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Abstract

We report results from Monte-Carlo Field Theoretic Simulations (MC-FTS) of a

compositionally asymmetric diblock copolymer melt (fA = 0.2) at an invariant degree

of polymerization of N̄ = 104 for both a conformationally symmetric system, where

the statistical segment lengths are equal, and a high statistical segment length ratio

of ε = 3 that promotes the formation of Frank-Kasper phases. For this conformation-

ally symmetric system, the disordered micelle regime emerges near the order-disorder

transition predicted by self-consistent field theory (SCFT), consistent with theory and
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recent observations from molecular dynamics simulations of a related system. The dis-

ordered micelle regime is associated with a sharp increase in the number of micellar

particles per unit volume, which need to fuse to reach the particle density required

to form an ordered body-centered cubic (bcc) state past the order-disorder transition.

The addition of conformational asymmetry for this system does not significantly im-

pact the location of the order-disorder transition, but it raises the SCFT order-disorder

transition to a higher segregation strength. As a result, the disordered micelle regime

is suppressed, with the number density of particles rising monotonically to the bcc

number density. If this tentative conclusion about the role of conformational asym-

metry obtained from observations for a single system proves to be valid in general, it

suggests that thermal processing routes towards Laves phases in particle-forming di-

block copolymer melts, which presumably require access to a disordered micelle regime,

must operate at low invariant degrees of polymerization to realize a sufficiently wide

disordered micelle regime.

Introduction

Diblock copolymers with a high degree of compositional asymmetry produce (approximately)

spherical particles with the minority A-block partitioning to the core of the spheres, which

pack onto a lattice at low temperatures with the majority B-block forming the matrix. 1

For conformationally symmetric systems, where the statistical segment lengths bA and bB

are equal, a single particle type is formed which packs on a bcc lattice, with the excep-

tion of a narrow region of close packing near the order-disorder transition. 2–4 Breaking the

conformational symmetry such that the matrix blocks are stiffer than the core blocks leads

to the emergence of the tetrahedrally close-packed Frank-Kasper 5,6 phases σ,7–15 A15,10,11

C14,12,16,17 and C15,16,17 provided that the conformational asymmetry is sufficiently large 18

such that the imprinting of the Voronoi cells onto the A/B interface favors more spherical

micellar particles.8,19–21 Frank-Kasper phases have large unit cells and comprise multiple
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particle types with 12-fold, 14-fold, 15-fold or 16-fold coordination. The emergence of such

low-symmetry phases in block polymer melts has spurred significant interest since the initial

report of a σ phase in 2010.7

In SCFT, the linear diblock copolymer melt phase diagram is described by three pa-

rameters: (i) the volume fraction of the minority block fA, which quantifies the degree of

compositional asymmetry; (ii) the Flory Huggins parameter χN with N being the degree

of polymerization, which quantifies the segregation strength between the blocks; and (iii)

the conformational asymmetry ε = bA/bB. An important outcome of SCFT calculations for

Frank-Kasper phase formation was the recognition that conformational asymmetry ε > 1 is a

necessary but not sufficient condition.18–20 Explicitly, the formation of Frank-Kasper phases

is favored over bcc in the polyhedral interface limit, where the geometry of the Wigner-

Seitz cells is imposed on the AB interface,20 because the particles in Frank-Kasper phases

are more spherical on average than bcc8 and represent a better compromise between chain

stretching and interfacial tension.21 Conformational asymmetry aids in imprinting because it

penalizes stretching of matrix chains,22,23 thereby promoting the formation of Frank-Kasper

phases. Conformational asymmetry also produces a right-skew in the phase diagram 24 that

stabilizes particle-forming phases to larger values of fA, which again favors imprinting and

allows Frank-Kasper phases to overtake bcc as fA increases before the onset of the hexagonal

cylinder phase.19 However, SCFT is only valid in the mean-field limit where compositional

fluctuations are suppressed. The extent that fluctuations play a role is captured by a fourth

parameter, the invariant degree of polymerization N̄ = b6
effρ

2
0N , where b2

eff = fAb
2
A+(1−fA)b2

B

is the effective statistical segment length and ρ0 is the bulk monomer volume density.25

There are already three key pieces of evidence that the fluctuation effects emerging at

finite N̄ are important for Frank-Kasper phase formation. First, Bates et al.10 showed that

fluctuations stabilize the A15 phase over the σ phase in a system with very high conforma-

tional asymmetry (ε = 1.85) at fA = 0.3, rectifying an apparent disagreement between exper-

imental data and SCFT. Second, Lewis et al.,26 using a poly(styrene)-b-poly(1,4-butadiene)
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system with ε = 1.30 similar to the poly(ethylethylene)-b-poly(lactide) system system pro-

duced a wide Frank-Kasper phase window at N̄b ≈ 80 in the work of Schulze et al.,13 found

no Frank-Kasper phases at N̄b = 800. In the latter, N̄b refers to the average invariant degree

of polymerization of each block; the total N̄ values used by Lewis et al.26 ranged from 1100-

