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ABSTRACT 
A recent study about the effectiveness of subgoal labeling in an 
introductory computer science programming course both 
supported previous research and produced some puzzling results. 
In this study, we replicate the experiment with a different student 
population to determine if the results are repeatable. We also gave 
the experimental task to students in a follow-on course to explore 
if they had indeed mastered the programming concept. We found 
that the previous puzzling results were repeated. In addition, for 
the novice programmers, we found a statistically significant 
difference in performance based on whether the student had 
previous programming courses in high school. However, this 
performance difference disappears in a follow-on course after all 
students have taken an introductory computer science 
programming course. The results of this study have implications 
for how quickly students are evaluated for mastery of knowledge 
and how we group students in introductory programming courses. 

Keywords 
Subgoal labels, Cognitive Load, Contextual Transfer. 

1. INTRODUCTION 
In the nascent field of computer science education, we have 
become particularly good at two things: publishing new studies 
and establishing that our students don’t know what we think they 
should know. Looking at any recent conference proceedings in the 
discipline, you would be hard pressed to find any papers that are 
replication studies. And we have many examples, from Soloway 
[36] to McCracken [26], of our students performing below our 
expectation levels on supposedly relatively easy programming 
tasks. This paper tackles both of these issues directly: we present 
the results of a replication study done with a new population of 
students at a different institution and provide evidence that 
students really do learn programming constructs, but perhaps not 
as quickly as we, the educators, would hope. 

A recent study presented results on the effectiveness of subgoal 
labeling with students in introductory programming courses 
learning to write while loops to solve programming problems 
[28]. Subgoal labeling is a technique used to promote subgoal 
learning that has been used to help learners recognize the 

fundamental structure of the procedure being exemplified in 
worked examples [10–12]. Subgoal labels are function-based 
instructional explanations that describe the purpose of a subgoal, 
or functional piece of the problem solution, to the learner. Some 
of results presented in the original study agreed with previous 
subgoal label research: learning with subgoal labels produces 
higher learning gains and better problem solving performance 
than learning without subgoal labels. The study compared 
students who learned from unlabeled worked examples (i.e., 
conventional examples) to those who learned from worked 
examples labeled with subgoal labels created by the experimenters 
and worked examples that prompted students to generate their 
own subgoal labels. 

Also tested in the original study was the effect of transfer between 
worked examples and practice problems. Problem sets of worked 
example-practice problems came in two varieties: either 
isomorphic or contextual transfer. In the isomorphic transfer 
group the problem to be solved in the worked example-practice 
problem (WE-PP) pair was identical to the worked example in 
both procedural steps and cover story (i.e., context). The only 
thing changed was the actual values of the numbers to be 
calculated. In the contextual transfer group, the problem to be 
solved in the WE-PP pair involved the same procedural steps but 
the cover story and numeric values changed.  

Both the unlabeled groups and the generate subgoal labels groups 
performed as expected in the code writing task whether or not 
they were in the isomorphic or contextual transfer treatment 
groups. In both of these cases, the isomorphic group outperformed 
the contextual transfer group, which cognitive load theory [27, 37, 
39] would predict. Cognitive load theory (CLT) suggests that 
having an additional piece to figure out – the contextual transfer – 
may overload the cognitive processing of novices resulting in 
poorer performance on the assessment task. However, perhaps the 
most puzzling result came from the group of students who were 
given subgoal labels. In this treatment, the students who received 
problems with contextual transfer performed statistically better 
than the group of students receiving the isomorphic problems. 
This outcome was unexpected, and we are still exploring why the 
group receiving subgoal labels made by the experimenters would 
behave differently than the other groups. 

To explore whether the original study was an anomaly, we set out 
to replicate the study with a different population at a different 
institution. In the original study, the average score on the post-
test, which comprised items from the AP CS test, was only 31%, 
indicating that the students had not learned very much from the 
intervention. Perhaps the assessment tasks were too difficult and 
once again we were asking more from our students than they were 
capable of (a la McCracken [26]). To test this hypothesis we also 
asked students in a follow-on programming course to participate 
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in the study to compare their performance with those in the 
introductory course. We found that the original results were not an 
anomaly – they repeated. We also found that students in the 
follow-on course performed better on the assessments (than the 
introductory students) indicating that writing while loops can be 
mastered. In addition, we found that students in the introductory 
programming course who had taken computing courses in high 
school performed better than those who did not. However, this 
difference in performance due to high school experience was not 
present for students in the follow-on course.  

2. BACKGROUND 
This section reviews the details of the previous study and 
examines current literature for the effect of previous coursework 
on programming performance in novices. 

2.1 Previous Study 
The original study [28] tested hypotheses related to whether using 
subgoal labels to teach a programming construct would produce 
results similar to those achieved in other disciplines. The study 
proposed that using subgoal labels to help students learn would 
reduce the cognitive load imposed in learning.  

2.1.1 Cognitive Load Theory 
Cognitive load can be defined as “the load imposed on an 
individual's working memory by a particular (learning) task” [40]. 
The cognitive load required to comprehend materials directly 
affects how much students learn, and affects their performance 
scores on assessments related to that task. If students have to keep 
too many things in working memory in order to understand a 
concept, learning suffers. The central problem identified by 
Cognitive Load Theory (CLT) is that learning is impaired when 
the total amount of processing requirements exceeds the limited 
capacity of working memory [31]. Currently  CLT [27, 37, 39] 
defines two different types of cognitive load on a student's 
working memory: intrinsic load and extraneous load.  

Intrinsic load is a combination of the innate difficulty of the 
material being learned as well as the learner's previous knowledge 
[21]. Extraneous load is the load placed on working memory that 
does not contribute directly toward the learning of the material. 
For example, the extra resources consumed to understand poorly 
written text or diagrams without sufficient clarity contributes to 
extraneous cognitive load [21].  

The intrinsic and extraneous loads can be controlled through 
instructional design and care should be given to eliminate any 
possible extraneous load while attempting to optimize the level of 
intrinsic load so that the learner is challenged but not overly so. It 
is believed that worked examples, when carefully designed, can 
accomplish both of these goals [24]. 

2.1.2 Worked Examples 
Worked examples are one type of instruction used to teach 
procedural process to students for problem solving activities. 
Worked examples give learners concrete examples of the 
procedure being used to solve a problem.  

