different deadlines should
necessarily be mapped to distinct priorities. More generally,
in some scenarios, grouping flows with different deadlines in
the same priority class can result in a lower bandwidth than
mapping them to distinct classes3. Nevertheless, motivated
by Proposition 3, we propose a simple assignment rule that
strictly maps lower deadlines to higher priorities.

A. Static Priorities without (re)Shaping
From [10, Proposition 1.3.4] we know that when n flows

with traffic envelopes (ri, bi), 1 ≤ i ≤ n, share a network link
of bandwidth R ≥

∑︁n
i=1 ri with flow i assigned to priority i,

then, under a static-priority scheduler, the worst case delay of
flow h is upper-bounded by

∑︁n
i=h bi

R−
∑︁n

i=h+1 ri
(recall that under our

notation, priority n is the highest). As a result, the minimum
link bandwidth ˜︁R∗ to ensure that flow h’s deadline dh is met
for all h is given by:

˜︁R∗ = max
1≤h≤n

{︄
n∑︂

i=1

ri,

∑︁n
i=h bi
dh

+

n∑︂
i=h+1

ri

}︄
(3)

Towards evaluating the performance of a static priority
scheduler compared to one that relies on dynamic priorities,
we compare ˜︁R∗ with R∗ through their relative difference, i.e.,˜︁R∗−R∗

R∗ . For ease of comparison, we rewrite R∗ as

R∗ = max
1≤h≤n

{︄
n∑︂

i=1

ri,

∑︁n
i=h bi
dh

+

n∑︂
i=h+1

ri

(︃
1− di

dh

)︃}︄
.

(4)
Comparing Eqs. (3) and (4) gives that R∗ = ˜︁R∗ iff ˜︁R∗ =∑︁n

i=1 ri, i.e.,
∑︁n

i=h bi
dh

≤
∑︁h

i=1 ri,∀ 1 ≤ h ≤ n. In other
words, a static priority scheduler will perform as well as the
optimal one (yield the same minimum bandwidth), whenever
flow deadlines are relative large and flow bursts small. How-
ever, when ˜︁R∗ ̸=

∑︁n
i=1 ri, the use of a static priority scheduler

can translate into a need for a much larger bandwidth.
Consider a scenario where R∗ is achieved at h∗, i.e.,

R∗ =
∑︁n

i=h∗ bi
dh∗ +

∑︁n
i=h∗+1 ri

(︂
1− di

dh∗

)︂
. Though ˜︁R∗ may not

be realized at the same h∗ value, this still provides a lower
bound for ˜︁R∗, namely, ˜︁R∗ ≥

∑︁n
i=h∗ bi
dh∗ +

∑︁n
i=h∗+1 ri. Thus,

the relative difference between ˜︁R∗ and R∗ is no less than∑︁n
i=h∗+1 diri∑︁n

i=h∗ bi +
∑︁n

i=h∗+1 ri (dh∗ − di)
. (5)

3We illustrate this in [6] with two flows and a static priority scheduler.

As Eq. (5) increases with di for all i ≥ h∗, it is maximized for
di = dh∗ − ϵi,∀i > h∗, for arbitrarily small ϵh∗+1 < . . . <

ϵn, so that its supremum is equal to
∑︁n

i=h∗+1 ridh∗∑︁n
i=h∗ bi

. This is
intuitive, as when flows have arbitrarily close deadlines, they
should receive mostly equal service shares, which conflicts
with a strict priority ordering.

Note that under certain flow profiles, this supremum can be
large. Take a two-flow scenario as an example. Basic algebraic
manipulations give a supremum of r2

r1+r2
, which is achieved

at d2 = d1 = b2+b1
r1+r2

. Note that r2
r1+r2

→ 1 as r1
r2

→ 0. Thus, in
the two-flow case, the optimal static priority scheduler could
have bandwidth requirements twice as large as those of the
optimal dynamic priority scheduler.

B. Static Priorities with (re)Shaping

As shown, static priorities can result in a minimum required
bandwidth significantly larger than R∗. This is because they
are a blunt instrument when it comes to allocating transmission
opportunities as a function of packet deadlines.

This is intrinsic to the static structure of the scheduler’s
decision, but can be mitigated by anticipating the extent to
which flows may experience better deadlines than necessary
and (re)shaping them before they enter the network. Such
flows can absorb the added (ingress) reshaping delay, and
reshaping them limits their impact on lower priority flows.

Consider a link shared by two flows with profiles
(r1, b1, d1) = (1, 5, 1.4) and (r2, b2, d2) = (4, 5, 1.25). In
this case, a strict static-priority scheduler yields ˜︁R∗ = 11.14.
Assume next that we first (re)shape flow 2 to (r2, b

′
2) = (4, 0)

before it enters the shared link. This reduces its delay budget
at the shared link down to 04, but also entirely eliminates
its burst. Under a fluid model, the required bandwidth to
meet both flows’ deadlines is now only 7.57 (a bandwidth of
4 = r2 is still consumed by flow 2, but the remaining 3.57 is
sufficient to allow flow 1 to meet its deadline). In other words,
(re)shaping flow 2 yields a bandwidth decrease of more than
30%. This illustrates the potential benefits of access/ingress
reshaping of flows. Next we proceed to characterize optimal
(re)shaping parameters, and the resulting bandwidth gains.

