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The problem of discriminating between many quantum channels with certainty is analyzed under the assump-
tion of prior knowledge of algebraic relations among possible channels. It is shown, by explicit construction
of a novel family of quantum algorithms, that when the set of possible channels faithfully represents a finite
subgroup of SU(2) (e.g., C,, D2y, As, S4, As) the recently developed techniques of quantum signal processing
can be modified to constitute subroutines for quantum hypothesis testing. These algorithms, for group quantum
hypothesis testing, intuitively encode discrete properties of the channel set in SU(2) and improve query com-
plexity at least quadratically in 7, the size of the channel set and group, compared to naive repetition of binary
hypothesis testing. Intriguingly, performance is completely defined by explicit group homomorphisms; these in
turn inform simple constraints on polynomials embedded in unitary matrices. These constructions demonstrate
a flexible technique for mapping questions in quantum inference to the well-understood subfields of functional
approximation and discrete algebra. Extensions to larger groups and noisy settings are discussed, as well as paths
by which improved protocols for quantum hypothesis testing against structured channel sets have application in
the transmission of reference frames, proofs of security in quantum cryptography, and algorithms for property

testing.
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I. INTRODUCTION

Hypothesis testing is a fundamental statistical method with
wide application in classical and quantum contexts. Seminal
work [1] has led to a deep information-theoretic understand-
ing of binary hypothesis testing for quantum states, but only
quite recently have analogous lower bounds been proven for
error in discrimination among quantum channels [2]. This
40-year gap between mature theories for quantum hypothesis
testing (QHT), realized as quantum state and channel discrim-
ination, respectively, follows from the far richer structure of
the latter problem. That is, general quantum channel discrimi-
nation protocols may be adaptive, entanglement-assisted, and
use auxiliary qubits; moreover, the concomitant optimizations
over (possibly adaptive) preparations and measurements are
computationally expensive.

It is known that sharpening the problem of quantum chan-
nel discrimination to narrower settings can drastically alter
algorithmic efficiency, the requirement of entanglement, the
requirement of auxiliary qubits, and the ease of both theoreti-
cal and computational analysis [3—5]. This work considers one
such narrower statement of QHT for discriminating quantum
channels.

A. Problem statement

We state our problem as a game. Consider a party with
access to a small (single-qubit) quantum computer; she is able
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to apply unitary operations of her choice to this qubit, measure
this qubit in chosen bases, and store the resulting classical
data for as long as she likes, possibly using this informa-
tion to instruct future actions. She is furthermore permitted
query access to an oracle whose result is the application of
a single-qubit unitary quantum channel &;. This channel is
from a publicly known set S (hereafter the query set) of n
distinct unitary channels. Queries consistently apply &;, and
i is unknown.

Problem I.1. An S-QHT problem is any instance wherein
a party given access to & for unknown i € [n] is tasked
with the following: in as few queries as possible determine,
with certainty, the hidden index i. The minimal expected
query complexity the party is able to achieve is denoted
qs and is taken over an assumption of equal priors on
{Ee}eern) = S, a set of distinct single-qubit unitary quantum
channels.

The prefix S in Problem I.1 denotes QHT with respect to a
set of quantum channels. This work examines only specific
subsets of S-QHT games. Moreover, this work considers a
specific resource model, described informally at the beginning
of this section and depicted in Fig. 1.

As described in Sec. I B, naive upper and lower bounds
on gy, even for general S, can be computed without difficulty,
although the gap between these bounds is in general large,
i.e., exponential in the instance size |S| [5]. A primary interest
is thus to derive a set of properties on the set S for which a
lower bound for g, dependent on the structure of S can be
both (i) proven and (ii) asymptotically achieved by a quantum
algorithm exploiting the structure of S to generate a strategy
for playing an instance of S-QHT (Problem L.1).
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FIG. 1. A general circuit to perform QHT in the serial adaptive query model. The unitary operators U; ; for i € [n;] and j € [m] may
depend on previous single-qubit projective measurements Ay for k < j, for j € [m], communicated by stored classical bit strings of reasonable
finite length (represented by arrows). Each row in the figure is a quantum circuit applied to a qubit prepared from classical information
depending only on the results of previous measurements. The serial nature of the discrimination protocol to determine the unknown channel
is evident; when the protocol terminates a known classical function is computed on the set of measurement results (here, a bit-string of length
m), equivalently A, for k € [m], to infer the hidden channel. Other models one can consider are discussed in Fig. 2.

This work provides one such sufficient condition on S.
These constraints not only enable proof of query complexity
lower bounds and constructions of algorithms achieving these
bounds but also permit the cross-application of diverse meth-
ods in abstract algebra and functional approximation theory
to quantum information and inference. This work considers
the specific constraint that S additionally faithfully represents
a finite subgroup G < SU(2) (i.e., it is a representation of a
finite subgroup of the group of single-qubit unitary transfor-
mations).

Definition I.1. A channel set S is said to faithfully rep-
resent a finite group G if the elements of S have the form
{Ug}gec such that, respecting some natural product operation
for elements in S, U,U, = Uy, for g, h € G and moreover
that the group homomorphism g — U, is injective, ensuring
IS| = 1G.

A variant of S-QHT incorporating the condition discussed
above is denoted by G-QHT (group quantum hypothesis test-
ing) (Problem 1.2). While this work considers groups G <
SU(2), this game naturally extends to finite representations
embedded in any Hilbert space.

Problem 1.2. An instance of Problem I.1 with the addi-
tional constraint that S faithfully represents a finite group G
is an instance of a G-QHT problem or a G-QHT game.

Before discussing this new game further, it is worthwhile
to understand previous results in unitary quantum channel
discrimination, to which these games have nontrivial relation.
These results support why one should expect that the family of
sets S which obeys the properties of Lemma I.1 is rich enough
to furnish nontrivial instances of QHT and why even in a
limited resource model algorithms to solve G-QHT efficiently
exist.

B. Prior work

The problem of binary quantum channel discrimination is
well understood under the assumption that the set of possible
channels, i.e., the query set, denoted S, comprises only unitary
channels. Foundational work by Acin [3] asserts that there is
always some finite upper bound! on g, for achieving perfect

This furnishes a loose upper bound for multiple unitary channel
discrimination as well. One performs perfect discrimination on pairs

discrimination for any finite S with distinct, known, unitary el-
ements. Moreover it is known that in the binary case, under the
assumption that the discriminating party may apply unitary
operations of their choice, neither entanglement nor auxiliary
systems nor adaptive protocols are required to achieve optimal
query complexity [4,5].

For binary discrimination among pairs of general quantum
channels, necessary and sufficient conditions are known for
the achievability of perfect quantum channel discrimination in
terms of the channel’s respective Choi matrices [2]. Moreover,
various general lower bounds are known for the symmetric
error of discrimination (given a fixed number of channel uses)
for binary and multiple quantum channel discrimination, as
well as some conditions on the set S, e.g., teleportation-
covariance (telecovariance) and geometric uniform symmetry
under which these bounds can be improved upon and, in the
former, more restrictive setting of telecovariance, asymptot-
ically achieved [2,6]. Such simplifying conditions have also
been studied in the multiple unitary channel case for group
covariant query sets for nonadaptive quantum strategies [7].

While it is known that entanglement (and in fact any re-
source in a convex resource theory like quantum mechanics
[8,9]) can be useful in quantum hypothesis testing among
nonunitary channels, the performance of entanglement-free
or low-entanglement strategies for multiple quantum channel
discrimination remains largely unstudied, even in its simplest,
unitary form. Namely, while intriguing examples for meth-
ods of discrimination among large sets of unitary operators
where the use of entanglement improves query complexity
have been given [5], the necessity of entanglement is not
known. Moreover, the power afforded to quantum hypothesis
testing strategies for quantum channels using entanglement
and which are also adaptive has been shown to be nontrivial
in the case of nonunitary channels, where even adaptiveness
alone may assist algorithmic performance [10,11].

Many of the techniques referenced above are agnostic to
the structure of S; however, the notion that the structure of the
query set should inform the structure of optimal procedures to
differentiate members of S is an old and clever idea and indeed

of elements in S, eliminating channels one by one; this is the standard
reduction to binary QHT.

012425-2



QUANTUM HYPOTHESIS TESTING WITH GROUP ...

PHYSICAL REVIEW A 104, 012425 (2021)

can provide optimal hypothesis testing protocols for query
sets comprising quantum states which are group covariant
[12]. It is as a generalization of this setting to quantum chan-
nels that Problem 1.2 (G-QHT) finds its form. Moreover, the
study of discrete and especially nonabelian algebraic objects
in the context of quantum information is not new and under-
lies many open problems, e.g., the dihedral hidden subgroup
problem [13] and its reductions to various lattice problems
[14], as well as the symmetric hidden subgroup problem and
its reductions to graph isomorphism [15].

Multiple hypothesis testing for quantum channels is not
merely of independent quantum-information-theoretic interest
either, but has found use in designing protocols for the optimal
transmission of reference frames [16] (i.e., when the query
set is a compact group and the aim is estimation of a fixed
unitary transformation). Discretized versions of this prob-
lem also naturally connect to the study of group frames and
symmetric, informationally complete, positive operator-value
measures (SIC-POVMs) [17,18], e.g., as discussed in Lemma
VLI.

While left as an open extension to this work, quantum
hypothesis testing against quantum channels where the nth
channel application depends nontrivially on the previous
n — 1 applications, i.e., memory channels [19] has relation
to proofs of the general impossibility of quantum bit-
commitment [20], and is of interest in quantum cryptography.

In what follows we more concretely define our algorith-
mic resource model, provide an example of why it might be
expected that the question of achievability within the expo-
nential gap between the naive upper and lower bounds on
query complexity for multiple quantum hypothesis testing is
richly structured, and finally give an outline for the methods
of proof employed in analyzing this structure.

C. Our approach

The statement of G-QHT (Problem 1.2) together with the
serial adaptive query model depicted in Fig. 1 raises the ques-
tion of whether this model is (i) interesting, (ii) nontrivial,
and (iii) tractable to analyze; this section addresses these
questions.

The player challenged in G-QHT to determine the hid-
den index i of the queried channel &; is afforded precious
few quantum resources. Stating it another way, the player
is forced to devise quantum strategies in the serial adaptive
query model. In this model, pictured in Fig. 1, the player
may only intersperse their oracle queries with measurements
and unitary operations depending on previous measurements.
Serially, the querent learns progressively more about the hid-
den index i, adaptively modifying her approach. Under the
assumption of a small quantum computer and a reasonable
classical one, this is the most general approach she may take,
assuming all measurements are projective and she wishes to
determine i with certainty. Furthermore, in this model, query
complexity is a reasonable metric by which to judge algorith-
mic performance.

