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Abstract: The mechanical properties of DNA have enabled it to be a structural and sensory element 

in many nanotechnology applications. While specific base-pairing interactions and secondary 

structure formation have been the most widely utilized mechanism in designing DNA nanodevices 

and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, 

we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how 

environmental and intrinsic factors such as salt, temperature, sequence, and small molecules 

influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. 

First, we will discuss how DNA’s bending rigidity has been utilized to create molecular springs that 

regulate the activities of biomolecules and cellular processes. Second, we will discuss how the 

nanomechanical response induced by DNA rigidity has been used to create conformational changes 

as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we 

will discuss how DNA’s rigidity enabled its application in creating DNA-based nanostructures from 

DNA origami to nanomachines. 
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1. Introduction 

In the past two decades, DNA nanotechnology has put forth various remarkable structures and 

functions of DNA far beyond its role as the genetic material in living organisms. Owing to its 

outstanding properties (self-assembly, programmability, stability, resilience, etc.) DNA has been 

increasingly maneuvered in multiple different ways to propel the field of nanotechnology. DNA 

serves in multiple capacities, i.e., as aptamers, DNAzymes, molecular beacons, biosensors, 

nanoparticles, molecular machines, and nano-electronic components (e.g., nanowires, constituents of 

logic gates, etc.) [1]. One of the most fundamental features of DNA that has made many of its 

applications possible is its excellent mechanical rigidity against bending. Since the mechanical 

rigidity of DNA is sensitive to multiple intrinsic and extrinsic factors, it can be manipulated and 

employed for sensing applications. 

A wide range of techniques has been used to determine dsDNA stiffness, persistence length (Lp), 

curvature, and geometry. Peters et al., have comprehensively reviewed many techniques used for 

probing DNA curvature and flexibility in vitro as well as in vivo [2]. Some of the popular techniques 

include computational simulations [3–10],  electrophoretic mobility assays [11–18], cyclization analysis 

[4,19–31], tethered particle motion assays [32–34], optical tweezers [35–39], fluorescence spectroscopy 

[40–47], atomic force microscopy [48–53], single-molecule force spectroscopy [54,55], cryo-electron 

microscopy [56–59], scanning Tunneling microscopy [60–62], X-ray crystallography [63,64], small-angle 

X-ray scattering [65,66], NMR spectroscopy [67–73], transient electric birefringence [74,75], anti-
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Brownian electrophoretic trap [76], chromosomal conformation capture (3C) assay [77–80], genetic 

and recombination assays [81–93], etc. Generally, a combination of two or more of the above methods 

is needed to gain a complete understanding of conformation and kinetics. To utilize the mechanical 

rigidity of DNA to our advantage, we must first understand the factors that influence it. Here, we are 

primarily interested in double-stranded DNA (dsDNA) due to its relatively high stiffness compared 

to single-stranded DNA (ssDNA). The persistence length (Lp) of dsDNA is ~50 nm (at 10 mM Na+), 

over 60 times greater than that of ssDNA (Lp~0.75 nm at 150 mM Na+) [94]. 

First, the prime mechanism underlying the dsDNA stiffness is the stacking interactions of 

adjacent base pairs that provide its structural integrity [75]. In a recent report, Chen et al., used 

computational methods to quantitatively show that base-stacking contributes significantly to the 

local and global rigidity of dsDNA as compared to other chemical interactions such as backbone, 

ribose puckering, and base-pairing in dsDNA [3]. Figure 1a illustrates the geometry of base-stacking 

interaction among other chemical interactions. Bending of the DNA directly perturbs the base-

stacking geometry along the dsDNA, hence unfavourable. Therefore, factors that directly influence 

the base-stacking of dsDNA will directly impact DNA stiffness. 

Second, the electrostatic phosphate-phosphate repulsions and environmental ionic strength also 

have substantial influence on the dsDNA stiffness. It is well known that asymmetric neutralization 

of phosphate charges induce bending of the helix axis [11,95–99]. Figure 1b is a cartoon showing that 

DNA spontaneously bends upon the incorporation of neutral phosphate analogs on one of the helical 

faces. Apart from the bending rigidity, the stiffness of the phosphate backbone also gives rise to 

dsDNA’s outstanding torsional rigidity (overwinding behaviour of dsDNA) [100,101]. The salt-

dependence of the stiffness of dsDNA is closely related to the screening of the phosphate backbone 

charges as well. In 2019, Guilbaud et al., showed that the Lp of dsDNA decreases significantly with 

increasing ionic strength in monovalent and divalent metal ions (Figure 1c) [102]. This decrease in 

persistence length could be attributed to the reduction in the energetic cost of bending due to 

screening of phosphate backbone charges by surrounding cations. However, the Lp seems to be 

independent of the size of metal ions when kept at the same ionic concentration [102]. 