1400. Lewis et al.26 proposed that Frank-Kasper phases are suppressed when N̄b exceeds a

crossover value of approximately 400 and connected that behavior to an analogy with en-

tanglement dynamics. Third, and most relevant to our motivation here, thermal processing

across the ODT has found remarkable success in coaxing the formation of Frank-Kasper

phases in regions of phase diagram where they are unlikely to be the stable state. 9,16 In one

example, Kim et al.16 rapidly cooled their diblock copolymer samples in liquid nitrogen and

discovered the formation of C14 phase by annealing at temperatures where bcc is usually

found. In a subsequent study, Kim et al.17 postulated that long-lived non-equilibrium struc-

tures in the disordered liquid states of the micelles above the order-disorder temperature,

TODT, are kinetically trapped by the rapid cooling procedure. These structures subsequently

guide the formation of the observed metastable states, which remarkably persist over multiple

cooling and heating cycles across TODT. This idea is attractive considering the observation

of liquid-like packing (LLP) structures after rapid cooling, which potentially retains the fa-

vorable micelle size distribution for the reformation of the metastable state. 16 The formation

of a dodecagonal quasicrystalline state (DDQC) following rapid cooling, which eventually

reorders into the σ phase, might be a manifestation of the same phenomena. 9 Indeed, DDQC

can be tiled with the same building blocks as the σ phase, analogous to the speculation that

capturing the structure of the disordered liquid state guides the formation of C14 and C15. 9

In all of these cases, the emergence of Frank-Kasper phases could have intrinsic ties to

structure present in the disordered micelle state, in particular for thermal processing path-

ways. The window of the disordered micelle state should increase as N̄ decreases,27 which

may be one of the factors promoting Frank-Kasper phase formation at low N̄ ; a wide window

of disordered micelles could support long-lasting disordered structures, which are then able
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to transition into Frank-Kasper phases below TODT.16,17 To understand such phenomena,

it is necessary to understand first the region of state space where disordered micelles arise

under the influence of both composition fluctuations and conformational asymmetry. While

molecular dynamics simulations28 have successfully quantified the structure factor of the

disordered state over a large range of compositions for compositionally asymmetric diblock

copolymers with ε = 1, no study of the disordered phase exists that addresses the effects

of conformational asymmetry in the particle-forming limit for a finite N̄ diblock copolymer.

We begin to address this issue here through an examination of the impact of conformational

asymmetry on a compositionally asymmetric system (fA = 0.2) at N̄ = 104.

Methods

Monte-Carlo Field Theoretic Simulation (MC-FTS) is a framework to study composition

fluctuations in incompressible diblock copolymer melts, 29–34 and thus amenable to our goal

of understanding how conformational asymmetry affects the disordered micelle state. Unlike

particle-based methods such as molecular dynamics simulations, the computational time of

field-based methods such as MC-FTS decreases with increasing chain length, 35 and recent

advances have enabled simulations of chain lengths near experimentally relevant molecular

weights.31 We chose to use MC-FTS over complex Langevin simulations, 36,37 an alternative

field-based method that incorporates both compositional and pressure field fluctuations,

because MC-FTS only requires a straightforward Metropolis Monte Carlo algorithm that we

were able to implement as a wrapper around a modified version of our open-source GPU-

accelerated implementation of SCFT.38

Our implementation of MC-FTS follows closely that of Stasiak and Matsen. 30 The par-

tition function in MC-FTS is based upon the Gaussian chain model, 35

Z ∼
∫

exp

(
H[W−, w+]

kBT

)
DW− (1)
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whose Hamiltonian, H, is governed by a fluctuating composition field W− and the mean-field

pressure field w+, with kB being Boltzmann’s constant and T the temperature. The intensive

Hamiltonian for a system of n chains is

H[W−, w+]

nkBT
= − lnQ+

1

V

∫ (
W 2
−(r)

χN
− w+(r)

)
dr. (2)

where n = V ρ0/N is the number of chains with degree of polymerization N and density

ρ0 in the system volume V . The single chain partition function, Q[w+ + W−, w+ −W−] ≡

Q[WA,WB], is a functional of both fields and computed by the quadrature

Q =
1

V

∫
qp(r, N)dr (3)

expressed in terms of the forward propagator, qp(r, s), evaluated at the position s along the

chain at the degree of polymerization, s = N ; for a diblock copolymer, we define block A to

occupy s ∈ [0, fAN ] and B to occupy s ∈ [fAN,N ]. The subscript p is used to distinguish

a propagator qp from the wavevector q. The forward propagator is obtained by solving the

modified diffusion equation,

∂

∂s
qp(r, s) =

[
b2
αN

6
∇2 −Wα(r)

]
qp(r, s) (4)

where α is monomer type corresponding to the current location s along the chain, Wα is

the composition field corresponding to monomer α = {A,B}, and bα is the corresponding

statistical segment length. The inverse propagator, q†p(r, s), is obtained by solving Eq. 4 with

time reversed. The forward and inverse propagators are solved with the initial condition

qp(r, 0) = q†p(r, N) = 1. The density fraction of each monomer type α is obtained from the

quadrature

φα(r) =
1

NQ

∫
α

qp(r, s)q
†
p(r, s)ds (5)

where the bounds of the integral are given by the contour positions of the block corresponding
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to the monomer α.