When considering reshaping a flow with profile (ri, bi, di),
the goal is to identify reshaping parameters (r′i, b

′
i) that maxi-

mize bandwidth savings without violating the flow’s deadline
di. In configurations with only two flows, it can be shown
(see [6]) that reshaping profiles of the form (ri, b

′
i), i.e., limited

to the flow’s burst, are sufficient. For that reason and to
simplify our investigation, we limit ourselves to such profiles,
i.e., r′i = ri and 0 ≤ b′i ≤ bi. In the next few propositions,
we first characterize flow delays when reshaped under static
priorities, before deriving the optimal reshaping parameters
(burst sizes) and the resulting minimum link bandwidth ˜︁R∗

s

that solves the corresponding version of OPT under a static
priority scheduler and ingress reshaping.

4Reshaping a burst of size b2 = 5 down to 0 at a rate of r2 = 4 results
in a reshaping delay of 5

4
= 1.25, which consumes the entire end-to-end

deadline d2.

Specifically, Proposition 4 characterizes the worst case
delays (ingress reshaping plus link scheduling delays) of flows
with given token-bucket traffic envelopes when assigned to a
link of capacity R and served according to a priority scheduler.
The result is then used to formulate an optimization problem,
OPT S, that seeks to minimize the link bandwidth R required
to meet individual flow’s deadlines, when flows are again
assigned to a priority class based on their deadline (shorter
deadlines have higher priority). The optimization variables are
the flows ingress reshaping parameters. Proposition 5 then
characterizes the minimum bandwidth ˜︁R∗

s that OPT S can
achieve, while Proposition 6 provides explicit expressions for
the optimal reshaping parameters.

Recall that priority n is the highest priority and let b′ =
(b′1, b

′
2, b

′
3, ..., b

′
n) be the vector of (re)shaped flow bursts, with

b′∗ = (b′∗1 , b
′∗
2 , b

′∗
3 , ..., b

′∗
n) the optimal configuration. Further,

let B′
i =

∑︁n
j=i b

′
j and Ri =

∑︁n
j=i rj , i.e., the sum of the

(re)shaped bursts and rates of flows with priority greater than
or equal to i, 1 ≤ i ≤ n, with B′

i = 0 and Ri = 0 for i > n.
Proposition 4 gives flow i’s worst-case end-to-end delay.

Proposition 4. Consider a one-hop network shared by n
token-bucket controlled flows, where flow i, 1 ≤ i ≤ n,
has a traffic contract of (ri, bi). Assume a static priority
scheduler that assigns flow i a priority of i, where priority n
is the highest priority, and (re)shapes flow i to (ri, b

′
i), where

0 ≤ b′i ≤ bi. Given a shared link bandwidth of R ≥
∑︁n

j=1 rj ,
the worst-case delay for flow i is

D∗
i = max

{︃
bi +B′

i+1

R−Ri+1
,
bi − b′i
ri

+
B′

i+1

R−Ri+1

}︃
. (6)

Observe that D∗
i is independent of b′1 for 2 ≤ i ≤ n, and

decreases with b′1 when i = 1. This is intuitive as flow 1 has
the lowest priority so that (re)shaping it cannot decrease the
worst-case end-to-end delay of other flows.

Combining Proposition 4 with OPT, and using the fact
that flow 1 does not need to be reshaped gives optimization
OPT S. Note that since the minimum link bandwidth needs
to satisfy R ≥

∑︁n
i=1 ri, combining this condition with Ri’s

definition gives
∑︁n

i=1 ri = R1 ≤ R.

OPT S min
b′

R

s.t max

{︃
bi +B′

i+1

R−Ri+1
,
bi − b′i
ri

+
B′

i+1

R−Ri+1

}︃
≤ di,

∀ 1 ≤ i ≤ n,

R1 ≤ R, b′1 = b1, 0 ≤ b′i ≤ bi, ∀ 2 ≤ i ≤ n.

(7)

The solution of OPT S is given in Propositions 5 and 6.
Proposition 5 characterizes the optimal bandwidth ˜︁R∗

s based
only on flow profiles, and while it is too complex to yield a
closed-form expression, it offers a feasible numerical proce-
dure to compute ˜︁R∗

s .

Proposition 5. For 1 ≤ i ≤ n, denote Hi = bi −
diri, Πi(R) = ri+R−Ri+1

R−Ri+1
and Vi(R) = di(R −

Ri+1) − bi. Define S1(R) = {V1(R)}, and Si(R) =

Si−1(R)
⋃︁
{Vi(R)}

⋃︁{︂
s−Hi

Πi(R) | s ∈ Si−1(R)
}︂

for 2 ≤ i ≤ n.

Then we have ˜︁R∗
s = max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

Computing ˜︁R∗
s requires solving polynomial inequalities of

degree (n−1), so that a closed-form expression is not feasible
except for small n. However, as Si(R) relies only on flow
profiles and Sj(R), ∀j < i, we can recursively construct
Sn(R) from S1(R). Hence, since R1 ≤ ˜︁R∗

s ≤ ˜︁R∗, we can
use a binary search to compute ˜︁R∗

s from the relation ˜︁R∗
s =

max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}} in Proposition 5.
Proposition 6 gives a constructive procedure for the optimal

reshaping parameters given ˜︁R∗
s and the original flow profiles.

