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Abstract—In modern distribution systems, load uncertainty
can be fully captured by micro-PMUs, which can record high-
resolution data; however, in practice, micro-PMUs are installed
at limited locations in distribution networks due to budgetary
constraints. In contrast, smart meters are widely deployed but
can only measure relatively low-resolution energy consumption,
which cannot sufficiently reflect the actual instantaneous load
volatility within each sampling interval. In this paper, we have
proposed a novel approach for enriching load data for service
transformers that only have low-resolution smart meters. The key
to our approach is to statistically recover the high-resolution load
data, which is masked by the low-resolution data, using trained
probabilistic models of service transformers that have both high-
and low-resolution data sources, i.e, micro-PMUs and smart
meters. The overall framework consists of two steps: first, for the
transformers with micro-PMUs, a Gaussian Process is leveraged
to capture the relationship between the maximum/minimum load
and average load within each low-resolution sampling interval of
smart meters; a Markov chain model is employed to characterize
the transition probability of known high-resolution load. Next,
the trained models are used as teachers for the transformers with
only smart meters to decompose known low-resolution load data
into targeted high-resolution load data. The enriched data can
recover instantaneous load uncertainty and significantly enhance
distribution system observability and situational awareness. We
have verified the proposed approach using real high- and low-
resolution load data.

Index Terms—Distribution system, load uncertainty, micro-
PMU, smart meter, data enrichment.

I. INTRODUCTION

S the advanced metering infrastructure (AMI) has been

widely deployed in distribution systems in recent years,
utilities have gained access to large amounts of smart meter
(SM) data [1]. To take advantage of this data, which is
both spatially and temporally fine-grained, researchers and
industry practitioners have performed time-series power flow
studies for optimizing network operation, expansion [2], [3],
and integrating renewable energy resources [4]. In many
cases, customer-level demands are aggregated to obtain service
transformer-level loads for performing power flow studies [2],
[5]. However, the problem is that in most cases, SMs have a
low sampling rate, e.g., one to four samples per hour. Thus,
the average demand measured at such low resolutions cannot
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Fig. 1. A one-day real service transformer load curve with 1-second load
data and the corresponding hourly average load curve.

faithfully represent the uncertainties of the instantaneous load.
As illustrated in Fig. 1 for an exemplary transformer, the
maximum 1-second load data has reached values 40% times
larger than the corresponding hourly SM reading within the
same sampling interval. Also, compared to the hourly measure-
ments, the instantaneous load shows a high level of variability,
which has not been captured by the SMs. Therefore, recovering
the masked high-resolution load data is critical in enhancing
distribution system situational awareness and granularity of
modeling.

To further demonstrate the usefulness of high-resolution
load data, we primarily focus on three specific applications.
First, accurate power flow analysis requires high-resolution
load data. Power flow analysis is critically important for
utilities. It can provide voltage profiles, which can help utilities
plan new circuits, add customers, and track and fix voltage
problems. Since load is an essential component in distribution
systems, high-resolution load profiles play a critical role in
obtaining power flow solutions with high fidelity. In con-
trast, the 15-min, 30-min, or 1-hour load data might cause
unacceptable errors [6], [7]. This is why most utilities take
conservative approaches in distribution system operation and
planning. Instead, taking full advantage of high-resolution load
data can free utilities from conservative measures. Second,
accurate voltage regulation analysis requires high-resolution
load data. In many cases, utilities perform time-series power
flow analysis to examine the actions of voltage regulation
devices. Typical voltage regulation devices include voltage
regulators and capacitors. The controller of these two types of
devices usually has a time delay before executing a regulating
order. By doing this, the voltage regulation devices can avoid
unnecessary frequent reactions to fast and temporary voltage
transients. The time delay is typically around 30 seconds.
Therefore, to accurately capture the response of voltage regu-



lation devices, the time resolution of load data for performi
time-series power follow analysis should match the delay ti
of regulation devices’ controller [6], [8]. Third, high-resoluti
load data can facilitate photovoltaic (PV) integration. In m
cases, utilities conservatively maintain customer voltages v«
close to the upper bound of the ANSI voltage range due
conservative considerations. Under this condition, even thou
the load increase may cause a voltage drop, the voltage w
still be within the ANSI voltage range and satisfy volte
quality requirements. However, under such conservative c
eration logics, new PV integration can cause over-voltag
To assess the impact of PV generation, one promising way ..
to utilize high-resolution (1-second or 1-min) PV generation
data to perform power flow analysis, because low-resolution
data might fail to capture PV output variations. Since the load
variations might not be negligible in some scenarios, it is
necessary to combine high-resolution load data and PV output
data to perform time-series power flow analysis [9], [10].