The solution of the modified diffusion equation was obtained pseudo-spectrally, and An-

derson mixing39 was used to modify w+ to obtain the corresponding extremum pressure

field for the given composition field W−. In MC-FTS, the definition of the deviation in

Anderson mixing constrains the system to satisfy the condition of incompressibility, 32 i.e.

ρA(r) + ρB(r) = ρ0 with φα(r) defined as ρα(r)/ρ0, where ρα(r) is the local α-monomer

density.

MC-FTS evaluates the pressure field at its extremum while allowing the composition

field to fluctuate. These fluctuations are sampled using a standard Metropolis Monte Carlo

algorithm. Moves in the composition field are accepted by computing the change in the

Hamiltonian,

∆H = H[W− + ∆W−, w+ + ∆w+]−H[W−, w+] (6)

and then setting the probability of acceptance for a given move of ∆W− as min(1, exp[−∆H/kBT ]).

Note that the the extensive Hamiltonian is used for the Monte Carlo acceptance criterion in

Eq. 6, rather than the intensive form given by Eq. 2. At each Monte Carlo step, two different

types of moves are performed alternately.30 The first type is a real space move chosen from

a uniform distribution ∆W−(r) ∈ [−A1, A1] at each grid point. The second move is a col-

lective move in Fourier space, ∆W−(q) ∈ [−A2[SFH(q)]1/2, A2[SFH(q)]1/2] with SFH(q) being

the Fredrickson-Helfand structure factor,25 as suggested in previous work for accelerating

sampling rate.30 Both A1 and A2 are constants chosen to maintain about 40% acceptance

rate (Supporting Information Table S1), and need to be tuned for a given system.

As a fluctuating field theory, the value of χN in MC-FTS has to account for the ul-

traviolet divergence effect present in finite N̄ systems.30,31,37,40,41 We define χNbare as the

input parameter to MC-FTS and χN as the effective interaction parameter that is used in
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comparison to theory and experiment. We use the definition from Vorselaars et al.,31

χN =

1− `
R2

0

∫
SRPA,0(q, ε)dq

(2π)3ρ0NfA(1− fA)

χNbare (7)

where SRPA,0(q, ε) is the athermal random phase approximation (RPA) structure factor at

a given value of ε42,43 and ` = R0N̄
−1/2 where R0 = N1/2b is the end-to-end length of the

polymer chain. We chose this definition of χN since those authors31 have shown that it is

effective at culling the ultraviolet divergence for low N̄ diblock copolymers.

Our implementation of MC-FTS ran for at least 5× 105 iterations to first equilibrate the

system and was followed by 3.5×106 iterations to obtain the relevant statistics. Statistics are

sampled every 103 iterations. To ensure the correctness of our implementation of MC-FTS,

we repeated the calculations in Ref. 31 for the structure factor of a compositionally symmetric

system and found negligible difference in the results (Supporting Information Fig. S-1). Our

simulations are performed with a grid size of 16 x 16 x 16, which provides sufficient resolution

to the system while maintaining a reasonable computational time. Simulations starting from

a homogeneous initial state used a cubic box with length L = 4, where all box sizes reported

here are made dimensionless with N1/2bB; the latter is the end-to-end distance for the ε = 1

system but only 62% of that for the ε = 3 system wherein beff = 1.61bB. The choice of L = 4

maintains a constant spacial resolution on the grid between different simulations, which is

desirable, but it can lead to incommensurability effects since q∗ varies with ε and χN , which

is undesirable and likely to be a larger issue than the spatial resolution. We will return to

this point in the discussion of our results to estimate the impact of this choice of a fixed L on

our results. Simulations starting from the ordered state used m copies of the bcc structure

that best maximize the commensurability between the unit cell size L = 4 and the optimal

bcc unit cell size computed SCFT. The SCFT result at χN = 25, corresponding to L = 1.86

for ε = 1 and L = 3.61 for ε = 3, was used to select m since it is the midpoint of the χN
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range used for the MC-FTS runs. We thus used a single copy of bcc at ε = 3 and initialized

the calculations at ε = 1 using a 2× 2× 2 bcc structure.

For our analysis, we focus on the modest degree of conformational asymmetry corre-

sponding to fA = 0.2 as a model system. Experiments on 1,4-poly(isoprene)-b-poly(± lac-

tide) diblock melts (ε = 1.15) at this composition produced C15, σ, LLP or hexagonally

packed cylinders depending on thermal processing route, 16 making this degree of composi-

tional asymmetry relevant to Frank-Kasper phase formation. All simulations were performed

at N̄ = 104, which is a relatively low value of N̄ for a field theoretic simulation31 and thus

emphasizes the role of fluctuations. For the conformationally asymmetric system, we used

the value ε = 3 appearing in the work of Bates et al.,10 where fluctuation effects were impor-

tant to the selection of the ordered state, and we use the conformationally symmetric case

ε = 1 as a control system to isolate the effects of conformational asymmetry.