Third, the rigidity of dsDNA is sequence-dependent. In 2017, Jonathan et al., used computational 

simulations of random and λ-phage dsDNA fragments to report that the apparent Lp shows a standard 

deviation of 4 nm over the sequence. Additionally, they demonstrated that poly(A), poly(TA), and 

phased A-tract sequence motifs are exceptionally straight and stiff, tightly coiled and exceptionally soft, 

and exceptionally bent and stiff, respectively [103]. Figure 1d shows a scatter plot of simulated (Monte 

Carlo) and experimentally (includes data from atomic force microscopy, electron microscopy, and 

cyclization experiments) estimated poly(NN) dsDNA persistence lengths (Lp) from different 

experiments from various studies. It is worth discussing here that nucleotide base modifications affect 

dsDNA stiffness. For example, 5-formylcytosine, 5-hydroxymethylcystosine and 5-

hydroxymethyluracil are known to enhance the dsDNA flexibility while 5-methylcytosine is known to 

decrease it [54,104,105]. Figure 1e shows the fraction of the looped molecules as a function of time for 

unmodified dsDNA as well as dsDNA containing four copies of 5-formylcytosine (5-fC), 5-hydroxy-

methylcystosine (5-hmC), 5-carboxylcystosine (5-caC), and 5-methylcytosine (5-mC). Higher flexibility 

of dsDNA leverages higher looping probability and faster looping kinetics. Figure 1e, shows the 

schematic of a single-molecule dsDNA looping experiment. 

Fourth, dsDNA stiffness is strongly influenced by temperature. Through temperature-controlled 

single-particle tethered motion experiments, it has been shown that dsDNA stiffness is sharply reduced 

when temperature is increased (Figure 1f) [32]. The melting temperature of all three dsDNA used in 

Figure 1g are greater than 75 °C, while the experiment range is between 23–52 °C. This indicates that 

during the experiment the global conformation of all three DNA remains double-stranded. The authors 

have attributed this to local effects such as temperature-enhanced formation of kinks (due to unstacking 

of adjascent base pairs) and small melting bubbles (due to disruption of base pairing and/or base 

stacking). In line with the above discussion, it is worth emphasizing that basepair mismatches or 

melting bubbles significantly effect the rigidity of dsDNA [26,106–108]. In 2004, Yan et al., suggested 

that formation of melting bubbles by internal strand-sepraration provide a flexible-hinge that facilitates 
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the formation of smooth bends and thus loops of dsDNA less than 150 bp [26]. In 2006, Yuan et al., 

demonstrated that distributed melting bubbles induce bigger bending angles and higher reduction 

in the stiffness of dsDNA as compared to the centrally located melting bubbles of comparable overall 

size [108]. In 2009, Forties et al., published a robust model that predicts the impact of small bubbles 

formed due to dsDNA melting (temperature-dependent) or DNA mismatches (sequence-dependent) 

on dsDNA flexibility [107]. 

Lastly, DNA-binding molecules such as bis-intercalators (e.g., YOYO-1) are known to alter 

dsDNA rigidity. Figure 1g demonstrates that as the concentration of YOYO-1 increases (in 

comparison to base-pair concentration), the fractional extension L/Lo of dsDNA increases (L and Lo 

are the contour lengths of dsDNA with and without YOYO-1), while the Lp decreases [48]. 

 

Figure 1. Cont. 
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Figure 1. (a) A schematic of dsDNA showing chemical interactions and structural features such as 

base-pairing, base-stacking, phosphate-backbone, sugar pucker, respectively, and their contribution 

to the local rigidity in terms of mechanical strength of dsDNA. Figure adapted and modified from [3] 

with permission from The Royal Society of Chemistry. (b) Cartoon representation of dsDNA 

spontaneously bending upon incorporating neutral phosphate analogs (shown as ‘0’) on one of the 

helical faces. Negatively charged phosphates are shown as ‘-’ [11]. (c) Dependence of Lp on the ionic 

strength of monovalent Li+, Na+ (top red) and divalent Mg2+, Ca2+ (bottom blue) ions. Figure reprinted 

with permission from [102]. Copyright (2019) by the American Physical Society. (d) A scatter plot of 

simulated and experimentally estimated poly(NN) dsDNA persistence length (Lp) data from different 

experiments pursued by various research groups (grouped by colour). Figure adapted with 

permission from [103]. Copyright 2016 American Chemical Society. (e) (i) shows the schematic of a 

single-molecule dsDNA cyclization experiment. Two complementary sticky ends of the dsDNA are 

tagged with a fluorescence resonance energy transfer (FRET) pair of fluorescent donor (D) and 

acceptor (A) dyes, and the fraction of the dsDNA looped is probed by monitoring the increase in FRET 

between A and D. (ii) shows the fraction of the dsDNA looped as a function of time. Figure adapted 

with permission from [23]. Copyright 2016, the authors. (f) Dependence of Lp of three dsDNA 

(differing in their G-C content) on temperature. The melting temperature of all three dsDNA used in 

this experiment are greater than 75 °C. Figure adapted with permission from [32]. Copyright 2014 

American Chemical Society. (g) (i) shows the change in dsDNA length upon YOYO intercalation. L 

and Lo is the contour length of dsDNA in the presence and absence of YOYO, respectively. The curve 

demonstrates the increase in fractional extension L/Lo upon an increase in YOYO concentration. (ii) 

shows the dependence of Lp on fractional extension L/Lo. The curve demonstrates that Lp decreases 

upon the increase of the YOYO/base-pair ratio. Figure adapted from [48] with permission from The 

Royal Society of Chemistry. 

