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The problem of discriminating between many quantum channels with certainty is analyzed under the assump-

tion of prior knowledge of algebraic relations among possible channels. It is shown, by explicit construction

of a novel family of quantum algorithms, that when the set of possible channels faithfully represents a finite

subgroup of SU(2) (e.g., Cn, D2n, A4, S4, A5) the recently developed techniques of quantum signal processing

can be modified to constitute subroutines for quantum hypothesis testing. These algorithms, for group quantum

hypothesis testing, intuitively encode discrete properties of the channel set in SU(2) and improve query com-

plexity at least quadratically in n, the size of the channel set and group, compared to naïve repetition of binary

hypothesis testing. Intriguingly, performance is completely defined by explicit group homomorphisms; these in

turn inform simple constraints on polynomials embedded in unitary matrices. These constructions demonstrate

a flexible technique for mapping questions in quantum inference to the well-understood subfields of functional

approximation and discrete algebra. Extensions to larger groups and noisy settings are discussed, as well as paths

by which improved protocols for quantum hypothesis testing against structured channel sets have application in

the transmission of reference frames, proofs of security in quantum cryptography, and algorithms for property

testing.
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I. INTRODUCTION

Hypothesis testing is a fundamental statistical method with

wide application in classical and quantum contexts. Seminal

work [1] has led to a deep information-theoretic understand-

ing of binary hypothesis testing for quantum states, but only

quite recently have analogous lower bounds been proven for

error in discrimination among quantum channels [2]. This

40-year gap between mature theories for quantum hypothesis

testing (QHT), realized as quantum state and channel discrim-

ination, respectively, follows from the far richer structure of

the latter problem. That is, general quantum channel discrimi-

nation protocols may be adaptive, entanglement-assisted, and

use auxiliary qubits; moreover, the concomitant optimizations

over (possibly adaptive) preparations and measurements are

computationally expensive.

It is known that sharpening the problem of quantum chan-

nel discrimination to narrower settings can drastically alter

algorithmic efficiency, the requirement of entanglement, the

requirement of auxiliary qubits, and the ease of both theoreti-

cal and computational analysis [3–5]. This work considers one

such narrower statement of QHT for discriminating quantum

channels.

A. Problem statement

We state our problem as a game. Consider a party with

access to a small (single-qubit) quantum computer; she is able
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to apply unitary operations of her choice to this qubit, measure

this qubit in chosen bases, and store the resulting classical

data for as long as she likes, possibly using this informa-

tion to instruct future actions. She is furthermore permitted

query access to an oracle whose result is the application of

a single-qubit unitary quantum channel Ei. This channel is

from a publicly known set S (hereafter the query set) of n

distinct unitary channels. Queries consistently apply Ei, and

i is unknown.

Problem I.1. An S-QHT problem is any instance wherein

a party given access to Ei for unknown i ∈ [n] is tasked

with the following: in as few queries as possible determine,

with certainty, the hidden index i. The minimal expected

query complexity the party is able to achieve is denoted

qs and is taken over an assumption of equal priors on

{Eℓ}ℓ∈[n] = S, a set of distinct single-qubit unitary quantum

channels.

The prefix S in Problem I.1 denotes QHT with respect to a

set of quantum channels. This work examines only specific

subsets of S-QHT games. Moreover, this work considers a

specific resource model, described informally at the beginning

of this section and depicted in Fig. 1.

As described in Sec. I B, naïve upper and lower bounds

on qs, even for general S, can be computed without difficulty,

although the gap between these bounds is in general large,

i.e., exponential in the instance size |S| [5]. A primary interest

is thus to derive a set of properties on the set S for which a

lower bound for qs dependent on the structure of S can be

both (i) proven and (ii) asymptotically achieved by a quantum

algorithm exploiting the structure of S to generate a strategy

for playing an instance of S-QHT (Problem I.1).
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FIG. 1. A general circuit to perform QHT in the serial adaptive query model. The unitary operators Ui, j for i ∈ [n j] and j ∈ [m] may

depend on previous single-qubit projective measurements �k for k < j, for j ∈ [m], communicated by stored classical bit strings of reasonable

finite length (represented by arrows). Each row in the figure is a quantum circuit applied to a qubit prepared from classical information

depending only on the results of previous measurements. The serial nature of the discrimination protocol to determine the unknown channel

is evident; when the protocol terminates a known classical function is computed on the set of measurement results (here, a bit-string of length

m), equivalently �k for k ∈ [m], to infer the hidden channel. Other models one can consider are discussed in Fig. 2.

This work provides one such sufficient condition on S.

These constraints not only enable proof of query complexity

lower bounds and constructions of algorithms achieving these

bounds but also permit the cross-application of diverse meth-

ods in abstract algebra and functional approximation theory

to quantum information and inference. This work considers

the specific constraint that S additionally faithfully represents

a finite subgroup G < SU(2) (i.e., it is a representation of a

finite subgroup of the group of single-qubit unitary transfor-

mations).

Definition I.1. A channel set S is said to faithfully rep-

resent a finite group G if the elements of S have the form

{Ug}g∈G such that, respecting some natural product operation

for elements in S, UgUh = Ugh for g, h ∈ G and moreover

that the group homomorphism g �→ Ug is injective, ensuring

|S| = |G|.
A variant of S-QHT incorporating the condition discussed

above is denoted by G-QHT (group quantum hypothesis test-

ing) (Problem I.2). While this work considers groups G <

SU(2), this game naturally extends to finite representations

embedded in any Hilbert space.

Problem I.2. An instance of Problem I.1 with the addi-

tional constraint that S faithfully represents a finite group G

is an instance of a G-QHT problem or a G-QHT game.

Before discussing this new game further, it is worthwhile

to understand previous results in unitary quantum channel

discrimination, to which these games have nontrivial relation.

These results support why one should expect that the family of

sets S which obeys the properties of Lemma I.1 is rich enough

to furnish nontrivial instances of QHT and why even in a

limited resource model algorithms to solve G-QHT efficiently

exist.

B. Prior work

The problem of binary quantum channel discrimination is

well understood under the assumption that the set of possible

channels, i.e., the query set, denoted S, comprises only unitary

channels. Foundational work by Acín [3] asserts that there is

always some finite upper bound1 on qs for achieving perfect

1This furnishes a loose upper bound for multiple unitary channel

discrimination as well. One performs perfect discrimination on pairs

discrimination for any finite S with distinct, known, unitary el-

ements. Moreover it is known that in the binary case, under the

assumption that the discriminating party may apply unitary

operations of their choice, neither entanglement nor auxiliary

systems nor adaptive protocols are required to achieve optimal

query complexity [4,5].

For binary discrimination among pairs of general quantum

channels, necessary and sufficient conditions are known for

the achievability of perfect quantum channel discrimination in

terms of the channel’s respective Choi matrices [2]. Moreover,

various general lower bounds are known for the symmetric

error of discrimination (given a fixed number of channel uses)

for binary and multiple quantum channel discrimination, as

well as some conditions on the set S, e.g., teleportation-

covariance (telecovariance) and geometric uniform symmetry

under which these bounds can be improved upon and, in the

former, more restrictive setting of telecovariance, asymptot-

ically achieved [2,6]. Such simplifying conditions have also

been studied in the multiple unitary channel case for group

covariant query sets for nonadaptive quantum strategies [7].

While it is known that entanglement (and in fact any re-

source in a convex resource theory like quantum mechanics

[8,9]) can be useful in quantum hypothesis testing among

nonunitary channels, the performance of entanglement-free

or low-entanglement strategies for multiple quantum channel

discrimination remains largely unstudied, even in its simplest,

unitary form. Namely, while intriguing examples for meth-

ods of discrimination among large sets of unitary operators

where the use of entanglement improves query complexity

have been given [5], the necessity of entanglement is not

known. Moreover, the power afforded to quantum hypothesis

testing strategies for quantum channels using entanglement

and which are also adaptive has been shown to be nontrivial

in the case of nonunitary channels, where even adaptiveness

alone may assist algorithmic performance [10,11].

Many of the techniques referenced above are agnostic to

the structure of S; however, the notion that the structure of the

query set should inform the structure of optimal procedures to

differentiate members of S is an old and clever idea and indeed

of elements in S, eliminating channels one by one; this is the standard

reduction to binary QHT.
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can provide optimal hypothesis testing protocols for query

sets comprising quantum states which are group covariant

[12]. It is as a generalization of this setting to quantum chan-

nels that Problem I.2 (G-QHT) finds its form. Moreover, the

study of discrete and especially nonabelian algebraic objects

in the context of quantum information is not new and under-

lies many open problems, e.g., the dihedral hidden subgroup

problem [13] and its reductions to various lattice problems

[14], as well as the symmetric hidden subgroup problem and

its reductions to graph isomorphism [15].

Multiple hypothesis testing for quantum channels is not

merely of independent quantum-information-theoretic interest

either, but has found use in designing protocols for the optimal

transmission of reference frames [16] (i.e., when the query

set is a compact group and the aim is estimation of a fixed

unitary transformation). Discretized versions of this prob-

lem also naturally connect to the study of group frames and

symmetric, informationally complete, positive operator-value

measures (SIC-POVMs) [17,18], e.g., as discussed in Lemma

VI.1.

While left as an open extension to this work, quantum

hypothesis testing against quantum channels where the nth

channel application depends nontrivially on the previous

n − 1 applications, i.e., memory channels [19] has relation

to proofs of the general impossibility of quantum bit-

commitment [20], and is of interest in quantum cryptography.

In what follows we more concretely define our algorith-

mic resource model, provide an example of why it might be

expected that the question of achievability within the expo-

nential gap between the naïve upper and lower bounds on

query complexity for multiple quantum hypothesis testing is

richly structured, and finally give an outline for the methods

of proof employed in analyzing this structure.

C. Our approach

The statement of G-QHT (Problem I.2) together with the

serial adaptive query model depicted in Fig. 1 raises the ques-

tion of whether this model is (i) interesting, (ii) nontrivial,

and (iii) tractable to analyze; this section addresses these

questions.

The player challenged in G-QHT to determine the hid-

den index i of the queried channel Ei is afforded precious

few quantum resources. Stating it another way, the player

is forced to devise quantum strategies in the serial adaptive

query model. In this model, pictured in Fig. 1, the player

may only intersperse their oracle queries with measurements

and unitary operations depending on previous measurements.

Serially, the querent learns progressively more about the hid-

den index i, adaptively modifying her approach. Under the

assumption of a small quantum computer and a reasonable

classical one, this is the most general approach she may take,

assuming all measurements are projective and she wishes to

determine i with certainty. Furthermore, in this model, query

complexity is a reasonable metric by which to judge algorith-

mic performance.

In addition to the serial adaptive query model, we can

quickly chart algorithmic schemes for instances of G-QHT

where the querent is afforded a larger quantum computer. In

FIG. 2. Simplified illustrations of different models for quantum

circuits performing QHT. Depicted are (a) serial adaptive, (b) paral-

lel, and (c) mixed strategies. Given query access to a finite number

of applications of the unknown quantum channel (red, outlined),

the querent is conferred the ability to perform unitary operations

(blue, not outlined) of her choice. Blue operations shown are ar-

bitrarily structured and for demonstrative purposes only. For serial

adaptive strategies (a), dashed boxes indicate regions between which

only classical information is transmitted (i.e., measurement results).