Calculations were performed at the Flory-Huggins parameters χN = {10, 20, 23, 24, 25, 26, 30},

starting from either a homogeneous initial condition or a bcc state. The structure factor was

computed via
S(q)

ρ0N
=

n

(V χNbare)
2 〈W−(q)W−(−q)〉 − 1

2χNbare

(8)

where the ensemble average 〈W−(q)W−(−q)〉 is obtained by sampling the composition field

using MC-FTS.30 Since we anticipate that the disordered state is an isotropic liquid, the

average structure factor, S(q), is obtained by further averaging S(q) for each wavevector of

the same magnitude in wavenumber. The simulated structure factor is directly related to

the intensity profile resulting from small angle X-ray scattering experiments. 44

Results

Figure 1 provides illustrative results for the structure factor obtained at three different χN

values for the conformationally symmetric system ε = 1 using bcc as the initial condition.

The dashed lines are the RPA predictions42 while the solid lines in Figs. 1a and b are fits to
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Figure 1: Structure factors for (a) χN = 10, (b) χN = 23, and (c) χN = 26 at ε = 1, started
from an ordered bcc initial condition. The right column shows the corresponding density
field at the particular χN . The solid lines in (a) and (b) are obtained from fitting to the
modified RPA given in Eq. 9, while the solid line in (c) is a guide to the eye.
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the modified RPA,28

S−1(qRg) = S−1
RPA(qRg, χN, ε) + a+ b(qRg)

2 + c(qRg)
4 (9)

where a, b, and c are fitting parameters. The best fit parameters are tabulated in Supporting

Information Table S-2 using fittings over the qRg ranges in Supporting Information Table

S-3. Snapshots of the density field at each value of χN are provided with the corresponding

structure factors.

At the lowest value χN = 10, the bcc structure melts and, subsequently, there is very

little difference between the structure factor obtained by MC-FTS and the RPA prediction. 43

This conclusion from S(q) is further supported by visualization of the density field in the

corresponding simulation snapshot. The system is not homogeneous, as would be the case

in the mean-field of SCFT, but the compositional fluctuations are small. The relative agree-

ment between the simulations and the RPA prediction suggests that the box size L = 4 is

sufficiently large to capture the fluctuation effects in the weakly disordered state. At χN =

23, the ordering in the bcc structure of the initial condition is lost but micelles remain in

the system after melting. The magnitude of the resulting structure factor increases substan-

tially compared to that at χN = 10, leading to a strong deviation from the RPA prediction.

The qualitative behavior in Fig. 1b is consistent with previous work by Wang et al.,27 who

demonstrated that the structure factor from a simulation with disordered micelles produces

a larger structure factor peak intensity compared to RPA in conjunction with a left shift of

the peak location to smaller qRg values as compared to the RPA prediction. At an even

higher value of χN = 26, a system initialized in the bcc state does not melt but undergoes

fluctuations due to the finite N̄ . This behavior produces Bragg peaks in the structure factor,

which has increased substantially in magnitude compared to its value at χN = 23. The bcc

structure persists throughout the simulation, indicating that χN = 26 is, at worst, a lower

bound for the ODT.
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Recently, Chawla et al.45 used coarse-grained molecular dynamics simulations to show

that the onset of disordered micelles in the sphere-forming region of the diblock copolymer

phase diagram occurs at the SCFT order-disorder transition, as anticipated by theory. 27,46

Their simulations correspond to a conformationally symmetric system at a different compo-

sitional asymmetry (fA = 0.125), as well as a lower invariant degree of polymerization (N̄ =

3800) that is more amenable to a particle-based simulation. For our system, SCFT calcula-

tions predict an ODT at χN = 21.55 (see Supporting Information Fig. S-2); the appearance

of disordered micelles at χN = 23 is consistent with the observations of Chawla et al.45

Our results were obtained using a different simulation method at different parameters but

reach the same qualitative conclusion, providing further evidence that the critical micelle

temperature (CMT) is connected to the SCFT order-disorder transition. 27,45,46

Figure 2 provides the companion data to Fig. 1 for the conformationally asymmetric case

ε = 3. For χN = 10 in Fig. 2a, the effect of conformational asymmetry is captured by the

RPA; the shift in the peak q∗ to lower values of q and the reduction in the magnitude of S(q∗)

are both anticipated by the RPA.42 However, the behavior at ε = 3 for χN = 23 in Fig. 2b

is qualitatively different than its counterpart at ε = 1 in Fig. 1b. For the conformationally

asymmetric case, disordered micelles are observed in neither the structure factor, which

only somewhat deviates from the RPA prediction, nor are they prevalent in the simulation

snapshot. This observation is consistent with prior work 27,45,46 because SCFT calculations

at ε = 3 have an ODT at χN = 24.23 (see Supporting Information Fig. S-2). When we

increase the segregation strength to χN = 26 in Fig. 2c, we recover a congruence between

the conformationally symmetric and asymmetric cases. Similar to the case in Fig. 1c, starting

from a bcc state for ε = 3 leads to the persistence of this state throughout the simulation.