Proposition 6. Optimal reshaping parameters b′∗i , 2 ≤ i ≤ n,
satisfy

b′∗i =

⎧⎪⎨⎪⎩
max{0, bn − rndn}, when i = n;

max

{︄
0, bi − ridi +

riB
′∗
i+1˜︁R∗

s −Ri+1

}︄
, otherwise.

where we recall that b′∗1 = b1.
As b′∗i , 1 < i < n relies only on the optimal link bandwidth˜︁R∗
s and the reshaping parameters of higher priority flows, we

can recursively characterize b′∗i from b′∗n given ˜︁R∗
s .

VI. BASIC FIFO WITH (RE)SHAPING

Next, we consider a simple first-in-first-out (fifo) scheduler.
For conciseness, we directly assume that flows can be reshaped
prior to entering the network. Given again a set of n flows with
profiles (ri, bi, di), 1 ≤ i ≤ n, our goal is to find reshaping
parameters (r′i, b

′
i) to minimize the link bandwidth required to

meet all flows’ deadlines. As in Section V-B, we assume that
ri = r′i and focus on identifying the best b′i values.

We first proceed to characterize the worst case delay across
n flows sharing a fifo scheduler and a link of bandwidth R,
when the flows have traffic envelopes (ri, bi), 1 ≤ i ≤ n, and
have been reshaped to (ri, b

′
i), 1 ≤ i ≤ n. Using this result,

we then identify the reshaping parameters b′i, 1 ≤ i ≤ n, that
minimize the link bandwidth required to ensure that all flows
meet their deadlines. As for other configurations, we only state
the results, with proofs found in [6].

Proposition 7. Consider a system with n rate-controlled flows
with traffic envelopes (ri, bi), where 1 ≤ i ≤ n, which share
a fifo link with bandwidth R ≥ R1 =

∑︁n
j=1 rj . Assume that

the system reshapes flow i’s traffic envelope to (ri, b
′
i). Then

the worst-case delay for flow i is

ˆ︁D∗
i = max

{︄
bi − b′i
ri

+

∑︁
j ̸=i b

′
j

R
,

∑︁n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}︄
.

(8)

With the result of Proposition 7 in hand, we can formulate a
corresponding optimization problem, OPT F, for computing
the optimal reshaping parameters that minimize the link band-
width required to meet the flows’ deadlines d1 > d2 > . . . >
dn, with d1 < ∞. Specifically, combining Proposition 7 with
OPT gives the following optimization OPT F for a one-hop

network shared by n flows and relying on a fifo scheduler with
reshaping. As before,

∑︁n
i=1 ri = R1 ≤ R.

OPT F min
b′

R

s.t. ∀ 1 ≤ i ≤ n

max

{︄
bi − b′i
ri

+

∑︁
j ̸=i b

′
j

R
,

∑︁n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}︄
≤ di,

R1 ≤ R, 0 ≤ b′i ≤ bi.

The solution of OPT F is characterized in Propositions 8
and 9. As in the case of a static priority scheduler, Proposi-
tion 8 describes a numerical procedure to compute the optimal
bandwidth ˆ︁R∗

s given the flow profiles, while Proposition 9
specifies the optimal reshaping parameters ˆ︁b′∗ given ˆ︁R∗

s and
the flow profiles.

Proposition 8. For 1 ≤ i ≤ n, define Hi = bi − diri, ˆ︁Bi =∑︁i
j=1 bj , and Zi = {1 ≤ j ≤ i | j ∈ Z}. Denote

XF (R) = max
P1

P2⊆Zn,P2 ̸=Zn

P1

⋂︁
P2=∅

∑︁
i∈P1

RHi

R+ri
+
∑︁

i∈P2

(︂
bi − ridiR

R1

)︂
1−

∑︁
i∈P1

ri
R+ri

−
∑︁

i∈P2

ri
R1

,

yF (R) = min P1,P2⊆Zi

P1
⋂︁

P2=∅
P1

⋃︁
P2 ̸=∅

{︄ ˆ︁Bi−
∑︁

j∈P1

RHj
R+rj

−
∑︁

j∈P2

(︂
bj−

rjdjR

R1

)︂
∑︁

j∈P1

rj
R+rj

+
∑︁

j∈P2

rj
R1

}︄
,

and YF (R) = min1≤i≤n−1

{︂ ˆ︁Bn, Rdn, yF (R)
}︂

. Then the
optimal solution for OPT F is

ˆ︁R∗
s = max

{︄
R1,

ˆ︁BnR1∑︁n
i=1 ridi

,min{R | XF (R) ≤ YF (R)}

}︄
.

Denoting as ˆ︁R∗ the minimum required bandwidth in a
fifo system without reshaping, since max

{︂
R1,

ˆ︁BnR1∑︁n
i=1 ridi

}︂
≤ˆ︁R∗

s ≤ ˆ︁R∗ = max
{︂
R1,

ˆ︁Bn

dn

}︂
, we can use a binary search

to compute ˆ︁R∗
s based on Proposition 8. Once ˆ︁R∗

s is known,
the optimal reshaping parameters can be obtained as stated in
Proposition 9.

