Learning Loops: A Replication Study llluminates Impact
of HS Courses

Briana B. Morrison
College of Information Science & Technology
University of Nebraska at Omaha
6001 Dodge Street
Omaha, NE 68182

bbmorrison @ unomaha.edu

ABSTRACT
A recent study about the effectiveness of subgoal labeling in an
introductory computer science programming course both

supported previous research and produced some puzzling results.
In this study, we replicate the experiment with a different student
population to determine if the results are repeatable. We also gave
the experimental task to students in a follow-on course to explore
if they had indeed mastered the programming concept. We found
that the previous puzzling results were repeated. In addition, for
the novice programmers, we found a statistically significant
difference in performance based on whether the student had
previous programming courses in high school. However, this
performance difference disappears in a follow-on course after all
students have taken an introductory computer science
programming course. The results of this study have implications
for how quickly students are evaluated for mastery of knowledge
and how we group students in introductory programming courses.

Keywords

Subgoal labels, Cognitive Load, Contextual Transfer.

1. INTRODUCTION

In the nascent field of computer science education, we have
become particularly good at two things: publishing new studies
and establishing that our students don’t know what we think they
should know. Looking at any recent conference proceedings in the
discipline, you would be hard pressed to find any papers that are
replication studies. And we have many examples, from Soloway
[36] to McCracken [26], of our students performing below our
expectation levels on supposedly relatively easy programming
tasks. This paper tackles both of these issues directly: we present
the results of a replication study done with a new population of
students at a different institution and provide evidence that
students really do learn programming constructs, but perhaps not
as quickly as we, the educators, would hope.

A recent study presented results on the effectiveness of subgoal
labeling with students in introductory programming courses
learning to write while loops to solve programming problems
[28]. Subgoal labeling is a technique used to promote subgoal
learning that has been used to help learners recognize the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
ICER '16, September 8—12, 2016, Melbourne, VIC, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4449-4/16/09...$15.00.

DO http://dx.doi.org/10.1145/2960310.2960330

221

Adrienne Decker
School of Interactive Games and Media
Rochester Institute of Technology
152 Lomb Memorial Drive
Rochester, NY, 14623

adrienne.decker@rit.edu

Lauren E. Margulieux
School of Psychology
Georgia Institute of Technology
654 Cherry Street
Atlanta, GA, 30332-0170

l.marg@gatech.edu

fundamental structure of the procedure being exemplified in
worked examples [10-12]. Subgoal labels are function-based
instructional explanations that describe the purpose of a subgoal,
or functional piece of the problem solution, to the learner. Some
of results presented in the original study agreed with previous
subgoal label research: learning with subgoal labels produces
higher learning gains and better problem solving performance
than learning without subgoal labels. The study compared
students who learned from unlabeled worked examples (i.e.,
conventional examples) to those who learned from worked
examples labeled with subgoal labels created by the experimenters
and worked examples that prompted students to generate their
own subgoal labels.

Also tested in the original study was the effect of transfer between
worked examples and practice problems. Problem sets of worked
example-practice problems came in two varieties: either
isomorphic or contextual transfer. In the isomorphic transfer
group the problem to be solved in the worked example-practice
problem (WE-PP) pair was identical to the worked example in
both procedural steps and cover story (i.e., context). The only
thing changed was the actual values of the numbers to be
calculated. In the contextual transfer group, the problem to be
solved in the WE-PP pair involved the same procedural steps but
the cover story and numeric values changed.

Both the unlabeled groups and the generate subgoal labels groups
performed as expected in the code writing task whether or not
they were in the isomorphic or contextual transfer treatment
groups. In both of these cases, the isomorphic group outperformed
the contextual transfer group, which cognitive load theory [27, 37,
39] would predict. Cognitive load theory (CLT) suggests that
having an additional piece to figure out — the contextual transfer —
may overload the cognitive processing of novices resulting in
poorer performance on the assessment task. However, perhaps the
most puzzling result came from the group of students who were
given subgoal labels. In this treatment, the students who received
problems with contextual transfer performed statistically better
than the group of students receiving the isomorphic problems.
This outcome was unexpected, and we are still exploring why the
group receiving subgoal labels made by the experimenters would
behave differently than the other groups.

To explore whether the original study was an anomaly, we set out
to replicate the study with a different population at a different
institution. In the original study, the average score on the post-
test, which comprised items from the AP CS test, was only 31%,
indicating that the students had not learned very much from the
intervention. Perhaps the assessment tasks were too difficult and
once again we were asking more from our students than they were
capable of (a la McCracken [26]). To test this hypothesis we also
asked students in a follow-on programming course to participate



in the study to compare their performance with those in the
introductory course. We found that the original results were not an
anomaly — they repeated. We also found that students in the
follow-on course performed better on the assessments (than the
introductory students) indicating that writing while loops can be
mastered. In addition, we found that students in the introductory
programming course who had taken computing courses in high
school performed better than those who did not. However, this
difference in performance due to high school experience was not
present for students in the follow-on course.

2. BACKGROUND

This section reviews the details of the previous study and
examines current literature for the effect of previous coursework
on programming performance in novices.

2.1 Previous Study

The original study [28] tested hypotheses related to whether using
subgoal labels to teach a programming construct would produce
results similar to those achieved in other disciplines. The study
proposed that using subgoal labels to help students learn would
reduce the cognitive load imposed in learning.

2.1.1 Cognitive Load Theory

Cognitive load can be defined as “the load imposed on an
individual's working memory by a particular (learning) task” [40].
The cognitive load required to comprehend materials directly
affects how much students learn, and affects their performance
scores on assessments related to that task. If students have to keep
too many things in working memory in order to understand a
concept, learning suffers. The central problem identified by
Cognitive Load Theory (CLT) is that learning is impaired when
the total amount of processing requirements exceeds the limited
capacity of working memory [31]. Currently CLT [27, 37, 39]
defines two different types of cognitive load on a student's
working memory: intrinsic load and extraneous load.