In panels (b) and (c), entanglement, auxiliary qubits, and collec-

tive measurements can, in general, improve the performance of

QHT algorithms. Preparations and measurements are not explicitly

shown.

this case, the possibility for multiple-qubit2 unitaries and col-

lective measurements gives rise to a variety of series, parallel,

and mixed strategies, which may be adaptive or nonadaptive.

The relative discriminating power of these models for specific

instances of QHT and specific query sets is not wholly under-

stood. An informal depiction of some of these models is given

in Fig. 2.

As the querent in the course of playing the G-QHT game is

allowed to store reasonable amounts of classical information,

all that is asked of a successful quantum algorithm for G-QHT

in the serial adaptive query model is that it is able to decide

the hidden index i according to some efficiently computable

function on any of its probable binary qubit measurement

outputs. This statement is made concrete in Definition I.2.

Definition I.2. A quantum algorithm in the serial adaptive

query model is said to decide on a query set S of distinct

unitary quantum channels of size n in qs queries if there

exists, for all i ∈ [n], a computable deterministic function

f : {0, 1}m → [n] that returns the hidden index i with cer-

tainty, on all probable (i.e., nonzero probability outcomes of)

m projective single-qubit measurements {�ℓ}ℓ∈[m] resulting

from the action of Ei in a serial adaptive protocol defined

by the quantum algorithm that uses qs oracle queries. This

definition can be suitably modified replacing S with G, a

faithful representation of the group G in a specified Hilbert

space.

While we will soon be interested in the efficiency of a

single-qubit serial adaptive query model algorithm in de-

ciding a set S which faithfully represents a finite subgroup

G < SU(2) and, indeed, whether, for these special sets,

query-complexity-optimal, entanglement-free, serial adaptive

protocols similar to those constructed in Ref. [4] are possible

to construct, it is worthwhile to look at a simple, concrete

2One could of course also imagine access to qudits, or indeed

stranger Hilbert spaces.
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instance of our game and the function f it induces according

to Definition I.2.

We introduce a minimal instance of G-QHT which, in

addition to demonstrating why the naïve upper bounds on

query complexity discussed in Sec. I B are in general not

tight, also captures some of the intuitive motivations for the

major results of this work for more complicated query sets.

The following example has the added benefit of (i) requiring

no explicit mention of quantum signal processing (QSP, [21])

(Sec. II) in its construction and proof of optimality and (ii)

providing some intuition for why QSP is natural to call on to

solve the shortcomings that emerge in applying the strategy of

Lemma I.1 to more general query sets.

Lemma I.1. For natural numbers n there exists a quantum

algorithm in the serial adaptive query model that perfectly

decides any channel set S that faithfully represents a cyclic

subgroup C2n < SU (2) and which requires 2n − 1 oracle

queries.

Proof. For C2n , group elements are identifiable with binary

strings of length n of which there are 2n, namely, labeling

according to the angle of rotation in the Bloch sphere in units

of 21−nπ such that the queried channel rotates about a known

fixed axis by this angle. Concretely, up to overall unitary

transformation the query set is.

S = {Rx(mπ/2n−1)}, m ∈ [2n]. (1)

Any decision protocol using one qubit for readout can provide

at most one bit of information as to the n-bit label for the

queried group element.3 We read from least (LSB) to most

significant bit by the following algorithm.

(i) Prepare |0〉. Query the channel 2n−1 times and measure

in the standard basis, reading the LSB.

(ii) Dependent on the measurement in the previous step

the possible query set S′ has the description

{Rx(mπ/2n−2 + π/2n−1)} if measured |1〉,

{Rx(mπ/2n−2)} if measured |0〉,

for m ∈ [2n−1]. The latter is a representation of the cyclic

group of order 2n−1. The former, if each query is preceded

by a unitary U = Rx(−π/2n), is also a representation of this

cyclic group.

Set U = Rx(−bπ/2n−1), where |b〉 was measured in the

previous step.

(iii) Apply U before each of 2n−2 channel applications to

bit-shift the label of the queried group element. Repeat the

algorithm for a cyclic group of size 2n−1.

For the cyclic group of order 2, consisting of the identity

channel and a π rotation, the decision protocol is obvious.

By recursion, the total decision protocol has query complexity

2n−1 + 2n−2 + · · · + 1 = 2n − 1. Optimality follows from the

optimality of phase estimation. We depict one instance of this

discrimination algorithm in Fig. 3. �

The methods used in the proof of Lemma I.1 illustrate

an important concept: if the query set S is highly struc-

3 Note that these do not need to correspond to bits in the label of the

queried channel, but rather some set of bits which, at the conclusion

of the algorithm, can be taken by the function f to the hidden index

i deterministically.

FIG. 3. Subroutine of decision protocol on C8. For the cyclic

group of order 2n, any map g �→ g2m
for m < n generates a cyclic

subgroup of order 2n−m. Consequently, as the cyclic group of order 2

has an obvious discrimination strategy, the method in Lemma I.1 can

recursively determine membership of the hidden element in cosets of

cyclic subgroups of C2n . Equivalently, the querent performs a binary

search, i.e., using 2n−1 queries, she can determine membership of the

hidden element in the red (outlined, image) or blue (not outlined,

complement of the image) subset as pictured for the case n = 3,

assuming she can solve the n = 2 case.

tured, binary measurement results can effectively correspond

to halving the size of the remaining search space (or equiva-

lently excluding, with one measurement, half of the possible

channels). Here, compared to the upper bound given by the

standard reduction to binary QHT, we see a square root im-

provement in the instance size |C2n |. Additionally, the function

f from the statement of Definition I.2 simply reads the adap-

tive output measurements as a binary string and returns the

corresponding integer (the channel’s hidden index).

The reason that the simple method of Lemma I.1 works

is because even powers of channel elements are not only

subsets but also subgroups of C2n , and specifically 2n−1 pow-

ers of group elements are rotations by angles in {0, π},
which give perfectly orthogonal and thus perfectly distin-

guishable states when acting on special known initial pure

states. The adaptive protocol permits the querent to recurse

and learn the hidden index by asking individual ques-

tions of coset membership for prime-power-order normal

subgroups.

For cyclic groups of general order, however, this method

fails. For odd-order cyclic groups, for instance, sets of integral

powers of group elements do not necessarily form nontrivial

subgroups by simple consequences of Lagrange’s theorem.

The question of bisecting the search space must thus be re-

solved by other methods; it is precisely the flexibility of QSP

that will permit the recovery of algorithms of the same flavor

as Lemma I.1 for more general groups; that is, to permit the

construction of quantum algorithms that act deterministically

on not merely subgroups but arbitrarily chosen subsets of the

query set.

D. Paper outline and summary of results

The main body of this work describes methods for per-

fectly deciding sets of quantum channels (equivalently query

sets) which faithfully represent finite subgroups G < SU(2) in

order of increasing complexity of the finite group considered.

This culminates in Theorem I.1.
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Theorem I.1. [Simplified] There exist quantum algorithms

in the serial adaptive query model which perfectly decide on

all finite subgroups G of SU(2), with the exception of the

simple nonabelian group A5, and which do so with asymp-

totically optimal query complexity. These algorithms each

closely track with a single generic algorithm (Algorithm1),

and their individual structure closely tracks the structure of

the considered group.

This work is organized such that algorithms for decid-

ing simpler finite groups can, where applicable, be used as

subroutines for algorithms deciding more complicated groups

whose subgroup decomposition is nontrivial. It is this boot-

strapped approach that provides novel sufficient conditions

under which the open question in Sec. I B can be resolved in

the serial adaptive query model.

We begin with an overview of the two mathematical tech-

niques that underlie the main results of the paper. Namely, in

Sec. II we review statements of the main theorems of quan-

tum signal processing, their guarantees, and interpretations.

Relatedly, we give a protocol (Algorithm 1) that players of a

simplified version of the G-QHT game (Problem I.2) defined

in Sec. I A may use to achieve perfect decision protocols. The

theorems of QSP (and consequently solutions to the simplified

game proposed in Problem II.1) rely on the existence and ef-

ficient computability of polynomials over real variables under

simple constraints, the properties of which are discussed in

Sec. III.

With both of the mathematical techniques established in

Secs. II and III, the paper proceeds to discuss concrete

groups systematically. The statement of Problem I.2 as men-

tioned is simplified to Problem II.1, whose solution using the

methods of QSP depends solely on the answer to questions

in functional approximation. For each concrete algorithm

corresponding to deciding each finite subgroup G < SU(2)

in Sec. IV, we perform reductions to decisions on normal

subgroups of G where possible, and we restate decision al-

gorithms on G as multiple correlated instances of Algorithm

1. Specifically, we assert that Algorithm 1 and its performance

guarantees are integral to the analysis of each algorithm given

in Sec. IV.

Algorithm 1 connects decisions on G to problems in func-

tional approximation which, referring back to the guarantees

of Sec. III, determine the query complexity of the algorithm

deciding on G. This connection is made explicit in Problems

III.1 and IV.1.

We provide a diagram of the order in which we address

decisions on specific finite subgroups (Fig. 4) as well as rela-

tions between all problems introduced in this work (Fig. 5). In

turn, the relations between algorithms and problems are sum-

marized in the statement of Algorithm 1 in conjunction with

its accompanying remarks (Remarks II.1 and II.2), toward a

coherent framework for hypothesis testing on discrete query

sets.

For generalizations to larger Hilbert spaces, near-unitary

channels, and groups not embeddable in SU(2), the reader is
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FIG. 4. The linear flow of this work: deciding on increasingly

rich sets of finite subgroups of SU(2). The diagram indicates the

order in which instances of G-QHT are solved throughout Sec. IV,

beginning with cyclic groups and working toward the dihedral and

platonic groups; solid arrows indicate increasing complexity of the

decision group, while dotted lines indicate where a reduction to an

algorithm deciding on the latter group is particularly simple. R-QHT

(Problem II.1) and P-QHT (Problems III.1 and IV.1) are developed

in parallel to decision protocols on cyclic groups and are joined for

decisions on prime-order groups by Theorem IV.1. Applying similar

methods to A5 is left to future work.

directed to Sec. V. Additionally, Sec. VI gives a list of open

problems in the same vein as the results presented in this work,

suggestions for the shape of their resolution, and instances

(e.g., Remark VI.1) in which the methods derived here can

be directly applied to physical problems.

II. OVERVIEW OF QUANTUM SIGNAL PROCESSING

We have defined the G-QHT problem (Problem I.2) as well

as the form that any algorithm in the serial adaptive query

model solving this problem must take. We have not, however,

provided a method for analyzing such algorithms. For certain

groups, e.g., C2n as covered in Lemma I.1, we can come up

with methods inspired by classical algorithms; this intuition

breaks down for more complicated groups. In this section we

introduce techniques toward addressing this breakdown.