To further understand the lack of a disordered micelle regime for the conformationally

asymmetric case — and its appearance at ε = 1 — we computed the hysteresis loop to

estimate the location of the ODT at N̄ = 104 in a box with L = 4. We thus ran MC-FTS

simulations starting from a homogeneous state to identify the value of χN that leads to
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Figure 2: Structure factors for (a) χN = 10, (b) χN = 23, and (c) χN = 26 at ε = 3, started
from an ordered bcc initial condition. The right column shows the corresponding density
field at the particular χN . The solid lines in (a) and (b) are obtained from fitting to the
modified RPA equation while the solid line in (c) is a guide to the eye.
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Figure 3: Order parameter, Ψ, in Eq. 10 as a function of the Flory-Huggins parameter χN
for (a) ε = 1 and (b) ε = 3. The solid symbols correspond to the cooling branch, where
the initial condition is a homogeneous structure. Open symbols correspond to the melting
branch, where the initial condition is a bcc ordered structure. The broken vertical line
indicates the location of the SCFT order-disorder transition. The region where we observe
the formation of the disordered micelle regime is shaded yellow, whereas the region for the
formation of ordered structure is shaded blue.

the formation of an ordered bcc state, and companion simulations starting from an ordered

bcc state to identity when the system melts. Six of these simulations have already been

reported in Figs. 1 and 2; structure factors obtained at the other values of χN and initial

conditions are reported in Supporting Information Figs. S-3 to S-8. We then computed the

order parameter Ψ using the approach from Stasiak and Matsen,30

Ψ =
1

V 2
max
q
〈W−(q)W−(−q)〉 (10)

computed over the wavenumbers available from the grid.

Figure 3 provides the resulting hysteresis curves for the conformationally symmetric case

(a) and the conformationally asymmetric case (b). For both cases, we find that Ψ is es-

14



sentially independent of the initial condition up to χN = 23. For the conformationally

symmetric case, Fig. 1b shows that χN = 23 corresponds to the onset of the disordered

micelle regime above the SCFT order-disorder transition, whereas Fig. 2b shows that the

behavior for χN = 23, which is below the SCFT order-disorder transition at ε = 3, remains in

a disordered state without the formation of micelles. As χN increases further, the hysteresis

loops for the two cases differ. For ε = 1, there is a small difference between the heating and

cooling curves at χN = 24 but then the system fails to form a bcc structure at higher χN .

In contrast, for ε = 3, we observe a somewhat larger deviation between the two branches at

χN = 24 but the hysteresis loop closes at χN = 25.

The differing behavior in Fig. 3 for ε = 1 and ε = 3 at the highest values of χN can

be attributed to box-size effects. All of the simulations were performed in a cubic box with

length L = 4. For ε = 1, the box is large enough to fit eight copies of the bcc unit cell. As

noted by Beardsley and Matsen,34 the cooling branch of the system in a large unit cell, such as

that used in our calculations, is prone to defect formation during crystallization. Simulation

snapshots for ε = 1 (Supporting Information Fig. S-4) suggest that the system is indeed

defective, leading to large differences in the structure factor for wavevectors q that have the

same magnitude q (Supporting Information Fig. S-9). It is also possible that the increase

in the free energy of the ordered state via unit cell strain caused by the incommensurate

box is hindering the formation of the ordered state. Owing to the ease of defect formation

during crystallization, Beardsley and Matsen 34 recommended using the melting branch of

the hysteresis loop as the estimate for the ODT, which we will do here for ε = 1. For ε = 3,

the box size is relatively close to the SCFT unit cell size and we did not observe any issues

with forming the bcc phase from either simulation snapshots (Supporting Information Fig.

S-6) or the structure factor for planes with equivalent values of q (Supporting Information

Fig. S-10). To confirm these observations from cooling at L = 4, we confirmed that the ε

= 1 system will crystallize under MC-FTS when run in a box size of L = 1.86 at χN =

26 and 30 (Supporting Information Fig. S-11). The ability to crystallize both the ε = 1
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and ε = 3 systems in single unit-cell systems may be connected the the inability of such a

small system to make a fluid if it only forms two micelles. We also confirmed that the ε =

3 system does not melt at χN = 25, 26 and 30 when run in a box size L = 7.22 that can

fit eight copies of bcc (Supporting Information Fig. S-12). While it is possible to repeat all

of the results for ε = 1 in a smaller box size to produce a tighter hysteresis loop, we will

adopt the approach of Beardsley and Matsen34 and use the melting branch to estimate the

order-disorder transition, making those additional costly calculations, which may also suffer

from finite-size effects, superfluous.

For the conformationally symmetric case ε = 1, the fluctuations cause the ODT to shift

from the SCFT prediction by ∆χN = 3.45, which is similar to the shift ∆χN = 3.04 observed

for fA = 0.25 when the ODT obtained from those molecular dynamics simulations 47 is

extrapolated to N̄ = 104. There is a negligible shift in the ODT for the conformationally

asymmetric system ε = 3, leading us to conclude that the ODT at fA and N̄ = 104 is not

affected appreciably by conformational asymmetry to within the limitations noted in the

previous paragraph.