Eiriksdottir and Catrambone argue that learning primarily from 
worked examples does not inherently promote deep processing of 
concepts [15]. While learning from worked examples may result 
in better initial performance, it is less likely result in the retention 
and transfer [15]. When studying examples, learners tend to focus 
on incidental features, like those necessary for the cover story of 
the problem, rather than the fundamental features, like the 
concepts required to solve the problem. This happens because 

incidental features are easy to grasp and novices do not have the 
necessary domain knowledge to recognize fundamental features 
of examples [13]. A focus on incidental features leads to 
ineffective organization and storage of information that, in turn, 
leads to ineffective recall and transfer [8]. 

2.1.3 Subgoal Labeling 
To promote deeper processing of worked examples and, thus, 
improve retention and transfer, worked examples have been 
manipulated to promote subgoal learning. Subgoal learning refers 
to a strategy used predominantly in STEM fields that helps 
students deconstruct problem solving procedures into subgoals, 
functional parts of the overall procedure, to better recognize the 
fundamental components of the problem solving process [1].  

Subgoal labeling is a technique used to promote subgoal learning. 
Studies [3, 4, 10–12, 24, 25] have consistently found that subgoal-
oriented instructions improved problem solving performance 
across a variety of STEM domains, such as programming [24] and 
statistics [12]. Studies have also found that giving subgoal labels 
in worked examples improves performance while solving novel 
problems without increasing the amount of time learners spend 
studying instructions or working on problems [24]. This format 
highlights the structure of examples, helping students focus on 
structural features and more effectively organize information [2].  

By helping learners organize information and focus on structural 
features of worked examples, subgoal labels are believed to 
reduce the extraneous cognitive load that can hinder learning but 
is inherent in worked examples [32]. Worked examples introduce 
extraneous cognitive load because they are necessarily specific to 
a context, and students must process the incidental information 
about the context even though it is not relevant to the underlying 
procedure [39]. Subgoal labels can reduce focus on these 
incidental features by highlighting the fundamental features of the 
procedure [32]. Subgoal labels further improve learning by 
reducing the intrinsic load by providing a mental organization 
(i.e., subgoals) for storing information.  

2.1.4 Results 
The original study tested its hypotheses by dividing the 
participants into three treatment groups, each with its own 
instructional materials: learning with no subgoal labels, learning 
with given pre-defined subgoal labels, and asking participants to 
generate their own subgoal labels after some initial training. Each 
treatment group was then subdivided into two sections: 
isomorphic or contextual transfer. In the isomorphic transfer 
condition, the procedure and context used to solve the WE-PP 
were exactly the same but the exact values in the problem 
changed. For example, if a worked example asked participants to 
find the average of quiz scores with values 70, 80, and 90, then 
the practice problem asked participants to find the average of quiz 
scores with values 75, 85, and 95. In the contextual transfer 
condition, the procedure used to solve the WE-PP were the same 
except the context of the problem changed. For example, if a 
worked example asked participants to find the average of quiz 
scores, then the practice problem asked participants to find the 
average of money amounts. 

The original study found that, similar to previous research in other 
disciplines, students who learned with subgoal labels (either given 
or generated) performed better on the code writing assessments 
than those who learned without subgoal labels. The participants 
who generated their own subgoal labels did not perform better on 
the code writing tasks requiring transfer, unlike previous research.   

The unexpected results occurred with the given subgoal label 

222



group. Cognitive Load Theory would predict that learning with 
given subgoal labels and no contextual transfer should impose 
lower cognitive processing than learning with given subgoal 
labels and contextual transfer. The contextual transfer would 
require additional working memory to process. However the 
results from the original study directly contradict this. The 
original study found, unlike the other two treatment groups, that 
the participants that learned with given subgoal labels and 
contextual transfer significantly outperformed the given subgoal 
labels with isomorphic problems. This is the main finding we 
wished to test in the replication to determine if the original 
findings were an anomaly or if something else was happening. 

2.2 Previous Coursework 
Recent previous work has identified problems with student 
understanding and learning in introductory courses. McCracken et 
al. [26] showed that students were unsuccessful at writing correct 
code to answer problems involving programming by the end of 
the introductory course.  Lister et al. [22] took this investigation 
further by examining students’ abilities to read and trace code.  
They concluded that weak students are often weak in their ability 
to read (and trace) code which is a precursor to writing code.  In 
an attempt to better understand how reading and tracing are 
related to abilities to write code, Lopez et al. [23] created an 
instrument to determine a hierarchy of concepts (reading, tracing, 
solving Parsons problems, writing) with regard to code.  Their 
work found that solving Parsons problems might actually be more 
difficult than tracing iterative code. 

In an effort to prevent students from performing poorly, many 
have turned to trying to determine what best predicts computing 
proficiency, presumably as a way to determine how to better teach 
students and/or determine which student may be more likely to 
need extra support during their first course.  The research on 
success predictors goes back decades, with numerous factors 
being identified such as comfort level [45], math and/or science 
background [5, 6, 20, 43, 45], spatial visualization skills [35], 
attributions of success and/or confidence [6, 34, 45], learning style 
[9, 35].  Watson [42] has argued that programming behavior was 
better predictor of success in the course than the traditional test-
based prediction metrics and/or demographics.  

Many believe that prior exposure to programming is a positive 
predictive factor in success in the first course.  Hagan and 
Markam [17] showed that prior programming experience did in 
fact help students in the introductory course. They showed that the 
number of programming languages used was also important to 
students’ initial success in the course. However, Evans and 
Simkin [16] showed that prior academic experience (including 
computing experience) did not factor strongly into a predictive 
model for success, but rather worked in concert with other 
behavior and cognitive factors to determine success.  This was 
shown again by Wiedenbeck [44] in regards to non-majors taking 
a programming course and with Ventura [41] when looking at 
students taking an objects-first curriculum.   

One thing from the predictors research that stands out is that there 
are likely a number of factors that contribute to a student’s 
success in a course. Prior experience, whether it be in 
programming or other disciplines, is an important factor in some 
studies, but not as important in others.  What we are interested in 
here is whether or not the prior experience impacts the 
understanding of a particular concept, not necessarily overall 
student success in the course. 