Intrinsic load is a combination of the innate difficulty of the
material being learned as well as the learner's previous knowledge
[21]. Extraneous load is the load placed on working memory that
does not contribute directly toward the learning of the material.
For example, the extra resources consumed to understand poorly
written text or diagrams without sufficient clarity contributes to
extraneous cognitive load [21].

The intrinsic and extraneous loads can be controlled through
instructional design and care should be given to eliminate any
possible extraneous load while attempting to optimize the level of
intrinsic load so that the learner is challenged but not overly so. It
is believed that worked examples, when carefully designed, can
accomplish both of these goals [24].

2.1.2 Worked Examples

Worked examples are one type of instruction used to teach
procedural process to students for problem solving activities.
Worked examples give learners concrete examples of the
procedure being used to solve a problem.

Eiriksdottir and Catrambone argue that learning primarily from
worked examples does not inherently promote deep processing of
concepts [15]. While learning from worked examples may result
in better initial performance, it is less likely result in the retention
and transfer [15]. When studying examples, learners tend to focus
on incidental features, like those necessary for the cover story of
the problem, rather than the fundamental features, like the
concepts required to solve the problem. This happens because

222

incidental features are easy to grasp and novices do not have the
necessary domain knowledge to recognize fundamental features
of examples [13]. A focus on incidental features leads to
ineffective organization and storage of information that, in turn,
leads to ineffective recall and transfer [8].

2.1.3 Subgoal Labeling

To promote deeper processing of worked examples and, thus,
improve retention and transfer, worked examples have been
manipulated to promote subgoal learning. Subgoal learning refers
to a strategy used predominantly in STEM fields that helps
students deconstruct problem solving procedures into subgoals,
functional parts of the overall procedure, to better recognize the
fundamental components of the problem solving process [1].

Subgoal labeling is a technique used to promote subgoal learning.
Studies [3, 4, 10-12, 24, 25] have consistently found that subgoal-
oriented instructions improved problem solving performance
across a variety of STEM domains, such as programming [24] and
statistics [12]. Studies have also found that giving subgoal labels
in worked examples improves performance while solving novel
problems without increasing the amount of time learners spend
studying instructions or working on problems [24]. This format
highlights the structure of examples, helping students focus on
structural features and more effectively organize information [2].

By helping learners organize information and focus on structural
features of worked examples, subgoal labels are believed to
reduce the extraneous cognitive load that can hinder learning but
is inherent in worked examples [32]. Worked examples introduce
extraneous cognitive load because they are necessarily specific to
a context, and students must process the incidental information
about the context even though it is not relevant to the underlying
procedure [39]. Subgoal labels can reduce focus on these
incidental features by highlighting the fundamental features of the
procedure [32]. Subgoal labels further improve learning by
reducing the intrinsic load by providing a mental organization
(i.e., subgoals) for storing information.

2.1.4 Results

The original study tested its hypotheses by dividing the
participants into three treatment groups, each with its own
instructional materials: learning with no subgoal labels, learning
with given pre-defined subgoal labels, and asking participants to
generate their own subgoal labels after some initial training. Each
treatment group was then subdivided into two sections:
isomorphic or contextual transfer. In the isomorphic transfer
condition, the procedure and context used to solve the WE-PP
were exactly the same but the exact values in the problem
changed. For example, if a worked example asked participants to
find the average of quiz scores with values 70, 80, and 90, then
the practice problem asked participants to find the average of quiz
scores with values 75, 85, and 95. In the contextual transfer
condition, the procedure used to solve the WE-PP were the same
except the context of the problem changed. For example, if a
worked example asked participants to find the average of quiz
scores, then the practice problem asked participants to find the
average of money amounts.

The original study found that, similar to previous research in other
disciplines, students who learned with subgoal labels (either given
or generated) performed better on the code writing assessments
than those who learned without subgoal labels. The participants
who generated their own subgoal labels did not perform better on
the code writing tasks requiring transfer, unlike previous research.

The unexpected results occurred with the given subgoal label



group. Cognitive Load Theory would predict that learning with
given subgoal labels and no contextual transfer should impose
lower cognitive processing than learning with given subgoal
labels and contextual transfer. The contextual transfer would
require additional working memory to process. However the
results from the original study directly contradict this. The
original study found, unlike the other two treatment groups, that
the participants that learned with given subgoal labels and
contextual transfer significantly outperformed the given subgoal
labels with isomorphic problems. This is the main finding we
wished to test in the replication to determine if the original
findings were an anomaly or if something else was happening.

2.2 Previous Coursework

Recent previous work has identified problems with student
understanding and learning in introductory courses. McCracken et
al. [26] showed that students were unsuccessful at writing correct
code to answer problems involving programming by the end of
the introductory course. Lister et al. [22] took this investigation
further by examining students’ abilities to read and trace code.
They concluded that weak students are often weak in their ability
to read (and trace) code which is a precursor to writing code. In
an attempt to better understand how reading and tracing are
related to abilities to write code, Lopez et al. [23] created an
instrument to determine a hierarchy of concepts (reading, tracing,
solving Parsons problems, writing) with regard to code. Their
work found that solving Parsons problems might actually be more
difficult than tracing iterative code.

In an effort to prevent students from performing poorly, many
have turned to trying to determine what best predicts computing
proficiency, presumably as a way to determine how to better teach
students and/or determine which student may be more likely to
need extra support during their first course. The research on
success predictors goes back decades, with numerous factors
being identified such as comfort level [45], math and/or science
background [5, 6, 20, 43, 45], spatial visualization skills [35],
attributions of success and/or confidence [6, 34, 45], learning style
[9, 35]. Watson [42] has argued that programming behavior was
better predictor of success in the course than the traditional test-
based prediction metrics and/or demographics.

Many believe that prior exposure to programming is a positive
predictive factor in success in the first course. Hagan and
Markam [17] showed that prior programming experience did in
fact help students in the introductory course. They showed that the
number of programming languages used was also important to
students’ initial success in the course. However, Evans and
Simkin [16] showed that prior academic experience (including
computing experience) did not factor strongly into a predictive
model for success, but rather worked in concert with other
behavior and cognitive factors to determine success. This was
shown again by Wiedenbeck [44] in regards to non-majors taking
a programming course and with Ventura [41] when looking at
students taking an objects-first curriculum.