2. DNA-Springs as Regulators 

2.1. Allosteric Regulation of Enzyme Activity 

Regulation of protein or nucleic acid enzyme activity by factors such as pH, salt, temperature, 

and co-factor molecules have been widely investigated and understood. However, the effects of 

mechanical perturbation on enzyme activity remain under-explored. In the past decade, DNA-based 

molecular springs have been used to regulate the mechanical compliance of biomolecules by exerting 

mechanical strain to alter their conformation [109–115]. DNA spring is a bent dsDNA that stretches 

any molecule that bridges its ends, like a bow under tension. The concept of DNA springs was first 

introduced by Tyagi and Kramer in 1996 [116] (Figure 2a) where the conformational change in an 

DNA hairpin A (blue/yellow) was induced by a complementary DNA strand B (red). Here, 

hybridization of the loop of hairpin A (yellow) and strand B (red) into duplex A/B opens up the stem 

of hairpin A. As the stiffness of the double-stranded loop of hairpin A is stronger than that of the 

single-stranded loop of hairpin A, it acts as a spring and exerts force on the stem of hairpin A 

unzipping the double-stranded stem apart into single-stranded components. A more detailed 

discussion of the unzipping of hairpin stem due to formation of double-stranded DNA springs in 

hairpin loop is made in Section 3.1. Detection of this conformational change was achieved using 

fluorescence quenching using a fluorophore-quencher pair. The total fluorescence increases upon the 

formation of A/B duplex as the rigid dsDNA duplex keeps the fluorophore-quencher pair apart. DNA 

springs have since been employed in three different ways to probe the mechanical compliance of 
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enzymes: (i) by influencing the spatial accessibility of molecules that regulate the enzyme activity, 

and by applying force directly on (ii) the enzyme or (iii) the substrate. 

 

Figure 2. (a) Schematic representation of a DNA spring where the increased stiffness of A/B duplex 

does not allow the two ends of strand A to self-hybridize [116]. Schematic representation of a DNA 

spring regulating the catalytic activity of enzyme E (b) by altering the spatial proximity of the enzyme-

inhibitor I with the help of the stiffness of C/D duplex [117] (c) by exerting mechanical force (generated 

due to the stiffness of F/G duplex) on the enzyme itself [115] (d) by pulling apart the ribozyme E 

tertiary structure causing it to misfold by the formation of G/H duplex [118]. (e) Schematic 

representation of a topological constraint J regulating the activity of an RCA DNA polymerase by 

exerting strain on the RCA template S by S/J duplex formation [119]. (f) Schematic representation of 

a DNA nanospring regulating mechanical tension by contracting membrane-bound integrins [120].  

(i) Influencing the accessibility of regulatory molecules: The first strategy using DNA springs to regulate 

enzymes is by controlling the accessibility of enzyme regulatory factors, e.g., inhibitors. Ghadiri et 

al., reported the allosteric regulation of a protein enzyme Cereus Neutral Protease 5 (CNP) by a DNA 

spring using this strategy (Figure 2b) [117]. In this study, the two ends of DNA strand C (blue) were 

conjugated to CNP (shown as E) and its inhibitor (shown as I). The flexible nature of ssDNA C 

allows the inhibitor I to remain bound to the enzyme E until the complementary ssDNA D (red) 

hybridizes to strand C. The rigid dsDNA duplex C/D causes the dissociation of the inhibitor 
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from the enzyme and keeps it away. CNP’s catalytic activity recovers noticeably upon the 

unbinding of the inhibitor I caused by the binding of strand B. 

(ii) Mechanical force regulation of enzymes: The second strategy uses DNA springs to exert force on 

enzymes to modulate their mechanochemistry. Choi et al., demonstrated this concept in 2005 

(Figure 2c) [115] by covalently attaching two ends of a flexible 60-nucleotide ssDNA strand F 

(blue) to the two lobes of a maltose-binding protein (MBP). MBP retains its high binding affinity 

to maltose when F remains in the ssDNA state, as it does not apply external force to the MBP. 

However, when a complementary strand G binds to F, an external force up to 10 pN is applied 

on the MBP from the stiffness of the F/G duplex. This mechanical stress makes it energetically 

unfavourable for MBP to undergo the conformational changes required for maltose binding. As 

the length of strand G increases above 30 bases, the mechanical stress exerted on MBP increases, 

leading to further diminished maltose-binding affinity. Through this mechanism, regulation of 

MBP-maltose affinity was achieved through the external forces generated by a DNA spring. A 

similar concept was applied to achieve reversible allosteric regulation of enzyme guanylate 

kinase (GK) [109] and cAMP-dependent Protein Kinase A (PKA) [110]. The binding of GK to its 

substrates adenosine triphosphate (ATP) and guanosine monophosphate (GMP) requires a 

conformational change, which was reversibly inhibited by mechanical tension applied through 

a dsDNA spring. On the other hand, PKA was activated by the mechanical tension applied 

through a dsDNA spring, such that it demonstrated activity even in the absence of cyclic 

adenosine monophosphate (cAMP), the co-factor typically required for its activation. In 2007, 

Silverman et al., extended the application of DNA springs to the allosteric regulation of 

ribozymes (Figure 2d) [118]. Here, the hammerhead ribozyme’s mechanical control was attained 

by attaching two complementary ssDNA G and H to two different portions of the ribozyme. 

When G and H hybridize, they pull apart their corresponding attachment points, causing the 

tertiary structure of ribozyme E to unfold and lose function. 

(iii) Mechanical force regulation of substrates: The third strategy is to exert strain on the substrate such 

that it affects the efficiency of the enzyme. Based on this strategy, a circular ssDNA was used as 

a topological constraint to regulate the Rolling Circle Amplification (RCA) activity of Φ29 DNA 

Polymerase enzyme [119]. This was illustrated by Liu et al., where a circular RCA ssDNA 

template (shown as S, blue) was mechanically strained by a strong linking duplex formed with 

another circular ssDNA (shown as J, red) as in the case of DNA catenanes (Figure 2e). The 

strained template cannot undergo RCA until the spring/constraint is cleaved, and the strain is 

released. This system has been employed to demonstrate specific target-triggered RCA for 

detecting a specific E. coli strain with detection limits of 10 cells/mL. 