3. METHOD OF STUDY 
3.1 Purpose 
Participants in introductory programming classes who had already 
been introduced to loops within their course were given additional 
instructional material designed to reinforce the practice of solving 
programming problems using while loops. Participants were 
recruited from 3 different first and second year programming 
courses at a technical university in the northeast United States and 
the study was conducted over a one month period.  

Table 1 summarizes the differences between the three courses.  
The first two courses are first year, first semester courses serving 
primarily two different populations of students.  The first course 
(101) serves as the first programming course (CS1 equivalent) for 
students intending to major in New Media Interactive Design (a 
College of Imaging Arts and Sciences major), or New Media 
Interactive Development (a College of Computing and 
Information Sciences major) and is taught using Processing [33].  
The “New Media” majors are focused on the interaction of art and 
technology through media.  The difference between the students is 
the focus of the major, the “design” major attracts primarily 
students who may consider themselves artists, while the 
“development” major attracts those who are more “technologists”.  
The second course (105) serves as the first programming course 
(CS1 equivalent) for students intending to major in Game Design 
and Development (a College of Computing and Information 
Sciences major) and is taught in C# [33].  The game design and 
development degree is a technically focused degree in game 
design and development and the coursework has many similarities 
to a computer science degree.   The department does not give 
credit for either 101 or 105 for Advanced Placement (AP) credit.  
Students earning high scores on the AP exam earn credit for 
another course from another department, but still need to take 101 
or 105 to complete the requirements for their respective majors. 

Table 1. Classes Participating in Study 

Course 
Programming 

Language 

Majors Experiment 
Delivery 
Method 

101 Processing 

New Media 
Interactive Design, 

New Media 
Interactive 

Development 

Closed lab in-
class exercise 

105 C# 
Game Design & 

Development 

Optional at-
home 

assignment 

202 
C# (some 

Processing) 

New Media 
Interactive Design, 
Game Design and 

Development 

Closed lab in-
class exercise 

The second year course (202) is designed to bring together the 
groups from New Media Interactive Development and Game 
Design and Development and is taught primarily in C# (with some 
limited time devoted to Processing) and focuses on the use and 
integration of media and media artifacts into interactive 
experiences [33]. It should be noted that students who take the 
101 course take 2 more courses (102 and 201) before taking the 
follow-on course while those who take the 105 course take only 1 
more course (106) before taking 202. So students from the 101 
course path have a 3 semester sequence while those in the 105 
track have a 2 semester sequence. 

The study was conducted either in a closed lab setting with up to 
30 computers in a single room, or as an optional at-home 
assignment (see Table 1).  The participating instructors decided 
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how to structure the exercise in their particular course and what 
weighting it had on a student’s grade, but participation in the 
study was strictly voluntary.  That is, even in classes where there 
was a closed lab around the exercise, participation in the study 
described here was voluntary – consent to use the data for the 
study was given at the end of the exercises.  All of these courses 
are taught in a computer lab of at most 30 students.  Exercises 
where students are given a set of tasks to perform during the class 
period for their grade are a common part of these courses. 

Students received an introduction to the study explaining that the 
material in the study was designed to help them learn how to write 
loops. Students were then given a URL to the first page of the 
study, which was housed in SurveyMonkey. Participants worked 
independently. The in-class sessions were an entire class period 
for the course (110 minutes).  For the students who completed at 
home, the assignment was posted for them and they were given a 
due date by which they needed to complete the exercise.  At the 
end of the window, the SurveyMonkey materials were closed. 

3.2 Instructional Materials 
The materials used were identical to those used in [28], other than 
placement of the consent. To learn the procedure for using while 
loops to solve programming problems, participants were given 
three worked examples and three practice problems. The worked 
examples and practice problems were interleaved so that after 
studying the first worked example, participants solved the first 
practice problem before moving on to the second worked 
example. The worked examples came in three formats, which 
varied between participants. The first format was not subgoal 
oriented, meaning that steps of the examples did not provide any 
information about the underlying subgoals of the procedure. The 
second format grouped steps of the example by subgoal and 
provided meaningful subgoal labels for each group as is typical in 
subgoal label research (e.g., [24]). The third format grouped steps 
of the example by subgoal and provided a spot for participants to 
write generated subgoal labels for each group. Each of the groups 
was numbered as “label 1,” “label 2,” etc., and groups that 
represented the same subgoal had the same number; therefore, 
groups that represented subgoal 1 were numbered as “label 1” 
regardless of where in the example they appeared (see Figure 1). 
Participants were told that each of the worked examples would 
have the same subgoals, and they were encouraged to update and 
improve upon their generated labels as they learned more. 

No labels Given Labels Placeholder for Label

sum = 0  
lcv = 1                         

WHILE  lcv <= 100 
DO 

    lcv = lcv + 1 
ENDWHILE 

Initialize Variables 
sum = 0  
lcv = 1   
Determine Loop 
Condition                                     
WHILE  lcv <= 100 DO 
 
    Update Loop Var 
    lcv = lcv + 1 
ENDWHILE 

Label 1:________ 
 sum = 0  
 lcv = 1                             

Label 2: ________ 
WHILE  lcv <= 100 DO 
 

    Label 3: _____ 
    lcv = lcv + 1 
ENDWHILE 

Figure 1. Partial worked example formatted with no labels, 
given labels, or placeholders for generated labels. 

Participant groups also received different practice problems to test 
how contextual transfer may affect learning – the isomorphic 
transfer condition and the contextual transfer condition, just as in 
the original study. The contextual transfer was intended to be 
harder for participants to map concepts from the worked example 
to the practice problem. More difficult mapping can improve 
learning by reducing illusions of understanding caused by shallow 

processing thus inducing deeper processing of information [7, 15, 
29]. However it can also increase cognitive load and potentially 
hinder learning [39].   

After completing the instructions, participants completed novel 
programming assessments to measure their code writing 
performance. The assessments included two tasks. First, the code 
writing task asked participants to use the problem-solving 
structure that they had learned during the WE-PP pairs to solve 
four novel problems. Two of these problems required contextual 
transfer, meaning that they followed the same steps found in the 
instructions but in a different context. The other two problems 
required both contextual and structural transfer. In these problems 
the context was new to the participants and the solution to the 
problem required a different structure than the problems found in 
the instructional material (e.g., the practice problem is summing 
values, the assessment is counting matching values). These tasks 
were intended to measure participants’ code writing and problem 
solving performance as a ‘far’ transfer.  