One thing from the predictors research that stands out is that there
are likely a number of factors that contribute to a student’s
success in a course. Prior experience, whether it be in
programming or other disciplines, is an important factor in some
studies, but not as important in others. What we are interested in
here is whether or not the prior experience impacts the
understanding of a particular concept, not necessarily overall
student success in the course.

223

3. METHOD OF STUDY
3.1 Purpose

Participants in introductory programming classes who had already
been introduced to loops within their course were given additional
instructional material designed to reinforce the practice of solving
programming problems using while loops. Participants were
recruited from 3 different first and second year programming
courses at a technical university in the northeast United States and
the study was conducted over a one month period.

Table 1 summarizes the differences between the three courses.
The first two courses are first year, first semester courses serving
primarily two different populations of students. The first course
(101) serves as the first programming course (CS1 equivalent) for
students intending to major in New Media Interactive Design (a
College of Imaging Arts and Sciences major), or New Media
Interactive Development (a College of Computing and
Information Sciences major) and is taught using Processing [33].
The “New Media” majors are focused on the interaction of art and
technology through media. The difference between the students is
the focus of the major, the “design” major attracts primarily
students who may consider themselves artists, while the
“development” major attracts those who are more “technologists”.
The second course (105) serves as the first programming course
(CS1 equivalent) for students intending to major in Game Design
and Development (a College of Computing and Information
Sciences major) and is taught in C# [33]. The game design and
development degree is a technically focused degree in game
design and development and the coursework has many similarities
to a computer science degree. The department does not give
credit for either 101 or 105 for Advanced Placement (AP) credit.
Students earning high scores on the AP exam earn credit for
another course from another department, but still need to take 101
or 105 to complete the requirements for their respective majors.

Table 1. Classes Participating in Study

. Majors Experiment
Programming .
Course Language Delivery
gnag Method
New Media
Interactive Design, .
101 Processing New Media Closed lab in-
. class exercise
Interactive
Development
. Optional at-
105 c Game Design & home
Development .
assignment
New Media
C# (some Interactive Design, Closed lab in-
202 . . .
Processing) Game Design and class exercise
Development

The second year course (202) is designed to bring together the
groups from New Media Interactive Development and Game
Design and Development and is taught primarily in C# (with some
limited time devoted to Processing) and focuses on the use and
integration of media and media artifacts into interactive
experiences [33]. It should be noted that students who take the
101 course take 2 more courses (102 and 201) before taking the
follow-on course while those who take the 105 course take only 1
more course (106) before taking 202. So students from the 101
course path have a 3 semester sequence while those in the 105
track have a 2 semester sequence.

The study was conducted either in a closed lab setting with up to
30 computers in a single room, or as an optional at-home
assignment (see Table 1). The participating instructors decided



how to structure the exercise in their particular course and what
weighting it had on a student’s grade, but participation in the
study was strictly voluntary. That is, even in classes where there
was a closed lab around the exercise, participation in the study
described here was voluntary — consent to use the data for the
study was given at the end of the exercises. All of these courses
are taught in a computer lab of at most 30 students. Exercises
where students are given a set of tasks to perform during the class
period for their grade are a common part of these courses.

Students received an introduction to the study explaining that the
material in the study was designed to help them learn how to write
loops. Students were then given a URL to the first page of the
study, which was housed in SurveyMonkey. Participants worked
independently. The in-class sessions were an entire class period
for the course (110 minutes). For the students who completed at
home, the assignment was posted for them and they were given a
due date by which they needed to complete the exercise. At the
end of the window, the SurveyMonkey materials were closed.

3.2 Instructional Materials

The materials used were identical to those used in [28], other than
placement of the consent. To learn the procedure for using while
loops to solve programming problems, participants were given
three worked examples and three practice problems. The worked
examples and practice problems were interleaved so that after
studying the first worked example, participants solved the first
practice problem before moving on to the second worked
example. The worked examples came in three formats, which
varied between participants. The first format was not subgoal
oriented, meaning that steps of the examples did not provide any
information about the underlying subgoals of the procedure. The
second format grouped steps of the example by subgoal and
provided meaningful subgoal labels for each group as is typical in
subgoal label research (e.g., [24]). The third format grouped steps
of the example by subgoal and provided a spot for participants to
write generated subgoal labels for each group. Each of the groups
was numbered as “label 1,” “label 2,” etc., and groups that
represented the same subgoal had the same number; therefore,
groups that represented subgoal 1 were numbered as “label 17
regardless of where in the example they appeared (see Figure 1).
Participants were told that each of the worked examples would
have the same subgoals, and they were encouraged to update and
improve upon their generated labels as they learned more.

No labels Given Labels Placeholder for Label
Initialize Variables Label 1:
sum=0 sum =0 sum=0
lov =1 lev =1 lev=1
Determine Loop Label 2:
\E’)Vg”-E lov<=100 | condition WHILE lcv <= 100 DO
WHILE Icv <= 100 DO
Label3:
lcv=lcv +1 Update Loop Var lov = lov + 1
ENDWHILE lcv=lcv +1 ENDWHILE
ENDWHILE

Figure 1. Partial worked example formatted with no labels,
given labels, or placeholders for generated labels.

Participant groups also received different practice problems to test
how contextual transfer may affect learning — the isomorphic
transfer condition and the contextual transfer condition, just as in
the original study. The contextual transfer was intended to be
harder for participants to map concepts from the worked example
to the practice problem. More difficult mapping can improve
learning by reducing illusions of understanding caused by shallow

224

processing thus inducing deeper processing of information [7, 15,
29]. However it can also increase cognitive load and potentially
hinder learning [39].

After completing the instructions, participants completed novel
programming assessments to measure their code writing
performance. The assessments included two tasks. First, the code
writing task asked participants to use the problem-solving
structure that they had learned during the WE-PP pairs to solve
four novel problems. Two of these problems required contextual
transfer, meaning that they followed the same steps found in the
instructions but in a different context. The other two problems
required both contextual and structural transfer. In these problems
the context was new to the participants and the solution to the
problem required a different structure than the problems found in
the instructional material (e.g., the practice problem is summing
values, the assessment is counting matching values). These tasks
were intended to measure participants’ code writing and problem
solving performance as a ‘far’ transfer.