G-QHT might be naturally thought of as a sensing prob-

lem: given an unknown g, application of the channel Ug

(respecting a representation) might be physically explained

as the result of probing a system: the action of the quantum

channel contains some information about the system. Succes-

sive queries increase knowledge of the hidden parameter g of

the group action. Naturally, the ideal method for extracting

information from the queried channel varies with the structure

FIG. 5. Inclusion relations among problems formally defined in

this work. Four major problems are discussed: S-QHT (Problem I.1),

G-QHT (Problem I.2), R-QHT (Problem II.1), and P-QHT (Problems

III.1 and IV.1), referring to set, group, rotation, and polynomial quan-

tum hypothesis testing, respectively. Each region in the inclusion

diagram contains nontrivial instances.

of G. Taking inspiration from algorithms for quantum sensing

in the serial query model, we thus might naturally consider the

flexible, recently developed techniques of QSP [21–24].

QSP is a powerful quantum algorithmic primitive to imple-

ment matrix polynomials on quantum computers under only

mild constraints [21]. Analysis of QSP has enabled intuitive

constructions for asymptotically optimal algorithms in a range

of settings from Hamiltonian simulation [23] to the quantum

linear system problem [25] in [21,26,27]. For our purposes,

however, we need only to consider the guarantees of the form

of QSP protocols, succinctly stated in the following two theo-

rems. Before this we briefly address an issue of notation.

Definition II.1. In this work the convention when referring

to the Pauli operators is

σx =
(

0 1

1 0

)

, σy =
(

0 −i

i 0

)

, σz =
(

1 0

0 −1

)

, (2)

and moreover we will often refer to a linear combination of

such operators following the convention

σξ ≡ σx cos ξ + σy sin ξ, (3)

where this construction will often be used in the context of

defining a rotation about a fixed axis on the Bloch sphere,

namely,

Rξ (θ ) ≡ exp{−i(θ/2)σξ }, (4)

where this is distinct from the convention of Ref. [21].

If the index is Latin instead of Greek, e.g., Rx(θ ), then

exp{−i(θ/2)σx} is meant: rotation about the x̂ vector.

Theorem II.1. In Ref. [21]. Let k ∈ N; there exists � ∈
R

k+1 such that for all x ∈ [−1, 1]

eiφ0σz

k
∏

j=1

(W (x) eiφ jσz )

=
(

P(x) iQ(x)
√

1 − x2

iQ∗(x)
√

1 − x2 P∗(x),

)

, (5)

iff P, Q ∈ C[x] satisfy the following properties.

(i) deg(P) = k and deg(Q) = k − 1.

(ii) P has the same parity as k modulo 2, while Q has the

opposite parity.

(iii) For all x ∈ [−1, 1], P and Q satisfy P(x)P∗(x) + (1 −
x2)Q(x)Q∗(x) = 1.

Theorem II.1 asserts that QSP protocols, which involve

interleaving rotations about orthogonal axes (one of these

rotations by a fixed, unknown angle, and the other by an

unfixed, known angle), result in unitary operators whose el-

ements are polynomials of the unknown rotation angle. These

polynomials are under constraints necessary and sufficient to

ensure the resulting operator is unitary. While the constraints

of Theorem II.1 are nonintuitive for one wishing to solve the

reverse problem (i.e., go from polynomial to a unitary operator

in which the polynomial is embedded), the following theorem

addresses precisely this concern.

Theorem II.2. In Ref. [21]. Let k in Z
+ and let P′, Q′ ∈

R[x]; there exists some P, Q ∈ C[x] satisfying the require-

ments of Theorem II.1 such that P′ = Re(P), Q′ = Re(Q)

iff P′, Q′ satisfy the first two requirements of Theorem II.1

and additionally P′(x)2 + (1 − x2)Q′(x)2 � 1. The proof of

this statement follows constructively from a provably efficient
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(e.g., polynomial in k) algorithm to build the missing complex

parts of P and Q.

In Theorem II.2 the operator W (x), the signal being pro-

cessed, will be analogous to the quantum channel Ei we wish

to discriminate in G-QHT. That said, the utility of these the-

orems is not immediately clear: the form of W (x) (rotation

about a known, fixed axis) is far simpler than the members

of the query set considered in G-QHT for arbitrary finite

subgroups of SU(2).

In the interest of making progress, we can thus modify the

statement of Problem I.2 such that QSP stands a fair chance

of providing a solution. Specifically we can write out the

generic form of a QSP-based algorithm that perfectly decides

any finite set S = {Rx(θℓ)}ℓ∈[n] ∈ [−π, π )n under the map

Rx(θℓ) = exp{−iθℓ/2σx}. Note that here S need not be a group

under composition. This modified version of the G-QHT game

is discussed in Problem II.1.

Problem II.1. The rotation QHT problem (R-QHT prob-

lem) is a simplified version of the G-QHT problem (Prob-

lem I.2) with the following structure. Given query access

to a single-qubit quantum channel from among a finite

set S where each channel has again the form Rξ (θi ) =
exp{−i(θi/2)[cos ξσx + sin ξσy)]} for distinct, known θi and

known rotation axis ξ , determine the queried channel with

certainty in the serial adaptive query model.

Note that R-QHT problems are not a subset of G-QHT

problems, save in the case that the set of angles {θℓ} are all

distinct integral multiples of 2π/n for positive integral n (i.e.,

S represents a cyclic group).

As the rotation operators discussed in the R-QHT problem

satisfy the form expected of the W (x) operator in QSP, the

methods of QSP suggest a neat prescription for a quantum

algorithm (Algorithm 1) with classical subroutines such that

the output is a solution for the R-QHT problem. We discuss

assumptions on the input, output, and structure of Algorithm

1 in Remark II.1, give definitions for its classical subroutines

in Definition II.2, and further remark on where the nontrivial

aspects of Algorithm 1 lie in Remark II.2.

Remark II.1. We present a series of data structures which

together define both an instance of the R-QHT problem

(Problem II.1) and its solution, toward a concrete algorithm

(Algorithm 1).

Input. Any instance of R-QHT presupposes access to clas-

sical information in the form of a list of distinct angles

{θℓ ∈ [0, 2π ]}, ℓ ∈ [n]. R-QHT also presupposes access

to a quantum oracle which, when called, applies a quan-

tum channel channel Rξ (θi ) for fixed i about some known

fixed axis ξ .

Output. In the serial adaptive query model on qubits, a pro-

jective measurement is an evaluation of a probabilistic

binary function on possible hidden indices j ∈ [n] for

the applied channel. An R-QHT algorithm’s output is

one of these indices, where success is dictated by high

probability4 of or certainty in returning the proper hidden

index i.

4In the noiseless case, we consider only deterministic algorithms.

Assumptions. The result of the evaluation of a set of these

functions (corresponding to m binary measurements),

f j : [n] �→ {0, 1}, j ∈ [m] on the hidden index i of the

queried channel, is a composite function g : i �→ {0, 1}m

defined as g(i) = f1(i) f2(i) · · · fm(i).

If this function is injective for all j ∈ [n], then the algo-

rithm generating the f j solves R-QHT.5 Equivalently the

algorithm computes a series of m equivalence relations

on the set of rotation angles {θℓ}, ℓ ∈ [n] such that every

element is uniquely defined by its membership under

these m bisections.

Definition II.2. A quantum algorithm solving the R-QHT

problem (Problem II.1) is referred to simply as an R-QHT

algorithm, where solves indicates that it satisfies the input,

output, and structural assumptions presented in Remark II.1.

In addition, toward an explicit description of one such

R-QHT algorithm (Algorithm 1), we define four classical sub-

algorithms whose application together constitutes the classical

subroutine of Algorithm 1).

genBisection. Given a group representation G and a

(possibly empty) set of evaluations of previous binary

functions f j : S j → {0, 1} for S j ⊆ S j−1 ⊆ · · · ⊆ S1 ⊆
G, returns a description of f j+1 : S j+1 → {0, 1}, where

S j+1 ⊆ S j is a subset of S j on which f j is constant.

The choice of f j+1 is not arbitrary but instead depends

heavily on the embedding of G in a larger continuous

group. Examples for methods of choosing these f j can

be found in the concrete algorithms of Sec. IV. Further

discussion of the properties of these functions is also

covered in Remark II.2.

Note that in Algorithm 1, the description of f j+1 can be

used to compute f j+1(i) on the hidden index, oblivious

to the hidden index.

genRealPoly. Given a description of f j , defined on some

subset of group elements S j ∈ G, where each s ∈ S j

is parametrized by some distinct real parameter θℓ ∈
[0, 2π ] for ℓ ∈ |S j |, returns the minimal degree real poly-

nomial p j satisfying |p j (arccos θℓ)| = f j (s[θℓ]) for all

θℓ, and where |p j (θ )| � 1 for θ ∈ [0, 2π ]. In addition p j

is of definite parity on [−1, 1].

Methods for computing constrained interpolating polyno-

mials are numerous and well studied, composing the

discussion of Sec. III.

genComplexPoly. Given a real polynomial p j satisfying

the constraints of the output of genRealPoly returns

a pair of complex polynomials (Pj, Q j ) on [−1, 1],

each of definite parity and satisfying Pj (x)2 + (1 −
x2)Q j (x)2 = 1 for x ∈ [−1, 1]. Moreover Re(Pj ) = P′

j =
p j and Re(Q j ) = 0. One implementation is given in

Ref. [21].

5This is a nontrivial condition to satisfy, but in most instances it

can be thought of as assigning a binary tree’s labels to each of m

channels. This is the subject of Remark II.2.
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genPhases. Given two polynomials (Pj, Q j ) satisfying the

constraints on the output of genComplexPoly returns a

set of phase angles � j ∈ R
k+1 satisfying Theorem II.1.

This subroutine also returns a classical description of

two quantum states, ψ j and ψ ′
j , the former an initial

state and the latter a state with respect to which a pro-

jective measurement is performed to compute f j on the

hidden index, i.e., f j (i). These states are efficiently com-

putable and project out p j , equivalently 〈ψ ′
j |U� j

|ψ j〉 =
p j , where U� j

is the QSP unitary generated by � j .

Methods for computing these phase factors are numerous

[21,26,28]; all affirm that this computation is efficient

and stable, using existing techniques in classical opti-

mization.

We denote by Mψ j
(|ψ〉) the measurement projecting |ψ〉

onto {M0, M1} = {|ψ j〉〈ψ j |, I − |ψ j〉〈ψ j |}, returning b

upon measurement of Mb.

Remark II.2. The difficulty in Algorithm 1 stems from se-

lection of the proper functions f j : S j → {0, 1} for subsets

S j ⊆ S of the query set of fixed-axis rotations (equivalently

computing genBisection in Definition II.2).

As each f j takes values on S j in {0, 1}, they can be thought

of as labels dividing or bisecting the query set; the result of

QSP is to make the quantum computation of these f j’s on

the hidden index i deterministic. A series of these f j’s thus

forms the levels of a binary tree whose bisection condition

is the result of a projective measurement onto {|ψ ′
j〉 , |ψ ′⊥

j 〉}.
We discuss the desired properties of this binary decision tree;

these principles foreshadow the properties discussed in Theo-

rem IV.1.

(i) An efficiently searchable binary tree should be bal-

anced; different channels should have binary labels according

to the tree which differ as early as possible, and equivalently

each f j should divide the remaining query set roughly in half.