In addition to the reciprocal space analysis, we also analyzed the density field samples

from the MC-FTS simulations using a simple breadth-first search algorithm to determine

the locations of micelles. The algorithm first picks an initial position r0 in the unit cell that

satisfies

φA(r = r0) > I (11)

where I is an isovalue selected to represent a concentration fluctuation above the background.

We chose I = 0.60, which is sufficiently high such that the minority block is the majority

component at that location. This value is also consistent with the purity of the micelle core

in particle-based simulations when the system crosses the purported CMT. 45 The algorithm

then iteratively marks adjacent grid points as part of the same micelle if they fulfill the

condition in Eq. 11. The algorithm ends when every grid point is visited and, if Eq. 11 is

fulfilled, clustered as part of their respective micelles.
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Figure 4: Average number of clusters per bcc unit cell versus segregation strength χN for
(a) ε = 1 and (b) ε = 3 for calculations started from the ordered initial condition.

Figure 4 provides the number of micelles per bcc unit cell volume, Nc, as a function

of χN for the conformationally symmetric case (a) and the conformationally asymmetric

case (b) for calculations started from the ordered bcc state with L = 4. When this ordered

state persists at high χN , the clustering algorithm produces two particles per unit cell,

as expected. Likewise, at the lowest value of χN = 10, where the RPA approximation is a

good description of the structure factor, the clustering algorithm identifies no micelles within

the system since the compositional fluctuations at χN = 10 are insufficient to exceed the

isovalue.

These results at the extrema in χN indicate that the clustering analysis is robust for

those limiting cases. Nevertheless, a cluster analysis based on the volume fractions at the

grid points in a field theoretic simulation is not as effective at identifying micelles when

compared to a particle-based simulation.45 The cluster analysis in a field theoretic simulation

requires connecting contiguous regions that exceed a threshold value, which do not necessarily

correspond to a set of chains that are linked by proximity of their respective segments,

the latter being a relatively straightforward calculation in the particle-based simulation.
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Although this shortcoming limits the definitiveness of any conclusions obtained from the

real-space analysis, it is still illuminating to examine the real-space behavior, in particular

to see if it is consistent with the structure factor data and whether it can provide any

additional insights into the formation of a disordered micelle regime.

The number of clusters is qualitatively different for intermediate values of χN when

the system becomes conformationally asymmetric, further supporting the conclusions drawn

from Figs. 1-3. For the conformationally symmetric case, where Fig. 1 demonstrates the

emergence of a disordered micelle regime, there are initially a large number of small particles

that presumably undergo fusion as the system approaches the ODT, whereupon they would

need to organize on the lattice. In contrast, the conformationally asymmetric system exhibits

a monotonic increase in the number of particles before reaching the ODT. The appearance

of approximately one particle per unit cell volume at χN = 24 for ε = 3 suggests that there

may be a very narrow region of disordered micelles proximate to the SCFT order-disorder

transition at χN = 24.23. This observation is also consistent with the snapshot in Fig. 2b,

which shows the formation of a single potential micelle in that particular sample of the fields.

However, the number of micelles per unit volume is much smaller than the disordered micelle

regime observed at ε = 1, and fluctuations above the isovalue are rare. Indeed, the number

of micelles for ε = 3 near the SCFT order-disorder transition is almost half that for the ε =

1 case, where the SCFT order-disorder transition is at χN = 21.55.

We have also attempted to measure the average micelle sizes from the real-space analysis.

Here, the volume of the micelles is determined by multiplying the number of grid points in

a cluster by the volume occupied by the cube surrounding a grid point. The typical micelle

size, Rm, is then obtained by taking the cube root of that volume, and thus represents an

estimate of the total size of the micelle core and part of the diffuse interface since we are

using grid points out to I = 0.6. For simplicity, we refer to this object as the micelle “core”

in what follows.

Figure 5 furnishes the results of the computation of the micelle core size. To see if these
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sizes are reasonable, recall that the vector along the close-packed [111] direction has a length

L
√

3 and needs to fit 4 micelles (for ε = 1) and 2 micelles (for ε = 3) in the ordered state.

Using ε = 1 and χN = 25 as a test case, each micelle occupies a dimensionless length
√

3

along the [111] direction. From the data in Fig. 5, where Rm ≈ 0.75 at these conditions,

the micelle core occupies approximately 43% of that distance. This result is in reasonable

agreement with that predicted by SCFT in Fig. S13 in the Supporting Information, which

clearly illustrates the diffuseness of the interface. Measuring the distance between values of

φA = 0.6 along the [111] direction from SCFT leads to the micelle core occupying 54% of

the distance. Some of this disagreement between the MC-FTS data and SCFT is due to

fluctuations captured in MC-FTS, but it also reflects the challenges in measuring precisely

the micelle volume fraction using the grid clustering method compared to the relatively

smooth volume fraction data produced by SCFT.