After the code writing task, participants completed a Parsons
problem. Parsons problems [30] involve correct code which is
broken into code fragments that have to be put in the correct
order. The Parsons problem used for assessment was a version of
the “rainfall problem” [18]. The problem had 13 different code
pieces with between 1 and 3 lines of code in each code piece. The
participants were asked to put the code pieces in order with no
consideration of indentation. In other words, they indicated the
order of the code segments by numbering them.

3.3 Design

The experiment was a 3-by-2, between-subjects, factorial design:
the format of worked examples (unlabeled, subgoal labels given,
or subgoal labels generated) was crossed with the transfer distance
between worked examples and practice problems (isomorphic or
contextual transfer). The dependent variables were performance
on the pre- and post-test, code writing tasks, and time on task.

3.4 Participants

Participants were 100 students from a technical university in the
northeast United States (Table 2). To account for prior experience,
participants were asked about their prior programming experience
in high school (either regular or advanced placement courses) and
college and whether they had experience using while loops. Other
demographic information collected included gender, age,
academic major, high school grade point average (GPA), college
GPA, number of years in college, reported comfort with
computer, expected difficulty of the programming task, and
primary language. There were no statistical differences between
the groups for demographic data, which is expected because
participants were randomly assigned to treatment groups.

Age Gender GPA Major
33% New Media
M=19 | 72% male | M=3.5/4 63% Game Design
3% CS, SWE, CEngr

Table 2. Participant Demographics

Participants who did not attempt all tasks were excluded from
analysis. For the replication piece of the study, participants who
answered more than two questions correctly out of the five on the
pre-test were excluded from analysis because the instructions
were designed for novices. However, for the second piece of
analysis within the paper, we looked at the success rate of all
students who completed all the tasks. Based on these exclusion



criteria, we analyzed data from 27 participants for the replication
study and 100 participants for overall performance.

3.5 Procedure

The procedure used in this study was identical to that used in [28],
other than granting consent was moved from the beginning of the
survey to the end. Students completed the demographic questions
followed by a pre-test. The pre-test was comprised of multiple
choice questions about while loops from previous Advanced
Placement Computer Science A exams.

When participants finished the demographic questionnaire and
pre-test, they began the instructional period which consisted of
training followed by the worked example-practice problem (WE-
PP) pairs. Participants who generated their own subgoal labels
received training on how to create subgoal labels. Participants
who did not generate their own subgoal labels received training to
complete verbal analogies. Verbal analogies (e.g., water : thirst ::
food : hunger) were considered a comparable task to subgoal label
training because they both require analyzing text to determine an
underlying structure. Participants who were not asked to generate
their own labels were not given subgoal label training because it
might have prompted them to process the instructions more
similarly than would be expected of participants who were asked
to generate their own labels, which might confound the results.
The subgoal label training and the analogy training included
expository instructions, worked examples, and activities.

Three WE-PP pairs were then presented to the participants. The
worked example format differed between subjects among three
levels: unlabeled, subgoal labels given, and subgoal labels
generated. Furthermore, the transfer distance between worked
example and practice problem differed between subjects between
two levels: isomorphic or contextual transfer.

After the instructional period, participants moved to the
assessment period. The assessment period included the problem
solving tasks discussed earlier: 4 code writing problems and a
Parsons problem.

At the end of the session, participants completed a post-test with
the same questions as the pre-test to measure their learning.
Throughout the procedure we recorded the time taken to complete
each task. We also collected process data throughout the
instructional period. We collected performance on the training
activities and practice problems to ensure that participants were
completing tasks.

We entered into the study with the following research questions:

R1. Do participants who learn with given subgoal labels and no
contextual transfer perform better or worse on programming
assessments than those who learn with given subgoal labels and
contextual transfer?

R2. Do participants further along in their computing studies
outperform novices on both the pre/post-test and programming
assessments?

4. ANALYSIS AND RESULTS
4.1 Accuracy — Code Writing

We scored participants’ solutions for accuracy to generate a code
writing score. Participants earned one point for each correct line
of code that they wrote. This scoring scheme allowed for more
sensitivity than scoring solutions as wholly right or wrong. If
participants wrote lines that were conceptually correct but
contained typos or syntax errors (e.g., missing a parenthesis), they

225

received points. We scored logic errors (having < rather an <=) as
incorrect. We considered scoring for conceptual and logical
accuracy more valuable than scoring for absolute syntactical
accuracy because participants were still early in the learning
process. Participants could earn a maximum score of 44.

In the statistics reported below, we include two types of effect
sizes. The first, est. >, describes how much of the variation in
scores can be attributed to the manipulation. For example, for the
code writing assessment, an est. ®* of .10 means that 10% of the
variation in performance can be attributed to the instructional
manipulations. The second, f or d, describes the difference
between groups using the standard deviation as the unit of
measurement. For example, for the code writing assessment, a d
of .5 would mean that the difference- between the means of two
groups is half of the standard deviation for those groups.

The effect of the interventions on code writing performance
depended on the interaction of the worked example manipulation
and transfer distance manipulation. We found no main effect of
worked example format, F (2, 21) = 0.26, MSE = 105.6, p = .78,
est. ® = .02. In addition, we found no main effect of transfer
distance, F (1, 21) = 1.47, MSE = 105.6, p = .24, est. o> = .07.
There was, however, a statistically significant interaction between
worked example format and transfer distance, F (2, 21) = 5.19,
MSE =105.6, p =015, est. ®* = .33, f= .44 (see Figure 2").