(ii) The discrete f j objects are accessed by interpolating

polynomials in a continuous embedding space, and as the

minimal degree of such polynomials correspond to algorith-

mic performance, we desire that the f j functions subdivide

the search space into subsets which have a larger average6

distance between elements in the natural metric of this space.

Equivalently proximate elements in the binary tree are also

proximate in the embedding space.

(iii) Each leaf of the binary decision tree must correspond

to no more than one channel. If each (probable with respect to

measurement) leaf corresponds exactly to one channel, then g

in Remark II.1 is not only injective but bijective.

(iv) The f j must have definite parity in the continuous

embedding space, here SU(2); this parity constraint, requisite

for the use of QSP, follows from properties of SU(2).

Algorithm 1 and its supporting remarks show that, at least

for a special set of channels, our hopes of computing suc-

cessive equivalence relations on subsets of S to iteratively

determine the hidden query element rest on the construction

of low-degree constrained polynomials over real variables.

6This is purposefully left ambiguous at this moment; we wish to

lower the required derivative of the interpolating polynomial.

Moreover, as stated in Remark II.2, most of the difficulty

of this algorithm resides in designing the binary functions f j .

The sequence of equivalence relations f1, f2, . . . , fm, which

together uniquely define the hidden index i, needs to be prop-

erly chosen such that (1) the degrees of their polynomial

interpolations are not too large and (2) the concatenation of

their evaluations is invertible on every i; luckily these condi-

tions are not so complicated to achieve in practice.

For example, we can see one such set of f j in observing the

“QSP-free” decision algorithm for C2n in Lemma I.1, namely,

f j (i) = i (mod 2 j ) for j ∈ [n]. Evidently in this simplest case

the family of f j defines precisely a binary search on the hidden

channel index (and consequently the equator of the Bloch

sphere under the map i �→ Ei). What remains to be shown is

the generalization of such a search.

It turns out that Algorithm 1 can indeed be extended to

more interesting channel sets than single-axis rotations (i.e.,

that we can lift R-QHT problems to G-QHT problems). How-

ever, before investigating the flexibility of Algorithm 1 as a

subroutine, we first briefly address methods in constrained

polynomial interpolation. This analysis, in addition to closing

the loop on the R-QHT problem and its query complexity,

will demonstrate the methods by which the optimal query

complexity of R-QHT is computed and provide a foundation

for generalizing to G-QHT.

III. CONSTRAINED POLYNOMIAL INTERPOLATION

In the previous section we reduced the solution of Prob-

lem II.1, a simplified version of G-QHT, to the existence

of interpolating polynomials over real intervals. Moreover

we asserted that, despite the restrictive form of the queried

channel W (x) considered in QSP, the guarantees of Theorem

II.1 were still strong enough to enable discrimination among

channel sets whose structure was richer than rotations about

a fixed axis. This section considers one concrete interest of

a party playing R-QHT: how can a computationally limited

classical party compute � for a QSP algorithm such that the

resulting matrix polynomials induce measurements obeying

the prescriptions of Algorithm 1.

This is a problem of constrained polynomial interpola-

tion. More generally, the field of functional approximation,

in which this problem lives, is well understood [29–34] given

its practical instantiations in classical signal processing and

relevance to foundational questions in real analysis. We quote

the following results in constrained polynomial approxima-

tion and present their synthesis as a theorem guaranteeing

desired properties for the algorithms that will be constructed

in Sec. IV for specific finite groups. Additionally, these re-

sults provide quantitative bounds on the query complexity of

solutions to the R-QHT problem discussed previously.

We present a further sharpening of R-QHT (Problem II.1);

this new problem, P-QHT, is similar to R-QHT but provides a

new quantitative condition on the performance of an algorithm

solving R-QHT.

Problem III.1. The polynomial QHT problem, or P-QHT

problem, answers the following question. Given an instance of

the R-QHT problem (Problem II.1), which implicitly defines

a set of angles {θℓ}, what is an upper bound on the sum

of degrees of the set of polynomials {p j} which interpolate
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binary functions7 f1, f2, . . . , fm satisfying Remark II.2. This

upper bound depends only on {θℓ}.
Toward analyzing the minimal degree of such interpolating

polynomials as desired in Problem III.1, we give a series of

older results from works in constrained interpolation.

Theorem III.1. In Ref. [30]. Let � = {xi : x1 < x2 <

· · · < xn}, a set from the real interval [a, b], and P , the set

of polynomials. For all ǫ > 0 and for each f ∈ C0[a, b], the

continuous functions on [a, b], there exists p ∈ P such that

the following conditions are satisfied.

(i) p is interpolating: p(xi ) = f (xi ) ∀xi.

(ii) The polynomial p approximates f on [a, b],

max
x∈[a,b]

|p(x) − f (x)| � ǫ.

(iii) The polynomial p obeys the additional constraint

max
x∈[a,b]

|p(x)| = max
x∈[a,b]

| f (x)|.

Theorem III.2. In Ref. [35] Let ν index an increasing se-

quence of finite-dimensional approximation subspaces Nν in

C(T ), where T is a topological space whose union N is dense

in C(T ). If T is compact Hausdorff then the degree of the ap-

proximation with Lagrange (function value) interpolatory side

conditions Eν ( f , A) is related to the degree of the unrestricted

approximation Eν ( f ) by the inequality

lim sup
ν→∞

Eν ( f , A)

Eν ( f )
� 2 ∀ f ∈ C(T )\N,

where the constant 2 cannot be decreased in general and is the

best possible in the uniform approximation of (i) entire pe-

riodic functions by trigonometric polynomials and (ii) entire

functions on any closed finite interval by algebraic polynomi-

als.

Corollary III.2.1. In the context of constrained polynomial

interpolation the statement of Theorem III.2 can be made less

general as follows: Given a real interval [a, b] and a real

polynomial f of degree d which interpolates a function g on

[a, b] at d distinct points in [a, b], the minimal degree of a

polynomial which interpolates g at these same points and has

a norm strictly less than ‖g‖ on [a, b] is bounded above by

2d as d goes to infinity and moreover this bound cannot be

decreased in general.

Theorem III.3. In Ref. [31]. Let n ∈ Z
+ and let x j =

cos θ j , where θ1 < θ2 < · · · < θn ∈ [0, 2π ] and the minimum

separation between adjacent θ j (on the unit circle) is given by

δ > 0. Given any real function f ∈ C([−1, 1]) there exists a

polynomial p such that the following conditions hold.

(i) p is interpolating: p(x j ) = f (x j ) ∀x j .

(ii) The polynomial p is of degree 2m � c/δ, where c > 0

is some absolute constant.

(iii) The following inequality holds where the infimum is

taken over the space of all polynomials q of degree at most 2m

7Note that for our purposes it is often not important to distinguish

between {ℓ}, the set of indices, and {θℓ}, the set of angles. While the

degree of the interpolating polynomial depends on these angles, this

dependence can be simplified by promises of separations between

neighboring θℓ.

and k is a constant independent of f and n:

max
x∈[−1,1]

| f (x) − p(x)| � k inf
q∈P

(

max
x∈[−1,1]

| f (x) − q(x)|
)

.

Theorem III.4. Let � = {x j} j∈[n], where x j = cos θ j and

where θ1 < θ2 < · · · < θn ∈ [0, 2π ] such that the minimum

separation between adjacent θ j (on the unit circle) is given

by δ > 0. Then given any real function f ∈ C([−1, 1]) there

exists a polynomial p such that the following conditions hold.

(i) p is interpolating: i.e., p(x j ) = f (x j ) ∀x j .

(ii) The polynomial p is of degree m = O(1/δ).

(iii) The polynomial p satisfies the following inequality:

max
x∈[−1,1]

|p(x)| = max
x∈[−1,1]

| f (x)|.

Proof. The existence of this polynomial is assured by The-

orem III.1, the scaling of the degree of the unconstrained

(uniformly approximating) polynomial is given by Theorem

III.4, and that of the constrained polynomial’s degree does not

grow too large with respect to the unconstrained polynomial’s

is given by Theorem III.2. �

Finally, we present a lemma which permits us to apply all

of the above results in the context, mandated by QSP, that

the constrained interpolating polynomials used have definite

parity.

Lemma III.1. If there exists a polynomial of degree n in-

terpolating a set of points which has (the point set) definite

parity, and the polynomial is of a fixed norm, then there exists

a polynomial of degree m � n which still interpolates the

points and which has the same parity as the points. Proof

follows by re-expressing the polynomial as a sum of terms

with definite parity and observing that the component of parity

matching those of the interpolation points still satisfies the

desired properties.

The results of this series of theorems, and particularly the

assurances of Theorem III.4, permit us to justify the idealized

claims of the classical program discussed in Algorithm 1, at

least for cyclic groups. That is, given that the quantum chan-

nels considered can be (at least for the case that G is cyclic)

distinguished by their eigenvalues, the methods of QSP and

the assurances of Theorem III.4 together imply that there exist

computationally cheap, flexible quantum algorithms whose

measurement results are themselves deterministic functions

on the discrete set of possible channels.

With respect to a resolution of Problem III.1, this section

has provided a key observation: the minimal degree of the

interpolating polynomial on a set of angles {θℓ}, as in the

R-QHT problem, is linear in both the number of interpolation

points and maxℓ,k 1/|θℓ − θk|, the minimal separation between

(distinct) queried angles.

Once the interpolating polynomials p j are computed, the

path to generating QSP angles � j is well understood and

computationally efficient (i.e., polynomial in the degree of the

interpolating polynomial). There are many ways to perform

such a computation, both analytically [21] and by numeri-

cally stable computations [26]. Moreover, the interpolating

polynomials can be computed in any number of ways, usually

relating to a modified Remez-type algorithm [36,37].
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IV. DECISION PROTOCOLS ON FINITE SUBGROUPS

OF SU(2)

We now close the loop on our simplification of G-QHT in

Problem I.2 to R-QHT in Problem II.1 and, finally, through

Algorithm 1 to a problem in polynomial interpolation where

the degree of these polynomials relates directly (by the results

of Problem III.1) to the query complexity of the solution to

R-QHT. In this section we finally address the more general

problem of G-QHT for small groups G.

For each finite subgroup G < SU(2), we provide con-

structive proof that there exists a series of binary functions

f1, f2, . . . , fm and a series of protocols to access sets of rota-

tions about known, fixed axes for which the polynomials that

interpolate each f j can be explicitly described, computed, and

characterized in terms of degree. Once this degree is known,

the expected query complexity of these algorithms follows by

the results of Sec. III. Before this, however, we extend the

statement of P-QHT (Problem III.1), which as stated applied

only to sets of rotations about a fixed axis, to sets which obey

more general structure.

Problem IV.1. The P-QHT problem (Problem III.1) can be

extended given the following prescription on a solution form.

We begin with the standard statement of G-QHT: given query

access to one quantum channel among a faithful represen-

tation of a finite group G < SU(2) determine the optimal

query complexity of an adaptive serial query model algorithm

that determines the hidden index of the queried channel with

certainty.

Importantly, however, for P-QHT to provide a solution, one

must be able to transform the query set in a special way; this

reduction follows from the conditions given below.