2.2. Regulation of Live Cells 

DNA-springs can be made to regulate the activity of not only individual biomolecules but also 

live cells. In 2017, Zhang et al., demonstrated the use of a DNA nano-spring for the reversible control 

of integrin clustering and cell membrane receptor function (Figure 2f) [120]. Here, a DNA nanospring 

was demonstrated to redirect the normal morphology of the cell to having multiple cell protrusions 

and even alter the mRNA expression levels of integrin-related genes. In this study, DNA nano-

springs consist of long repeats of hairpin-forming sequences (generated by RCA) were used as a 

scaffold for assembling RGD-DNA sequences (shown in orange). RGD is a tripeptide (Arg-Gly-Asp) 

with a high affinity for cell adhesion through integrin. Upon the addition of external DNA sequences 

(shown as DNA1 and DNA2), the hairpins can undergo cycles of unhybridization/rehybridization. 

This stretches and contracts the distance between RGD and thus the distance between and force 

through the integrins. When the nanospring is contracted, the clustered integrins stimulate the cells 

to form focal adhesions. While in the extended state, increased distance between integrins triggers 

activation of PI3K/Rac1 signalling, causing membrane remodelling and generation of numerous cell 

protrusions. Regulation of cell adhesion has also been achieved through the rational design of DNA 

tethers with various mechanical stability levels. In these studies, complementary strands of dsDNA 

were conjugated to the surface and cell-adhesion receptors (e.g., RGD or Selectin), where they act like 
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nano-springs with a tension tolerance. When external forces increased beyond a certain threshold, 

the DNA springs would break. This system has resulted in a series of studies leading to quantifying 

integrin adhesion force, notch receptor activation, and leukocyte rolling adhesions [121–127]. Lastly, 

regulation of subcellular membrane remodelling was achieved with the help of DNA origami nano-

springs as reported in 2019 by Grome et al. [128]. Here, DNA nano-springs of varying structural 

stiffness were polymerized on the surface of the liposomes and were found to significantly influence 

membrane binding, membrane remodelling, as well as vesicle tubulation. 

3. Mechanical Rigidity-Facilitated DNA Sensors 

3.1. DNA Springs as Force-Sensors 

Using DNA as springs for sensing nanoscale forces was introduced by Shroff et al., in 2005. Herein a 

FRET-based force sensor capable of sensing a force range of 0–20 pN was demonstrated using a circular 

ssDNA B (red) covalently attached to a FRET donor D (green) and acceptor A (yellow) (Figure 3a) [129]. 

Change in FRET occurs when the circular ssDNA B converts to dsDNA through hybridization with a 

complementary ssDNA C (blue) of different lengths (Figure 3a). The change in FRET measures the force 

applied through the DNA-spring on the ssDNA. The idea of hybridization-induced stress and strain on 

circular DNA was further used to assess the force sensitivity and nanomechanics of several systems. In 

2013, Fields et al., illustrated a similar concept to control strain in a DNA hairpin system (Figure 3b) [130]. 

A DNA-vise was constructed from a hairpin B with a loop of 30–50 nucleotides and a stem of 49 base 

pairs. Hairpin B was tagged with a FRET-pair at its loop-stem junction, such that the unzipping of 

the stem can be monitored by the decrease of FRET. As more nucleotides within the hairpin loop 

hybridize with longer complementary ssDNA C (l), the stress increases to unzip the hairpin from the 

loop side. Within a range of l values (l < lbuckle), increasing stiffness of B/C duplex results in increasing 

unzipping of the stem of hairpin B as monitored by the decrease of FRET. However, at lengths above 

an Euler-buckling threshold (l > lbuckle) the base-pairing free energy to re-establish the full hairpin stem 

overcomes the bending energy of the DNA-spring, causing FRET to return to a high state. 

Lately, the increased complexity of 3D DNA origami is being used for constructing origami-based 

nano-springs to leverage extremely sensitive DNA-based force-sensors. In 2013, Zhou et al., fabricated 

a DNA origami compliant joint structure, which acts as a tunable mechanical nano-spring [131]. The 

balance of tension in the flexible ssDNA components at the joint plays a key role in determining its 

geometry and mechanical properties. This study demonstrated the possibility of creating more 

elaborate DNA-origami sensors based on the mechanical flexibility of DNA. A DNA origami-based 

force-spectrometer was reported in 2016 by Funke et al. [132] where the fluctuations of the DNA spring-

loaded hinge sensor allowed the measurement of inter-nucleosome distance at sub-nanometer 

resolution. Figure 3c shows the schematic of the DNA origami-based force spectrometer, which 

comprises of a spring-loaded hinge and two nucleosomes attached on opposite sides of the hinge. The 

torque generated by the hinge is shown by a red torsional spring. A FRET-pair was attached to the 

opposite sides of the spring-loaded hinge to gauge the distance between the nucleosomes. It is known 

that nucleosomes condense into arrays, which indicates that attractive forces exist between individual 

nucleosomes. The DNA origami-based force spectrometer, shown in Figure 3c, was used to measure 

the interaction strength between two nucleosomes directly. In this system, the strength of nucleosome-

nucleosome interactions resulted in inter-nucleosome distance changes. These changes in distances 

were reflected by changes in FRET between the acceptor and donor fluorophores. In 2016, Iwaki et al., 

developed a programmable DNA origami-based nanospring that enabled the monitoring of force-

induced transitions between two structurally distinct states of the mechanosensory motor protein 

myosin VI with nanometer-precision [133]. The DNA nanospring in this study comprises a 7,308 

nucleotide ssDNA and more than 150 species of short ssDNA (<50 nucleotides) self-assembled into a 

two-helix bundle that is strained with negative superhelicity to form a coil structure. The DNA 

nanospring was attached to immobilized myosin II on one end and myosin VI on the other end. Figure 

3d shows myosinVI moving unidirectionally along an actin filament against the load of the nanospring. 