g 40

% 30 T I

= 1

3 20 —

2 10 | M Isomorphic
S

v o0 T T : Contextual

No Labels Given Labels Generated
Labels

Worked Example Format

Figure 2. Code writing performance for novice programmers

In this interaction, the difference between the group that was
given subgoal labels with isomorphic transfer (M = 18.4, SD =
13.0) and the group that was given subgoal labels with contextual
transfer (M = 31.2, SD = 13.8) was not statistically significant, ¢
(8) =-1.50, p = .17, but the difference between groups was large
with an effect size of d = 0.95. Based on these results, the
difference between groups is meaningful, even though it is not
statistically significant, likely due to a small sample size. The
sample size was small because this was a replication study thus
we did not need as much statistical power to ensure the pattern of
results was reliable. Because the effect size is large and matches
previous results we conclude that this is a meaningful difference.
Furthermore, the difference between the group that generated
subgoal labels with isomorphic problems (M = 18.0, SD = 4.6)
and the group that generated subgoal labels with contextual
transfer (M = 37, SD = 4.5) was statistically significant, ¢ (4) =
7.18, p = .002, with a large effect size, d = 4.18. This effect size is
based on a sample of six, therefore, it is likely not reliable. The
effect size is likely inflated due to the small sample; however, the
effect of the intervention is still valid and in the correct direction.
These results mean that participants who were given subgoal

! Error bars on all bar graphs represent the 95% confidence
interval.



labels performed better when they had contextual transfer, and
participants who generated subgoal labels performed better with
isomorphic problems.

Performance on the post-test was similar to that on the pre-test.
Average scores on the post-test were low, 36% (1.8 out of 5
points). We found no statistical differences for main effect of
worked example format, F' (2, 21) = .07, MSE = 1.21, p = .93, est.
©* = .01, main effect of transfer distance, F (1, 21) = .28, MSE =
1.21, p = .60, est. ®* = .01, or interaction, F (2,21)=.93, MSE =
1.21, p = 41, est. o> =.09.

4.2 Accuracy — Parsons Problem

We scored participants’ Parsons problem answers for correct
order to create their score. Participants ranked the 13 code pieces
from the Parsons problem; we gave them one point for each code
piece that was in the correct order relative to the pieces around it.
For example, if participants ranked the 4™, 5" and 6™ pieces of
the problem as the 5", 6", and 7™ pieces of their solution, they
would receive two out of three possible points for those three
pieces. The first piece would be counted as wrong because it is
not following the 3™ piece, but the other two pieces would be
counted as correct because they are following the correct piece.
This scoring scheme better captures participants’ understanding
than scoring for absolute correct order as it does not penalize
correct sequences of code that follow incorrect sequences.

Based on the analysis of Parsons problem responses, performance
did not seem to depend on the worked example or transfer
manipulations. We found no statistical differences for main effect
of worked example format, F (2, 21) = 1.20, MSE = 9.70, p = .32,
est. ® = .10, main effect of transfer distance, F (1,21)=.61, MSE
=9.70, p = .45, est. ®* = .03, or interaction, F (2, 21) = .24, MSE
=9.70, p=.79, est. ©* = .02.

4.3 Time Efficiency
4.3.1 Time on Worked Example-Practice Pairs

For time spent studying worked examples and solving practice
problems, we found a meaningful difference based on worked
example format even though there was not a statistically
significant ANOVA, F (2, 21) = 3.37, MSE = 202.2, p = .06, est.
o =27, f=.35. We found no main effect of transfer distance, F’
(1,21)=1.94, MSE =202.2, p = .18, est. ®* =.10. In addition, we
found no interaction, F (2, 21) = 1.80, MSE = 202.2, p = .19, est.
®° = .17 (see Figure 3).

4.3.2 Time on Code Writing Assessments

Time spent on the code writing assessments was not affected by
the subgoal or transfer manipulations. We found no statistical
differences for a main effect of worked example format, F' (2, 21)
=222, MSE =49.9, p = .13, est. ©* = .17, main effect of transfer
distance, F (1, 21) = .63, MSE = 49.9, p = .44, est. o> = .03, or
interaction, F' (2, 21) =.53, MSE =49.9, p = .60, est. o> =.05.

4.3.3 Time on Parsons Problems

Time spent on the Parsons problem was not affected by the
subgoal or transfer manipulations. We found no statistical
differences for main effect of worked example format, F' (2, 21) =
1.14, MSE = 8.75, p = .34, est. ®” = .10, main effect of transfer
distance, F (1, 21) = .21, MSE = 8.75, p = .65, est. ®* = .01, or
interaction, £ (2, 21) = .26, MSE = 8.75, p=.77, est. ®*=.02.

5. PREVIOUS COURSEWORK
EXPERIENCE

As mentioned earlier, we also asked students in a follow-on

226

programming course to participate in the study. This section
reviews their performance and compares it with the novice
performance. For this analysis we looked at all students who
completed the tasks regardless of their pre-test score.

60
50
40

—

M Isomorphic

Time

Contextual

No Labels Generated

Labels
Worked Example Format

Given Labels

Figure 3. Time (in minutes) on instructional tasks

5.1 Results of All Introductory Students
Students considered for the results in Section 4, the replication
study, had to match the qualifications of the original study. This
meant that we excluded all introductory students that correctly
answered 3 or more questions on the pre-test correctly. This
eliminated 24 students, almost as many as we analyzed (27). It
became clear that many of the students in the introductory courses
had significant loop writing knowledge prior to our intervention.
This led us to further investigate if this prior knowledge could be
attributed to prior coursework.

Looking at all participants in the introductory courses (n = 51), the
average score on the pre-test was 46% (2.3 out of 5). Participants
scored about the same on the post-test with an average of 54%
(2.7 out of 5).

Within this group, no manipulation by itself made a statistical
difference in code writing performance. There was no main effect
of worked example format, F' (2, 45) = .32, MSE = 106.1, p = .73,
est. ®> = .01. There was also no main effect of transfer distance, F
(1, 45) = 1.88, MSE = 106.1, p = .18, est. ®* = .04. There was,
however, an interaction, F (2, 45) = 4.04, MSE = 106.1, p = .024,
est. ®* = .15 (see Figure 4). This interaction resembles the pattern
of results seen in the analyses reported earlier in this paper.