After the code writing task, participants completed a Parsons 
problem. Parsons problems [30] involve correct code which is 
broken into code fragments that have to be put in the correct 
order. The Parsons problem used for assessment was a version of 
the “rainfall problem” [18]. The problem had 13 different code 
pieces with between 1 and 3 lines of code in each code piece. The 
participants were asked to put the code pieces in order with no 
consideration of indentation. In other words, they indicated the 
order of the code segments by numbering them.  

3.3 Design 
The experiment was a 3-by-2, between-subjects, factorial design: 
the format of worked examples (unlabeled, subgoal labels given, 
or subgoal labels generated) was crossed with the transfer distance 
between worked examples and practice problems (isomorphic or 
contextual transfer). The dependent variables were performance 
on the pre- and post-test, code writing tasks, and time on task. 

3.4 Participants 
Participants were 100 students from a technical university in the 
northeast United States (Table 2). To account for prior experience, 
participants were asked about their prior programming experience 
in high school (either regular or advanced placement courses) and 
college and whether they had experience using while loops. Other 
demographic information collected included gender, age, 
academic major, high school grade point average (GPA), college 
GPA, number of years in college, reported comfort with 
computer, expected difficulty of the programming task, and 
primary language. There were no statistical differences between 
the groups for demographic data, which is expected because 
participants were randomly assigned to treatment groups.    

Table 2. Participant Demographics  

Participants who did not attempt all tasks were excluded from 
analysis. For the replication piece of the study, participants who 
answered more than two questions correctly out of the five on the 
pre-test were excluded from analysis because the instructions 
were designed for novices. However, for the second piece of 
analysis within the paper, we looked at the success rate of all 
students who completed all the tasks. Based on these exclusion 

Age  Gender  GPA  Major 

M = 19  72% male  M = 3.5/4 
33% New Media 
63% Game Design 
3% CS, SWE, CEngr 
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criteria, we analyzed data from 27 participants for the replication 
study and 100 participants for overall performance.  

3.5 Procedure 
The procedure used in this study was identical to that used in [28], 
other than granting consent was moved from the beginning of the 
survey to the end. Students completed the demographic questions 
followed by a pre-test. The pre-test was comprised of multiple 
choice questions about while loops from previous Advanced 
Placement Computer Science A exams.  

When participants finished the demographic questionnaire and 
pre-test, they began the instructional period which consisted of 
training followed by the worked example-practice problem (WE-
PP) pairs. Participants who generated their own subgoal labels 
received training on how to create subgoal labels. Participants 
who did not generate their own subgoal labels received training to 
complete verbal analogies. Verbal analogies (e.g., water : thirst :: 
food : hunger) were considered a comparable task to subgoal label 
training because they both require analyzing text to determine an 
underlying structure. Participants who were not asked to generate 
their own labels were not given subgoal label training because it 
might have prompted them to process the instructions more 
similarly than would be expected of participants who were asked 
to generate their own labels, which might confound the results. 
The subgoal label training and the analogy training included 
expository instructions, worked examples, and activities.  

Three WE-PP pairs were then presented to the participants.  The 
worked example format differed between subjects among three 
levels: unlabeled, subgoal labels given, and subgoal labels 
generated. Furthermore, the transfer distance between worked 
example and practice problem differed between subjects between 
two levels: isomorphic or contextual transfer.  

After the instructional period, participants moved to the 
assessment period. The assessment period included the problem 
solving tasks discussed earlier: 4 code writing problems and a 
Parsons problem.  

At the end of the session, participants completed a post-test with 
the same questions as the pre-test to measure their learning. 
Throughout the procedure we recorded the time taken to complete 
each task. We also collected process data throughout the 
instructional period. We collected performance on the training 
activities and practice problems to ensure that participants were 
completing tasks.  
 
We entered into the study with the following research questions: 

R1. Do participants who learn with given subgoal labels and no 
contextual transfer perform better or worse on programming 
assessments than those who learn with given subgoal labels and 
contextual transfer? 

R2. Do participants further along in their computing studies 
outperform novices on both the pre/post-test and programming 
assessments? 

4. ANALYSIS AND RESULTS 
4.1 Accuracy – Code Writing 
We scored participants’ solutions for accuracy to generate a code 
writing score. Participants earned one point for each correct line 
of code that they wrote. This scoring scheme allowed for more 
sensitivity than scoring solutions as wholly right or wrong. If 
participants wrote lines that were conceptually correct but 
contained typos or syntax errors (e.g., missing a parenthesis), they 

received points. We scored logic errors (having < rather an <=) as 
incorrect. We considered scoring for conceptual and logical 
accuracy more valuable than scoring for absolute syntactical 
accuracy because participants were still early in the learning 
process. Participants could earn a maximum score of 44. 

In the statistics reported below, we include two types of effect 
sizes. The first, est. ω2, describes how much of the variation in 
scores can be attributed to the manipulation. For example, for the 
code writing assessment, an est. ω2 of .10 means that 10% of the 
variation in performance can be attributed to the instructional 
manipulations. The second, f or d, describes the difference 
between groups using the standard deviation as the unit of 
measurement. For example, for the code writing assessment, a d 
of .5 would mean that the difference- between the means of two 
groups is half of the standard deviation for those groups. 

The effect of the interventions on code writing performance 
depended on the interaction of the worked example manipulation 
and transfer distance manipulation. We found no main effect of 
worked example format, F (2, 21) = 0.26, MSE = 105.6, p = .78, 
est. ω2 = .02. In addition, we found no main effect of transfer 
distance, F (1, 21) = 1.47, MSE = 105.6, p = .24, est. ω2 = .07. 
There was, however, a statistically significant interaction between 
worked example format and transfer distance, F (2, 21) = 5.19, 
MSE = 105.6, p = .015, est. ω2 = .33, f = .44 (see Figure 21). 