In addition to the serial adaptive query model, we can
quickly chart algorithmic schemes for instances of G-QHT
where the querent is afforded a larger quantum computer. In
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FIG. 2. Simplified illustrations of different models for quantum
circuits performing QHT. Depicted are (a) serial adaptive, (b) paral-
lel, and (c) mixed strategies. Given query access to a finite number
of applications of the unknown quantum channel (red, outlined),
the querent is conferred the ability to perform unitary operations
(blue, not outlined) of her choice. Blue operations shown are ar-
bitrarily structured and for demonstrative purposes only. For serial
adaptive strategies (a), dashed boxes indicate regions between which
only classical information is transmitted (i.e., measurement results).
In panels (b) and (c), entanglement, auxiliary qubits, and collec-
tive measurements can, in general, improve the performance of
QHT algorithms. Preparations and measurements are not explicitly
shown.

this case, the possibility for multiple-qubit” unitaries and col-
lective measurements gives rise to a variety of series, parallel,
and mixed strategies, which may be adaptive or nonadaptive.
The relative discriminating power of these models for specific
instances of QHT and specific query sets is not wholly under-
stood. An informal depiction of some of these models is given
in Fig. 2.

As the querent in the course of playing the G-QHT game is
allowed to store reasonable amounts of classical information,
all that is asked of a successful quantum algorithm for G-QHT
in the serial adaptive query model is that it is able to decide
the hidden index i according to some efficiently computable
function on any of its probable binary qubit measurement
outputs. This statement is made concrete in Definition I.2.

Definition 1.2. A quantum algorithm in the serial adaptive
query model is said to decide on a query set S of distinct
unitary quantum channels of size n in g, queries if there
exists, for all i € [n], a computable deterministic function
f:{0, 1} — [n] that returns the hidden index i with cer-
tainty, on all probable (i.e., nonzero probability outcomes of)
m projective single-qubit measurements {Ag}sepn) resulting
from the action of & in a serial adaptive protocol defined
by the quantum algorithm that uses g, oracle queries. This
definition can be suitably modified replacing S with G, a
faithful representation of the group G in a specified Hilbert
space.

While we will soon be interested in the efficiency of a
single-qubit serial adaptive query model algorithm in de-
ciding a set S which faithfully represents a finite subgroup
G < SU(2) and, indeed, whether, for these special sets,
query-complexity-optimal, entanglement-free, serial adaptive
protocols similar to those constructed in Ref. [4] are possible
to construct, it is worthwhile to look at a simple, concrete

20ne could of course also imagine access to qudits, or indeed
stranger Hilbert spaces.
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instance of our game and the function f it induces according
to Definition 1.2.

We introduce a minimal instance of G-QHT which, in
addition to demonstrating why the naive upper bounds on
query complexity discussed in Sec. IB are in general not
tight, also captures some of the intuitive motivations for the
major results of this work for more complicated query sets.
The following example has the added benefit of (i) requiring
no explicit mention of quantum signal processing (QSP, [21])
(Sec. II) in its construction and proof of optimality and (ii)
providing some intuition for why QSP is natural to call on to
solve the shortcomings that emerge in applying the strategy of
Lemma I.1 to more general query sets.

Lemma I.1. For natural numbers n there exists a quantum
algorithm in the serial adaptive query model that perfectly
decides any channel set S that faithfully represents a cyclic
subgroup Cy» < SU(2) and which requires 2" — 1 oracle
queries.

Proof. For Cy», group elements are identifiable with binary
strings of length n of which there are 2", namely, labeling
according to the angle of rotation in the Bloch sphere in units
of 2!~"7 such that the queried channel rotates about a known
fixed axis by this angle. Concretely, up to overall unitary
transformation the query set is.

S = (R (mm /2" 1)}, m e [2"]. (1)

Any decision protocol using one qubit for readout can provide
at most one bit of information as to the n-bit label for the
queried group element.> We read from least (LSB) to most
significant bit by the following algorithm.

(i) Prepare |0). Query the channel 2"~! times and measure
in the standard basis, reading the LSB.

(i) Dependent on the measurement in the previous step
the possible query set S’ has the description

(Re(mm /2" + /2" 1)} if measured [1),
{Re(mm /2""%)}  if measured |0),

for m € [2"~']. The latter is a representation of the cyclic
group of order 2"~!. The former, if each query is preceded
by a unitary U = R, (—m /2"), is also a representation of this
cyclic group.

Set U = R,(—bm /2" "), where |b) was measured in the
previous step.

(iii) Apply U before each of 2”2 channel applications to
bit-shift the label of the queried group element. Repeat the
algorithm for a cyclic group of size 2!,

For the cyclic group of order 2, consisting of the identity
channel and a 7 rotation, the decision protocol is obvious.
By recursion, the total decision protocol has query complexity
2=l 4272 4 ... 4 1 = 2" — 1. Optimality follows from the
optimality of phase estimation. We depict one instance of this
discrimination algorithm in Fig. 3. ]

The methods used in the proof of Lemma I.1 illustrate
an important concept: if the query set S is highly struc-

3 Note that these do not need to correspond to bits in the label of the
queried channel, but rather some set of bits which, at the conclusion
of the algorithm, can be taken by the function f to the hidden index
i deterministically.
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FIG. 3. Subroutine of decision protocol on Cg. For the cyclic
group of order 2", any map g+ g* for m < n generates a cyclic
subgroup of order 2"~". Consequently, as the cyclic group of order 2
has an obvious discrimination strategy, the method in Lemma I.1 can
recursively determine membership of the hidden element in cosets of
cyclic subgroups of C,:. Equivalently, the querent performs a binary
search, i.e., using 2"~! queries, she can determine membership of the
hidden element in the red (outlined, image) or blue (not outlined,
complement of the image) subset as pictured for the case n = 3,
assuming she can solve the n = 2 case.

tured, binary measurement results can effectively correspond
to halving the size of the remaining search space (or equiva-
lently excluding, with one measurement, half of the possible
channels). Here, compared to the upper bound given by the
standard reduction to binary QHT, we see a square root im-
provement in the instance size |Cy«|. Additionally, the function
f from the statement of Definition 1.2 simply reads the adap-
tive output measurements as a binary string and returns the
corresponding integer (the channel’s hidden index).

The reason that the simple method of Lemma 1.1 works
is because even powers of channel elements are not only
subsets but also subgroups of Cy, and specifically 2"~! pow-
ers of group elements are rotations by angles in {0, 7},
which give perfectly orthogonal and thus perfectly distin-
guishable states when acting on special known initial pure
states. The adaptive protocol permits the querent to recurse
and learn the hidden index by asking individual ques-
tions of coset membership for prime-power-order normal
subgroups.

For cyclic groups of general order, however, this method
fails. For odd-order cyclic groups, for instance, sets of integral
powers of group elements do not necessarily form nontrivial
subgroups by simple consequences of Lagrange’s theorem.
The question of bisecting the search space must thus be re-
solved by other methods; it is precisely the flexibility of QSP
that will permit the recovery of algorithms of the same flavor
as Lemma I.1 for more general groups; that is, to permit the
construction of quantum algorithms that act deterministically
on not merely subgroups but arbitrarily chosen subsets of the
query set.

D. Paper outline and summary of results

The main body of this work describes methods for per-
fectly deciding sets of quantum channels (equivalently query
sets) which faithfully represent finite subgroups G < SU(2) in
order of increasing complexity of the finite group considered.
This culminates in Theorem I.1.
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Algorithm 1: A generic algorithm for solving
R-QHT

Assumptions : Input and output satisfying

assumptions of Remark II.1

Input : A quantum channel oracle &; for
hidden index i; description of n
channels {&E¢}eepn)-

Output : The hidden channel index 1.

for j <+ 1 to m do

p; < genRealPoly(f;)

Quantum subroutine:

for k < 1 to n; do

end

end

Classical subroutine (see Def. I1.2):

f;i < genBisection(G, {f<;(7)})

(P;,Q;) < genComplexPoly(p;)
(®;,%j,75) + genPhases(P;, Q;)

[) < |¢;) Initialize quantum state

[) < Re(60:)|¢) Apply oracle for unknown i
[v) < Uk [¢) Apply QSP unitary exp{i¢roeL}

£ (@) = My (1) Send {[¢5),[¢5)} — {0,1}

14 g(i) = f1(3) f2(3) - - - fm(4) Invert g by Remark I1.1

Return ¢

Theorem I.1. [Simplified] There exist quantum algorithms
in the serial adaptive query model which perfectly decide on
all finite subgroups G of SU(2), with the exception of the
simple nonabelian group As, and which do so with asymp-
totically optimal query complexity. These algorithms each
closely track with a single generic algorithm (Algorithml),
and their individual structure closely tracks the structure of
the considered group.

This work is organized such that algorithms for decid-
ing simpler finite groups can, where applicable, be used as
subroutines for algorithms deciding more complicated groups
whose subgroup decomposition is nontrivial. It is this boot-
strapped approach that provides novel sufficient conditions
under which the open question in Sec. I B can be resolved in
the serial adaptive query model.

We begin with an overview of the two mathematical tech-
niques that underlie the main results of the paper. Namely, in
Sec. IT we review statements of the main theorems of quan-
tum signal processing, their guarantees, and interpretations.
Relatedly, we give a protocol (Algorithm 1) that players of a
simplified version of the G-QHT game (Problem 1.2) defined
in Sec. I A may use to achieve perfect decision protocols. The
theorems of QSP (and consequently solutions to the simplified
game proposed in Problem II.1) rely on the existence and ef-
ficient computability of polynomials over real variables under
simple constraints, the properties of which are discussed in
Sec. III.

With both of the mathematical techniques established in
Secs. II and III, the paper proceeds to discuss concrete
groups systematically. The statement of Problem 1.2 as men-
tioned is simplified to Problem II.1, whose solution using the
methods of QSP depends solely on the answer to questions
in functional approximation. For each concrete algorithm
corresponding to deciding each finite subgroup G < SU(2)
in Sec. IV, we perform reductions to decisions on normal
subgroups of G where possible, and we restate decision al-
gorithms on G as multiple correlated instances of Algorithm
1. Specifically, we assert that Algorithm 1 and its performance
guarantees are integral to the analysis of each algorithm given
in Sec. IV.

Algorithm 1 connects decisions on G to problems in func-
tional approximation which, referring back to the guarantees
of Sec. III, determine the query complexity of the algorithm
deciding on G. This connection is made explicit in Problems
II.1 and IV.1.

We provide a diagram of the order in which we address
decisions on specific finite subgroups (Fig. 4) as well as rela-
tions between all problems introduced in this work (Fig. 5). In
turn, the relations between algorithms and problems are sum-
marized in the statement of Algorithm 1 in conjunction with
its accompanying remarks (Remarks II.1 and II.2), toward a
coherent framework for hypothesis testing on discrete query
sets.