-

g i

5 30 = T

22 I

v H Isomorphic
§ 10 = phi
n 0 Contextual

No Labels Given Labels Generated
Labels

Worked Example Format

Figure 4. Code writing performance for participants in
introductory courses

On the Parsons problem, there were no statistical differences
among groups on performance. There was no main effect of
worked example format, F' (2, 45) = 1.69, MSE = 12.6, p = .19,
est. ®® = .07. There was no main effect of transfer distance, F (1,
45) = 75, MSE = 12.6, p = .39, est. ®* = .02. There was no
interaction, F' (2, 45) = .02, MSE = 12.6, p = .98, est. ©*=.001.

5.2 Results of Students in Follow-On Course

Participants in the follow-on course (i.e., the course after the



introductory college course) were excluded from previous
analyses because they had at least a semester of programming
instruction, and the instruction in the study was designed for
novices. Participants in this course scored on average a 73% (3.6
out of 5) on the pre-test. After instruction on the post-test,
participants scored about the same with an average of 70% (3.5
out of 5). Within this group, participants who were given subgoal
labels performed better on the code writing assessments than
those who were not given labels or those who generated labels, F'
(2,43) =733, MSE = 15.9, p = .002, est. ®* = .25, f=37. There
was no main effect of transfer distance, F' (1, 43) = .25, MSE =
15.9, p = .62, est. ®* = .01, nor was there an interaction, F (2, 43)
=2.30,MSE=159,p=.11, est. ®*=.10 (see Figure 5).

40 T

5]

% 30 -

5

S 20 -

g H Isomorphic

S 10

» ® Contextual
0 -

No Labels Given Labels Generated
Labels

Worked Example Format

Figure 5. Code writing performance for 202 students

On the Parsons problem, participants who generated subgoal
labels performed worse than those who were not given labels or
those who received labels, F' (2, 43) =4.75, MSE = 10.9, p = .014,
est. > = .18, f = .31. There was no main effect of transfer
distance, F' (1, 43) =2.17, MSE = 10.9, p = .15, est. ©* = .05, nor
was there an interaction, F (2, 43) = .62, MSE = 10.9, p = .54, est.
®° = .03 (see Figure 6).

14

= 12 T

-

% 10 -

5 8

S ¢

g B Isomorphic

S 4

2, m Contextual
O .

No Labels Given Labels Generated

Labels
Worked Example Format

Figure 6. Parsons problem performance for 202 students

5.3 Effect of Previous Coursework

To explore the effect of computing courses in high school and the
effect of prior computing courses in college on performance, we
used these two variables as random independent variables in
ANOVA to determine if they affected performance. Participants
who took computing courses in high school performed better on
the code writing assessment than those who did not, F (1, 96) =
12.0, MSE = 56.2, p = .001, est. ®* = .11, f=35. Participants who
had taken prior computing courses in college performed better, F
(2,96) = 14.3, MSE = 56.2, p < .001, est. ®* = .13, = 38. There
was an interaction, F' (2, 96) = 11.1, MSE = 56.2, p = .001, est. ©*

227

= .10, f'= .33, such that participants who took computing courses
in high school did not perform better that those who did not in
later college computing courses (Figure 7). In other words, it does
not matter if the previous course was taken in high school or
college — the fact that the student had a previous course predicts
better performance; but that advantage does not continue into the
next course.

F 40

<

G 30

§ ® No high school
220 course

o

9 10 u Prior high school
i 0 course

100-level 200-level

Current College Course

Figure 7. Code writing performance by course level

Similar to the code writing task, participants who took computing
courses in high school performed better on the Parsons problem
than those who did not, F (1, 96) = 9.85, MSE = 11.6, p = .002,
est. ©® = .09, /= 31. Participants who had taken prior computing
courses in college also performed better, F' (2, 96) = 6.78, MSE =
11.6, p = .011, est. ® = .07, f=.26. For this assessment, however,
there was no interaction, F (2, 96) = 1.66, MSE = 11.6, p = .20,
est. o® = .02, suggesting that those who had computing courses in
high school performed better than those who did not, even after
their first computing course in college.

6. DISCUSSION

Here we summarize our findings related to our original research
questions and discuss the implications for computing education.

6.1 Replication

Our replication of [28] yielded results that support the original
findings. This study confirms that novice participants who learn
by generating subgoal labels (using isomorphic WE-PP pairs)
perform the best, and statistically better than if they had been WE-
PP pairs with contextual transfer (Figure 2). We conclude that for
the best learning results novice students should be taught to
generate their own subgoal labels but be given WE-PPs that are
very similar.

We hypothesize that teaching novice students to generate their
own subgoal labels does require additional time, both for
instruction and for the student during the WE-PP instruction time.
Additionally it should be noted that within this experiment
participants did not receive any feedback on the appropriateness
of their generated labels. To obtain maximum benefit from
generating subgoal labels, students should receive feedback on the
correctness of their labels. Alternately, similar learning results
may be obtained by using given subgoal labels.

However, if pre-defined given subgoal labels are used, the WE-PP
pairs should utilize contextual transfer to ensure maximum
learning. As mentioned earlier, this is contradictory to what would
be predicted by CLT. This is certainly one phenomenon that needs
further research. It may be that with given subgoal labels and
isomorphic problems students do not adequately self-explain the
process associated with each subgoal as the steps are identical
within both the worked example and practice problem. Just as in
the first study, we reviewed student code submissions to ensure



that they were not copied from the worked example and they were
not. Also the time spent in the instructional period indicates that
participants spent similar amounts of time regardless if they
received isomorphic or contextual transfer WE-PP pairs.

It may be that with given subgoal labels students require multiple
examples for comparison to be able to determine the generalities
of the labels and the process. It would be interesting to determine
if more examples or additional practice problems would improve
the learning performance of these groups. It may also be possible
to present the worked example with no contextual story at all —
just as a simple problem to be solved. If students are presented
with a “vanilla” worked example with given subgoal labels
followed by a practice problem embedded within a context, would
the performance differ? Looking into these and other possibilities
are planned as future research areas.

6.2 Previous Coursework

We were surprised at the number of students in the introductory
courses that were excluded due to their pre-test scores. In looking
at the demographics, we noticed many of the introductory students
had a previous computing course in high school and their pre-test
scores reflected this prior experience. In examining their
performance along with the students in the follow-on course, we
found that having that prior coursework experience made a
significant difference in the performance on the assessment tasks.