 
Figure 2. Code writing performance for novice programmers  

In this interaction, the difference between the group that was 
given subgoal labels with isomorphic transfer (M = 18.4, SD = 
13.0) and the group that was given subgoal labels with contextual 
transfer (M = 31.2, SD = 13.8) was not statistically significant, t 
(8) = -1.50, p = .17, but the difference between groups was large 
with an effect size of d = 0.95. Based on these results, the 
difference between groups is meaningful, even though it is not 
statistically significant, likely due to a small sample size. The 
sample size was small because this was a replication study thus 
we did not need as much statistical power to ensure the pattern of 
results was reliable. Because the effect size is large and matches 
previous results we conclude that this is a meaningful difference. 
Furthermore, the difference between the group that generated 
subgoal labels with isomorphic problems (M = 18.0, SD = 4.6) 
and the group that generated subgoal labels with contextual 
transfer (M = 37, SD = 4.5) was statistically significant, t (4) = 
7.18, p = .002, with a large effect size, d = 4.18. This effect size is 
based on a sample of six, therefore, it is likely not reliable. The 
effect size is likely inflated due to the small sample; however, the 
effect of the intervention is still valid and in the correct direction. 
These results mean that participants who were given subgoal 

                                                                 
1 Error bars on all bar graphs represent the 95% confidence 

interval. 
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labels performed better when they had contextual transfer, and 
participants who generated subgoal labels performed better with 
isomorphic problems.  

Performance on the post-test was similar to that on the pre-test. 
Average scores on the post-test were low, 36% (1.8 out of 5 
points). We found no statistical differences for main effect of 
worked example format, F (2, 21) = .07, MSE = 1.21, p = .93, est. 
ω2 = .01, main effect of transfer distance, F (1, 21) = .28, MSE = 
1.21, p = .60, est. ω2 = .01, or interaction, F (2, 21) = .93, MSE = 
1.21, p = .41, est. ω2 = .09.  

4.2 Accuracy – Parsons Problem 
We scored participants’ Parsons problem answers for correct 
order to create their score. Participants ranked the 13 code pieces 
from the Parsons problem; we gave them one point for each code 
piece that was in the correct order relative to the pieces around it. 
For example, if participants ranked the 4th, 5th, and 6th pieces of 
the problem as the 5th, 6th, and 7th pieces of their solution, they 
would receive two out of three possible points for those three 
pieces. The first piece would be counted as wrong because it is 
not following the 3rd piece, but the other two pieces would be 
counted as correct because they are following the correct piece. 
This scoring scheme better captures participants’ understanding 
than scoring for absolute correct order as it does not penalize 
correct sequences of code that follow incorrect sequences. 

Based on the analysis of Parsons problem responses, performance 
did not seem to depend on the worked example or transfer 
manipulations. We found no statistical differences for main effect 
of worked example format, F (2, 21) = 1.20, MSE = 9.70, p = .32, 
est. ω2 = .10, main effect of transfer distance, F (1, 21) = .61, MSE 
= 9.70, p = .45, est. ω2 = .03, or interaction, F (2, 21) = .24, MSE 
= 9.70, p = .79, est. ω2 = .02. 

4.3 Time Efficiency 

4.3.1 Time on Worked Example-Practice Pairs 
For time spent studying worked examples and solving practice 
problems, we found a meaningful difference based on worked 
example format even though there was not a statistically 
significant ANOVA, F (2, 21) = 3.37, MSE = 202.2, p = .06, est. 
ω2 = .27, f = .35. We found no main effect of transfer distance, F 
(1, 21) = 1.94, MSE = 202.2, p = .18, est. ω2 = .10. In addition, we 
found no interaction, F (2, 21) = 1.80, MSE = 202.2, p = .19, est. 
ω2 = .17 (see Figure 3).  

4.3.2 Time on Code Writing Assessments 
Time spent on the code writing assessments was not affected by 
the subgoal or transfer manipulations. We found no statistical 
differences for a main effect of worked example format, F (2, 21) 
= 2.22, MSE = 49.9, p = .13, est. ω2 = .17, main effect of transfer 
distance, F (1, 21) = .63, MSE = 49.9, p = .44, est. ω2 = .03, or 
interaction, F (2, 21) = .53, MSE = 49.9, p = .60, est. ω2 = .05. 

4.3.3 Time on Parsons Problems 
Time spent on the Parsons problem was not affected by the 
subgoal or transfer manipulations. We found no statistical 
differences for main effect of worked example format, F (2, 21) = 
1.14, MSE = 8.75, p = .34, est. ω2 = .10, main effect of transfer 
distance, F (1, 21) = .21, MSE = 8.75, p = .65, est. ω2 = .01, or 
interaction, F (2, 21) = .26, MSE = 8.75, p = .77, est. ω2 = .02. 

5. PREVIOUS COURSEWORK 
EXPERIENCE 
As mentioned earlier, we also asked students in a follow-on 

programming course to participate in the study. This section 
reviews their performance and compares it with the novice 
performance. For this analysis we looked at all students who 
completed the tasks regardless of their pre-test score. 

 
Figure 3. Time (in minutes) on instructional tasks 

5.1 Results of All Introductory Students 
Students considered for the results in Section 4, the replication 
study, had to match the qualifications of the original study. This 
meant that we excluded all introductory students that correctly 
answered 3 or more questions on the pre-test correctly. This 
eliminated 24 students, almost as many as we analyzed (27). It 
became clear that many of the students in the introductory courses 
had significant loop writing knowledge prior to our intervention. 
This led us to further investigate if this prior knowledge could be 
attributed to prior coursework. 

Looking at all participants in the introductory courses (n = 51), the 
average score on the pre-test was 46% (2.3 out of 5). Participants 
scored about the same on the post-test with an average of 54% 
(2.7 out of 5). 

Within this group, no manipulation by itself made a statistical 
difference in code writing performance. There was no main effect 
of worked example format, F (2, 45) = .32, MSE = 106.1, p = .73, 
est. ω2 = .01. There was also no main effect of transfer distance, F 
(1, 45) = 1.88, MSE = 106.1, p = .18, est. ω2 = .04. There was, 
however, an interaction, F (2, 45) = 4.04, MSE = 106.1, p = .024, 
est. ω2 = .15 (see Figure 4). This interaction resembles the pattern 
of results seen in the analyses reported earlier in this paper. 