This system helped study the stepping dynamics of Myosin VI under tension using fluorescently 
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labelled DNA nanospring and TIRF microscopy. Lastly, DNA spring has been used in mechanical 

regulation and monitoring of biomolecules in live cells, taking advantage of the difference in rigidity of 

dsDNA vs ssDNA, for developing tools to study cell mechanics [134–137]. 

 

Figure 3. Schematic representation of force exerted by DNA spring (B/C duplex) on (a) the single-

stranded part of circular ssDNA B [129] and (b) the stem of hairpin B [130]. Increasing force increases 

the distance between the fluorophores D and A, resulting in a decrease in FRET (by unzipping in case 

of (b)). (c) Schematic representation of the DNA origami-based force-spectrometer consists of a 

spring-loaded hinge bearing two attached nucleosomes and a FRET pair of acceptor (A) and donor 

(D) fluorophores. The red torsional spring depicts the torque generated by the hinge. The nanospring 

is used for sensing distance (and interactive forces) between nucleosomes. Figure adapted with 

permission from [132]. Copyright 2016, the authors. (d) Schematic representation of a two-helix 

bundle DNA nanospring tethered to immobilized myosin II on one end and myosin VI on the other. 

Myosin VI is shown to more unidirectionally along actin filament against the load of the DNA 

nanospring. [133]  

3.2. pH-Sensitive DNA Spring 

In 2010, Wang et al., constructed a G-quadruplex/i-motif-based DNA nanospring powered by 

protons, which exhibited highly sensitive pH-dependent spring-like structural changes (Figure 4) [138]. 

The nanospring consists of two building blocks called subunit I and II, each of which is made up of 

two circular ssDNA C connected via ssDNA A and B. The subunits I and II can be connected by 

strand D in a linear array. The ssDNA A, B, and D consist of four G-rich stretches and form G-

quadruplexes. The formation of G-quadruplexes reduces the distance between the circular DNA C 

rendering the nanospring in a compressed state. Upon adding a C-rich strand E, the strands A, B and 

D hybridize to strand E. Formation of the duplexes A/E, B/E, and D/E increases the distance between 

circular DNA C, imposing an extended state of the nanospring. This is due to the fact that in the 

single-stranded form the strands A, B and D have low rigidity and are floppy, while in the double-

stranded form the A/E, B/E, and D/E are rigid due to their relatively increased persistence length. In 

the presence of slightly acidic conditions (~pH 6.0 or less), the cytosines are partially protonated, and 

the C-rich strand E un-hybridizes from strands A, B and D and folds into a closed i-motif structure, 

freeing the G-rich ssDNA strands A, B and D to form G-quadruplexes again. When the pH rises back 

to the alkaline conditions (~pH 8.0) the cytosines get deprotonated, leading to destabilization of the 

i-motif. This leaves the strand E free to hybridize back with strands A, B and D, which brings the 
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nanospring back into the extended state. The above-explained DNA nanospring is pH-responsive, 

and the extended or compressed state can indicate a change between acidic and alkaline pH. 

 

Figure 4. Schematic representation of the proton-fueled DNA nanospring. (a) shows the constituent 

DNA strands and the construction of the nanospring. (b) shows the operation of the nanospring with 

the help of the C-rich strand E, and its compressed and extended state in response to acidic and 

alkaline pH, respectively [138].  

3.3. DNA-Bows as Metal Ion/Small-Molecule Sensors 

The interactions of DNA with metal ions and small molecules facilitate fundamental cellular 

processes [139–142] such as genomic stability [139,143–147], DNA-carcinogen interactions [146–151], 

drug development [152–155], and DNA-based metal-biosensors [156]. As mentioned earlier, the 

rigidity of DNA is affected by the type and concentration of metal ions. This mechanical energy stored 

in bent-DNA molecules has been utilized by Freeland et al., to quantify the interaction between DNA 

and metal ions (Mn+) and small organic molecules (Mols) using gel electrophoresis [17,18]. Their cost-

effective and straightforward strategy utilizes the mechanical energy stored in bent DNA molecules 

called DNA-bows (Figure 5a) [17,157–159]. Each bow consists of two DNA strands with one part as 

a bent double-stranded fragment (F1) and the other as a mechanically stretched single-stranded 

fragment (F2) (Figure 5a). Depending on the environmental conditions, DNA-bows may decrease 

their bending elastic energy by transitioning to relaxed DNA-dimers or relaxed DNA-multimers (R), 

which show different electrophoretic mobilities (Figure 5b,c) for quantification. Freeland et al., 

reported that the equilibrium between the ss-DNA (S), DNA-bows (B) and multimers (R) is perturbed 

by the presence of metal ions and small organic molecules in a concentration-dependent manner, 

allowing for the quantitative determination of their interaction strength with DNA (Figure 5). This 

was indeed measured for various metal salts (MgCl2, MgSO4, KCl, CaCl2, Al(NO3)3, Zn(NO3)2, and 