Participants in the introductory courses with high school
coursework experience performed statistically better on both the
code writing and Parsons problem assessments than students in
the same courses without high school computing coursework.
These students performed similarly to those in the follow-on
course (202). Students in the 202 course performed statistically
better on the Parsons problem assessments than the students in the
introductory courses, regardless of high school coursework. We
have evidence that students with some coursework experience,
whether in high school or a previous college class, have actually
mastered this concept given the pre-test score above 70% and the
performance on the code writing assessment (Figure 5 for 202
students only).

However, as can be seen in Figure 7, students in the follow-on
course that did not have a high school computing course
performed approximately the same as those who did have a high
school computing course on the code writing assessment task.
Thus, those without the previous coursework advantage had
“caught up” to those who started with more knowledge. This has
significant implications for those teaching introductory
programming. If students with prior programming experience are
in the same class as those with previous computing coursework,
we cannot expect them to perform the same on assessment tasks,
especially after a short exposure. The participants in the
introductory courses had been exposed to loops in their current
courses for approximately 2 weeks and were preparing for a
graded test which would include loops. Even without knowing the
scores for the exam, we predict that the students with previous
computing courses in high school would significantly outperform
those without that experience.

As instructors we need to be cognizant of the potential influence
that prior coursework may have on student performance. We
should not expect those being exposed to concepts for a minimal
amount of time to be as proficient as those who have had a
semester’s worth (or more) of practice. Perhaps students with
prior experience should be in a separate class from those without
prior coursework, even for introductory courses. The evidence
from this study suggests that by the next course, any advantage

228

those with prior coursework in high school once had, has been
eliminated; at least for code writing tasks.

On the Parsons problem assessment, results from this study
indicate that those who took a high school course continue to
outperform those who did not. Further research is needed to
determine if this result is repeatable and why this might be the
case. It may be that continuous code writing practice improves
performance on Parsons problems. We are unaware of research
that compares novice to expert performance on Parsons problems
but this study suggests that additional practice in programming
continues to improve Parsons problem performance.

We found one additional interesting result in this study. Students
in the follow-on course who generated subgoal labels performed
statistically worse than those in the same course who were not
given labels or those who received labels. This may be an
example of the expertise reversal effect [19]. The expertise
reversal effect occurs when the learner is presented with
information that causes them to think below their automatized
schema. The instructional design material, in this case the
generation of subgoal labels, uses working memory that would not
have been necessary if the learner were just solving the problem.
In other words, the participant could have solved the problem
without any instructional material at all because of their prior
knowledge. The instructional material interfered with their
problem solving process. Further research into when subgoal
labels should no longer be used with those learning programming
should be explored.

7. CONCLUSION

This study was originally conceived as a means to replicate an
existing study to determine if the puzzling results would be
confirmed. The data gathered in this study confirms that students
who learn with given subgoal labels perform better with
contextual transfer between the WE-PP pair than those who
received isomorphic WE-PP pairs. While we still have no
evidence as to why this occurs, contrary to cognitive load theory,
we now know that the result is repeatable and deserves further
research to investigate why this group in computing differs from
those in other disciplines.

Because of the number of participants eliminated from the
replication analysis we explored reasons for the difference in
performance. Students who had previous computing coursework
outperformed those without previous coursework in both code
writing and Parsons problem assessment tasks. Students with
previous computing coursework should be assessed at a different
standard than those with minimal time exposure to the concept.
However, in the follow-on course this performance difference
disappears indicating that those without previous coursework do
“catch up”. This indicates that the students with differing
experience backgrounds can be merged into a single class.

While some may think the results of this paper, students with
previous experience perform better, are obvious, we demonstrate
that our students actually do eventually learn and master a concept
(writing loops) unlike so much previous research [22, 26, 36]. We
also provide evidence that any advantage gained through previous
coursework disappears, with regard to this introductory concept,
in the follow-on course. We find these facts, that our students
actually do learn and that students without previous experience
can catch up, very encouraging.



8. ACKNOWLEDGMENTS

We would like to thank the students who participated in the study
and their instructors who graciously gave us the time. We also
thank the anonymous reviewers who supplied comments which
improved this paper.

This work is funded in part by the National Science Foundation
under grant 1138378. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

9. REFERENCES

[1] Atkinson, R.K. et al. 2003. Aiding Transfer in Statistics:

Examining the Use of Conceptually Oriented Equations and

Elaborations During Subgoal Learning. Journal of

Educational Psychology. 95, 4 (2003), 762.

Atkinson, R.K. et al. 2000. Learning from examples:

Instructional principles from the worked examples research.

Review of educational research. 70, 2 (2000), 181-214.

Atkinson, R.K. 2002. Optimizing learning from examples

using animated pedagogical agents. Journal of Educational

Psychology. 94, 2 (2002), 416.

Atkinson, R.K. and Derry, S.J. 2000. Computer-based

examples designed to encourage optimal example

processing: A study examining the impact of sequentially
presented, subgoal-oriented worked examples. Fourth

International Conference of the Learning Sciences (2000).

Bennedsen, J. and Caspersen, M.E. 2005. An investigation of

potential success factors for an introductory model-driven

programming course. Proceedings of the first international

workshop on Computing education research (2005), 155—

163.

Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. ACM SIGCSE Bulletin (2005), 411-415.

Bjork, R.A. 1994. Memory and metamemory considerations

in the training of human beings. Metacognition: Knowing

about Knowing. MIT Press.

Bransford, J. 2000. How people learn: Brain, mind,

experience, and school. National Academies Press.

Campbell, V. and Johnstone, M. 2010. The significance of

learning style with respect to achievement in first year

programming students. Sofiware Engineering Conference

(ASWEC), 2010 21st Australian (2010), 165-170.

[10] Catrambone, R. 1996. Generalizing solution procedures
learned from examples. Journal of Experimental Psychology:
Learning, Memory, and Cognition; Journal of Experimental
Psychology: Learning, Memory, and Cognition. 22, 4 (1996),
1020.