For generalizations to larger Hilbert spaces, near-unitary
channels, and groups not embeddable in SU(2), the reader is
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R-QHT — P-QHT
l
Con ====% Cpp ===-> C) —— (), ---=> Dy, — Ay — S, As
FIG. 4. The linear flow of this work: deciding on increasingly
rich sets of finite subgroups of SU(2). The diagram indicates the
order in which instances of G-QHT are solved throughout Sec. 1V,
beginning with cyclic groups and working toward the dihedral and
platonic groups; solid arrows indicate increasing complexity of the
decision group, while dotted lines indicate where a reduction to an
algorithm deciding on the latter group is particularly simple. R-QHT
(Problem II.1) and P-QHT (Problems III.1 and IV.1) are developed
in parallel to decision protocols on cyclic groups and are joined for
decisions on prime-order groups by Theorem IV.1. Applying similar
methods to As is left to future work.

directed to Sec. V. Additionally, Sec. VI gives a list of open
problems in the same vein as the results presented in this work,
suggestions for the shape of their resolution, and instances
(e.g., Remark VI.1) in which the methods derived here can
be directly applied to physical problems.

II. OVERVIEW OF QUANTUM SIGNAL PROCESSING

We have defined the G-QHT problem (Problem 1.2) as well
as the form that any algorithm in the serial adaptive query
model solving this problem must take. We have not, however,
provided a method for analyzing such algorithms. For certain
groups, e.g., Co» as covered in Lemma 1.1, we can come up
with methods inspired by classical algorithms; this intuition
breaks down for more complicated groups. In this section we
introduce techniques toward addressing this breakdown.

G-QHT might be naturally thought of as a sensing prob-
lem: given an unknown g, application of the channel U,
(respecting a representation) might be physically explained
as the result of probing a system: the action of the quantum
channel contains some information about the system. Succes-
sive queries increase knowledge of the hidden parameter g of
the group action. Naturally, the ideal method for extracting
information from the queried channel varies with the structure

S-QHT

P-QHT

R-QHT

FIG. 5. Inclusion relations among problems formally defined in
this work. Four major problems are discussed: S-QHT (Problem I.1),
G-QHT (Problem 1.2), R-QHT (Problem II.1), and P-QHT (Problems
III.1 and IV.1), referring to set, group, rotation, and polynomial quan-
tum hypothesis testing, respectively. Each region in the inclusion
diagram contains nontrivial instances.

of G. Taking inspiration from algorithms for quantum sensing
in the serial query model, we thus might naturally consider the
flexible, recently developed techniques of QSP [21-24].

QSP is a powerful quantum algorithmic primitive to imple-
ment matrix polynomials on quantum computers under only
mild constraints [21]. Analysis of QSP has enabled intuitive
constructions for asymptotically optimal algorithms in a range
of settings from Hamiltonian simulation [23] to the quantum
linear system problem [25] in [21,26,27]. For our purposes,
however, we need only to consider the guarantees of the form
of QSP protocols, succinctly stated in the following two theo-
rems. Before this we briefly address an issue of notation.

Definition II.1. In this work the convention when referring
to the Pauli operators is

= (o) o= 0) o B)e

and moreover we will often refer to a linear combination of
such operators following the convention

0z = 0, cos& + oy siné, 3)

where this construction will often be used in the context of
defining a rotation about a fixed axis on the Bloch sphere,
namely,

R:(0) = exp{—i(0/2)0¢}, 4)

where this is distinct from the convention of Ref. [21].
If the index is Latin instead of Greek, e.g., R.(6), then
exp{—i(6/2)o,} is meant: rotation about the % vector.
Theorem I1.1. In Ref. [21]. Let k € N; there exists ® €
R*+! such that for all x € [—1, 1]
k
o [ Jw ) e7)

Jj=1

_ Px)
- \ig* (V1 —x2

iff P, Q € Clx] satisfy the following properties.

(i) deg(P) =k and deg(Q) =k — 1.

(ii) P has the same parity as kK modulo 2, while Q has the
opposite parity.

(iii) Forallx € [—1, 1], P and Q satisfy P(x)P*(x) + (1 —
)00 (x) = 1.

Theorem II.1 asserts that QSP protocols, which involve
interleaving rotations about orthogonal axes (one of these
rotations by a fixed, unknown angle, and the other by an
unfixed, known angle), result in unitary operators whose el-
ements are polynomials of the unknown rotation angle. These
polynomials are under constraints necessary and sufficient to
ensure the resulting operator is unitary. While the constraints
of Theorem II.1 are nonintuitive for one wishing to solve the
reverse problem (i.e., go from polynomial to a unitary operator
in which the polynomial is embedded), the following theorem
addresses precisely this concern.

Theorem I1.2. In Ref. [21]. Let k in Z* and let P/, Q' €
R[x]; there exists some P, Q € C[x] satisfying the require-
ments of Theorem II.1 such that P’ = Re(P), Q' = Re(Q)
iff P’, Q' satisfy the first two requirements of Theorem II.1
and additionally P’(x)?> 4+ (1 — x*)Q'(x)> < 1. The proof of
this statement follows constructively from a provably efficient

i0(x)a/1 — x2

P*(x), ’ ©)
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(e.g., polynomial in k) algorithm to build the missing complex
parts of P and Q.

In Theorem I1.2 the operator W (x), the signal being pro-
cessed, will be analogous to the quantum channel £ we wish
to discriminate in G-QHT. That said, the utility of these the-
orems is not immediately clear: the form of W (x) (rotation
about a known, fixed axis) is far simpler than the members
of the query set considered in G-QHT for arbitrary finite
subgroups of SU(2).

In the interest of making progress, we can thus modify the
statement of Problem 1.2 such that QSP stands a fair chance
of providing a solution. Specifically we can write out the
generic form of a QSP-based algorithm that perfectly decides
any finite set S = {R.(6¢)}eern € [—m, w)" under the map
R.(6¢) = exp{—if;/20,}. Note that here S need not be a group
under composition. This modified version of the G-QHT game
is discussed in Problem II.1.

Problem I1.1. The rotation QHT problem (R-QHT prob-
lem) is a simplified version of the G-QHT problem (Prob-
lem 1.2) with the following structure. Given query access
to a single-qubit quantum channel from among a finite
set § where each channel has again the form R:(6;) =
exp{—i(6;/2)[cos o, + sin&oy)]} for distinct, known 6; and
known rotation axis &, determine the queried channel with
certainty in the serial adaptive query model.

Note that R-QHT problems are not a subset of G-QHT
problems, save in the case that the set of angles {6,} are all
distinct integral multiples of 27 /n for positive integral n (i.e.,
S represents a cyclic group).

As the rotation operators discussed in the R-QHT problem
satisfy the form expected of the W (x) operator in QSP, the
methods of QSP suggest a neat prescription for a quantum
algorithm (Algorithm 1) with classical subroutines such that
the output is a solution for the R-QHT problem. We discuss
assumptions on the input, output, and structure of Algorithm
1 in Remark II.1, give definitions for its classical subroutines
in Definition 1.2, and further remark on where the nontrivial
aspects of Algorithm 1 lie in Remark II1.2.

Remark I1.1. We present a series of data structures which
together define both an instance of the R-QHT problem
(Problem II.1) and its solution, toward a concrete algorithm
(Algorithm 1).

Input. Any instance of R-QHT presupposes access to clas-
sical information in the form of a list of distinct angles
{6, € [0, 271}, £ € [n]. R-QHT also presupposes access
to a quantum oracle which, when called, applies a quan-
tum channel channel R; (6;) for fixed i about some known
fixed axis &.

Output. In the serial adaptive query model on qubits, a pro-
jective measurement is an evaluation of a probabilistic
binary function on possible hidden indices j € [n] for
the applied channel. An R-QHT algorithm’s output is
one of these indices, where success is dictated by high
probability* of or certainty in returning the proper hidden
index i.

“In the noiseless case, we consider only deterministic algorithms.

Assumptions. The result of the evaluation of a set of these
functions (corresponding to m binary measurements),
fj 1 [n]1— {0, 1}, j € [m] on the hidden index i of the
queried channel, is a composite function g : i — {0, 1}"
defined as g(i) = f1(i)f2(0) - - - fun (D).

If this function is injective for all j € [n], then the algo-
rithm generating the f; solves R-QHT.” Equivalently the
algorithm computes a series of m equivalence relations
on the set of rotation angles {0,}, £ € [n] such that every
element is uniquely defined by its membership under
these m bisections.

Definition I1.2. A quantum algorithm solving the R-QHT
problem (Problem II.1) is referred to simply as an R-QHT
algorithm, where solves indicates that it satisfies the input,
output, and structural assumptions presented in Remark II.1.

In addition, toward an explicit description of one such
R-QHT algorithm (Algorithm 1), we define four classical sub-
algorithms whose application together constitutes the classical
subroutine of Algorithm 1).

genBisection. Given a group representation G and a
(possibly empty) set of evaluations of previous binary
functions fj : Sj — {0, 1} for Sj - Sj_] c...C§ C
G, returns a description of fj 1 :Sj 1 — {0, 1}, where
Sj41 € 8 is a subset of §; on which f; is constant.

The choice of fji is not arbitrary but instead depends
heavily on the embedding of G in a larger continuous
group. Examples for methods of choosing these f; can
be found in the concrete algorithms of Sec. IV. Further
discussion of the properties of these functions is also
covered in Remark II.2.

Note that in Algorithm 1, the description of f;;; can be
used to compute f;41(i) on the hidden index, oblivious
to the hidden index.

genRealPoly. Given a description of f;, defined on some
subset of group elements §; € G, where each s € S;
is parametrized by some distinct real parameter 6, €
[0, 27 ] for £ € ||, returns the minimal degree real poly-
nomial p; satisfying |p;(arccos ;)| = f;(s[6,]) for all
0¢, and where |p;(0)| < 1 for 6 € [0, 27 ]. In addition p;
is of definite parity on [—1, 1].

Methods for computing constrained interpolating polyno-
mials are numerous and well studied, composing the
discussion of Sec. III.

genComplexPoly. Given a real polynomial p; satisfying
the constraints of the output of genRealPoly returns
a pair of complex polynomials (P;, Q;) on [—1, 1],
each of definite parity and satisfying P;(x)* + (1 —
x*)Q;(x)* = 1forx € [—1, 1]. Moreover Re(P;) = P} =
p; and Re(Q;) =0. One implementation is given in
Ref. [21].

5This is a nontrivial condition to satisfy, but in most instances it
can be thought of as assigning a binary tree’s labels to each of m
channels. This is the subject of Remark I1.2.
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genPhases. Given two polynomials (P;, Q) satisfying the
constraints on the output of genComplexPoly returns a
set of phase angles ®; € R¥"! satisfying Theorem II.1.
This subroutine also returns a classical description of
two quantum states, y; and V¥, the former an initial
state and the latter a state with respect to which a pro-
jective measurement is performed to compute f; on the
hidden index, i.e., fj(i). These states are efficiently com-
putable and project out p;, equivalently (W;|U¢j ;) =
pj» where Uy, is the QSP unitary generated by ;.