Figure 5 reveals that, as anticipated, the micelle size increases with segregation strength

and that the conformationally asymmetric micelles are larger due to their larger values of bA.

For the ε = 1 data, the gradual increase in the micelle sizes indicates that incommensura-

bility is becoming increasingly important as χN increases, since increasingly larger micelles

are forced to order within the same box size. Such incommensurability could frustrate crys-

tallization from an initially disordered system, which was noted in our discussion of the

hysteresis loop in Fig. 3.

The most interesting result concerning micelle sizes in Fig. 5 is the general correspondence

between the trends in micelle size here and those observed for log Ψ in Fig. 3. The ODT

inferred from the jump in Ψ for ε = 3 is coincident with a sharp increase in the measured size

of the micelle cores in Fig. 5 and the number of such clusters in Fig. 4. Taken together, the

latter observations provide real-space support our claim that the disordered micelle regime

is largely suppressed in the ε = 3 system.
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Figure 5: Average micelle size Rm, in terms of versus segregation strength χN for (a) ε = 1
and (b) ε = 3 for calculations started from the ordered initial condition.

Discussion

The key results of our MC-FTS simulations of conformational asymmetry on the composi-

tional fluctuations fA at N̄ = 104 are that (i) the emergence of disordered micelles is roughly

coincident with the SCFT order-disorder transition and (ii) the order-disorder transition

does not appear to shift as a result of conformational asymmetry. The first conclusion is

consistent with previous molecular dynamics simulations of a somewhat more composition-

ally asymmetric system at an even lower invariant degree of polymerization 45 and theory.27,46

The second conclusion suggests that fluctuations are more important than conformational

asymmetry in determining the ODT. Prior SCFT works on the effect of conformational asym-

metry24,48 have suggested that conformational asymmetry has a small effect on the ODT,

at least when compared to the large skew in the order-order transitions as ε increases. Our

SCFT conclusion is consistent with these prior studies; even when operating at a relatively

large conformational asymmetry, we still only observed a modest shift in the SCFT ODT

from χN = 21.55 to χN = 24.23. The more interesting conclusion that we draw is that the

cutoff of the lower part of the phase diagram created by fluctuation effects at N̄ = 104 ap-

20



pears to be more important for establishing the location of the lower bound for the true ODT

than the effect of conformational asymmetry, leading to an estimate of the true ODT that is

seemingly independent of ε for this system. We recognize that this is a tentative conclusion,

drawn from results at a single value of fA and N̄ , and a considerable amount of additional

work is required to draw a firm conclusion. The recent advances in accelerating this class of

field-theoretic simulations may render such a calculation feasible but still expensive. 33,34,49

The results obtained here further emphasize the importance of finite N̄ on the emergence

of Frank-Kasper phases, in particular for thermal processing routes that produce the C14

and C15 Laves phases.16 As noted in the introduction, Frank-Kasper phases are predicted by

SCFT to emerge at equilibrium as a consequence of conformational asymmetry, 18–20 and thus

do not require access to a disordered micelle regime to promote non-equilibrium emergence

of those phases. However, only the A15 and σ phases appear in the equilibrium phase dia-

gram.16 Experiments on neat diblock copolymer melts have also produced the C14 and C15

Laves phases, which are expected to be metastable phases at equilibrium 16 and thus require

processing to access them as non-equilibrium, long-lived states. Presumably, the emergence

of the Laves phases is connected to the structure of the disordered micelle state proximate

to the ODT that can template their formation out of equilibrium via thermal processing. 17

Our analysis reveals that conformational asymmetry, which is required for the formation of

a Frank-Kasper phase, raises the the onset of the disordered micelle regime, which appears

to be coincident with the SCFT order-disorder transition, 27,45,46 to a higher value of χN .

However, for the value of N̄ = 104 used here to examine the effect of compositional fluctu-

ations, which is already on the lower end for a field-theoretic simulation, does not raise the

true ODT sufficiently to expose an accessible window of χN for thermal processing through

a disordered micelle state, keeping in mind that the melting simulation is an estimate of the

lower bound for the ODT. Thus, our results suggest that the thermal processing approach

to producing Laves phase requires even lower values of N̄ , consistent with the fact that the

thermal processing experiments by Kim et al.16,17 used an even lower invariant degree of
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polymerization N̄ = 330.

Making a further connection between conformational asymmetry and the structure of the

disordered state, in particular for conditions that are most relevant to thermal processing

experiments, thus necessitates simulations at even lower values of N̄ . Such simulations are

challenging using a field-theoretic model due to the increasing magnitude of the composition

fluctuations as N̄ decreases. Recent simulations of this type by Beardsley and Matsen, 34

which took advantage of multiple methods for accelerating the simulations, were performed

at N̄ = 104, the same as the simulations appearing here. Vorselaars et al.31 were able to

perform MC-FTS simulations down to N̄ = 103 for compositionally symmetric systems that

produce a lamellar morphology, which is promising but a simpler problem than a sphere-

forming phase, especially in the context of relieving unit cell stress.