 
Figure 4. Code writing performance for participants in 

introductory courses  

On the Parsons problem, there were no statistical differences 
among groups on performance. There was no main effect of 
worked example format, F (2, 45) = 1.69, MSE = 12.6, p = .19, 
est. ω2 = .07. There was no main effect of transfer distance, F (1, 
45) = .75, MSE = 12.6, p = .39, est. ω2 = .02. There was no 
interaction, F (2, 45) = .02, MSE = 12.6, p = .98, est. ω2 = .001. 

5.2 Results of Students in Follow-On Course 
Participants in the follow-on course (i.e., the course after the 
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introductory college course) were excluded from previous 
analyses because they had at least a semester of programming 
instruction, and the instruction in the study was designed for 
novices. Participants in this course scored on average a 73% (3.6 
out of 5) on the pre-test. After instruction on the post-test, 
participants scored about the same with an average of 70% (3.5 
out of 5). Within this group, participants who were given subgoal 
labels performed better on the code writing assessments than 
those who were not given labels or those who generated labels, F 
(2, 43) = 7.33, MSE = 15.9, p = .002, est. ω2 = .25, f = .37. There 
was no main effect of transfer distance, F (1, 43) = .25, MSE = 
15.9, p = .62, est. ω2 = .01, nor was there an interaction, F (2, 43) 
= 2.30, MSE = 15.9, p = .11, est. ω2 = .10 (see Figure 5). 

 
Figure 5. Code writing performance for 202 students  

On the Parsons problem, participants who generated subgoal 
labels performed worse than those who were not given labels or 
those who received labels, F (2, 43) = 4.75, MSE = 10.9, p = .014, 
est. ω2 = .18, f = .31. There was no main effect of transfer 
distance, F (1, 43) = 2.17, MSE = 10.9, p = .15, est. ω2 = .05, nor 
was there an interaction, F (2, 43) = .62, MSE = 10.9, p = .54, est. 
ω2 = .03 (see Figure 6). 

 
Figure 6. Parsons problem performance for 202 students  

5.3 Effect of Previous Coursework 
To explore the effect of computing courses in high school and the 
effect of prior computing courses in college on performance, we 
used these two variables as random independent variables in 
ANOVA to determine if they affected performance. Participants 
who took computing courses in high school performed better on 
the code writing assessment than those who did not, F (1, 96) = 
12.0, MSE = 56.2, p = .001, est. ω2 = .11, f = .35. Participants who 
had taken prior computing courses in college performed better, F 
(2, 96) = 14.3, MSE = 56.2, p < .001, est. ω2 = .13, f = .38. There 
was an interaction, F (2, 96) = 11.1, MSE = 56.2, p = .001, est. ω2 

= .10, f = .33, such that participants who took computing courses 
in high school did not perform better that those who did not in 
later college computing courses (Figure 7). In other words, it does 
not matter if the previous course was taken in high school or 
college – the fact that the student had a previous course predicts 
better performance; but that advantage does not continue into the 
next course.  

 
Figure 7. Code writing performance by course level 

Similar to the code writing task, participants who took computing 
courses in high school performed better on the Parsons problem 
than those who did not, F (1, 96) = 9.85, MSE = 11.6, p = .002, 
est. ω2 = .09, f = .31. Participants who had taken prior computing 
courses in college also performed better, F (2, 96) = 6.78, MSE = 
11.6, p = .011, est. ω2 = .07, f = .26. For this assessment, however, 
there was no interaction, F (2, 96) = 1.66, MSE = 11.6, p = .20, 
est. ω2 = .02, suggesting that those who had computing courses in 
high school performed better than those who did not, even after 
their first computing course in college. 

6. DISCUSSION 
Here we summarize our findings related to our original research 
questions and discuss the implications for computing education.  

6.1 Replication 
Our replication of [28] yielded results that support the original 
findings. This study confirms that novice participants who learn 
by generating subgoal labels (using isomorphic WE-PP pairs) 
perform the best, and statistically better than if they had been WE-
PP pairs with contextual transfer (Figure 2). We conclude that for 
the best learning results novice students should be taught to 
generate their own subgoal labels but be given WE-PPs that are 
very similar. 

We hypothesize that teaching novice students to generate their 
own subgoal labels does require additional time, both for 
instruction and for the student during the WE-PP instruction time. 
Additionally it should be noted that within this experiment 
participants did not receive any feedback on the appropriateness 
of their generated labels. To obtain maximum benefit from 
generating subgoal labels, students should receive feedback on the 
correctness of their labels. Alternately, similar learning results 
may be obtained by using given subgoal labels.  

However, if pre-defined given subgoal labels are used, the WE-PP 
pairs should utilize contextual transfer to ensure maximum 
learning. As mentioned earlier, this is contradictory to what would 
be predicted by CLT. This is certainly one phenomenon that needs 
further research. It may be that with given subgoal labels and 
isomorphic problems students do not adequately self-explain the 
process associated with each subgoal as the steps are identical 
within both the worked example and practice problem. Just as in 
the first study, we reviewed student code submissions to ensure 
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that they were not copied from the worked example and they were 
not. Also the time spent in the instructional period indicates that 
participants spent similar amounts of time regardless if they 
received isomorphic or contextual transfer WE-PP pairs. 

It may be that with given subgoal labels students require multiple 
examples for comparison to be able to determine the generalities 
of the labels and the process. It would be interesting to determine 
if more examples or additional practice problems would improve 
the learning performance of these groups. It may also be possible 
to present the worked example with no contextual story at all – 
just as a simple problem to be solved. If students are presented 
with a “vanilla” worked example with given subgoal labels 
followed by a practice problem embedded within a context, would 
the performance differ? Looking into these and other possibilities 
are planned as future research areas.  

6.2 Previous Coursework 
We were surprised at the number of students in the introductory 
courses that were excluded due to their pre-test scores. In looking 
at the demographics, we noticed many of the introductory students 
had a previous computing course in high school and their pre-test 
scores reflected this prior experience. In examining their 
performance along with the students in the follow-on course, we 
found that having that prior coursework experience made a 
significant difference in the performance on the assessment tasks. 

Participants in the introductory courses with high school 
coursework experience performed statistically better on both the 
code writing and Parsons problem assessments than students in 
the same courses without high school computing coursework. 
These students performed similarly to those in the follow-on 
course (202).  Students in the 202 course performed statistically 
better on the Parsons problem assessments than the students in the 
introductory courses, regardless of high school coursework. We 
have evidence that students with some coursework experience, 
whether in high school or a previous college class, have actually 
mastered this concept given the pre-test score above 70% and the 
performance on the code writing assessment (Figure 5 for 202 
students only). 