Proposition 9. For 1 ≤ i ≤ n, define Ti(ˆ︁B′
n, R) =

max
{︂
0, R

R+ri

(︂
Hi +

ri
R
ˆ︁B′
n

)︂
, bi +

ri(ˆ︁B′
n−Rdi)
R1

}︂
. OPT F’s

optimal reshaping parameters ˆ︁b′∗ satisfy ˆ︁b′∗1 = ˆ︁B′∗
1 , andˆ︁b′∗i = ˆ︁B′∗

i − ˆ︁B′∗
i−1 for 2 ≤ i ≤ n, where ˆ︁B′∗ satisfy⎧⎪⎪⎨⎪⎪⎩

ˆ︁B′
i = max

⎧⎨⎩
i∑︂

j=1

Tj(ˆ︁B′∗
n , ˆ︁R∗

s), ˆ︁B′∗
i+1 − bi+1

⎫⎬⎭ , i ̸= n

ˆ︁B′∗
n = XF (ˆ︁R∗

s),

(9)

Note that ˆ︁B′∗
i , 1 ≤ i ≤ n−1, depend on ˆ︁R∗

s , ˆ︁B′∗
n , ˆ︁B′∗

i+1 and
flow profiles, while ˆ︁B′∗

n relies only on ˆ︁R∗
s and flow profiles.

Hence, we can recursively characterize ˆ︁B′∗
i from ˆ︁B′∗

n .

VII. EVALUATION

This section explores the relative performance of the so-
lutions of the previous sections. One aspect is the “cost of
simplicity,” as measured by the additional bandwidth simpler
static priority or fifo schedulers require compared to a more
complex (edf-based) dynamic priority scheduler. Also of in-
terest is the magnitude of the improvements that (ingress)
reshaping affords with static priority and fifo schedulers.

The evaluation initially focuses (Section VII-A) on scenar-
ios involving only two flows. In this base setting, explicit
expressions are available for the minimum bandwidth under
each configuration, so that formal comparisons are possible.
This is then extended (Section VII-B) to more “general”
scenarios involving multiple flows with different combinations
of deadlines and traffic envelopes.

A. Basic Two-Flow Configurations

We first recall our earlier notation for the minimum band-
width required in each configuration, namely, R∗ (dynamic
priority); ˜︁R∗ (static priority); ˜︁R∗

s (static priority w/ reshaping);ˆ︁R∗ (fifo); and ˆ︁R∗
s (fifo w/ reshaping).

We then proceed to specialize Eq. (2) to a configuration
with only two flows, (r1, b1, d1) and (r2, b2, d2), to get

R∗ = max

{︃
r1 + r2,

b2
d2

,
b1 + b2 − r2d2

d1
+ r2

}︃
, (10)

We consider next the same two flows configuration with a
static priority scheduler, for which Eq. (3) gives

˜︁R∗ = max

{︃
r1 + r2,

b2
d2

,
b1 + b2

d1
+ r2

}︃
; (11)

If (optimal) reshaping is introduced, specializing Proposition 5
to two flows, the minimum bandwidth ˜︁R∗

s reduces to

˜︁R∗
s =

⎧⎪⎨⎪⎩
max

{︃
r1 + r2,

b2
d2

,
b1 + b2 − r2d2

d1
+ r2

}︃
max

{︃
r1 + r2,

b2
d2

,
b1 +max {b2 − r2d2, 0}

d1
+ r2

}︃
(12)

where the first expression holds when b2
r2

≥ b1
r1

and the second
otherwise.

Finally, similarly specializing the results of Propositions 8
and 9 to two flows, we find that the minimum required
bandwidth ˆ︁R∗ under fifo without reshaping is

ˆ︁R∗ = max

{︃
r1 + r2,

b1 + b2
d2

}︃
; (13)

and that when (optimal) reshaping is used, ˆ︁R∗
s is given by

ˆ︁R∗
s = max

{︃
r1 + r2,

b2
d2

,
(b1 + b2)(r1 + r2)

d1r1 + d2r2
,

b1 + b2 − d1r1 +
√︁
(b1 + b2 − d1r1)2 + 4r1d2b2

2d2

}︄
. (14)

With these expressions in hand, we can proceed to assess the
relative benefits of each option in the basic two-flow scenario.

1) The Impact of Scheduler Complexity: We first compare
the bandwidth requirements of the three schedulers, i.e., dy-
namic priority, static priority, and fifo where the latter two are
combined with an optimal reshaper. The comparison is in the
form of relative differences, i.e.,

˜︁R∗
s−R∗˜︁R∗

s

,
ˆ︁R∗
s−R∗ˆ︁R∗

s

, and
ˆ︁R∗
s− ˜︁R∗

sˆ︁R∗ .
Dynamic priority vs. static priority w/ optimal reshaping.

From Eqs. (10) and (12), R∗ < ˜︁R∗
s iff b2

r2
< d2 ≤ d1 < b1

r1
.

Fig. 2a uses a “heatmap” to illustrate this difference for a
representative two-flow combination, (r1, b1) = (4, 10) and
(r2, b2) = (10, 18), while varying their respective deadlines.
As shown in the figure, the static priority scheduler with
reshaping performs as well as a dynamic priority scheduler,
except for a relatively small (triangular) region where d1 and
d2 are close to each other and both of intermediate values5.