Methods for computing these phase factors are numerous
[21,26,28]; all affirm that this computation is efficient
and stable, using existing techniques in classical opti-
mization.

We denote by My, (|Y)) the measurement projecting [v/)

onto {Mo, M1} = {|¥;) {1, 1 — ;) (¥}, returning b
upon measurement of M.

Remark I1.2. The difficulty in Algorithm 1 stems from se-
lection of the proper functions f; : §; — {0, 1} for subsets
S; € § of the query set of fixed-axis rotations (equivalently
computing genBisection in Definition I1.2).

As each f; takes values on §; in {0, 1}, they can be thought
of as labels dividing or bisecting the query set; the result of
QSP is to make the quantum computation of these f;’s on
the hidden index i deterministic. A series of these f;’s thus
forms the levels of a binary tree whose bisection condition
is the result of a projective measurement onto {|1ﬁ;) , W}l)}.
We discuss the desired properties of this binary decision tree;
these principles foreshadow the properties discussed in Theo-
rem [V.1.

(i) An efficiently searchable binary tree should be bal-
anced; different channels should have binary labels according
to the tree which differ as early as possible, and equivalently
each f; should divide the remaining query set roughly in half.

(ii) The discrete f; objects are accessed by interpolating
polynomials in a continuous embedding space, and as the
minimal degree of such polynomials correspond to algorith-
mic performance, we desire that the f; functions subdivide
the search space into subsets which have a larger average®
distance between elements in the natural metric of this space.
Equivalently proximate elements in the binary tree are also
proximate in the embedding space.

(iii) Each leaf of the binary decision tree must correspond
to no more than one channel. If each (probable with respect to
measurement) leaf corresponds exactly to one channel, then g
in Remark II.1 is not only injective but bijective.

(iv) The f; must have definite parity in the continuous
embedding space, here SU(2); this parity constraint, requisite
for the use of QSP, follows from properties of SU(2).

Algorithm 1 and its supporting remarks show that, at least
for a special set of channels, our hopes of computing suc-
cessive equivalence relations on subsets of S to iteratively
determine the hidden query element rest on the construction
of low-degree constrained polynomials over real variables.

®This is purposefully left ambiguous at this moment; we wish to
lower the required derivative of the interpolating polynomial.

Moreover, as stated in Remark I1.2, most of the difficulty
of this algorithm resides in designing the binary functions f;.
The sequence of equivalence relations fi, fa, ..., fi, Which
together uniquely define the hidden index i, needs to be prop-
erly chosen such that (1) the degrees of their polynomial
interpolations are not too large and (2) the concatenation of
their evaluations is invertible on every i; luckily these condi-
tions are not so complicated to achieve in practice.

For example, we can see one such set of f; in observing the
“QSP-free” decision algorithm for Cy» in Lemma 1.1, namely,
fi()) =i (mod 2/) for j € [n]. Bvidently in this simplest case
the family of f; defines precisely a binary search on the hidden
channel index (and consequently the equator of the Bloch
sphere under the map i — &;). What remains to be shown is
the generalization of such a search.

It turns out that Algorithm 1 can indeed be extended to
more interesting channel sets than single-axis rotations (i.e.,
that we can lift R-QHT problems to G-QHT problems). How-
ever, before investigating the flexibility of Algorithm 1 as a
subroutine, we first briefly address methods in constrained
polynomial interpolation. This analysis, in addition to closing
the loop on the R-QHT problem and its query complexity,
will demonstrate the methods by which the optimal query
complexity of R-QHT is computed and provide a foundation
for generalizing to G-QHT.

III. CONSTRAINED POLYNOMIAL INTERPOLATION

In the previous section we reduced the solution of Prob-
lem II.1, a simplified version of G-QHT, to the existence
of interpolating polynomials over real intervals. Moreover
we asserted that, despite the restrictive form of the queried
channel W (x) considered in QSP, the guarantees of Theorem
II.1 were still strong enough to enable discrimination among
channel sets whose structure was richer than rotations about
a fixed axis. This section considers one concrete interest of
a party playing R-QHT: how can a computationally limited
classical party compute ® for a QSP algorithm such that the
resulting matrix polynomials induce measurements obeying
the prescriptions of Algorithm 1.

This is a problem of constrained polynomial interpola-
tion. More generally, the field of functional approximation,
in which this problem lives, is well understood [29-34] given
its practical instantiations in classical signal processing and
relevance to foundational questions in real analysis. We quote
the following results in constrained polynomial approxima-
tion and present their synthesis as a theorem guaranteeing
desired properties for the algorithms that will be constructed
in Sec. IV for specific finite groups. Additionally, these re-
sults provide quantitative bounds on the query complexity of
solutions to the R-QHT problem discussed previously.

We present a further sharpening of R-QHT (Problem II.1);
this new problem, P-QHT, is similar to R-QHT but provides a
new quantitative condition on the performance of an algorithm
solving R-QHT.

Problem 111.1. The polynomial QHT problem, or P-QHT
problem, answers the following question. Given an instance of
the R-QHT problem (Problem II.1), which implicitly defines
a set of angles {f,}, what is an upper bound on the sum
of degrees of the set of polynomials {p;} which interpolate
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binary functions’ fi, f5, ..., f. satisfying Remark II.2. This
upper bound depends only on {6,}.

Toward analyzing the minimal degree of such interpolating
polynomials as desired in Problem III.1, we give a series of
older results from works in constrained interpolation.

Theorem III.1. In Ref. [30]. Let E={x; : x <x <

- < x,}, a set from the real interval [a, b], and P, the set
of polynomials. For all € > 0 and for each f € Ca, b], the
continuous functions on [a, b], there exists p € P such that
the following conditions are satisfied.

(1) pisinterpolating: p(x;) = f(x;) Vx;.

(i) The polynomial p approximates f on [a, b],

max - |p(x) — f(x)] < €.
x€la,b)
(iii)) The polynomial p obeys the additional constraint

max |p)| = max |f(x)]

Theorem II1.2. In Ref. [35] Let v index an increasing se-
quence of finite-dimensional approximation subspaces N, in
C(T), where T is a topological space whose union N is dense
in C(T). If T is compact Hausdorff then the degree of the ap-
proximation with Lagrange (function value) interpolatory side
conditions E, (f, A) is related to the degree of the unrestricted
approximation E, (f) by the inequality

lim sup E(.4)
vsoo  Ey(f)

where the constant 2 cannot be decreased in general and is the
best possible in the uniform approximation of (i) entire pe-
riodic functions by trigonometric polynomials and (ii) entire
functions on any closed finite interval by algebraic polynomi-
als.

Corollary I11.2.1. In the context of constrained polynomial
interpolation the statement of Theorem III.2 can be made less
general as follows: Given a real interval [a, b] and a real
polynomial f of degree d which interpolates a function g on
[a, b] at d distinct points in [a, b], the minimal degree of a
polynomial which interpolates g at these same points and has
a norm strictly less than ||g|| on [a, b] is bounded above by
2d as d goes to infinity and moreover this bound cannot be
decreased in general.

Theorem I11.3. In Ref. [31]. Let n € Z" and let x; =
cos6;, where 0; < 0, < --- < 6, € [0, 2] and the minimum
separation between adjacent ; (on the unit circle) is given by
& > 0. Given any real function f € C([—1, 1]) there exists a
polynomial p such that the following conditions hold.

(i) pisinterpolating: p(x;) = f(x;) Vx;.

(i) The polynomial p is of degree 2m < ¢/8, where ¢ > 0
is some absolute constant.

(iii) The following inequality holds where the infimum is
taken over the space of all polynomials g of degree at most 2m

<2 VfeCT)\N,

"Note that for our purposes it is often not important to distinguish
between {£}, the set of indices, and {6,}, the set of angles. While the
degree of the interpolating polynomial depends on these angles, this
dependence can be simplified by promises of separations between
neighboring 6,.

and k is a constant independent of f and n:
- < ki — .
xerp_agfulf(X) P < k;gf) (erP_afﬂ]'f(x) q(X)I)

Theorem Il1.4. Let E = {x;}je(n, Where x; = cos6; and
where 6 < 6, < --- <6, € [0, 2] such that the minimum
separation between adjacent 6; (on the unit circle) is given
by § > 0. Then given any real function f € C([—1, 1]) there
exists a polynomial p such that the following conditions hold.

(i) pisinterpolating: i.e., p(x;) = f(x;) Vx;.

(i) The polynomial p is of degree m = O(1/8§).

(iii) The polynomial p satisfies the following inequality:

max |p(x)| = max [f(x)].
xe[-1,1] xel-1,1]

Proof. The existence of this polynomial is assured by The-
orem III.1, the scaling of the degree of the unconstrained
(uniformly approximating) polynomial is given by Theorem
II1.4, and that of the constrained polynomial’s degree does not
grow too large with respect to the unconstrained polynomial’s
is given by Theorem III.2. ]

Finally, we present a lemma which permits us to apply all
of the above results in the context, mandated by QSP, that
the constrained interpolating polynomials used have definite
parity.

Lemma I1I.1. If there exists a polynomial of degree n in-
terpolating a set of points which has (the point set) definite
parity, and the polynomial is of a fixed norm, then there exists
a polynomial of degree m < n which still interpolates the
points and which has the same parity as the points. Proof
follows by re-expressing the polynomial as a sum of terms
with definite parity and observing that the component of parity
matching those of the interpolation points still satisfies the
desired properties.

The results of this series of theorems, and particularly the
assurances of Theorem III.4, permit us to justify the idealized
claims of the classical program discussed in Algorithm 1, at
least for cyclic groups. That is, given that the quantum chan-
nels considered can be (at least for the case that G is cyclic)
distinguished by their eigenvalues, the methods of QSP and
the assurances of Theorem II1.4 together imply that there exist
computationally cheap, flexible quantum algorithms whose
measurement results are themselves deterministic functions
on the discrete set of possible channels.

With respect to a resolution of Problem III.1, this section
has provided a key observation: the minimal degree of the
interpolating polynomial on a set of angles {6;}, as in the
R-QHT problem, is linear in both the number of interpolation
points and max  1/|6; — 6|, the minimal separation between
(distinct) queried angles.