[11] Catrambone, R. 1994. Improving examples to improve
transfer to novel problems. Memory & Cognition. 22, 5
(1994), 606-615.

[12] Catrambone, R. 1998. The subgoal learning model: Creating
better examples so that students can solve novel problems.
Journal of Experimental Psychology: General. 127, 4 (1998),
355.

[13] Chi, M. et al. 1989. Self-explanations: How students study
and use examples in learning to solve problems. Cognitive
science. 13,2 (1989), 145-182.

[14] Denny, P. et al. 2008. Evaluating a new exam question:
Parsons problems. Proceeding of the Fourth international
Workshop on Computing Education Research (Sydney,
Australia, 2008), 113-124.

[15] Eiriksdottir, E. and Catrambone, R. 2011. Procedural
instructions, principles, and examples how to structure

229

instructions for procedural tasks to enhance performance,
learning, and transfer. Human Factors: The Journal of the
Human Factors and Ergonomics Society. 53, 6 (2011), 749—
770.

[16] Evans, G.E. and Simkin, M.G. 1989. What best predicts
computer proficiency? Communications of the ACM. 32, 11
(1989), 1322—-1327.

[17] Hagan, D. and Markham, S. 2000. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bulletin (2000), 25-28.

[18] Johnson, W.L. and Soloway, E. 1985. PROUST:
Knowledge-based program understanding. Sofiware
Engineering, IEEE Transactions on. 3 (1985), 267-275.

[19] Kalyuga, S. 2007. Expertise reversal effect and its
implications for learner-tailored instruction. Educational
Psychology Review. 19, 4 (2007), 509-539.

[20] Leeper, R.R. and Silver, J.L. 1982. Predicting success in a
first programming course. ACM SIGCSE Bulletin. 14, 1
(1982), 147-150.

[21] Leppink, J. et al. 2013. Development of an instrument for
measuring different types of cognitive load. Behavior
research methods. 45, 4 (2013), 1058-1072.

[22] Lister, R. et al. 2004. A multi-national study of reading and
tracing skills in novice programmers. ACM SIGCSE Bulletin
(2004), 119-150.

[23] Lopez, M. et al. 2008. Relationships between reading, tracing
and writing skills in introductory programming. Proceedings
of the fourth international workshop on computing education
research (2008), 101-112.

[24] Margulieux, L.E. et al. 2012. Subgoal-labeled instructional
material improves performance and transfer in learning to
develop mobile applications. Proceedings of the ninth annual
international conference on International computing
education research (2012), 71-78.

[25] Margulieux, L.E. and Catrambone, R. 2014. Improving
problem solving performance in computer-based learning
environments through subgoal labels. Proceedings of the first
ACM conference on Learning(@ scale conference (2014),
149-150.

[26] McCracken, M. et al. 2001. A multi-national, multi-
institutional study of assessment of programming skills of
first-year CS students. Working group reports from ITiCSE
on Innovation and technology in computer science education
(Canterbury, UK, 2001), 125-180.

[27] van Merriénboer, J.J. and Sweller, J. 2005. Cognitive load
theory and complex learning: Recent developments and
future directions. Educational psychology review. 17,2
(2005), 147-177.

[28] Morrison, Briana B. et al. 2015. Subgoals, Context, and
Worked Examples in Learning Computing Problem Solving.
ICER 2015 (Aug. 2015).

[29] Palmiter, S. and Elkerton, J. 1993. Animated demonstrations
for learning procedural computer-based tasks. Human-
Computer Interaction. 8, 3 (1993), 193-216.

[30] Parsons, D. and Haden, P. 2006. Parson’s Programming
Puzzles: A Fun and Effective Learning Tool for First
Programming Courses. Proceedings of the 8th Australasian
Conference on Computing Education - Volume 52
(Darlinghurst, Australia, Australia, 2006), 157-163.

[31] Plass, J.L. et al. 2010. Cognitive load theory. Cambridge
University Press.

[32] Renkl, A. and Atkinson, R.K. 2002. Learning from
examples: Fostering self-explanations in computer-based



learning environments. Interactive learning environments.
10, 2 (2002), 105-119.

[33] Rochester Institute of Technology 2014. Undergraduate
Course Descriptions.

[34] Rountree, N. et al. 2004. Interacting factors that predict
success and failure in a CS1 course. ACM SIGCSE Bulletin
(2004), 101-104.

[35] Simon et al. 2006. Predictors of success in a first
programming course. Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52 (2006),
189-196.

[36] Soloway, E. and Ehrlich, K. 1984. Empirical studies of
programming knowledge. Software Engineering, IEEE
Transactions on. 5 (1984), 595-609.

[37] Sweller, J. et al. 1998. Cognitive architecture and
instructional design. Educational psychology review. 10, 3
(1998), 251-296.

[38] Sweller, J. et al. 2011. Cognitive load theory. Springer.

[39] Sweller, J. 2010. Element interactivity and intrinsic,
extraneous, and germane cognitive load. Educational
psychology review. 22,2 (2010), 123-138.

230

[40] van Gog, Tamara and Paas, Fred 2012. Cognitive Load
Measurement. Encyclopedia of the Sciences of Learning.
Springer.

[41] Ventura Jr, P.R. 2005. Identifying predictors of success for
an objects-first CS1. (2005).

[42] Watson, C. et al. 2014. No tests required: comparing
traditional and dynamic predictors of programming success.
Proceedings of the 45th ACM technical symposium on
Computer science education (2014), 469-474.

[43] White, G. and Sivitanides, M. 2003. An empirical
investigation of the relationship between success in
mathematics and visual programming courses. Journal of
Information Systems Education. 14, 4 (2003), 409.

[44] Wiedenbeck, S. 2005. Factors affecting the success of non-
majors in learning to program. Proceedings of the first
international workshop on Computing education research
(2005), 13-24.

[45] Wilson, B.C. and Shrock, S. 2001. Contributing to success in
an introductory computer science course: a study of twelve
factors. ACM SIGCSE Bulletin (2001), 184—-188.