To better characterize this range, we explore in [6] the
supremum of

˜︁R∗
s−R∗˜︁R∗

s

, and find that it is achieved at d1 =

d2 = b1+b2
r1+r2

, with ˜︁R∗
s = b1

d1
+ r2, and R∗ = r1 + r2. This can

be shown to yield a difference upper-bounded by 0.5. In other
words, in the two-flow case, the (optimal) dynamic scheduler
results in bandwidth savings of at most 50% over a static
priority scheduler with (optimal) reshaping. This happens
when the deadlines of the two flows are very close to each
other. This is unlikely in practice.
Dynamic priority vs. fifo w/ optimal reshaping

Comparing ˆ︁R∗
s with R∗, Eqs. (14) and (10) give that ˆ︁R∗

s >
R∗ iff d1 − b1

r1
< d2 < b1+b2−d1r1

r2
. Fig. 2b illustrates the

corresponding relative difference for the same previous two-
flow combination. From the figure, fifo with shaping performs
the most poorly relative to a dynamic priority scheduler when
both d1 and d2 are small. This is again unlikely in practice.

To explore the source and possible magnitude of this differ-
ence, we note that the supremum of

ˆ︁R∗
s−R∗ˆ︁R∗

s

is achieved when

0 < d2 <
b1+b2+r2d1−

√
(b1+b2+r2d1)2−4r2b2d1

2r2
, with Eq. (14)

defaulting to ˆ︁R∗
s =

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2
2d2

and
Eq. (10) to R∗ = b2

d2
. In [6] we show that the supremum of

the relative difference
ˆ︁R∗
s−R∗ˆ︁R∗

s

is achieved as d1 → 0, and is of

the form b1
b1+b2

, which goes to 1 as b1
b2

→ ∞. In other words
a dynamic priority scheduler can yield a 100% improvement
over a basic fifo scheduler that reshapes flows optimally.
Fifo vs. static priority both w/ optimal reshaping

Comparing Eqs. (14) and (12) gives that ˆ︁R∗
s > ˜︁R∗

s iff
max

{︂
b2
r2
, (b1+b2)(r1+r2)

r2(b1/d1+r2)

}︂
< d1 < b1

r1
. Fig. 2c illustrates their

difference for the same two-flow combination as before.
The figure shows that the benefits of priority are maximum

when d2 is small and d1 is not too large. This is intuitive
in that a small d2 calls for affording maximum protection to
flow 2, which a priority structure offers more readily than

5When d2 and d1 are close but small, an edf dynamic priority scheduler
behaves like a static priority one as the very large bandwidth called for
by small deadlines ensures that data from either class is transmitted before
dynamic priorities can affect transmissions order. Conversely, when d2 and
d1 are close but large, both schedulers meet the deadlines with a bandwidth
equal to the sum of the flows’ average rates.

(a) Dynamic priority vs. static priority +
reshaping (b) Dynamic priority vs. fifo + reshaping (c) fifo + reshaping vs. static priority + re-

shaping

Fig. 2: Relative bandwidth increases for (r1, b1) = (4, 10) and (r2, b2) = (10, 18), as a function of d1 and d2 < d1.
The figure is in the form of a “heatmap.” Darker colors (purple) correspond to smaller increases than lighter ones (yellow).

fifo. Conversely, when d1 is large, flow 1 can be reshaped to
eliminate all burstiness, which limits its impact on flow 2 even
when both flows compete in a fifo scheduler.

Fig. 2c also reveals that a small region exists (d1 ≈ d2 with
both of intermediate value) where fifo outperforms static pri-
ority. As alluded to in the discussion following Proposition 3,
this is because a strict mapping of deadlines to priorities is
not always optimal. For instance, two otherwise identical flows
that differ infinitesimally in their deadlines should be treated
“identically.” Having the two flows share a common fifo queue
is then a better fit than assigning them to two distinct priorities.

To better understand differences in performance between
the two schemes, we characterize the supremum and the
infimum of their relative difference. As again discussed in [6],
the supremum is of the form b1

b1+b2
, which goes to 1 when

b1
b2

→ ∞, i.e., a 100% penalty for fifo with reshaping over
static priorities with reshaping. Conversely, the infimum is of
the form r1

r1+r2
− b1

b1+b2
, which increases with r1

r2
and decreases

with b1
b2

. When r1
r2

→ 0 and b1
b2

→ ∞, the infimum is −1, i.e.,
a maximum penalty of 100% but now for static priority with
reshaping over fifo with reshaping.

In other words, when used with reshaping, both fifo and
static priority can end-up requiring twice as much bandwidth
as the other. Addressing this issue calls for determining when
flows should be grouped in the same priority class rather
than assigned to separate classes. An optimal grouping can be
identified in simple scenarios with two or three flows (see [6]),
but a general solution remains elusive. However, as we shall
see in Section VII-B, the simple strict priority assignment on
which we rely appears to perform reasonably well across a
broad range of flow configurations.

2) The Benefits of Reshaping: In this section, we evaluate
the benefits afforded by (optimally) reshaping flows when
using static priority and fifo schedulers. This is done by
evaluating the resulting relative differences in the minimum
bandwidth required to meet flow deadlines under both sched-
ulers without and with reshaping, i.e.,

˜︁R∗− ˜︁R∗
s˜︁R∗ and

ˆ︁R∗− ˆ︁R∗
sˆ︁R∗ .