(i) There must exist a series of protocols, given query

access to a channel set S, for generating compound queries8

(see Definition IV.1) whose structure is (1) precisely a set of

rotations by known angles around a fixed axis (i.e., inputs to

the R-QHT problem satisfying Remark II.1) or (2) a subset

of a finite group G′ for which a decision algorithm is already

known.

(ii) In the case of (i) as given above there must exist a

solution for P-QHT (Problem III.1) for the new query set.

There must also exist some additional assumption, specific to

the structure of S, that permits the compound query map used

to be invertible. This is accomplished in different ways for dif-

ferent groups, e.g., under the assumption that the represented

group is a semidirect product, as in Theorem IV.2.

Definition IV.1. A compound query with respect to a quan-

tum channel E : A → B is a quantum circuit C : A → B which

uses a finite number of copies of E as well as a finite number

of additional unitary operators independent of E .

Compound queries are often used by quantum algorithms

(e.g., Algorithm 1) in place of bare queries, i.e., simply Ei.

8In simple terms one may think of these as small quantum circuits

which employ a small number of queries to the original oracle and

may be used as subroutines replacing oracle calls for a protocol

expecting queries of a different form. Multiple physical queries can

form one compound query.

Usually, useful compound query circuits do not act injectively

on the query set.

Remark IV.1. The extended statement of the P-QHT prob-

lem (Problem IV.1) exists to answer the following question:

how far can Algorithm 1 be taken beyond its role as a solution

to R-QHT?

Consequently each of the algorithms discussed in this sec-

tion is, in truth, simply (i) a procedure for reduction to R-QHT,

followed by (ii) application of Algorithm 1. When reduction

is made to deciding a simpler group, the application of Algo-

rithm 1 is hidden behind algebraic abstraction.

We go through the finite list of distinct families of fi-

nite subgroups of SU(2) in order of increasing complexity,

recovering instances of Problem IV.1 as stated above. As a

road-map we provide the following lemma, which completely

characterizes the finite subgroups of SU(2). A diagram of the

path of these reductions is given in Fig. 4.

Lemma IV.1. The finite subgroups of SU(2) are in bijection

with the finite subgroups of SO(3) under the standard double

covering SU(2) → SO(3). These finite subgroups are thus

completely described by five families: (i) the cyclic groups

of order n, Cn, n ∈ Z
+; (ii) the dihedral groups of order 2n,

D2n, n ∈ Z
+; (iii) the alternating group on four elements, A4;

(iv) the symmetric group on four elements, S4; and (v) the

alternating group on five elements, A5.

A. Cyclic groups

Before lifting the methods of Lemma I.1 from C2n to gen-

eral cyclic groups we provide a few lemmas.

Lemma IV.2. The cyclic group of order n is isomorphic to

the direct product of cyclic groups

Cn
∼= Cp

r1
1

× Cp
r2
2

× · · · × Cp
rs
s
,

iff the unique prime decomposition of n is

n =
s

∏

i=1

p
ri

i , (6)

for distinct primes pi. That is, Cn is isomorphic to a direct

product of cyclic groups of prime-power order for all maximal

prime powers dividing n. This is one statement of the Chinese

remainder theorem.

We proceed to analyze decisions on Cn by a series of

reductions to decisions on the more restricted (albeit infinite)

family of cyclic groups of prime order.

Lemma IV.3. If there exists a family of algorithms F =
{ACp

} that each perfectly decides Cp for all primes p then there

exists an algorithm ACn
that perfectly decides Cn for n ∈ N

and which is asymptotically optimal in query complexity if

the algorithms in F are also optimal.

Proof. Any positive integer n has a unique decomposi-

tion into a product of primes as given in Eq. (6), where ri

is the multiplicity of the ith smallest prime dividing n, pi,

and s is the largest index for which pi divides n at least

once.

Assuming the existence of a deterministic algorithm ACpi

that can perfectly decide Cpi
, elements of the group Cn are

decided according to the following protocol.
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(i) If the multiplicity ri of pi in n is 1, in the place of the

query usually made by the protocol ACpi
, query the oracle n/pi

times. This compound query may be conjugated by a known

unitary to achieve the representation that Api
expects.

(ii) If the multiplicity of pi in n (ri) is greater than 1,

the same method presented in the Lemma I.1 is applied to

compound queries of order n/p
ri

i to read off successive bits

(this time in base pi) of ri, using the assumed subroutine for

deciding ACpi
.

Compound queries allow access to prime-power-order

cyclic subgroups of Cn whose decision algorithms are strictly

simpler and reducible to decisions on Cp for p prime. �

We proceed by considering a result concerning the smallest

nontrivial cyclic group, C3, with which to play G-QHT. This

can be thought of as a base case for our eventual reduction

from decision protocols on large cyclic groups to smaller

ones.

Discriminating between quantum channels representing C3

has some precedent in prior work: such channels are precisely

those which can generate the Peres-Wootters states [38,39]

or equivalently the Mercedes-Benz frames [40,41] (for their

threefold symmetry).

Lemma IV.4. There exists an algorithm AC3
that perfectly

decides C3 (or rotations about a fixed axis on the Bloch sphere

by one angle among the three-angle set {0, 2π/3, 4π/3}) us-

ing at most six oracle queries. This algorithm is said to solve

the three-angle problem.

Proof. Without loss of generality the group C3

is represented by the set of quantum channels

{R0(0), R0(2π/3), R0(4π/3)}. Consider the QSP sequence

defined by QSP phase list � = {0,−α, α, 0} using the

convention of Theorem II.1, i.e., the product

U� = Rx(θ )Rz(α)Rx(θ )Rz(−α)Rx(θ ), (7)

for any angle θ . It is not hard to explicitly compute the

top left component of this unitary operator, and specifically

for the special angle α = arccos(cos θ/[1 − cos θ ]), which is

real whenever π/3 � θ � 5π/3, the top left component of

this unitary 〈0|U�|0〉 is 0. Consequently with three queries

to the oracle, and α = arccos(−1/3), the transition proba-

bility |0〉 �→ |0〉 is 1 if θ = 0 and 0 if θ ∈ {2π/3, 4π/3}.
Consequently three additional queries are enough, possibly re-

placing Rx(θ ) with Rx(θ )Rx(−2π/3) in Eq. (7), to completely

and perfectly determine the hidden angle. Over equal priors

the expected query complexity of this technique is 5.

Alternatively in the language of Theorem II.1, we intend

that the top left element of U�, under the map cos θ/2 �→ x,

has the form

f1(x) = 4
3
x (x − 1/2)(x + 1/2),

which is a polynomial9 that takes modulus 1 at x = −1 and

x = 1, has definite parity, and takes value 0 at x = ±1/2. This,

along with f1(x) under the map θ �→ θ − 2π/3, produces a

9Note that (4/3)(x − 1/2)(x + 1/2) also satisfies constraints re-

quired by QSP, and indeed this lemma can be shown using only

four maximum (10/3 expected) oracle queries, though the resulting

protocol is less geometrically obvious.

pair of binary measurements for which the map10 S �→ M is

injective where M is the set of binary measurements.

{〈+|U�|+〉 , 〈+|U ′
�|+〉} =

⎧

⎨

⎩

{1, 0} θ = 0,

{0, 1} θ = 2π/3,

{0, 0} θ = 4π/3,

where U ′
� is the aforementioned prerotation replacing Rx(θ )

with Rx(θ )Rx(−2π/3) or equivalently θ �→ θ − 2π/3. A vi-

sual depiction of this algorithm is given in Fig. 8, and a table

relating this Lemma’s construction directly to Algorithm 1 is

given in Table I. �

The functional intuition of protocols deciding on represen-

tations of cyclic groups is depicted in Fig. 8. As discussed

previously, QSP protocols take equiangular rotations about

different axes in the equator of the Bloch sphere (see Fig. 7),

interleave them with rotations about orthogonal axes on the

Bloch sphere, and give efficient methods for forcing the cor-

responding matrix elements of the final, composite rotation

to be desired trigonometic polynomials in the unknown ro-

tation angle. Figure 8 demonstrates that polynomials which

have modulus 0 or 1 at specific angles result in deterministic

protocols for dividing the search space. The work remaining is

to systematize subprotocols of this form to generate efficient

decision protocols on the entire query set.

Finally we can provide a proof for perfect decision proto-

cols on all prime-order cyclic groups, and in fact this shows

an even stronger result as the same method goes through for

cyclic groups of any odd order. However, given the results of

Lemma IV.3, QSP is only a necessary tool in the prime-order

case, when compound queries provide no helpful simplifica-

tions.

Theorem IV.1. There exists a family of deterministic al-

gorithms F = {ACp
} for all primes p, where ACp

perfectly

decides Cp, with asymptotically optimal query complexity.

Proof. The proof follows from the existence of a family

of polynomials f1, f2, . . . , fm whose moduli take values in

{0, 1} on a finite set of subsets {S j} for j ∈ [m] of the set of p

possible phases S0 induced by queries to the oracle, namely,

S0 =
{

cos

(

πn

p

)

, n ∈ [p]

}

,

such that that the successive subsets S0 ⊇ S1 ⊇ · · · ⊇ Sm have

the following11 properties.

(i) Bisecting. The order of S j+1 should satisfy that

|S j+1| � (1/c)|S j | for some fixed constant c = O(1).

(ii) Density reducing. The minimum separation between

elements of S j+1 on which the modulus of the interpolating

polynomial f j+1 takes distinct values should increase expo-

nentially in j.

(iii) Totally deciding. Constructing a family of interpo-

lating polynomials p j whose moduli take values in the set

{0, 1} on S j is equivalent to computing a family of binary

10S is overloaded here: referring to either channel elements them-

selves or the continuous real parameter θ characterizing these

elements. Note also that this map can be written as a binary tree as in

Fig. 6.
11Also described in Remark II.2 and Fig. 6.
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TABLE I. The use of Algorithm 1 as a subroutine for solving the three-angle problem (Lemma IV.4) in tabular form. As p j’s for j ∈ [m]

completely define both f j and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal explicit demonstration

of the use of Algorithm 1. Included are quantum states for preparation, |ψ j〉, and measurement, |ψ ′
j〉, as well as the compound query map

(Definition IV.1), where Algorithm 1 is fed compound queries. Finally, an inverse map is given to recover the hidden channel.

Index Query map p j |ψ j〉 |ψ ′
j〉

j = 1 Ei �→ Ei (4x3 − x)/3 |+〉 |±〉 �→ {0, 1}
j = 2 Ei �→ EiRx (−2π/3) (4x3 − x)/3 |+〉 |±〉 �→ {0, 1}

{ f1(Ei ), f2(Ei )} =

⎧

⎨

⎩

{0, 1} �→ Rx (0)

{1, 0} �→ Rx (2π/3)

{1, 1} �→ Rx (4π/3)

(Inverse map)

functions f j on Cp; the evaluation of these binary functions on

the hidden channel corresponding to g ∈ Cn should uniquely

identify g. That is, this map g �→ {0, 1}m should be injective

(see Fig. 6).

(iv) Parity preserving. The elements of S j should be of

definite parity for all j; this parity is shared by all p j .