Once the interpolating polynomials p; are computed, the
path to generating QSP angles ®; is well understood and
computationally efficient (i.e., polynomial in the degree of the
interpolating polynomial). There are many ways to perform
such a computation, both analytically [21] and by numeri-
cally stable computations [26]. Moreover, the interpolating
polynomials can be computed in any number of ways, usually
relating to a modified Remez-type algorithm [36,37].
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IV. DECISION PROTOCOLS ON FINITE SUBGROUPS
OF SU(2)

We now close the loop on our simplification of G-QHT in
Problem 1.2 to R-QHT in Problem II.1 and, finally, through
Algorithm 1 to a problem in polynomial interpolation where
the degree of these polynomials relates directly (by the results
of Problem III.1) to the query complexity of the solution to
R-QHT. In this section we finally address the more general
problem of G-QHT for small groups G.

For each finite subgroup G < SU(2), we provide con-
structive proof that there exists a series of binary functions
fi, fo, ..., fm and a series of protocols to access sets of rota-
tions about known, fixed axes for which the polynomials that
interpolate each f; can be explicitly described, computed, and
characterized in terms of degree. Once this degree is known,
the expected query complexity of these algorithms follows by
the results of Sec. III. Before this, however, we extend the
statement of P-QHT (Problem III.1), which as stated applied
only to sets of rotations about a fixed axis, to sets which obey
more general structure.

Problem IV.1. The P-QHT problem (Problem III.1) can be
extended given the following prescription on a solution form.
We begin with the standard statement of G-QHT: given query
access to one quantum channel among a faithful represen-
tation of a finite group G < SU(2) determine the optimal
query complexity of an adaptive serial query model algorithm
that determines the hidden index of the queried channel with
certainty.

Importantly, however, for P-QHT to provide a solution, one
must be able to transform the query set in a special way; this
reduction follows from the conditions given below.

(i) There must exist a series of protocols, given query
access to a channel set S, for generating compound queries®
(see Definition IV.1) whose structure is (1) precisely a set of
rotations by known angles around a fixed axis (i.e., inputs to
the R-QHT problem satisfying Remark II.1) or (2) a subset
of a finite group G’ for which a decision algorithm is already
known.

(i1) In the case of (i) as given above there must exist a
solution for P-QHT (Problem III.1) for the new query set.
There must also exist some additional assumption, specific to
the structure of S, that permits the compound query map used
to be invertible. This is accomplished in different ways for dif-
ferent groups, e.g., under the assumption that the represented
group is a semidirect product, as in Theorem IV.2.

Definition IV.1. A compound query with respect to a quan-
tum channel £ : A — B is a quantum circuitC : A — B which
uses a finite number of copies of £ as well as a finite number
of additional unitary operators independent of £.

Compound queries are often used by quantum algorithms
(e.g., Algorithm 1) in place of bare queries, i.e., simply &;.

8In simple terms one may think of these as small quantum circuits
which employ a small number of queries to the original oracle and
may be used as subroutines replacing oracle calls for a protocol
expecting queries of a different form. Multiple physical queries can
form one compound query.

Usually, useful compound query circuits do not act injectively
on the query set.

Remark IV.1. The extended statement of the P-QHT prob-
lem (Problem IV.1) exists to answer the following question:
how far can Algorithm 1 be taken beyond its role as a solution
to R-QHT?

Consequently each of the algorithms discussed in this sec-
tion is, in truth, simply (i) a procedure for reduction to R-QHT,
followed by (ii) application of Algorithm 1. When reduction
is made to deciding a simpler group, the application of Algo-
rithm 1 is hidden behind algebraic abstraction.

We go through the finite list of distinct families of fi-
nite subgroups of SU(2) in order of increasing complexity,
recovering instances of Problem IV.1 as stated above. As a
road-map we provide the following lemma, which completely
characterizes the finite subgroups of SU(2). A diagram of the
path of these reductions is given in Fig. 4.

Lemma IV.1. The finite subgroups of SU(2) are in bijection
with the finite subgroups of SO(3) under the standard double
covering SU(2) — SO(3). These finite subgroups are thus
completely described by five families: (i) the cyclic groups
of order n, C,, n € Z*; (ii) the dihedral groups of order 2n,
Ds,, n € Z™; (iii) the alternating group on four elements, A4;
(iv) the symmetric group on four elements, S4; and (v) the
alternating group on five elements, As.

A. Cyclic groups

Before lifting the methods of Lemma I.1 from Cy to gen-
eral cyclic groups we provide a few lemmas.

Lemma IV.2. The cyclic group of order # is isomorphic to
the direct product of cyclic groups

~
C, = Cprll X Cp;z X oo X Cpps,

iff the unique prime decomposition of n is

n=[1r" (6)
i=1

for distinct primes p;. That is, C, is isomorphic to a direct
product of cyclic groups of prime-power order for all maximal
prime powers dividing n. This is one statement of the Chinese
remainder theorem.

We proceed to analyze decisions on C, by a series of
reductions to decisions on the more restricted (albeit infinite)
family of cyclic groups of prime order.

Lemma IV.3. If there exists a family of algorithms F =
{Ac,} that each perfectly decides C), for all primes p then there
exists an algorithm A, that perfectly decides C, for n € N
and which is asymptotically optimal in query complexity if
the algorithms in F are also optimal.

Proof. Any positive integer n has a unique decomposi-
tion into a product of primes as given in Eq. (6), where r;
is the multiplicity of the ith smallest prime dividing n, p;,
and s is the largest index for which p; divides n at least
once.

Assuming the existence of a deterministic algorithm Ac,,,.
that can perfectly decide C,,, elements of the group C, are
decided according to the following protocol.
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(1) If the multiplicity r; of p; in n is 1, in the place of the
query usually made by the protocol ACW , query the oracle n/p;
times. This compound query may be conjugated by a known
unitary to achieve the representation that A, expects.

(i) If the multiplicity of p; in n (;) is greater than 1,
the same method presented in the Lemma 1.1 is applied to
compound queries of order n/p} to read off successive bits
(this time in base p;) of r;, using the assumed subroutine for
deciding Ac, .

Compouna queries allow access to prime-power-order
cyclic subgroups of C,, whose decision algorithms are strictly
simpler and reducible to decisions on C,, for p prime. ]

We proceed by considering a result concerning the smallest
nontrivial cyclic group, Cs, with which to play G-QHT. This
can be thought of as a base case for our eventual reduction
from decision protocols on large cyclic groups to smaller
ones.

Discriminating between quantum channels representing C;
has some precedent in prior work: such channels are precisely
those which can generate the Peres-Wootters states [38,39]
or equivalently the Mercedes-Benz frames [40,41] (for their
threefold symmetry).

Lemma IV.4. There exists an algorithm A¢, that perfectly
decides C; (or rotations about a fixed axis on the Bloch sphere
by one angle among the three-angle set {0, 27 /3, 477 /3}) us-
ing at most six oracle queries. This algorithm is said to solve
the three-angle problem.

Proof. Without loss of generality the group Cj
is represented by the set of quantum channels
{Ro(0), Ro(27 /3), Ro(47 /3)}. Consider the QSP sequence
defined by QSP phase list & = {0, —«, @, 0} using the
convention of Theorem II.1, i.e., the product

Up = Rc(0)R: ()R (0)R(—at)R,(0), )

for any angle 6. It is not hard to explicitly compute the
top left component of this unitary operator, and specifically
for the special angle o = arccos(cos8/[1 — cos 6]), which is
real whenever /3 < 6 < 5m/3, the top left component of
this unitary (0|Us|0) is 0. Consequently with three queries
to the oracle, and o = arccos(—1/3), the transition proba-
bility |0) + [0) is 1 if 6 =0 and O if 6 € {27 /3, 47 /3}.
Consequently three additional queries are enough, possibly re-
placing R, (0) with R, (0)R,(—2m /3) in Eq. (7), to completely
and perfectly determine the hidden angle. Over equal priors
the expected query complexity of this technique is 5.

Alternatively in the language of Theorem II.1, we intend
that the top left element of Ug, under the map cos6/2 +— x,
has the form

fil) = 3x(x = 1/2)(x + 1/2),

which is a polynomial® that takes modulus 1 at x = —1 and
x = 1, has definite parity, and takes value 0 at x = +1/2. This,
along with fj(x) under the map 0 + 6 — 27 /3, produces a

‘Note that (4/3)(x — 1/2)(x + 1/2) also satisfies constraints re-
quired by QSP, and indeed this lemma can be shown using only
four maximum (10/3 expected) oracle queries, though the resulting
protocol is less geometrically obvious.

pair of binary measurements for which the map'® S > M is
injective where M is the set of binary measurements.

{1,0} 6 =0,
{(+|Us|+) . (+|Us|+)} = 1 {0, 1} 6 =27/3,
0,0} 6 =4m/3,

where Uy, is the aforementioned prerotation replacing Ry ()
with R, (6)R.(—2m/3) or equivalently 6 — 6 — 27 /3. A vi-
sual depiction of this algorithm is given in Fig. 8, and a table
relating this Lemma’s construction directly to Algorithm 1 is
given in Table L. n

The functional intuition of protocols deciding on represen-
tations of cyclic groups is depicted in Fig. 8. As discussed
previously, QSP protocols take equiangular rotations about
different axes in the equator of the Bloch sphere (see Fig. 7),
interleave them with rotations about orthogonal axes on the
Bloch sphere, and give efficient methods for forcing the cor-
responding matrix elements of the final, composite rotation
to be desired trigonometic polynomials in the unknown ro-
tation angle. Figure 8 demonstrates that polynomials which
have modulus 0 or 1 at specific angles result in deterministic
protocols for dividing the search space. The work remaining is
to systematize subprotocols of this form to generate efficient
decision protocols on the entire query set.

Finally we can provide a proof for perfect decision proto-
cols on all prime-order cyclic groups, and in fact this shows
an even stronger result as the same method goes through for
cyclic groups of any odd order. However, given the results of
Lemma IV.3, QSP is only a necessary tool in the prime-order
case, when compound queries provide no helpful simplifica-
tions.

Theorem IV.1. There exists a family of deterministic al-
gorithms F = {Ac,} for all primes p, where Ac, perfectly
decides Cp, with asymptotically optimal query complexity.

Proof. The proof follows from the existence of a family
of polynomials fi, f>, ..., f,, whose moduli take values in
{0, 1} on a finite set of subsets {S;} for j € [m] of the set of p
possible phases Sy induced by queries to the oracle, namely,

N
So = {cos <—> ne [p]},
4

such that that the successive subsets So 2 S| 2 --- D §,, have
the following'! properties.

(i) Bisecting. The order of §;.; should satisfy that
[Sj+1] < (1/¢)|S;] for some fixed constant ¢ = O(1).

(ii) Density reducing. The minimum separation between
elements of S;;; on which the modulus of the interpolating
polynomial f;; takes distinct values should increase expo-
nentially in j.

(iii) Totally deciding. Constructing a family of interpo-
lating polynomials p; whose moduli take values in the set
{0, 1} on §; is equivalent to computing a family of binary

105 is overloaded here: referring to either channel elements them-
selves or the continuous real parameter 6 characterizing these
elements. Note also that this map can be written as a binary tree as in
Fig. 6.