AgNO3) and small organic molecules (guanidine, putrescine, spermidine, ethidium bromide, SYBR 

safe, ganciclovir, and thiamine). (Figures 5d,e) Undoubtedly, DNA-bows demonstrated the potential 

for developing sensitive and economical metal ions sensors to screen metal ion-aptamers, DNA-

targeting drugs, and DNA-protein interactions in general. 
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Figure 5. Schematic of (a) the constitution of DNA-bows from single-stranded DNA, and the 

perturbation (depicted by *) of the equilibrium between ss-DNA, DNA-bows, and multimers due to 

their interaction with metal ions (Mn+) or small organic molecules (Mols), (b) the procedure followed 

for sensing DNA-metal ion/small molecule interaction via gel electrophoresis, where ‘1’ indicates the 

negative control with no Mn+/’Mols’ added while ‘2’ depicts the actual experiment with different 

concentrations of Mn+/’Mols’ added. Fitted u-values for quantifying the strength of DNA interactions 

with (c) metal ion salts and (d) small organic molecules. (b,c) are adapted with permission from [18]. 

Copyright 2020, by the authors.  

3.4. DNA Stiffness Assisted Temperature and Osmolarity Sensing 

The sensitivity of DNA towards changes in temperature and osmolarity are well known. In 

prokaryotes, the Histone-like nucleoid structuring protein (H-NS) is an abundant protein that plays 

a vital role in regulating nucleoid structure [160–162], in gene expression [163–169], and in mediating 

cellular response to changes in metabolite pH, temperature, and osmolarity [161,170,171]. It exhibits 

preferential binding to A & T-rich sequences and other regions of high intrinsic curvature, along the 

backbone of double-stranded DNA [162,166,172]. H-NS consists of two distinct domains (C-terminal 

and N-terminal) connected by a flexible linker segment. While the C-terminal domain bears a unique 

DNA binding motif, the N-terminal domain consists of a coiled-coil motif that mediates H-NS 

oligomerization [72,172,173]. Multiple studies suggest that H-NS bends dsDNA upon binding [174] 
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and strongly confer dsDNA compaction [175,176]. However, it has also been shown that at high 

concentrations, H-NS binds to DNA from end-to-end with no significant compaction [162]. In 2003, 

using single-molecule force spectroscopy [177,178], Stavans et al., reported that at physiological 

concentrations, H-NS binding to λ-DNA covers extensive DNA-tracts, causing the contour length of 

the λ-DNA to extend 2-fold and DNA stiffness (measured by Lp) to increase 3-fold (Figure 6a) [179]. 

The result indicated that each H-NS dimer occupies 15–20 base-pairs along the λ-DNA, which was 

further supported by a structural investigation of the H-NS/DNA complex by using X-ray 

crystallography [180]. 

 

Figure 6. The effect of osmolarity and temperature on H-NS/DNA complex was investigated through 

force-extension experiments. (a) Schematic representation of the extended configuration of H-NS-λ-

DNA complexes compares to that of naked λ-DNA in the low-tension regime (≤10 pN). The setup for 

measuring the end-to-end extension of DNA as a function of stretching force (magnetic force) is shown 

where DNA is tethered to a magnetic bead on end and a glass surface on the other. Change in persistence 

length (Lp) of (b) H-NS-DNA as a function of increasing H-NS concentration in the presence of 50 mM 

(solid circles) and 200 mM (open circles) KCl, (c) H-NS-DNA complexes (solid circles) and naked DNA 

(open circles) with increasing temperature. Inset: Extension ‘z’ in nm (y-axis) of single H-NS-DNA 

complexes as a function of force (f) in pN (x-axis) measured at 37 °C for 0 (solid circles) and 2 µM (open 

circles) H-NS. (b,c) adapted with permission from [179]. Copyright 2003, Biophysical Society.  

Stavans et al., showed that H-NS’s polymerization on DNA is sensitive to changes in osmolarity 

and temperature. The Lp of λ-DNA increases with increasing H-NS concentration and decreasing ionic 

strength (Figure 6b), and decreases with temperature (Figure 6c) up to 32 °C. However, at 37 °C, H-NS 

no longer induces any rigidity change of DNA. Not only do the above results provide remarkable 

insights into the mechanism of N-HS mediated gene silencing in vivo, but the system also demonstrated 

great potential as an in vivo osmolarity and temperature sensor for subcellular local environment. 
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3.5. DNA Bending Assisted Protein Sensing 

Histone-like proteins in prokaryotic cells and transcription factors (TFs) are essential 

architectural and functional regulators of genetic materials in cells [181,182]. Understanding of their 

function and regulation requires sensitive strategies to detect their interactions with DNA [183–188]. 

In 2004, Shen et al., reported an elegant DNA-based nanomechanical sensor that involves bending of 

DNA upon binding to E. coli Integration Host Factor (IHF), a histone-like protein [189]. The device 

consists of a DNA double-helical shaft (consisting of the IHF binding site) connecting with two rigid 

DNA triple crossover (TX) motifs (Figure 7a). The two TX motifs are individually labelled with a 

FRET donor D (green) and acceptor A (yellow) [190]. 