If all of these conditions are satisfied by some judicious

sequence of S j the result follows if the number of such non-

trivial subsets of S, given by m, is asymptotically log p and the

degree of the polynomial p j goes as O(p/c j ), in which case

the entire protocol has query complexity linear in p.

The existence of these interpolating polynomials is guar-

anteed by the results of Sec. III, while their asymptotic query

complexity follows directly from exponentially increasing

promised gaps between elements of S j . For a given group Cp,

these subsets S j have the explicit, measurement-dependent,

form

S0 = S0,

S0
j = {sk ∈ S j−1, f j−1(sk ) = 0},

S1
j = {sk ∈ S j−1, f j−1(sk ) = 1},

where the new S j’s upper index indicates the measurement

result of the QSP sequence dividing the search space and is

subsequently dropped as this iterative division continues. The

functions f j are defined as polynomials which interpolate any

binary function on the set S j−1 which alternates maximally

with definite parity on [−1, 1] ( f j will share this parity). These

functions have an explicit description, e.g., when given some

subset S j of size 2n + 1, indexing by ℓ for increasing sℓ in

[−1, 1],

f j (xℓ) =
{ 1

2
[1 + (−1)ℓ], 1 � ℓ � n,

1
2
[1 + (−1)ℓ−1], n + 1 � ℓ � 2n + 1.

This evidently preserves parity and confers the right properties

on successive subsets. In plain terms this is a binary search

whose constituent subsearches grow exponentially cheaper in

query complexity and whose base case is handled by Lemma

IV.4.

Finally, by the previous results we can make a statement for

all cyclic groups and proceed to richer subgroups of SU(2).

Corollary IV.1.1. For all n ∈ N, there exists a deter-

ministic algorithm ACn
which perfectly decides Cn, with

asymptotically optimal query complexity. This follows di-

rectly from Lemma IV.3 and Theorem IV.1. �

B. Dihedral groups

We consider the dihedral groups of order 2n; it is not

too difficult to see that each bit-string label for an element

g ∈ D2n requires exactly one more bit to uniquely describe

the element, corresponding to membership of g in one of two

cosets of the normal cyclic subgroup Cn⊳Dn. We show that

this bit can be recovered in one additional measurement and

that our protocol is thus optimal assuming the optimality of

the protocol which decides Cn.

Theorem IV.2. Assuming the existence of an algorithm ACn

that perfectly decides Cn there exists an algorithm AD2n
that

calls ACn
as a subroutine and perfectly decides D2n, the

dihedral group of order 2n, with one additional oracle query.

A depiction of the overarching idea of this algorithm is given

in Fig. 9, and its concrete form in Table II. .

Proof. Without loss of generality, AD2n
has oracle access

to a channel in a representation of D2n whose cyclic subgroup

Cn in SU(2) has representation:

{Rz(m2π/n)}, m ∈ [n]. (8)

TABLE II. The use of Algorithm 1 as a subroutine for deciding on dihedral groups D2n (Theorem IV.2) in tabular form. The table proceeds

until reduction to Cn is achieved (i.e., after the first query); this query rotates to the basis in which σ (the generator of Cn⊳D2n) acts trivially

on {|±〉}. Once coset membership in the maximal cyclic subgroup of the queried element is known, it can be inverted and applied to form

compound queries that reduce the query set to Cn, given in Corollary IV.1.1. Here C?
n is an unknown power of σ .

Index Query map p j |ψ j〉 |ψ ′
j〉

j = 1 Ei �→ Rξ (−π/2)EiRξ (π/2) x |+〉 |±〉 �→ {0, 1}
...

...
...

...
...

{ f1(Ei ), f2(Ei )} =
{

{0, . . .} �→ e ∗ C?
n

{1, . . .} �→ τ ∗ C?
n

(Inverse map)
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FIG. 6. Binary search as enacted by Algorithm 1. Algorithm 1 takes binary functions f j on subsets of S0, specifically S
f< j (s)

j , and produces

a quantum algorithm that maps elements s on which f j takes value {0, 1} to orthogonal quantum states {|ψ f< j (s)

j 〉 , |ψ f< j (s)⊥
j 〉}, respectively.

Measurement in this basis determines the new query set S
f< j+1 (s)

j+1 , and the process is repeated until each leaf of the binary tree contains at

most one quantum channel. The notation s here is overloaded, indicating both the quantum channel and the continuous parameter defining the

channel. For extension of this concept from R-QHT to G-QHT, see Remark IV.3.

The SU(2) embedding of D2n that contains our embedding of

Cn as a subgroup is generated by a generator of this Cn, σ , and

another group element, τ , which without loss of generality has

representation Rx(π ). The standard presentation of D2n is

D2n ≡ {σ, τ | σ n = τ 2 = τστσ = e}. (9)

The lemma follows if there exists a simple protocol to, given

query access to an unknown element g ∈ D2n, determine

membership of the queried element g among the two cosets

of Cn < D2n.

Assume U (g) is the unitary operation corresponding to the

group element g embedded in SU(2) as stated. Then,

HU (〈σ 〉)H |0〉 = |0〉 , (10)

HU (τ )U (〈σ 〉)H |0〉 = |1〉 , (11)

where H is the Hadamard gate and U (〈σ 〉) represents some

unitary operation within the subgroup 〈σ 〉 generated by σ .

Intuitively, H rotates |0〉 to another state insensitive to the

action of the cyclic index 2 subgroup of D2n. This follows

from the lack of irreducible representations of Cn in SU(2).

If |0〉 is measured then ACn
can be applied as normal to

future queries, respecting the embedding of the subgroup 〈σ 〉.
Otherwise any query made to the oracle U (g) is prefaced

by Rx(π ), reducing to a decision on Cn. Only one additional

query is needed by AD2n
to decide D2n (a group with twice the

size). �

C. Platonic groups

Finally we address protocols for the finite subgroups of

SU(2) that do not fit into countably infinite families and that

exhibit a nonabelian structure richer than that of the dihedral

group. These are often referred to as the platonic groups due to

their appearance in the study of symmetry groups of platonic

solids. Before discussing protocols for deciding A4, S4, and A5

we define two basic group theoretic concepts that will aid in

their construction.

Definition IV.2. (Cycle decomposition). Let S be a finite

set, e.g., the integers {1, 2, . . . , n}, and σ a permutation S →

S. The cycle decomposition of σ expresses σ as a product of

disjoint cycles. For instance, if S has size 4 and the action of σ

swaps pairs 1, 2 and 3, 4, then the cycle decomposition of σ is

denoted (1, 2)(3, 4), where the order of tuples is not uniquely

defined.

Definition IV.3. (Cycle type). Let S be a finite set, for in-

stance, the integers {1, 2, . . . , n}, and σ a permutation S → S.

The cycle type12 of σ is a tuple indicating the number of

cycles of each given length in the cycle decomposition of σ .

For example, for the example given in Definition IV.2, the

cycle decomposition (1, 2)(3, 4) has cycle type (0, 2, 0, 0),

indicating two length-two cycles.

Note that the set of all possible cycle types is in bijection

with unordered partitions of the integers in {1, 2, . . . , n}; i.e.,

for cycle type tuple c, the sum of c j · j for j ∈ [n] is simply n.

Theorem IV.3. There exists a deterministic algorithm AA4

that perfectly decides A4 with asymptotically optimal query

complexity. This algorithm is additionally given in Table III.

Proof. The elements of A4 can be classified according to

their cycle type as permutations on four elements. For A4

these types are (1, 0, 1, 0), (0, 2, 0, 0), and (4, 0, 0, 0) (the last

being the identity permutation).

Cubes of any element in A4 have cycle type (0, 2, 0, 0)

or (4, 0, 0, 0) only, meaning that if the queried element g

is already in one of three representations for the D4 nor-

mal subgroup of A4 then running the D4 algorithm on cubes

of physical query elements gives the correct answer, and

otherwise acts as if the queried element were the identity.

This element can be determined in, at most, three com-

pound queries deterministically, measuring in three mutually

unbiased bases on the Bloch sphere, corresponding to the

eigenstates of each of the generators of the chosen D4 sub-

group.

Given that A4 ≡ D4 ⋊ C3, all elements g can be written

in the form kh, where h is drawn from a chosen normal D4

12The cycle type is sometimes defined as a tuple of the lengths of

each cycle in the cycle decomposition, rather than the number of

cycles of each given length.
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TABLE III. The use of Algorithm 1 as a subroutine for deciding on A4 as in Theorem IV.3 in tabular form. As p j’s for j ∈ [m] completely

define both f j and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal explicit demonstration of the use of

Algorithm 1. The p j’s given here have also had their QSP angles explicitly given in Lemma IV.4. Here D
g

4 ∗ C?
3 indicates a group element in

the semidirect product defining A4 which is the product of g, an element of the chosen D4 normal subgroup in terms of generators {a, b} and

an unknown element of the chosen C3 subgroup. Axes x and x′ are chosen such that these rotations generate the chosen D4 subgroup, and x′′ is

the axis of rotation for the chosen C3.

Index Query map p j |ψ j〉 |ψ ′
j〉

j = 1 Ei �→ (Ei )
3 x |+〉 |±〉 �→ {0, 1}

j = 2 Ei �→ Rx (π/2)(Ei )
3Rx (−π/2) x |+〉 |±〉 �→ {0, 1}

j = 3 Ei �→ Rx′ (π/2)(Ei )
3Rx′ (−π/2) x |+〉 |±〉 �→ {0, 1}

j = 4 Ei �→ EicorrectCoset( f<4(Ei )) (4x3 − x)/3 |+〉 |±〉 �→ {0, 1}
j = 5 Ei �→ Rx′′ (2π/3)EicorrectCoset( f<4(Ei )) (4x3 − x)/3 |+〉 |±〉 �→ {0, 1}

{ f1(Ei ), f2(Ei ), f3(Ei ), . . .} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{0, 0, 0, . . .} �→ Dab
4 De

4 ∗ C?
3

{1, 1, 0, . . .} �→ Dab
4 Da

4 ∗ C?
3

{1, 0, 1, . . .} �→ Dab
4 Db

4 ∗ C?
3

{0, 1, 1, . . .} �→ Dab
4 ∗ C?

3

(Inverse map)

subgroup of the representation of A4 and k is from a realized

C3 subgroup. By preapplying powers of a generator of one

of these C3 subgroups, the D4 algorithm on cubes of queries

will consistently compute the binary function of membership

of the queried element g in a particular coset of the normal

D4⊳A4. Assuming equal priors, such an algorithm is expected

to13 terminate in 14.5 queries. �

Definition IV.4. We give a name to a particular subroutine

presented in Theorem IV.3, whose use is indicated in Table III.

The function correctCoset takes as input the evaluation

of the three binary measurements given in Theorem IV.3 to

determine which element of the D4 normal subgroup of A4

enters into the chosen semidirect product D4 ⋊ C3 and returns

the representation of the inverse of this element.

Theorem IV.4. There exists a deterministic algorithm AS4

which perfectly decides S4, with asymptotically optimal query

complexity.