For a static priority scheduler, Eqs. (11) and (12) indicate
that ˜︁R∗

s < ˜︁R∗ iff ˜︁R∗ = b1+b2
d1

+ r2 > max
{︂
r1 + r2,

b2
d2

}︂
, i.e.,

(re)shaping decreases the required bandwidth only when the
larger deadline, d1, is not too large and the smaller deadline,

(a) Static prio. w/o vs. w/ shaping (b) fifo w/o vs. w/ shaping

Fig. 3: Relative bandwidth increases for (r1, b1) = (4, 10)
and (r2, b2) = (10, 18), as a function of d1 and d2 < d1. The
figure is in the form of a “heatmap.” Darker colors (purple)
correspond to smaller increases than lighter ones (yellow).

d2, not too small. This is intuitive. When d1 is large, the low-
priority flow 1 can meet its deadline without any mitigation
of the impact of flow 2. Conversely, a small d2 offers little
to no opportunity for reshaping flow 2, as the resulting added
delay would need to be compensated by an even higher link
bandwidth. This is illustrated in Fig. 3a for the same two-flow
combination as in Fig. 2. The region where “d1 is not too large
and d2 is not too small” corresponds to the yellow triangular
region where the benefits of reshaping can reach 40%.

Similarly, Eqs. (13) and (14) indicate that ˆ︁R∗
s < ˆ︁R∗ iff

d2 < b1+b2
r1+r2

, i.e., (re)shaping decreases the required bandwidth
of a fifo scheduler only when d2, the smaller deadline, is
small. This is again intuitive as a large d2 means that the
small deadline flow 2 can meet its deadline even without any
reshaping of flow 1. Fig. 3b presents the relative gain in link
bandwidth for again the same 2-flow combination. As seen in
the figure, the benefits of reshaping can, as with static priority,
again reach reach close to 40% for a fifo scheduler, at least
in the example under consideration. The next section explores
more complex scenarios involving more than two flows and
different combinations of flow profiles, and from those results
it appears that, in general, a fifo scheduler stands to benefit
more from reshaping than a static priority one.

B. Relative Performance – Multiple Flows

This section extends the investigation of Section VII-A to
scenarios with more than two flows, with flows assigned to ten
different deadline classes. The dynamic range of deadlines is
set to 10 with minimum and maximum deadlines of 0.1 and 1,

respectively, and we consider three different patterns for how
the 10 deadlines are spread across that range. Specifically,
Even deadline assignment:
1) d11 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1);
Bi-modal deadline assignments:
2) d21 = (1, 0.95, 0.9, 0.85, 0.8, 0.3, 0.25, 0.2, 0.15, 0.1),
3) d22 = (1, 0.96, 0.93, 0.9, 0.86, 0.83, 0.8, 0.2, 0.15, 0.1),
4) d23 = (1, 0.95, 0.9, 0.3, 0.26, 0.23, 0.2, 0.16, 0.13, 0.1);
Tri-modal deadline assignments:
5) d31 = (1, 0.95, 0.9, 0.6, 0.55, 0.5, 0.45, 0.2, 0.15, 0.1),
6) d32 = (1, 0.68, 0.65, 0.62, 0.6, 0.57, 0.55, 0.53, 0.5, 0.1),
7) d33 = (1, 0.6, 0.28, 0.25, 0.23, 0.2, 0.17, 0.15, 0.12, 0.1),
8) d34 = (1, 0.97, 0.95, 0.93, 0.9, 0.88, 0.85, 0.82, 0.6, 0.1).

A total of 1, 000 experiments are then performed for each
of the resulting eight deadline assignments, where an ex-
periment consists of randomly selecting a traffic envelope
for each deadline class6. Traffic envelopes are selected by
independently drawing ten (aggregate) flow burst sizes b1 to
b10 from U(1, 10), and ten (aggregate) rates r1 to r10 are
drawn independently from U

(︂
0,
∑︁10

i=1 bi

)︂
. The upper bound∑︁10

i=1 bi of the rate range maps to a rate value beyond which
even a fifo scheduler without reshaping performs as well as
the optimal solution, so that there are no differences across
mechanisms.

The results of the experiments are summarized in Table I,
which gives the mean, standard deviation, and the 95%
confidence interval of the mean for the relative savings in
required link bandwidth, first from using dynamic priority over
static priority + shaping, followed by fifo + shaping, and then
between static priority + shaping and fifo + shaping.

TABLE I: Relative bandwidth savings.

Comparisons Scenario Mean Std. Dev. 95% Conf. Intvl.

R∗ vs. ˜︁R∗
s

d11 0.012 0.023 [0.0102, 0.0131]
d21 0.015 0.027 [0.0135, 0.0169]
d22 0.011 0.022 [0.0101, 0.0128]
d23 0.029 0.042 [0.0259, 0.0312]
d31 0.014 0.025 [0.012, 0.0151]
d32 0.010 0.021 [0.0084, 0.011]
d33 0.062 0.065 [0.0576, 0.0658]
d34 0.007 0.017 [0.006, 0.0081]

R∗ vs. ˆ︁R∗
s

d11 0.017 0.065 [0.013, 0.0211]
d21 0.032 0.087 [0.0268, 0.0376]
d22 0.017 0.062 [0.0126, 0.0203]
d23 0.080 0.128 [0.0724, 0.0882]
d31 0.025 0.078 [0.0206, 0.0303]
d32 0.008 0.046 [0.0054, 0.0111]
d33 0.120 0.141 [0.1115, 0.129]
d34 0.004 0.032 [0.002, 0.006]

˜︁R∗
s vs. ˆ︁R∗

s

d11 0.006 0.065 [0.0016, 0.0095]
d21 0.018 0.083 [0.0126, 0.0228]
d22 0.005 0.061 [0.0012, 0.0088]
d23 0.055 0.113 [0.0484, 0.0624]
d31 0.012 0.075 [0.0076, 0.0169]
d32 -0.002 0.045 [-0.0043, 0.0013]
d33 0.066 0.112 [0.0592, 0.073]
d34 -0.003 0.033 [-0.0053, -0.0012]

6In practice, this envelope corresponds to the aggregate of all flows assigned
to the corresponding deadline class.