 

Figure 7. (a,b) Schematic representation of a nanomechanical device with the double helices as 

rectangular boxes and the TX motifs as three infused rectangular boxes. The upper domain connects the 

two TX motifs with the binding site for IHF. Each TX motif is labelled with either FRET donor fluorescein 

(D) or FRET acceptor Cy3 (A). IHF (purple) binding distorts the connecting shaft in the lower panel, 

consequently increasing the distance between D and A (dB to dA) and thus decreasing FRET. (b) shows 

that the bottom domains are extended and connected by a cohesive tract [189]. DNA bending-based TF 

(CAP) sensor. (c) Left: Schematic of the sensor constituted by a dsDNA consisting of three A5 kinks and 

a CAP binding site (indicated by the blue dotted line). The donor (glowing green star) and the acceptor 

(glowing yellow star) fluorophores are depicted to be attached on either end of the sensor dsDNA, 

respectively. Right: Schematic of the pulling far apart of both the fluorophore-tagged ends of the dsDNA 

sensor from each other due to DNA bending induced by CAP binding [191].  

The FRET signal decreases as the IHF binds and distorts its binding site, increasing the distance 

between the FRET-pair (Figure 7a). Shen et al., have further extended this system by connecting the 

TX motifs with a pair of complementary DNA strands (Figure 7b). If the IHF binding free energy 

exceeds the DNA hybridization free energy, IHF binding is energetically favoured (Figure 7b). 

Therefore, when the length of complementary base-pairs increases, the ability of IHF binding to the 

structure decreases as the overall free energy favours the DNA-bound structure more than IHF-

bound structure. With this method, the device was used to estimate the binding free energy between 

IHF and DNA. 
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DNA-bending is one of the most significant mechanisms employed in TF-mediated gene 

modulation [192,193]. In 2012, Crawford et al., developed a DNA bending-based TF biosensor that 

can discriminate between the TF’s active and inactive forms. As a proof-of-concept, their system 

employs a FRET-based detection of low concentrations of Catabolite gene Activator Protein (CAP). 

The dsDNA sensor designed by Crawford et al., consists of three 5-adenine (A5) kinks (5 unpaired 

adenines) around a CAP-binding site (Figure 7c). The unpaired adenines in the A5 kinks confer 

specific sequence-directed bends, i.e., DNA bend angle of 73° ± 11° [194] bringing the fluorophore 

pair at the ends of the sensor DNA within the FRET range (Figure 7c). As shown in Figure 7c, the 

addition of CAP moves the ends farther apart, consequently reducing FRET in a concentration-

dependent manner and enabling the detection of low concentrations of CAP. This system can be 

extrapolated appreciably to many more TFs, which marks significant progress in TF sensing. 

4. DNA-Flexibility: A Game-Changer for DNA Nanostructures 

The field of DNA origami is progressing rapidly and has produced nanostructures and 

nanomachines with fascinating applications. The 3-dimensional geometry of DNA origami 

nanostructures largely depends on the structural rigidity of the constituent DNA molecules [195]. In 

order to predict the shape and rigidity of origami in solution, multiple state-of-the-art computational 

modelling methods have been developed that can compute origami features like DNA bending, 

stretching, twisting, stiffness, and elasticity [196–199]. We will focus on two of the many frontiers in 

DNA origami research, namely the “circular DNA-based origami” and “DNA nanomachines”. With 

the examples discussed below, we aim to highlight how they heavily take advantage of the 

mechanical rigidity of DNA. We also highlight how small perturbations in the mechanical rigidity of 

DNA brings a significant change in the efficiency of functional DNA nanostructures. 

4.1. Circular DNA as the Basis of Origami 

One of the most captivating categories of bent or curved DNA is that of circular DNA. Although 

commercial synthesis of circular DNA is expensive for day-to-day experiments, various protocols are 

available for circularizing linear DNA. The propensity of a DNA to circularize is directly related to 

its sequence- and length-dependent mechanical rigidity. Cyclization propensity (calculated as the 

Jacobson-Stockmayer J factor) is a well-established method for experimentally and computationally 

probing a DNA fragment’s rigidity [4,130,200–202]. DNA nanotechnology has exploited the 

flexibility-based cyclization of DNA fragments to construct fascinating DNA origami nanostructures. 

These include circular interlocks, single- and multiple-ring DNA catenanes, Borromean rings, and 

rotaxanes [203–206]. Circular functional nucleic acids have been employed as rolling circle 

amplification templates, aptamers, enzymes two-input logic gates, biosensors and have proved to be 

a cornerstone for the advancement of DNA nanotechnology [207]. 

4.2. Mechanical Flexibility of DNA Can Tune the Efficiency of DNA-Based Nanomachines 

Recent advances in artificially synthesized molecular machines have massively taken advantage 

of the structural and mechanical properties of DNA. DNA has been employed as a critical component 

of various types of synthetic molecular machines and of the molecular tracks which the machines 

navigate [208–211]. Nevertheless, these synthetic machines have yet not matched the biological 

macromolecular machines in terms of their vital characteristics, such as directionality, step size, 

processivity, speed, and chemical yield. Since DNA nanomechanics plays a crucial role in the systems 

overall free energy, it is intuitive to think that tuning the flexibility of the constitutive DNA may have 

a significant impact on the performance of such machines. 