T Also described in Remark II.2 and Fig. 6.
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TABLE I. The use of Algorithm 1 as a subroutine for solving the three-angle problem (Lemma IV.4) in tabular form. As p;’s for j € [m]
completely define both f; and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal explicit demonstration
of the use of Algorithm 1. Included are quantum states for preparation, |;), and measurement, |v/}), as well as the compound query map
(Definition IV.1), where Algorithm 1 is fed compound queries. Finally, an inverse map is given to recover the hidden channel.

Index Query map pj ;) ¥
ji=1 &> & (4x’ —x)/3 [+) |£) = {0, 1}
j=2 & ER(—2m/3) 4x* —x)/3 [+) |£) — {0, 1}

{0, 1} — R.(0)
(i), L(ED} =

(1,0} > R.(27/3)
(1,1} > R.(47/3)

(Inverse map)

functions f; on C,; the evaluation of these binary functions on
the hidden channel corresponding to g € C, should uniquely
identify g. That is, this map g — {0, 1}"* should be injective
(see Fig. 6).

(iv) Parity preserving. The elements of S; should be of
definite parity for all j; this parity is shared by all p;.

If all of these conditions are satisfied by some judicious
sequence of S; the result follows if the number of such non-
trivial subsets of S, given by m, is asymptotically log p and the
degree of the polynomial p; goes as O(p/c’), in which case
the entire protocol has query complexity linear in p.

The existence of these interpolating polynomials is guar-
anteed by the results of Sec. III, while their asymptotic query
complexity follows directly from exponentially increasing
promised gaps between elements of S;. For a given group C,,,
these subsets §; have the explicit, measurement-dependent,
form

So = So,
S? ={sx € Sj_1, fi—1(sx) =0},
Sjl. ={sy € Sj1, fi1(sx) =1},

where the new S;’s upper index indicates the measurement
result of the QSP sequence dividing the search space and is
subsequently dropped as this iterative division continues. The
functions f; are defined as polynomials which interpolate any
binary function on the set §;_; which alternates maximally
with definite parity on [—1, 1] (f; will share this parity). These
functions have an explicit description, e.g., when given some
subset S; of size 2n + 1, indexing by ¢ for increasing s, in
[—1, 1],

1
s+ (=D, 1</
+1

fj(X@): {%[l_i_(_l)e—l], n

This evidently preserves parity and confers the right properties
on successive subsets. In plain terms this is a binary search
whose constituent subsearches grow exponentially cheaper in
query complexity and whose base case is handled by Lemma
Iv4.

Finally, by the previous results we can make a statement for
all cyclic groups and proceed to richer subgroups of SU(2).

Corollary IV.1.1. For all n € N, there exists a deter-
ministic algorithm A¢, which perfectly decides C,, with
asymptotically optimal query complexity. This follows di-
rectly from Lemma IV.3 and Theorem IV.1. |

B. Dihedral groups

We consider the dihedral groups of order 2n; it is not
too difficult to see that each bit-string label for an element
g € Dy, requires exactly one more bit to uniquely describe
the element, corresponding to membership of g in one of two
cosets of the normal cyclic subgroup C,<1D,. We show that
this bit can be recovered in one additional measurement and
that our protocol is thus optimal assuming the optimality of
the protocol which decides C,,.

Theorem IV.2. Assuming the existence of an algorithm A,
that perfectly decides C, there exists an algorithm Ap, that
calls Ac, as a subroutine and perfectly decides D,,, the
dihedral group of order 2n, with one additional oracle query.
A depiction of the overarching idea of this algorithm is given
in Fig. 9, and its concrete form in Table II. .

Proof. Without loss of generality, Ap,, has oracle access
to a channel in a representation of D,,, whose cyclic subgroup
C, in SU(2) has representation:

{R:(m2m /n)}, m € [n]. ®)

TABLE II. The use of Algorithm 1 as a subroutine for deciding on dihedral groups D,, (Theorem IV.2) in tabular form. The table proceeds
until reduction to C, is achieved (i.e., after the first query); this query rotates to the basis in which o (the generator of C,<1D,,) acts trivially
on {|%)}. Once coset membership in the maximal cyclic subgroup of the queried element is known, it can be inverted and applied to form
compound queries that reduce the query set to C,, given in Corollary IV.1.1. Here C’ is an unknown power of o.

Index Query map

P 1) )

j =1 (‘3,‘ g Rg(—n/Z)S,RE(n/Z)

_J{0,.. .} > exC!
{fi(€), f(ED) = {{1,---} > T *C;

x [+) |£) = {0, 1}

(Inverse map)
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FIG. 6. Binary search as enacted by Algorithm 1. Algorithm 1 takes binary functions f; on subsets of Sy, specifically

a quantum algorithm that maps elements s on which f; takes value {0, 1} to orthogonal quantum states {|/;

Measurement in this basis determines the new query set ij.i’fl(x)
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iy Iwif I respectively.

, and the process is repeated until each leaf of the binary tree contains at

most one quantum channel. The notation s here is overloaded, indicating both the quantum channel and the continuous parameter defining the
channel. For extension of this concept from R-QHT to G-QHT, see Remark 1V.3.

The SU(2) embedding of D,, that contains our embedding of
C, as a subgroup is generated by a generator of this C,, o, and
another group element, t, which without loss of generality has
representation R, (7). The standard presentation of D, is

2

Dy, ={o,t|0"=1"=1t0T0 =¢}. 9)

The lemma follows if there exists a simple protocol to, given
query access to an unknown element g € Dy,, determine
membership of the queried element g among the two cosets
of Cn < D2n'

Assume U (g) is the unitary operation corresponding to the
group element g embedded in SU(2) as stated. Then,

HU((c))H |0) = |0), (10)

HU(0)U((o)H |0) = [1), (1)

where H is the Hadamard gate and U ({o)) represents some
unitary operation within the subgroup (o) generated by o.
Intuitively, H rotates |0) to another state insensitive to the
action of the cyclic index 2 subgroup of D,,. This follows
from the lack of irreducible representations of C, in SU(2).

If |0) is measured then A¢, can be applied as normal to
future queries, respecting the embedding of the subgroup (o).
Otherwise any query made to the oracle U(g) is prefaced
by R, (), reducing to a decision on C,. Only one additional
query is needed by Ap,, to decide D», (a group with twice the
size). |

C. Platonic groups

Finally we address protocols for the finite subgroups of
SU(2) that do not fit into countably infinite families and that
exhibit a nonabelian structure richer than that of the dihedral
group. These are often referred to as the platonic groups due to
their appearance in the study of symmetry groups of platonic
solids. Before discussing protocols for deciding A4, S4, and As
we define two basic group theoretic concepts that will aid in
their construction.

Definition IV.2. (Cycle decomposition). Let S be a finite
set, e.g., the integers {1, 2, ..., n}, and o a permutation S —

S. The cycle decomposition of o expresses o as a product of
disjoint cycles. For instance, if S has size 4 and the action of o
swaps pairs 1, 2 and 3, 4, then the cycle decomposition of o is
denoted (1, 2)(3, 4), where the order of tuples is not uniquely
defined.

Definition IV.3. (Cycle type). Let S be a finite set, for in-
stance, the integers {1, 2, ..., n}, and o a permutation S — S.
The cycle type'? of o is a tuple indicating the number of
cycles of each given length in the cycle decomposition of o .
For example, for the example given in Definition IV.2, the
cycle decomposition (1, 2)(3,4) has cycle type (0,2, 0, 0),
indicating two length-two cycles.

Note that the set of all possible cycle types is in bijection
with unordered partitions of the integers in {1, 2, ..., n}; i.e.,
for cycle type tuple ¢, the sum of ¢; - j for j € [n] is simply 7.

Theorem IV.3. There exists a deterministic algorithm Ay,
that perfectly decides A, with asymptotically optimal query
complexity. This algorithm is additionally given in Table III.

Proof. The elements of A4 can be classified according to
their cycle type as permutations on four elements. For Ay4
these types are (1, 0, 1, 0), (0, 2, 0, 0), and (4, 0, 0, 0) (the last
being the identity permutation).

Cubes of any element in A4 have cycle type (0, 2,0, 0)
or (4,0,0,0) only, meaning that if the queried element g
is already in one of three representations for the D4 nor-
mal subgroup of A4 then running the D, algorithm on cubes
of physical query elements gives the correct answer, and
otherwise acts as if the queried element were the identity.
This element can be determined in, at most, three com-
pound queries deterministically, measuring in three mutually
unbiased bases on the Bloch sphere, corresponding to the
eigenstates of each of the generators of the chosen D, sub-
group.

Given that Ay = D4 x C3, all elements g can be written
in the form kh, where h is drawn from a chosen normal D,

12The cycle type is sometimes defined as a tuple of the lengths of
each cycle in the cycle decomposition, rather than the number of
cycles of each given length.
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TABLE III. The use of Algorithm 1 as a subroutine for deciding on A4 as in Theorem IV.3 in tabular form. As p;’s for j € [m] completely
define both f; and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal explicit demonstration of the use of
Algorithm 1. The p;’s given here have also had their QSP angles explicitly given in Lemma IV.4. Here D * C; indicates a group element in
the semidirect product defining A, which is the product of g, an element of the chosen D, normal subgroup in terms of generators {a, b} and
an unknown element of the chosen C; subgroup. Axes x and x” are chosen such that these rotations generate the chosen D, subgroup, and x” is

the axis of rotation for the chosen Cs.

Index Query map Dj [¥;) ¥}
j=2 & = Ru(/2)(E) R(—7/2) x [+) |£) =~ {0, 1}
j=3 &> Ry /2)(E) Ry (—7/2) x [+) |£) = {0, 1}
j=4 &+ EicorrectCoset(f4(&)) 4x’ —x)/3 [+) |£) — {0, 1}
j=5 &+ Ry (2w /3)EcorrectCoset(f4(&)) 4x* —x)/3 [+) |£) — {0, 1}
{0,0,0, ...} = DD x C}
1,1,0,... D D¢ % C!
UAED. @) A = {1 D g e (Inverse map)
{0,1,1,...) > D % C]

subgroup of the representation of A4 and k is from a realized
C3 subgroup. By preapplying powers of a generator of one
of these C3 subgroups, the D, algorithm on cubes of queries
will consistently compute the binary function of membership
of the queried element g in a particular coset of the normal
D4<1A4. Assuming equal priors, such an algorithm is expected
to'? terminate in 14.5 queries. ]

Definition IV.4. We give a name to a particular subroutine
presented in Theorem V.3, whose use is indicated in Table II1.