The first conclusion from the data in Table I is that while a
dynamic priority scheduler affords some benefits, they are on
average smaller than the maximum values of Section VII-A.
In particular, average improvements over static priority with
reshaping were often around 1% and did not exceed just over
6% across all configurations. Those values were a little higher
for fifo with reshaping, where they reached 12%, but those are
also much less than the maximum values of Section VII-A.

Table I also reveals that, somewhat surprisingly, static
priority and fifo perform similarly when both are afforded
the benefit of reshaping. Static priority holds a slight edge on
average, but this is not consistent across configurations and a
few scenarios exist where a fifo scheduler outperforms static
priority. Fig. 4 illustrates this by plotting the relative “penalty”
of fifo + reshaping over static priority + reshaping for two of
the tri-modal deadline distributions, d32 and d33.

(a) Tri-modal assignment d32 (b) Tri-modal assignment d33

Fig. 4: Relative bandwidth difference between fifo + shaping
and static priority + shaping.

The two deadline assignments differ in the relative magni-
tudes of their three modes. Assignment d32 boasts a relatively
large middle mode with six intermediate deadlines, and two
extreme modes (small and large deadlines) of one deadline
each. In contrast, assignment d33 has two small upper modes
(large and intermediate) with a single deadline, and a large
lower mode consisting of six relatively low value deadlines.

TABLE II: Relative benefits of reshaping flows.

Comparisons Scenario Mean Std. Dev. 95% Conf. Intvl.

˜︁R∗
s vs. ˜︁R∗

d11 0.0843 0.0450 [0.0815, 0.0871]
d21 0.0811 0.0419 [0.0785, 0.0837]
d22 0.0842 0.0452 [0.0814, 0.0871]
d23 0.0938 0.0480 [0.0908, 0.0967]
d31 0.0824 0.0433 [0.0797, 0.0851]
d32 0.0949 0.0507 [0.0918, 0.0981]
d33 0.1597 0.0478 [0.1567, 0.1627]
d34 0.0883 0.0494 [0.0853, 0.0914]

ˆ︁R∗
s vs. ˆ︁R∗

d1 0.4952 0.0817 [0.4901, 0.5003]
d21 0.4871 0.0762 [0.4824, 0.4918]
d22 0.4953 0.0827 [0.4902, 0.5005]
d23 0.4578 0.0652 [0.4537, 0.4618]
d31 0.4908 0.0788 [0.4859, 0.4957]
d32 0.4995 0.0859 [0.4942, 0.5049]
d33 0.4247 0.0619 [0.4208, 0.4285]
d34 0.5013 0.0884 [0.4959, 0.5068]

Recall that priorities map strictly to deadlines (smaller
deadlines have higher priority). As a result, even if reshaping
mitigates the impact of priority, multiple closely grouped
deadlines is a poor fit for a priority scheme, especially when
the number of other flows for which it can be beneficial

Fig. 5: CDF of relative bandwidth reduction from reshaping
under bi-modal assignment d21.

is small. This is the scenario of deadline assignment d32
(there is only one small deadline flow that benefits from
being assigned to the highest priority, and conversely only
one large deadline flow from which other flows are protected
by assigning it to the lowest priority), which explains the
relatively poor performance of static priority over fifo. In
contrast, deadline assignment d33 boasts a large number of
small deadlines that all stand to benefit from being shielded
from the impact of the two larger deadline flows, even if the
introduction of strict differentiation among those six small
deadline flows needs not be very useful (reshaping again
mitigates its negative impact). Nevertheless, this offers some
insight into the better performance of static priority over fifo
in this particular scenario.

Towards gaining a better understanding of the extent re-
shaping may be behind the unexpected good performance of
fifo, Table II reports its impact for both static priority and fifo.
Specifically, as Table I, it gives the mean, standard deviation,
and the mean’s 95% confidence interval of the relative gains
in bandwidth that reshaping affords for both schedulers.

The data from Table II highlights that while both static
priority and fifo benefit from reshaping, the magnitude of
the improvements is significantly higher for fifo. Specifically,
improvements from reshaping are systematically above 40%
and often close to 50% for fifo, while they exceed 10% only
once for static priority (at ≈ 16% for scenario d33) and are
typically around 8%. As alluded to earlier, this is not surprising
given that static priority offers at least some, albeit blunt,
ability to discriminate flows based on their deadlines, while
fifo lacks any such ability. This difference is illustrated more
explicitly in Fig. 5 through the full cumulative distribution
function (cdf) of those benefits for both static priority and fifo
under the deadline distribution d21 (bi-modal, with two similar
modes of five deadlines at the two ends of the deadline range).