Proof. Squares of elements in S4 necessarily fall in the

alternating group A4, though this mapping is not always in-

vertible. It is invertible, however, when the queried element

g in S4 has the cycle type (1, 0, 1, 0). For any element in S4

there exists an element h of cycle type (2, 1, 0, 0) for which

the product gh is of cycle type (1, 0, 1, 0). Consequently there

exists an algorithm that, for every element h of cycle type

(2, 1, 0, 0), of which there are six, preapplies h to queries

[and repeats this process to generate squares of this query

element, ghgh = (gh)2] and runs the A4 algorithm on this

compound query, which recovers perfectly in finitely many

queries the hidden element g when the image (gh)2 has cy-

cle type (1, 0, 1, 0). Namely, there exists a subroutine which

determines coset membership for cosets of the normal A4⊳S4

and proceeds by reduction to decision on A4. This protocol is

expected to terminate in 34 queries.14 �

13The explicit calculation is (1/4) · 6 + (1/4) · 12 + (1/4) · 18 +
(1/4) · 22 = 29/2 for the 3 + 3 + 3 nontrivial elements of the cosets

of the normal D4 followed by three trivial elements.
14Again this number is arrived at by explicitly writing a table of

elements of S4 and running them through the protocol as given until

it terminates.

We note that the two protocols given above make no ref-

erence to the mechanisms of QSP, but are instead completely

algebraic in form, exploiting the simple canonical subgroup

towers of A4 and S4 to reduce decisions on representations of

these groups to those on their normal subgroups. It is the small

size of these nonabelian groups in particular which, unfortu-

nately, brings the following remark. Resolving this problem is

left open as stated in Sec. VI.

Remark IV.2. The alternating group on five elements has,

unfortunately, no simple reduction to an algorithm of the

previous, smaller groups, in part because A5 is the smallest

simple nonabelian group and thus permits no nontrivial de-

compositions in terms of a canonical tower of subgroups.

Before concluding this section we give an overview (Re-

mark IV.3) of the major technique which has permitted the

extension of algorithms solving R-QHT (i.e., Algorithm 1) to

those solving G-QHT.

Remark IV.3. Extending the recursive bisection depicted in

Fig. 6, which in turn demonstrates the methods of Algorithm

1, to representations of noncyclic groups follows, in each

instance described in this section, from the following sketched

protocol.

For each finite group presented in Sec. IV, we must provide

(i) a small quantum circuit to produce compound queries

(Definition IV.1) satisfying the input assumptions of Algo-

rithm 1, (ii) apply Algorithm 1 and keep track of its minimal

required query complexity, and finally (iii) verify the satis-

faction of conditions under which the compound query map is

invertible (e.g., as in Remark II.2), these conditions remaining

unchanged despite the introduction of compound queries.

Whether this protocol is possible to perform for general

groups is an open question, and indeed the methods of this

section relied on the fact that the finite groups investigated

were nonsimple and often semidirect products of abelian

groups.

V. EXTENDING QHT PROTOCOLS TO LARGER GROUPS

AND NOISY SETTINGS

It is natural to consider generalizations to the setting in

which the results of Sec. IV were derived. This section con-

012425-14



QUANTUM HYPOTHESIS TESTING WITH GROUP … PHYSICAL REVIEW A 104, 012425 (2021)

FIG. 7. Geometric (a) and algebraic (b) depictions of the proof

of Lemma IV.4. Unitary representations of C3 in SU(2) are, without

loss of generality, equivalent to a set of rotations which cycles states

(a, b, c) as shown on the Bloch sphere in panel (a). Moving away

from the Bloch sphere, any sequence of quantum channel discrim-

ination protocols whose binary PVM output differs on subsets of

quantum channels representing C3 (e.g., partitions C3 elements into

red and blue subsets as pictured, and as proven in Lemma IV.4) also

determines the queried quantum channel perfectly. The partitions

indicated in panel (b) are generated by polynomials given in Fig. 8.

cerns itself with two generalizations: (i) the inclusion of noise

and (ii) extension to larger finite groups.

A. Noisy channels and noisy quantum gates

The algorithms of Sec. IV relied on the fact that com-

pound queries to the oracle could, under the assumption of

access to unitary channels, make perfect use of the alge-

braic relations which were a priori known among the query

set. These relations led to effective query access to simpler

query sets for whom the optimal hypothesis testing algorithm

was known. Naturally, however, realistic quantum computers

FIG. 8. Quantum response function employed in the proof of

Lemma IV.4 (a), and its shifted version (b). On the left is the poly-

nomial, in cos (θ/2), which is generated as the top left component of

the single-qubit unitary U� corresponding to the angles � indicated

in the first QSP subroutine of Lemma IV.4. On the right is the same

protocol using a prerotation by 2π/3, permitting a unique binary

labeling of each channel after two measurements.

and quantum channels exhibit noise, and one might be con-

cerned about two different sources of error as summarized

below.

(i) The queried elements Ug may not perfectly satisfy the

conditions imposed on a faithful representation of G, but may

instead only approximately satisfy them, i.e.,

UgUh ≈ǫ Ugh ∀g, h ∈ G,

where the approximate equality is with respect to some rea-

sonable norm, here the diamond norm. Alternatively one can
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FIG. 9. Two presentations of Cayley graphs for the cyclic group

of order 7 and the dihedral group of order 14. The observation

that the cyclic group admits no irreducible representations in SU(2)

allows the perfect determination, in one additional query, of coset

membership for the maximal cyclic subgroup of D2n, partitioning the

red and blue sets.

consider that the channels themselves are only near unitary,

i.e., that U ′
g ≈ǫ Ug for all g ∈ G where the norm is again

reasonable. Such a channel might be given by its operator-sum

representation

Ug ≡
∫

h

fg(h)Uh dμ(h),

where fg(h) is some probability density function defined suit-

ably on elements of SU(2) which is peaked about g to induce

an operator whose diamond norm with Ug is suitably small.

Here μ is some suitable measure over SU(2).

(ii) The unitary operators applied by the querent may, in

general, also not be perfect. This is the statement that the rota-

tions normally applied in a QSP sequence as per the statement

of Algorithm 1 may again only satisfy U ′
j ≈ǫ U j for all indices

j in the QSP sequence. We denote by U ′
j the applied unitary

and by U j the intended unitary.

We consider the first instance, namely, the physically

realistic scenario that the ideal query set S is not the sam-

pled query set, but instead that physical queries may be

slightly perturbed from ideal queries. That is, the physical

queries {E ′
i } are such that the diamond distance ‖Ei − E ′

i ‖⋄ �

ǫ for some small ǫ > 0. In this case, which encompasses

all small perturbations, methods analogous to the “peeling

lemma” in Ref. [2] permit us to bound our new error in

discrimination.

Lemma V.1. Fixing an initial state ρ j , the trace distance

‖ρ − ρ ′‖ between the serial quantum channel discrimination

protocol defined by the interspersed unitaries {Ui, j} acting on

ρ j where the queried channel set is {Ei} versus {E ′
i } is bounded

above by n j‖Em − E ′
m‖⋄ � n jǫ.

Proof. In the case that the QSP sequences used are length

2, we show the result and show that the method generalizes

to length n j sequences. The distance ‖ρ − ρ ′‖ can be re-

expressed and bounded above according to

‖U2 ◦ Em ◦ U1 ◦ Em(ρ j ) − U2 ◦ E
′
m ◦ U1 ◦ E

′
m(ρ j )‖

� ‖Em ◦ U1 ◦ Em(ρ j ) − E
′
m ◦ U1 ◦ E

′
m(ρ j )‖

� ‖Em ◦ U1 ◦ Em(ρ j ) − Em ◦ U1 ◦ E
′
m(ρ j )‖

+ ‖E ′
m ◦ U1 ◦ Em(ρ j ) − E

′
m ◦ U1 ◦ E

′
m(ρ j )‖

� ‖Em(ρ j ) − E
′
m(ρ j )‖

+ ‖Em[U1 ◦ E
′(ρ j )] − E

′
m[U1 ◦ E

′
m(ρ j )]‖

� 2‖Em − E
′
m‖⋄,

where the inequalities, in order from top to bottom, follow

from (i) the monotonicity of the trace distance, (ii) the tri-

angle inequality, (iii) monotonicity with respect to the CPTP

map E ′
m ◦ U1, and (iv) that the diamond distance dominates

the trace distance on any particular initial state. This re-

sult can be iterated for arbitrarily many channel applications

where the coefficient on the diamond distance goes as n j ,

where n j is the discrimination algorithm’s jth subpart’s query

complexity. �

For the second instance, where the querent’s own unitary

operations are only close to the ideal operations, an argument

analogous to that used in Ref. [42] permits us to bound error to

a multiple of the per-gate error ǫ (usually computed in terms

of a trace distance between the intended and the applied chan-

nel) where this multiple is proportional to the QSP sequence’s

length. Consequently under reasonable assumptions of noise

in both the queried channel and the locally applied unitary

operators, the methods presented in the previous section do

no worse than expected, accruing error linearly in sequence

length for reasonable norms.

B. Extensions to larger groups

The methods of Sec. IV use compound queries (e.g., pos-
itive integer powers of queries), defined in Problem IV.1, to
access representations of subgroups of G. It is thus of interest
to determine (i) when one is to expect that subsets of mth
powers of group elements generate proper subgroups, and (ii)
what information can be extracted under the assumption of
the ability to decide on said subgroups. We state a series of
related lemmas regarding these questions, assuming a basic
understanding of group theory.

The following two lemmas in particular discuss suffi-

cient conditions under which a known normal subgroup of

G permits query access to compound queries that reside in

said normal subgroup. These lemmas capture the underlying

mechanism of the protocols given previously for deciding D2n

and A4.

Lemma V.2. If a finite group G admits a normal subgroup

N of index m, then the subset of mth powers of G, equivalently

Sm = {gm
1 , gm

2 , . . . , gm
n } for all n elements of G, generates a

proper subgroup G′ � N < G.

Proof. Proof follows from recognizing that elements of the

form gm
i are in the kernel of the group homomorphism G →

G/N and thus 〈Sm〉 is a (possibly nonproper) subgroup of the

normal subgroup N of G, equivalently 〈Sm〉 � N < G. �

Lemma V.3. If a finite group G admits a normal sub-

group N of index m, then the subset of mth powers of

G, i.e., the group generated by Sm as in Lemma V.2, is

contained within the intersection of all index m normal

subgroups of G. Proof again follows by the isomorphism

theorems.

Furthermore we give a lemma that describes the under-

lying behavior of the protocol given previously for deciding

on S4 (Theorem IV.3). It is the statement of this lemma,

as well as the two preceding it, that precludes a solu-
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tion for deciding on A5, which admits no nontrivial normal

subgroups.