The function correctCoset takes as input the evaluation
of the three binary measurements given in Theorem IV.3 to
determine which element of the D, normal subgroup of Ay4
enters into the chosen semidirect product D4 x C3 and returns
the representation of the inverse of this element.

Theorem IV.4. There exists a deterministic algorithm Ag,
which perfectly decides Sy, with asymptotically optimal query
complexity.

Proof. Squares of elements in S4 necessarily fall in the
alternating group Ay, though this mapping is not always in-
vertible. It is invertible, however, when the queried element
g in S4 has the cycle type (1, 0, 1, 0). For any element in S4
there exists an element & of cycle type (2, 1, 0, 0) for which
the product gh is of cycle type (1, 0, 1, 0). Consequently there
exists an algorithm that, for every element & of cycle type
(2,1,0,0), of which there are six, preapplies & to queries
[and repeats this process to generate squares of this query
element, ghgh = (gh)*] and runs the A4 algorithm on this
compound query, which recovers perfectly in finitely many
queries the hidden element g when the image (gh)® has cy-
cle type (1,0, 1, 0). Namely, there exists a subroutine which
determines coset membership for cosets of the normal A4 <154
and proceeds by reduction to decision on A4. This protocol is
expected to terminate in 34 queries.'* ]

3The explicit calculation is (1/4)-6 + (1/4)- 124 (1/4) - 18 +
(1/4)-22 =29/2 for the 3 + 3 + 3 nontrivial elements of the cosets
of the normal D, followed by three trivial elements.

14 Again this number is arrived at by explicitly writing a table of
elements of S and running them through the protocol as given until
it terminates.

We note that the two protocols given above make no ref-
erence to the mechanisms of QSP, but are instead completely
algebraic in form, exploiting the simple canonical subgroup
towers of A4 and S, to reduce decisions on representations of
these groups to those on their normal subgroups. It is the small
size of these nonabelian groups in particular which, unfortu-
nately, brings the following remark. Resolving this problem is
left open as stated in Sec. VI.

Remark IV.2. The alternating group on five elements has,
unfortunately, no simple reduction to an algorithm of the
previous, smaller groups, in part because As is the smallest
simple nonabelian group and thus permits no nontrivial de-
compositions in terms of a canonical tower of subgroups.

Before concluding this section we give an overview (Re-
mark IV.3) of the major technique which has permitted the
extension of algorithms solving R-QHT (i.e., Algorithm 1) to
those solving G-QHT.

Remark IV.3. Extending the recursive bisection depicted in
Fig. 6, which in turn demonstrates the methods of Algorithm
1, to representations of noncyclic groups follows, in each
instance described in this section, from the following sketched
protocol.

For each finite group presented in Sec. IV, we must provide
(i) a small quantum circuit to produce compound queries
(Definition IV.1) satisfying the input assumptions of Algo-
rithm 1, (ii) apply Algorithm 1 and keep track of its minimal
required query complexity, and finally (iii) verify the satis-
faction of conditions under which the compound query map is
invertible (e.g., as in Remark I1.2), these conditions remaining
unchanged despite the introduction of compound queries.

Whether this protocol is possible to perform for general
groups is an open question, and indeed the methods of this
section relied on the fact that the finite groups investigated
were nonsimple and often semidirect products of abelian
groups.

V. EXTENDING QHT PROTOCOLS TO LARGER GROUPS
AND NOISY SETTINGS

It is natural to consider generalizations to the setting in
which the results of Sec. IV were derived. This section con-
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FIG. 7. Geometric (a) and algebraic (b) depictions of the proof
of Lemma IV.4. Unitary representations of C; in SU(2) are, without
loss of generality, equivalent to a set of rotations which cycles states
(a, b, ¢) as shown on the Bloch sphere in panel (a). Moving away
from the Bloch sphere, any sequence of quantum channel discrim-
ination protocols whose binary PVM output differs on subsets of
quantum channels representing C; (e.g., partitions C; elements into
red and blue subsets as pictured, and as proven in Lemma IV.4) also
determines the queried quantum channel perfectly. The partitions
indicated in panel (b) are generated by polynomials given in Fig. 8.

cerns itself with two generalizations: (i) the inclusion of noise
and (ii) extension to larger finite groups.

A. Noisy channels and noisy quantum gates

The algorithms of Sec. IV relied on the fact that com-
pound queries to the oracle could, under the assumption of
access to unitary channels, make perfect use of the alge-
braic relations which were a priori known among the query
set. These relations led to effective query access to simpler
query sets for whom the optimal hypothesis testing algorithm
was known. Naturally, however, realistic quantum computers
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FIG. 8. Quantum response function employed in the proof of
Lemma IV.4 (a), and its shifted version (b). On the left is the poly-
nomial, in cos (6 /2), which is generated as the top left component of
the single-qubit unitary Uy corresponding to the angles ¢ indicated
in the first QSP subroutine of Lemma IV.4. On the right is the same
protocol using a prerotation by 2 /3, permitting a unique binary
labeling of each channel after two measurements.

and quantum channels exhibit noise, and one might be con-
cerned about two different sources of error as summarized
below.

(i) The queried elements U, may not perfectly satisfy the
conditions imposed on a faithful representation of G, but may

instead only approximately satisfy them, i.e.,
UUp ~c Uy Vg, h € G,

where the approximate equality is with respect to some rea-
sonable norm, here the diamond norm. Alternatively one can
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FIG. 9. Two presentations of Cayley graphs for the cyclic group
of order 7 and the dihedral group of order 14. The observation
that the cyclic group admits no irreducible representations in SU(2)
allows the perfect determination, in one additional query, of coset
membership for the maximal cyclic subgroup of D,,, partitioning the
red and blue sets.

consider that the channels themselves are only near unitary,
i.e., that Ug ~¢ U, for all g€ G where the norm is again
reasonable. Such a channel might be given by its operator-sum
representation

Uy = /fg(h)Uh dp(h),
h

where f,(h) is some probability density function defined suit-
ably on elements of SU(2) which is peaked about g to induce
an operator whose diamond norm with U, is suitably small.
Here p is some suitable measure over SU(2).

(i) The unitary operators applied by the querent may, in
general, also not be perfect. This is the statement that the rota-
tions normally applied in a QSP sequence as per the statement
of Algorithm 1 may again only satisfy U; ~ U; for all indices
Jj in the QSP sequence. We denote by U ]’ the applied unitary
and by U; the intended unitary.

We consider the first instance, namely, the physically
realistic scenario that the ideal query set S is not the sam-
pled query set, but instead that physical queries may be
slightly perturbed from ideal queries. That is, the physical
queries {£/} are such that the diamond distance [|&; — &/ ||, <
€ for some small € > 0. In this case, which encompasses
all small perturbations, methods analogous to the “peeling
lemma” in Ref. [2] permit us to bound our new error in
discrimination.

Lemma V.1. Fixing an initial state p;, the trace distance
o — p'|| between the serial quantum channel discrimination
protocol defined by the interspersed unitaries {U; ;} acting on
p; where the queried channel set is {£;} versus {£]} is bounded
above by n;||Ey — &, |0 < nje.

Proof. In the case that the QSP sequences used are length
2, we show the result and show that the method generalizes
to length n; sequences. The distance |p — p’|| can be re-
expressed and bounded above according to

U2 0&EnoUyo&u(p))—Usok, oU o0& (ppl
S NEwo Ui o&ulp)) — &, 0 Ui o &, (pll
<€ Ui oEn(pj) = Eno Ui 0 & (p))

+ &, 0 Ui 0 En(pj) =&, 0 Ui 0 &, (p)

< NEnlpy) = &, (oI
+ 1EnlU1 0 E' (] = &,[U1 0 &, (o]
< 2En = Eplles

where the inequalities, in order from top to bottom, follow
from (i) the monotonicity of the trace distance, (ii) the tri-
angle inequality, (iii) monotonicity with respect to the CPTP
map &, oUj, and (iv) that the diamond distance dominates
the trace distance on any particular initial state. This re-
sult can be iterated for arbitrarily many channel applications
where the coefficient on the diamond distance goes as n;,
where n; is the discrimination algorithm’s jth subpart’s query
complexity. ]

For the second instance, where the querent’s own unitary
operations are only close to the ideal operations, an argument
analogous to that used in Ref. [42] permits us to bound error to
a multiple of the per-gate error € (usually computed in terms
of a trace distance between the intended and the applied chan-
nel) where this multiple is proportional to the QSP sequence’s
length. Consequently under reasonable assumptions of noise
in both the queried channel and the locally applied unitary
operators, the methods presented in the previous section do
no worse than expected, accruing error linearly in sequence
length for reasonable norms.

B. Extensions to larger groups

The methods of Sec. IV use compound queries (e.g., pos-
itive integer powers of queries), defined in Problem IV.1, to
access representations of subgroups of G. It is thus of interest
to determine (i) when one is to expect that subsets of mth
powers of group elements generate proper subgroups, and (ii)
what information can be extracted under the assumption of
the ability to decide on said subgroups. We state a series of
related lemmas regarding these questions, assuming a basic
understanding of group theory.

The following two lemmas in particular discuss suffi-
cient conditions under which a known normal subgroup of
G permits query access to compound queries that reside in
said normal subgroup. These lemmas capture the underlying
mechanism of the protocols given previously for deciding D,
and A4.

Lemma V.2. If a finite group G admits a normal subgroup
N of index m, then the subset of mth powers of G, equivalently
S"={gl,gy,.... gy} for all n elements of G, generates a
proper subgroup G’ < N < G.

Proof. Proof follows from recognizing that elements of the
form g7 are in the kernel of the group homomorphism G —
G/N and thus (S™) is a (possibly nonproper) subgroup of the
normal subgroup N of G, equivalently (S") < N < G. |

Lemma V.3. If a finite group G admits a normal sub-
group N of index m, then the subset of mth powers of
G, i.e., the group generated by S™ as in Lemma V.2, is
contained within the intersection of all index m normal
subgroups of G. Proof again follows by the isomorphism
theorems.

Furthermore we give a lemma that describes the under-
lying behavior of the protocol given previously for deciding
on S; (Theorem IV.3). It is the statement of this lemma,
as well as the two preceding it, that precludes a solu-
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tion for deciding on As, which admits no nontrivial normal
subgroups.

Lemma V4. If the m-power map g+ g" applied to ele-
ments of G generates a proper subgroup G’ < G, and there
exists a group element 4 € G such that for some subset S of G
the map s — (sh)™ is invertible for all s € S, and there exists a
quantum protocol for deciding G’, then there exists a quantum
protocol for deciding the query set G’ U S.