VIII. CONCLUSION AND FUTURE WORK

The paper investigated minimizing the bandwidth required
to meet worst case latency bounds for rate-controlled (through
a token bucket) flows in a basic one-hop setting. The investi-
gation was carried for schedulers of different complexity.

The paper characterized the minimum required bandwidth
independent of schedulers, and showed that an EDF scheduler

could realize all flows’ deadlines under such bandwidth.
Motivated by the need for lower complexity solutions, the
paper then explored simpler static priority and fifo schedulers.
It derived the minimum required bandwidth for both, but
more interestingly established how to optimally reshape flows
to reduce the bandwidth they needed to meet all deadlines.
The relative benefits of such an approach were illustrated
numerically for a number of different flow combinations,
which showed how “intelligent” reshaping could enable sim-
pler schedulers to perform nearly as well a more complex ones
across a range of different configurations.

There are many directions in which to extend the paper’s
results. The first is to tackle the issue illustrated in Section VII,
and determine how to best group flows with different deadlines
when relying on a static priority scheduler. Another, which
we are currently pursuing, is to consider a multi-hop setting.
This entails significant added complexity with exact solutions
likely intractable. However, it represents an essential next step
to making the results more broadly applicable.

REFERENCES

[1] Cloud Performance Benchmark – 2019-2020 Edition, 2019, accessed on
4/02/21, available at http://presse.hbi.de/pub/ThousandEyes/Cloud Per
formance Benchmark Report/ThousandEyesCloudPerformanceBenchm
arkReport.pdf.

[2] A. Van Bemten and W. Kellerer, “Network calculus: A comprehensive
guide,” Technical University Munich, Technical Report 201603, October
2016.

[3] M. Howard, “Survey: SDN deployed by 78 percent of global service
providers by the end of 2018,” January 2019, downloaded on 4/01/21
from https://technology.ihs.com/610557/survey-sdn-deployed-by-78-pe
rcent-of-global-service-providers-by-the-end-of-2018.

[4] L. Luo, H. Yu, K. T. Foerster, M. Noormohammadpour, and S. Schmid,
“Inter-datacenter bulk transfers: Trends and challenges,” IEEE Network,
vol. 34, no. 5, pp. 240–246, July 2020.

[5] A.Kumar, S.Jain, U.Naik, and A.Raghuraman, “BwE: Flexible, hierar-
chical bandwidth allocation for WAN distributed computing,” in Proc.
ACM SIGCOMM’15. London, United Kingdom: ACM, August 2015.

[6] J. Song, R. Guérin, and H. Sariowan, “Minimizing network bandwidth
under latency constraints: The single node case,” 2021, available at http:
//arxiv.org/abs/2104.02222.

[7] T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “WorkloadCompactor:
Reducing datacenter cost while providing tail latency SLO guarantees,”
in Proc. SoCC, Santa Clara, CA, September 2017.

[8] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, A. V. Bjørner, and
M. Schapira., “TeaVar: Striking the right utilization-availability balance
in WAN traffic engineering,” in Proc. ACM SIGCOMM, Beijing, China,
August 2019.

[9] W. Li, X. Zhou, K. Li, H. Qi, , and D. Guo, “TrafficShaper: Shaping
inter-datacenter traffic to reduce the transmission cost,” IEEE/ACM
Transactions on Networking, vol. 26, no. 3, pp. 1193–1206, June 2018.

[10] J.-Y. Le Boudec and P. Thiran, Eds., Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer, 2001.

[11] L. Georgiadis, R. Guerin, and A. Parekh, “Optimal multiplexing on
a single link: delay and buffer requirements,” IEEE Transactions on
Information Theory, vol. 43, no. 5, pp. 1518–1535, September 1997.

[12] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp.
344–357, June 1993.

[13] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proc. ACM SIG-
COMM, Florianopolis, Brazil, August 2016.

[14] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishna-
murthy, and A. Sivaraman, “Programmable calendar queues for high-
speed packet scheduling,” in Proc. USENIX NSDI, Santa Clara, CA,
February 2020.

http://presse.hbi.de/pub/ThousandEyes/Cloud_Performance_Benchmark_Report/ThousandEyes Cloud Performance Benchmark Report.pdf
http://presse.hbi.de/pub/ThousandEyes/Cloud_Performance_Benchmark_Report/ThousandEyes Cloud Performance Benchmark Report.pdf
http://presse.hbi.de/pub/ThousandEyes/Cloud_Performance_Benchmark_Report/ThousandEyes Cloud Performance Benchmark Report.pdf
https://technology.ihs.com/610557/survey-sdn-deployed-by-78-percent-of-global-service-providers-by-the-end-of-2018
https://technology.ihs.com/610557/survey-sdn-deployed-by-78-percent-of-global-service-providers-by-the-end-of-2018
http://arxiv.org/abs/2104.02222
http://arxiv.org/abs/2104.02222

	Introduction
	Related Works
	General Model Formulation
	Dynamic Priorities
	Static Priorities
	Static Priorities without (re)Shaping
	Static Priorities with (re)Shaping

	Basic FIFO with (re)Shaping
	Evaluation
	Basic Two-Flow Configurations
	The Impact of Scheduler Complexity
	The Benefits of Reshaping

	Relative Performance – Multiple Flows

	Conclusion and Future Work
	References