Lemma V.4. If the m-power map g �→ gm applied to ele-

ments of G generates a proper subgroup G′ < G, and there

exists a group element h ∈ G such that for some subset S of G

the map s �→ (sh)m is invertible for all s ∈ S, and there exists a

quantum protocol for deciding G′, then there exists a quantum

protocol for deciding the query set G′ ∪ S.
Proof. Constructing compound queries of mth powers of

physical queries allows access (at m times the query complex-
ity) to a representation of G′. The statement of the lemma with
respect to the set S says merely that preapplication of h ∈ G

before each query s is, under the map given, invertible, and
thus unique identification of s is also possible with knowledge
of h. �

The statements given in the lemmas above do not de-
pend on particularly complicated notions in group theory;
instead, we have simply asked which simple operations can
be performed in our limited resource model to faithfully
simplify the query set. In most instances, these simplifi-
cations correspond to the existence of normal subgroups
(equivalently kernels of group homomorphisms). For state-
ments beyond those given here, especially those concerning
the conditions under which the assumptions of Lemma V.4
hold beyond S4, we define a selection of open problems in
Sec. VI.

The procedure outlined in Lemma V.4 is also not the most

general one; indeed, compound queries can be built from

general products of known unitary operations (some of which

may coincide with the query set) and possibly multiple copies

of the queried channel. Conditions under which such a map

is invertible relate intimately to the study of characters in

representation theory and provide exciting avenues for im-

proved protocols for larger finite groups, e.g., G < SU (n).

Moreover, when considering larger Hilbert spaces, in anal-

ogy to the algorithms deciding on the dihedral groups D2n,

the family of finite groups which permit no irreducible rep-

resentation in said larger Hilbert space grows richer, and

correspondingly decisions on groups which are semidirect

products grow easier. Thus, while extension to larger Hilbert

spaces may not resolve the discussion of efficient deci-

sion algorithms on all larger groups in the serial adaptive

query model, it may reasonably result in interesting quan-

titative statements on the entanglement or auxiliary system

size necessary to achieve efficient (query-complexity-wise)

discrimination dependent on the nature of the represented

group.

VI. DISCUSSION AND CONCLUSIONS

In this work we have provided a constructive approach

for achieving efficient quantum multiple hypothesis testing

for query sets whose algebra faithfully represents a finite

subgroup of SU(2). The nature of this construction centers on

the use of Algorithm 1, a quantum algorithm for solving the

simpler R-QHT problem (Problem II.1), as a subroutine along

with methods for exploiting known algebraic structure of the

query set to enable reductions to R-QHT. This reduction is

summarized in Remark IV.3.

Concretely, when the represented group G is either abelian

or both nonabelian and nonsimple the protocols we con-

struct achieve optimal query complexity without the use of

auxiliary systems or entanglement; this statement is equiva-

lent to a statement about the minimal degree of constrained

interpolating polynomials and resolves an open question in

Ref. [5], as well as generalizes an old result in Ref. [12]

to quantum channels. Moreover, the bridge that Algorithm

1 and its derivate algorithms demonstrate between quantum

information and functional approximation theory indicates a

rich variety of novel instantiations of the basic ideas of QSP

[21,23].

In addition to achieving efficient quantum channel dis-

crimination for a family of channel sets in a serial adaptive

query model, we show that our protocols can be aborted early

while still accomplishing useful tasks; this follows simply

from the nature of the binary search discussed in Remark

II.2. For instance, the reductions provided throughout Sec. IV

are directly realizable as coset membership testing proce-

dures, in general, or period finding for the case of cyclic

groups.

In the following remarks and problem definitions, we pro-

vide one more direct application of the methods discussed in

this work to a problem in quantum communication.

Remark VI.1. As mentioned in Refs. [16,20], efficient pro-

tocols for the estimation of unitary processes have use in the

transmission of reference frames as well as various proofs

of insecurity for device-independent protocols for quantum

bit-commitment.

We give one example for how this work can be applied to

a discretized version (e.g., group frames [17,18], which share

close relation with SIC-POVMs) of reference-frame sharing

(Problem VI.1 and Lemma VI.1).

Problem VI.1. Consider two separated parties, Alice and

Bob; each is able to (i) perform single-qubit unitaries and (ii)

transmit qubits noiselessly to the other party. Alice and Bob

agree on a shared z axis but are rotated with respect to each

other by some unknown angle θ about this axis. Moreover, the

possible θ lie within a discrete set � of size n, known to both

parties.

Alice and Bob can come to agreement on the unknown

angle θ with certainty in a finite-length interactive protocol;

this protocol is denoted dual QSP due to its similarities with

standard QSP [21–24] and is said to solve the dual QSP

problem.

Lemma VI.1. There exists a finite-length interactive proto-

col by which two parties playing the game defined in Problem

VI.1 can win with certainty and with an asymptotically op-

timal round number (under the restriction of sending single

qubits).

Proof. Proof proceeds by direct construction. Beginning

with some initial state |ψ0〉, Alice applies to it a rotation

about her local x axis, namely, exp (iφ0σx ), and sends this

qubit to Bob. Bob applies a rotation about his local x axis

by another specified angle φ1, or equivalently according

to Alice (if she knew the angle θ ) Bob appears to ap-

ply exp (iφ1[cos θσx + sin θσy]) = UB exp (iφ1σx )U −1
B , where

UB = exp (−i[θ/2]σz ).

In other words, Alice and Bob can, according to some

previously agreed upon prescription of real angles � =
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{φ0, φ1, . . . , φm}, collaboratively compute the unitary opera-

tor15

U� = eiφmσx · · · e−i[θ/2]σz eiφ3σx ei[θ/2]σz eiφ2σx

× e−i[θ/2]σz eiφ1σx ei[θ/2]σz eiφ0σx . (12)

Moreover, following the final application of exp (iφmσx )

and measurement against |ψ1〉, Alice can sample from the

Bernoulli distribution defined by the transition probability

p = | 〈ψ1|U�|ψ0〉 |2.

The construction above is almost a vanilla QSP sequence.

It is not so difficult to see that if Alice and Bob additionally

apply the rotation exp{±i[π/2]σx} respectively, locally, after

their φ j rotation for j ∈ {1, 2, . . . , m}, the collaborative se-

quence instead becomes

U�′ = eiφmσx · · · ei[θ/2]σz eiφ3σx ei[θ/2]σz eiφ2σx

× ei[θ/2]σz eiφ1σx ei[θ/2]σz eiφ0σx , (13)

which is of the form of a standard QSP sequence. Conse-

quently we see concrete connection between dual QSP and

standard QSP: i.e., a redefinition of QSP phase angles.

Given a standard QSP strategy, defined by an angular se-

quence �, there exists an angular sequence �′ following the

prescription given above such that the dual QSP sequence de-

fined by �′ acts identically given access to parties of relative

angular displacement θ as the sequence defined by � acts

given query access to an equiangular rotation exp (−i[θ/2]σz )

in the setting of standard QSP.

Consequently a protocol solving Problem VI.1 follows

directly from a protocol solving Problem II.1 under the pre-

scription (following Algorithm 1) defined by �′
j,k = � j,k + π

for k ∈ {1, . . . , n j} and �′
j,0 = � j,0. �

Remark VI.2. We can analyze the performance of the pro-

tocol given in Lemma VI.1 in two ways: (i) in comparison

with naïve repetition of binary hypothesis testing and (ii) in

comparison with phase estimation, the continuous analog of

the problem statement.

(i) The results of Ref. [5] assert that the query complexity

for distinguishing two distinct unitary operators U and V

scales as O(1/�[U †V ]), where �[W ] is the length of the

smallest arc containing all the eigenvalues of W on the unit

circle in the complex plane.

When phrased as a decision on a representation16 of Cn,

eliminating one possible quantum channel at a time gives a

query complexity that scales as O(n2) [as O(n) such discrim-

ination procedures are required, each costing O(n) queries].

As shown in the constructions leading to Corollary IV.1.1,

however, decisions on Cn and consequently also discrete

reference-frame sharing have query complexity scaling as

O(n) (up to logarithmic factors) courtesy of the implicit binary

search in Algorithm 1.

(ii) A feature of Lemma VI.1 is that it yields a determin-

istic quantum algorithm. If one only wishes to determine the

15Here assuming that m is even, i.e., that the protocol ends with

Alice receiving the qubit.
16This merely connects n in a reasonable, i.e., reciprocal, functional

map to a factor defining the difficulty of discrimination, in which the

stated quadratic improvement is always possible.

relative rotation with high confidence, one can use phase es-

timation and achieve the same O(n) query complexity scaling

[43] using O( log n + log (1/ǫ)) qubits for confidence ǫ. This

also matches the performance of the estimation procedure

in Ref. [16]. Thus while estimative methods perform simi-

larly in the cyclic group case to G-QHT-derived methods, the

methodology of Lemma VI.1 is tailored to the statement of

discrete reference-frame sharing, can be done serially, and can

be extended to richer finite groups.

The methods of Lemma VI.1 suggest a useful technique;

namely, whenever a suitable sensing problem can be (i) dis-

cretized and (ii) made coherent, the ability to, by a simple

quantum process, induce a phase on, e.g., a single qubit allows

all of the mechanisms built in earlier sections to be directly

applied with concomitant statements about query complexity

or round complexity17 optimality.

Beyond direct applicability to discrete versions of prob-

lems defined in prior work (e.g., reference-frame sharing),

several fundamental open problems remain whose solutions

might lie in methods related to those discussed in this work;

we outline a few of them below.

(i) Decisions on the subgroup tower. In analogy to the

protocol given for deciding the dihedral group in Sec. IV B,

are there families of larger groups G′ whose lack of irreducible

representation in the natural Hilbert space of multiple qubits

([C2]⊗n) or qudits (Cd ) permits groups G whose canonical

subgroup tower includes G′ to be decided by reduction to

decisions on G′? What are sufficient conditions under which

protocols deciding G can, even inefficiently, be reduced to

protocols for deciding normal subgroups of G? Small ex-

amples of this phenomenon are given in the lemmas of

Sec. V B.

(ii) Optimal G-QHT with bounded entanglement. Given

the procedure in the above part, does there exist a quantifiable

trade-off between the serial and parallel query model query

complexities required for deciding groups G given access to

Hilbert spaces in which no representation of G is irreducible?

If entanglement is required for optimal QHT algorithms on

large or highly nonabelian query sets, are there methods to

quantify the required minimum entanglement?

(iii) Quantum property testing. Do there exist partial

discrimination protocols, e.g., beyond those provided for

deciding coset membership, which decide other interesting

properties of the group represented by the query set while not

totally deciding on the group?

(iv) Estimating compact group elements. Can the perfor-

mance of quantum channel estimation protocols for compact

groups G, e.g., as in Ref. [16], be suitably recovered by

employing a method similar to those of this work to sys-

tematically divide the search space up to within a specified

error? Under what assumptions about the compact group is

this decision-to-estimation conversion in the serial adaptive

query model still efficient?

17In the methods given, query complexity and round complexity

are precisely the same (under the map from dual QSP to standard

QSP): transmission of the shared qubit is necessary to enact a unitary

operation dependent on the relative rotation.
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To summarize, major avenues for extending this work lie

in (i) natural generalizations to higher-dimensional Hilbert

spaces and (ii) characterizations of richer finite groups which

find natural representations in higher-dimensional Hilbert

spaces. Improvements in methods to address these questions

have implications in quantum algorithms for problems in

discrete algebra, and this subfield in turn has potential ap-

plication, following translation of G-QHT-like problems to

novel contexts (e.g., as in Lemma VI.1), to useful quantum

algorithms for cryptography, communication, and sensing.
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