However, as can be seen in Figure 7, students in the follow-on 
course that did not have a high school computing course 
performed approximately the same as those who did have a high 
school computing course on the code writing assessment task. 
Thus, those without the previous coursework advantage had 
“caught up” to those who started with more knowledge. This has 
significant implications for those teaching introductory 
programming. If students with prior programming experience are 
in the same class as those with previous computing coursework, 
we cannot expect them to perform the same on assessment tasks, 
especially after a short exposure. The participants in the 
introductory courses had been exposed to loops in their current 
courses for approximately 2 weeks and were preparing for a 
graded test which would include loops. Even without knowing the 
scores for the exam, we predict that the students with previous 
computing courses in high school would significantly outperform 
those without that experience.  

As instructors we need to be cognizant of the potential influence 
that prior coursework may have on student performance. We 
should not expect those being exposed to concepts for a minimal 
amount of time to be as proficient as those who have had a 
semester’s worth (or more) of practice. Perhaps students with 
prior experience should be in a separate class from those without 
prior coursework, even for introductory courses. The evidence 
from this study suggests that by the next course, any advantage 

those with prior coursework in high school once had, has been 
eliminated; at least for code writing tasks. 

On the Parsons problem assessment, results from this study 
indicate that those who took a high school course continue to 
outperform those who did not. Further research is needed to 
determine if this result is repeatable and why this might be the 
case. It may be that continuous code writing practice improves 
performance on Parsons problems. We are unaware of research 
that compares novice to expert performance on Parsons problems 
but this study suggests that additional practice in programming 
continues to improve Parsons problem performance.  

We found one additional interesting result in this study. Students 
in the follow-on course who generated subgoal labels performed 
statistically worse than those in the same course who were not 
given labels or those who received labels. This may be an 
example of the expertise reversal effect [19]. The expertise 
reversal effect occurs when the learner is presented with 
information that causes them to think below their automatized 
schema. The instructional design material, in this case the 
generation of subgoal labels, uses working memory that would not 
have been necessary if the learner were just solving the problem. 
In other words, the participant could have solved the problem 
without any instructional material at all because of their prior 
knowledge. The instructional material interfered with their 
problem solving process. Further research into when subgoal 
labels should no longer be used with those learning programming 
should be explored. 

7. CONCLUSION 
This study was originally conceived as a means to replicate an 
existing study to determine if the puzzling results would be 
confirmed. The data gathered in this study confirms that students 
who learn with given subgoal labels perform better with 
contextual transfer between the WE-PP pair than those who 
received isomorphic WE-PP pairs. While we still have no 
evidence as to why this occurs, contrary to cognitive load theory, 
we now know that the result is repeatable and deserves further 
research to investigate why this group in computing differs from 
those in other disciplines. 

Because of the number of participants eliminated from the 
replication analysis we explored reasons for the difference in 
performance. Students who had previous computing coursework 
outperformed those without previous coursework in both code 
writing and Parsons problem assessment tasks. Students with 
previous computing coursework should be assessed at a different 
standard than those with minimal time exposure to the concept. 
However, in the follow-on course this performance difference 
disappears indicating that those without previous coursework do 
“catch up”. This indicates that the students with differing 
experience backgrounds can be merged into a single class. 

While some may think the results of this paper, students with 
previous experience perform better, are obvious, we demonstrate 
that our students actually do eventually learn and master a concept 
(writing loops) unlike so much previous research [22, 26, 36]. We 
also provide evidence that any advantage gained through previous 
coursework disappears, with regard to this introductory concept, 
in the follow-on course. We find these facts, that our students 
actually do learn and that students without previous experience 
can catch up, very encouraging. 

228



8. ACKNOWLEDGMENTS 
We would like to thank the students who participated in the study 
and their instructors who graciously gave us the time. We also 
thank the anonymous reviewers who supplied comments which 
improved this paper. 

This work is funded in part by the National Science Foundation 
under grant 1138378. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the NSF. 

9. REFERENCES 
[1] Atkinson, R.K. et al. 2003. Aiding Transfer in Statistics: 

Examining the Use of Conceptually Oriented Equations and 
Elaborations During Subgoal Learning. Journal of 
Educational Psychology. 95, 4 (2003), 762. 

[2] Atkinson, R.K. et al. 2000. Learning from examples: 
Instructional principles from the worked examples research. 
Review of educational research. 70, 2 (2000), 181–214. 

[3] Atkinson, R.K. 2002. Optimizing learning from examples 
using animated pedagogical agents. Journal of Educational 
Psychology. 94, 2 (2002), 416. 

[4] Atkinson, R.K. and Derry, S.J. 2000. Computer-based 
examples designed to encourage optimal example 
processing: A study examining the impact of sequentially 
presented, subgoal-oriented worked examples. Fourth 
International Conference of the Learning Sciences (2000). 

[5] Bennedsen, J. and Caspersen, M.E. 2005. An investigation of 
potential success factors for an introductory model-driven 
programming course. Proceedings of the first international 
workshop on Computing education research (2005), 155–
163. 

[6] Bergin, S. and Reilly, R. 2005. Programming: factors that 
influence success. ACM SIGCSE Bulletin (2005), 411–415. 

[7] Bjork, R.A. 1994. Memory and metamemory considerations 
in the training of human beings. Metacognition: Knowing 
about Knowing. MIT Press. 

[8] Bransford, J. 2000. How people learn: Brain, mind, 
experience, and school. National Academies Press. 

[9] Campbell, V. and Johnstone, M. 2010. The significance of 
learning style with respect to achievement in first year 
programming students. Software Engineering Conference 
(ASWEC), 2010 21st Australian (2010), 165–170. 

[10] Catrambone, R. 1996. Generalizing solution procedures 
learned from examples. Journal of Experimental Psychology: 
Learning, Memory, and Cognition; Journal of Experimental 
Psychology: Learning, Memory, and Cognition. 22, 4 (1996), 
1020. 

[11] Catrambone, R. 1994. Improving examples to improve 
transfer to novel problems. Memory & Cognition. 22, 5 
(1994), 606–615. 