Proof. Constructing compound queries of mth powers of
physical queries allows access (at m times the query complex-
ity) to a representation of G’. The statement of the lemma with
respect to the set S says merely that preapplication of # € G
before each query s is, under the map given, invertible, and
thus unique identification of s is also possible with knowledge
of h. ]

The statements given in the lemmas above do not de-
pend on particularly complicated notions in group theory;
instead, we have simply asked which simple operations can
be performed in our limited resource model to faithfully
simplify the query set. In most instances, these simplifi-
cations correspond to the existence of normal subgroups
(equivalently kernels of group homomorphisms). For state-
ments beyond those given here, especially those concerning
the conditions under which the assumptions of Lemma V.4
hold beyond S4, we define a selection of open problems in
Sec. VL.

The procedure outlined in Lemma V.4 is also not the most
general one; indeed, compound queries can be built from
general products of known unitary operations (some of which
may coincide with the query set) and possibly multiple copies
of the queried channel. Conditions under which such a map
is invertible relate intimately to the study of characters in
representation theory and provide exciting avenues for im-
proved protocols for larger finite groups, e.g., G < SU (n).
Moreover, when considering larger Hilbert spaces, in anal-
ogy to the algorithms deciding on the dihedral groups D,,,
the family of finite groups which permit no irreducible rep-
resentation in said larger Hilbert space grows richer, and
correspondingly decisions on groups which are semidirect
products grow easier. Thus, while extension to larger Hilbert
spaces may not resolve the discussion of efficient deci-
sion algorithms on all larger groups in the serial adaptive
query model, it may reasonably result in interesting quan-
titative statements on the entanglement or auxiliary system
size necessary to achieve efficient (query-complexity-wise)
discrimination dependent on the nature of the represented

group.

VI. DISCUSSION AND CONCLUSIONS

In this work we have provided a constructive approach
for achieving efficient quantum multiple hypothesis testing
for query sets whose algebra faithfully represents a finite
subgroup of SU(2). The nature of this construction centers on
the use of Algorithm 1, a quantum algorithm for solving the
simpler R-QHT problem (Problem II.1), as a subroutine along
with methods for exploiting known algebraic structure of the
query set to enable reductions to R-QHT. This reduction is
summarized in Remark IV.3.

Concretely, when the represented group G is either abelian
or both nonabelian and nonsimple the protocols we con-
struct achieve optimal query complexity without the use of
auxiliary systems or entanglement; this statement is equiva-
lent to a statement about the minimal degree of constrained
interpolating polynomials and resolves an open question in
Ref. [5], as well as generalizes an old result in Ref. [12]
to quantum channels. Moreover, the bridge that Algorithm
1 and its derivate algorithms demonstrate between quantum
information and functional approximation theory indicates a
rich variety of novel instantiations of the basic ideas of QSP
[21,23].

In addition to achieving efficient quantum channel dis-
crimination for a family of channel sets in a serial adaptive
query model, we show that our protocols can be aborted early
while still accomplishing useful tasks; this follows simply
from the nature of the binary search discussed in Remark
IL.2. For instance, the reductions provided throughout Sec. IV
are directly realizable as coset membership testing proce-
dures, in general, or period finding for the case of cyclic
groups.

In the following remarks and problem definitions, we pro-
vide one more direct application of the methods discussed in
this work to a problem in quantum communication.

Remark VI.1. As mentioned in Refs. [16,20], efficient pro-
tocols for the estimation of unitary processes have use in the
transmission of reference frames as well as various proofs
of insecurity for device-independent protocols for quantum
bit-commitment.

We give one example for how this work can be applied to
a discretized version (e.g., group frames [17,18], which share
close relation with SIC-POVMs) of reference-frame sharing
(Problem VI.1 and Lemma VI.1).

Problem VI.1. Consider two separated parties, Alice and
Bob; each is able to (i) perform single-qubit unitaries and (ii)
transmit qubits noiselessly to the other party. Alice and Bob
agree on a shared z axis but are rotated with respect to each
other by some unknown angle 6 about this axis. Moreover, the
possible 6 lie within a discrete set ® of size n, known to both
parties.

Alice and Bob can come to agreement on the unknown
angle 6 with certainty in a finite-length interactive protocol;
this protocol is denoted dual QSP due to its similarities with
standard QSP [21-24] and is said to solve the dual QSP
problem.

Lemma VI.1. There exists a finite-length interactive proto-
col by which two parties playing the game defined in Problem
VI.1 can win with certainty and with an asymptotically op-
timal round number (under the restriction of sending single
qubits).

Proof. Proof proceeds by direct construction. Beginning
with some initial state [iy), Alice applies to it a rotation
about her local x axis, namely, exp (i¢poy), and sends this
qubit to Bob. Bob applies a rotation about his local x axis
by another specified angle ¢;, or equivalently according
to Alice (if she knew the angle 6) Bob appears to ap-
ply exp (i¢[cos Oo, + sinfa,]) = Up exp (i¢16X)U’1, where
Up = exp (—i[0/2]o,).

In other words, Alice and Bob can, according to some
previously agreed upon prescription of real angles & =
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{¢o, ®1, ..., O}, collaboratively compute the unitary opera-
tor'?
Up = €90 . .. g=116/210: 4iths0: 10210 yidro
x ¢ i10/2]o: yidr0x ,il0/210; Higoor (12)

Moreover, following the final application of exp (i¢,,0;)
and measurement against |y;), Alice can sample from the
Bernoulli distribution defined by the transition probability
p =1 {¥1lUs|0) I*.

The construction above is almost a vanilla QSP sequence.
It is not so difficult to see that if Alice and Bob additionally
apply the rotation exp{=i[w /2]o,} respectively, locally, after

their ¢; rotation for j € {1,2,...,m}, the collaborative se-
quence instead becomes
Up = e . .. ¢ll0/210: ids0 4il0/210: yid20:

x eilg/zlﬂze@l(fxeil@/zlm £1%00: , (13)

which is of the form of a standard QSP sequence. Conse-
quently we see concrete connection between dual QSP and
standard QSP: i.e., a redefinition of QSP phase angles.

Given a standard QSP strategy, defined by an angular se-
quence P, there exists an angular sequence @’ following the
prescription given above such that the dual QSP sequence de-
fined by @' acts identically given access to parties of relative
angular displacement 6 as the sequence defined by & acts
given query access to an equiangular rotation exp (—i[6/2]o;)
in the setting of standard QSP.

Consequently a protocol solving Problem VI.1 follows
directly from a protocol solving Problem II.1 under the pre-
scription (following Algorithm 1) defined by CID;.! =Pk t+m
fork e {l,....n;}and @’y = ®; . u

Remark VI.2. We can analyze the performance of the pro-
tocol given in Lemma VI.1 in two ways: (i) in comparison
with naive repetition of binary hypothesis testing and (ii) in
comparison with phase estimation, the continuous analog of
the problem statement.

(1) The results of Ref. [5] assert that the query complexity
for distinguishing two distinct unitary operators U and V
scales as O(1/®[UTV]), where ®[W] is the length of the
smallest arc containing all the eigenvalues of W on the unit
circle in the complex plane.

When phrased as a decision on a representation'® of C,,
eliminating one possible quantum channel at a time gives a
query complexity that scales as O(n?) [as O(n) such discrim-
ination procedures are required, each costing O(n) queries].
As shown in the constructions leading to Corollary IV.1.1,
however, decisions on C, and consequently also discrete
reference-frame sharing have query complexity scaling as
O(n) (up to logarithmic factors) courtesy of the implicit binary
search in Algorithm 1.

(i1) A feature of Lemma VI.1 is that it yields a determin-
istic quantum algorithm. If one only wishes to determine the

SHere assuming that m is even, i.e., that the protocol ends with
Alice receiving the qubit.

16This merely connects n in a reasonable, i.e., reciprocal, functional
map to a factor defining the difficulty of discrimination, in which the
stated quadratic improvement is always possible.

relative rotation with high confidence, one can use phase es-
timation and achieve the same O(n) query complexity scaling
[43] using O(logn + log (1/€)) qubits for confidence €. This
also matches the performance of the estimation procedure
in Ref. [16]. Thus while estimative methods perform simi-
larly in the cyclic group case to G-QHT-derived methods, the
methodology of Lemma VI.1 is tailored to the statement of
discrete reference-frame sharing, can be done serially, and can
be extended to richer finite groups.

The methods of Lemma VI.1 suggest a useful technique;
namely, whenever a suitable sensing problem can be (i) dis-
cretized and (ii) made coherent, the ability to, by a simple
quantum process, induce a phase on, e.g., a single qubit allows
all of the mechanisms built in earlier sections to be directly
applied with concomitant statements about query complexity
or round complexity!” optimality.

Beyond direct applicability to discrete versions of prob-
lems defined in prior work (e.g., reference-frame sharing),
several fundamental open problems remain whose solutions
might lie in methods related to those discussed in this work;
we outline a few of them below.

(i) Decisions on the subgroup tower. In analogy to the
protocol given for deciding the dihedral group in Sec. IV B,
are there families of larger groups G’ whose lack of irreducible
representation in the natural Hilbert space of multiple qubits
([C?1®") or qudits (C?) permits groups G whose canonical
subgroup tower includes G’ to be decided by reduction to
decisions on G'? What are sufficient conditions under which
protocols deciding G can, even inefficiently, be reduced to
protocols for deciding normal subgroups of G? Small ex-
amples of this phenomenon are given in the lemmas of
Sec. VB.

(i) Optimal G-QHT with bounded entanglement. Given
the procedure in the above part, does there exist a quantifiable
trade-off between the serial and parallel query model query
complexities required for deciding groups G given access to
Hilbert spaces in which no representation of G is irreducible?
If entanglement is required for optimal QHT algorithms on
large or highly nonabelian query sets, are there methods to
quantify the required minimum entanglement?

(iii) Quantum property testing. Do there exist partial
discrimination protocols, e.g., beyond those provided for
deciding coset membership, which decide other interesting
properties of the group represented by the query set while not
totally deciding on the group?

(iv) Estimating compact group elements. Can the perfor-
mance of quantum channel estimation protocols for compact
groups G, e.g., as in Ref. [16], be suitably recovered by
employing a method similar to those of this work to sys-
tematically divide the search space up to within a specified
error? Under what assumptions about the compact group is
this decision-to-estimation conversion in the serial adaptive
query model still efficient?

"In the methods given, query complexity and round complexity
are precisely the same (under the map from dual QSP to standard
QSP): transmission of the shared qubit is necessary to enact a unitary
operation dependent on the relative rotation.
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To summarize, major avenues for extending this work lie
in (i) natural generalizations to higher-dimensional Hilbert
spaces and (ii) characterizations of richer finite groups which
find natural representations in higher-dimensional Hilbert
spaces. Improvements in methods to address these questions
have implications in quantum algorithms for problems in
discrete algebra, and this subfield in turn has potential ap-
plication, following translation of G-QHT-like problems to

novel contexts (e.g., as in Lemma VI.1), to useful quantum
algorithms for cryptography, communication, and sensing.
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