Most likely, molecular dynamics simulations of a coarse-grained polymer model are the

best approach to understand the structure of the disordered state at the low values of N̄ used

for thermal processing experiments,16,17 as they have proven effective for interrogating the

properties of conformationally symmetric disordered systems in the past. 28,45,47 However, one

outstanding challenge in molecular dynamics simulations of this type is locating the upper

bound for the ODT; similar to our results here, it is relatively easy to obtain data for the

melting branch of the hysteresis loop, but these simulations seem to resist crystallization on

the cooling branch.45 Our data for cluster sizes in Fig. 4 provide an insight into the challenge

of dynamically simulating the crystallization process in a particle-based model. If the number

of clusters increases in the disordered micelle regime, which is the case in Fig. 4a past the

SCFT order-disorder transition, then the eventual equilibration of the system into a bcc state

requires changing the total number of micelles. Changes in micelle number typically require

fission and fusion processes, which are very slow in a molecular dynamics simulation. 50 MC-

FTS, like most Monte Carlo methods, does not require tracking the dynamics of the polymers

and thus allows for moves in the configurational space that can equilibrate particle numbers

much more quickly.
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One concern in our identification of the ODT is a possible systematic error in our analysis

related to the unit cell size. In both particle-based and field-based methods, the choice of

unit size is especially important in determining the selection of the ordered state above the

ODT.31,47 Using an incommensurate box size leads to stress in the ordered state, 51 which

increases its free energy relative to that in an optimally sized box and thus destabilizes the

ordered state relative to disorder. For the ε = 3 case, any incommensurability of the unit

cell at L = 4 only serves to reinforce our conclusion that the disordered micelle regime is

suppressed. Acting on the assumption that the CMT is roughly coincident with the mean-

field ODT predicted by SCFT,27,45,46 using a MC-FTS box size that is closer to the optimal

unit cell dimension would stabilize the ordered system and cause it to melt at an even higher

temperature, which is equivalent to reducing the χN value corresponding to the true ODT.

This box size effect should not affect the CMT, which is estimated from the mean-field

ODT.27,45,46 As a result, the window between the CMT and ODT would be narrower in a

more commensurate box, and the key insights with respect to thermal processing experiments

for the ε = 3 system would remain valid. However, any incommensurability for the ε = 1

case would overpredict the width of its disordered micelle regime in MC-FTS as well. The

magnitude of this shift is uncertain, although our extrapolation from previous coarse-grained

molecular dynamics studies47 suggests that the window between the CMT, as estimated

from the mean-field ODT, and the true ODT may still be as large as ∆χN = 3. If this

extrapolation proves to be accurate, then there would still be a substantial difference in the

width of the disordered micelle regime between ε = 1 and ε = 3 in commensurate box sizes,

albeit not as dramatic as that seen here from MC-FTS simulations using L = 4.

The latter discussion of the role of the box size raises an important point regarding

the selection of the box size L for computationally intense methods such as MC-FTS. While

better estimates for L than the fixed value used here are available from the q∗ values predicted

by RPA (for the disordered state) and SCFT (for the ordered state), it would be very useful

to have a way to relieve the unit cell stress during MC-FTS calculations, which would render
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the a priori selection of L moot. For the compositional symmetric diblock copolymer case,

Vorselaars et al.31 relieved the stress on the unit cell by performing a volume-preserving,

box-altering Monte Carlo move in their study of the lamellar phase. Unfortunately, this

approach does not readily translate to a cubic system. The only direct method, at present,

to determine the optimal cubic unit cell for our system of compositional asymmetric chains

is through a computational expensive thermodynamic integration over a broad range of unit

cell sizes32 or by simulating many different box sizes.34 Ideally, one would like to have a

method similar to that used to minimize unit cell stress in SCFT 51 to adjust the box size in

the field theoretic simulation.

Conclusion

This work investigated the effects of conformational asymmetry in compositionally asym-

metric diblock copolymers using MC-FTS calculations. The onset of the disordered micelle

regime is marked by a strong deviation from the RPA prediction for the structure factor and

an increase in the number of micelles, without any long-ranged order. For the particular

case of fA = 0.2 and N̄ = 104 studied here, the disordered micelle regime is suppressed in

the conformationally asymmetric system due to the increase in the mean-field order-disorder

transition with conformational asymmetry. This is an intriguing result related to conforma-

tional asymmetry, but was obtained from a single value of fA and N̄ . If it proves to be valid

in general, then this work represents a key step in further developing the understanding of

the behavior of the disordered micelle phase, reinforcing prior work 45 on the emergence of

disordered micelles at the SCFT order-disorder transition and highlighting that composi-

tional fluctuations, which are controlled by the invariant degree of polymerization N̄ , may

be more important for determining the ODT than conformational asymmetry. In the case

where the long-lived structures in the disordered micellar states are highly correlated with

the formation of different Frank-Kasper phases,16,17 a comprehensive understanding of the
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behavior of the disordered micelle phase should provide a deep understanding of how tran-

sitions across the order-disorder transition impact the selection of complex sphere-forming

phases.
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