[12] Catrambone, R. 1998. The subgoal learning model: Creating 
better examples so that students can solve novel problems. 
Journal of Experimental Psychology: General. 127, 4 (1998), 
355. 

[13] Chi, M. et al. 1989. Self-explanations: How students study 
and use examples in learning to solve problems. Cognitive 
science. 13, 2 (1989), 145–182. 

[14] Denny, P. et al. 2008. Evaluating a new exam question: 
Parsons problems. Proceeding of the Fourth international 
Workshop on Computing Education Research (Sydney, 
Australia, 2008), 113–124. 

[15] Eiriksdottir, E. and Catrambone, R. 2011. Procedural 
instructions, principles, and examples how to structure 

instructions for procedural tasks to enhance performance, 
learning, and transfer. Human Factors: The Journal of the 
Human Factors and Ergonomics Society. 53, 6 (2011), 749–
770. 

[16] Evans, G.E. and Simkin, M.G. 1989. What best predicts 
computer proficiency? Communications of the ACM. 32, 11 
(1989), 1322–1327. 

[17] Hagan, D. and Markham, S. 2000. Does it help to have some 
programming experience before beginning a computing 
degree program? ACM SIGCSE Bulletin (2000), 25–28. 

[18] Johnson, W.L. and Soloway, E. 1985. PROUST: 
Knowledge-based program understanding. Software 
Engineering, IEEE Transactions on. 3 (1985), 267–275. 

[19] Kalyuga, S. 2007. Expertise reversal effect and its 
implications for learner-tailored instruction. Educational 
Psychology Review. 19, 4 (2007), 509–539. 

[20] Leeper, R.R. and Silver, J.L. 1982. Predicting success in a 
first programming course. ACM SIGCSE Bulletin. 14, 1 
(1982), 147–150. 

[21] Leppink, J. et al. 2013. Development of an instrument for 
measuring different types of cognitive load. Behavior 
research methods. 45, 4 (2013), 1058–1072. 

[22] Lister, R. et al. 2004. A multi-national study of reading and 
tracing skills in novice programmers. ACM SIGCSE Bulletin 
(2004), 119–150. 

[23] Lopez, M. et al. 2008. Relationships between reading, tracing 
and writing skills in introductory programming. Proceedings 
of the fourth international workshop on computing education 
research (2008), 101–112. 

[24] Margulieux, L.E. et al. 2012. Subgoal-labeled instructional 
material improves performance and transfer in learning to 
develop mobile applications. Proceedings of the ninth annual 
international conference on International computing 
education research (2012), 71–78. 

[25] Margulieux, L.E. and Catrambone, R. 2014. Improving 
problem solving performance in computer-based learning 
environments through subgoal labels. Proceedings of the first 
ACM conference on Learning@ scale conference (2014), 
149–150. 

[26] McCracken, M. et al. 2001. A multi-national, multi-
institutional study of assessment of programming skills of 
first-year CS students. Working group reports from ITiCSE 
on Innovation and technology in computer science education 
(Canterbury, UK, 2001), 125–180. 

[27] van Merriënboer, J.J. and Sweller, J. 2005. Cognitive load 
theory and complex learning: Recent developments and 
future directions. Educational psychology review. 17, 2 
(2005), 147–177. 

[28] Morrison, Briana B. et al. 2015. Subgoals, Context, and 
Worked Examples in Learning Computing Problem Solving. 
ICER 2015 (Aug. 2015). 

[29] Palmiter, S. and Elkerton, J. 1993. Animated demonstrations 
for learning procedural computer-based tasks. Human-
Computer Interaction. 8, 3 (1993), 193–216. 

[30] Parsons, D. and Haden, P. 2006. Parson’s Programming 
Puzzles: A Fun and Effective Learning Tool for First 
Programming Courses. Proceedings of the 8th Australasian 
Conference on Computing Education - Volume 52 
(Darlinghurst, Australia, Australia, 2006), 157–163. 

[31] Plass, J.L. et al. 2010. Cognitive load theory. Cambridge 
University Press. 

[32] Renkl, A. and Atkinson, R.K. 2002. Learning from 
examples: Fostering self-explanations in computer-based 

229



learning environments. Interactive learning environments. 
10, 2 (2002), 105–119. 

[33] Rochester Institute of Technology 2014. Undergraduate 
Course Descriptions. 

[34] Rountree, N. et al. 2004. Interacting factors that predict 
success and failure in a CS1 course. ACM SIGCSE Bulletin 
(2004), 101–104. 

[35] Simon et al. 2006. Predictors of success in a first 
programming course. Proceedings of the 8th Australasian 
Conference on Computing Education-Volume 52 (2006), 
189–196. 

[36] Soloway, E. and Ehrlich, K. 1984. Empirical studies of 
programming knowledge. Software Engineering, IEEE 
Transactions on. 5 (1984), 595–609. 

[37] Sweller, J. et al. 1998. Cognitive architecture and 
instructional design. Educational psychology review. 10, 3 
(1998), 251–296. 

[38] Sweller, J. et al. 2011. Cognitive load theory. Springer. 
[39] Sweller, J. 2010. Element interactivity and intrinsic,  
        extraneous, and germane cognitive load. Educational 

psychology review. 22, 2 (2010), 123–138.  

[40] van Gog, Tamara and Paas, Fred 2012. Cognitive Load 
Measurement. Encyclopedia of the Sciences of Learning. 
Springer. 

[41] Ventura Jr, P.R. 2005. Identifying predictors of success for 
an objects-first CS1. (2005). 

[42] Watson, C. et al. 2014. No tests required: comparing 
traditional and dynamic predictors of programming success. 
Proceedings of the 45th ACM technical symposium on 
Computer science education (2014), 469–474. 

[43] White, G. and Sivitanides, M. 2003. An empirical 
investigation of the relationship between success in 
mathematics and visual programming courses. Journal of 
Information Systems Education. 14, 4 (2003), 409. 

[44] Wiedenbeck, S. 2005. Factors affecting the success of non-
majors in learning to program. Proceedings of the first 
international workshop on Computing education research 
(2005), 13–24. 

[45] Wilson, B.C. and Shrock, S. 2001. Contributing to success in 
an introductory computer science course: a study of twelve 
factors. ACM SIGCSE Bulletin (2001), 184–188. 

 

 

 
 
 

230