Tomov et al., have demonstrated the significance of DNA flexibility in the efficiency of functional 

DNA nanostructures through experiments and molecular simulations of a DNA bipedal motor’s walking 

dynamics [212-216]. For example, the foothold and the walker legs in their current design are shorter than 

the Lp of ds DNA and need to be made more flexible to achieve a larger step size (Figure 8a). However, 

the increase in such flexibility also enhances the search-space volume available to the walker, thus 
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increasing the activation barrier to leg-placing and reducing the stepping yields. Additionally, they also 

pointed out that the walker’s efficiency is sensitive to the mechanical properties and curvature of the 

DNA origami track. They further pointed out that their design of the 2D origami sheet bears a curvature 

as the origami sheet’s effective designed pitch (10.67 bp/turn) is larger than that of real DNA (10.5 

bp/turn). They suggested reducing this origami bending or curvature into a stiffer walking track will 

assist the walker in moving in the intended direction (Figure 8b). 

 

Figure 8. (a) Brownian dynamics simulations of coarse-grained models of the transition state 

configurations of the DNA bipedal walker, illustrating the increasingly stretched nature of the walker 

at (i) 15 nm, (ii) 30 nm, (iii) 35 nm, and (iv) 40 nm step sizes, with T1, F1, and L1 being one of the two 

the ‘foothold strand’, ‘Fuel strand’, and ‘Leg strand’. The red arrow in (ii) indicates the position of a 

leg-placing base pair. (b) Schematic of the DNA bipedal walker (blue-orange) with (i) one foot up and 

the other down on a flat surface, and (ii) an axial view of the configuration of the 2D origami sheet 

curled up into a tubular structure, with the red circles denoting the short axis foothold positions. The 

step size (~32 nm) is denoted by the larger green and red circles, which is the same for both (i) and 

(ii). The gray circles in both (i) and (ii) represent the regions of space well-sampled (95% of 

configurations have their terminal base within the sphere) by the unbound section of the walker (blue) 

and the foothold-bound fuel (purple) when the secondary structure was forbidden in the simulations. 

Arrows represent the radii of the spheres, and the yellow colour indicates the overlap between the 

spheres. (a,b) are adapted with permission from [212]. Copyright 2017, the authors. (c) Schematic of 

the dsDNA fragment modelled by a chain of 64 monomers (1 monomer = 6 basepairs) with flexibility 

gradient. The local persistence length (Lp’) is set for each monomer at either 51 or 40 nm. The sequence-

dependent dsDNA flexibility is gradually increased by increasing the fraction of monomers with Lp’ 

= 40 nm. Schematic of the long dsDNA containing four repeat fragments with the flexibility gradient, 

together with its DNA-NP binding potential energy along the entire dsDNA molecule at solution salt 

concentrations of (d) Con = 0.15 M and (e) Coff = 0.81 M, respectively. The inset in (d,e) shows the 

specific representative configuration of DNA-NP complex for which the bending energy is calculated. 

(c)–(e) are adapted with permission from [213]. Copyright 2019, the authors. 
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It is a known fact that while the average persistence length (Lp) of dsDNA is ~50 nm and increases 

significantly with increasing GC content, the local persistence length (Lp’) of dinucleotide steps 

ranges from 40–55 nm [217,218]. In a unique computational study, Park et al., have exploited the 

sequence-dependent flexibility of DNA to propel a DNA-based Brownian ratchet for directional 

transporting positively charged nanoparticles [213]. In this study, Brownian dynamics simulations of 

coarse-grained models have been implemented to construct a single, 130 nm long, dsDNA with its 

sequence-dependent local flexibility gradually increasing along its length at the physiological salt 

concentration (0.15 M) (Figure 8c). Further, a positively charged nanoparticle (NP) is simulated to 

bind to this DNA. The DNA-NP binding causes the DNA to bend (Figure 8d), which augments the 

effect of the variation in sequence-dependent DNA flexibility. This DNA flexibility gradient creates 

an asymmetric potential for the DNA-NP binding and fuels the directional and processive motion of 

the NP towards the higher flexibility region on the DNA. However, upon increasing the salt 

concentration to 0.81 M the DNA-NP binding does not induce significant bending (Figure 8e), and 

thus this binding is less dependent on DNA flexibility. In this case, there is a negligible gradient; 

therefore, the NP diffuses randomly in either direction on the dsDNA. The DNA-NP system designed 

in this study has this 130 nm long fragment repeated such that the asymmetric potential is repeated 

periodically in a single, long dsDNA molecule. By repeatedly switching the salt concentration 

between 0.15 M (Con) and 0.81 M (Coff) over several cycles, the directional and processive motion of 

NP is demonstrated. 

In one of the latest reports, Suzuki et al., have taken advantage of serially repeated tension-

adjustable modules to induce large reversible structural deformations in a DNA-origami nano arm 

(fabricated as an eight-helix DNA bundle) [219]. The tension-adjustable modules are composed of a 

stem (4 helices), stiff piers (>4 helices including the stem), and bridge strands. The deformation of the 

nano arm into increasingly complex shapes has been demonstrated by placing varying amounts of 

tension in its flexible DNA modules. 

5. Summary and Future Directions 

In summary, dsDNA’s mechanical rigidity has been used in a wide range of nanotechnology 

applications, from understanding and controlling biologically active molecules to probing cellular 

mechanics and creating nanomachines. The free energy required to bend a piece of dsDNA adds a 

new dimension in controlling the conformational states of the molecule in addition to the traditional 

base-pairing interactions. However, there are still only a few examples that fully utilize the 

mechanical bending of dsDNA in sensing applications at the current stage. We foresee that 

incorporating DNA bending as a functional element to the existing designs can create new 

generations of DNA-based nanodevices and sensors with bifunctional properties and extended 

sensitivity range in the near future. 
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