There is only a limited number of previous works focus-
ing on load data enrichment. In [8], a top-down method is
presented to generate service transformer-level high-resolution
load profiles. First, low-resolution substation load profiles are
allocated to service transformers via scaling. Then, the allo-
cated profiles are decomposed into high-resolution load data
by aggregating typical load patterns stored in variability and
diversity libraries. In [11], synthetic load datasets are created
for four typical seasonal months using captured variability
from high-resolution service transformer load data. To develop
rich load data, researchers have added random noise to load
data for modeling load uncertainty, as presented in [12]. In
[13], a discrete wavelet transform (DWT)-based approach
is proposed to parameterize intra-second variability of high-
resolution transformer load data. To sum up, the primary
limitations of previous load data enrichment methods are: the
scaled substation load profiles allocated to service transformers
differ from the actual load profiles since each transformer has a
distinct load pattern [14], inaccuracy of adding random noise,
and lack of specific methodology for applying the extracted
load variability [15].

Considering the shortcomings of previous works, in this
paper, we have developed a novel bottom-up approach for
enriching hourly load data for service transformers that only
have SMs, by leveraging the high-resolution load data of
service transformers with micro-PMUs and SMs. This concept
is illustrated in Fig. 2, where the service transformer in the
middle with rich load data is utilized to perform load data en-
richment for the other two service transformers with only SMs.
Before proceeding to specific steps, we have observed that
each low-resolution load observation corresponds to a segment
of high-resolution load profile, as shown in Fig. 1. Therefore,
enriching one known low-resolution load observation comes
down to determining the maximum and minimum loads in the
corresponding high-resolution load profile segment and infer-
ring how the instantaneous load varies within those bounds. To
do this, the proposed approach exploits learned probabilistic
models that are trained using the high-resolution load data of
service transformers with micro-PMUs. Thus, the first stage is
to train probabilistic models using known high-resolution load
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Fig. 2. Schematic diagram of a radial distribution feeder with diverse sensors.
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Fig. 3. Overall structure of the proposed load data enrichment approach.

data of micro-PMUs. Specifically, a Gaussian Process is used
to capture the relationship between the maximum/minimum
bound and the average load. A Markov process is leveraged to
model the probabilistic transition of instantaneous load within
the bounds. These trained models for transformers with micro-
PMUs form a reacher repository. The second stage is to extend
the trained probabilistic models to the service transformers that
only have SMs, i.e., the students, for enriching low-resolution
load data. Specifically, the trained Gaussian Process models
are employed to estimate the unknown maximum/minimum
bound using the known low-resolution observation as the
input, and the trained Markov models are used to probabilis-
tically determine the variability of instantaneous load within
the estimated maximum and minimum bounds. In addition,
the load enrichment process in the second stage is performed
using a weighted averaging operation, where the weights
are determined by evaluating the similarity between low-
resolution load data of the student and teacher transformers.
Our approach is not restricted to the condition that the teacher
and student transformers should have the same rating, loss,
or served customer number. The overall framework of our
proposed approach is illustrated in Fig. 3.

The primary contribution of our paper is that we have
proposed a novel bottom-up inter-service-transformer load
data enrichment approach using micro-PMUs and SMs. Our
method takes full advantage of the fine-grained spatial and
temporal granularity of SM and micro-PMU data. The rest
of the paper is organized as follows: Section II presents the
process of training teacher models using data from transform-
ers with micro-PMUs. Section III describes the procedure of
enriching load data for transformers with only SMs using
the trained teacher models. In Section IV, case studies are
analyzed, and Section V concludes the paper.

II. CONSTRUCTING A REPOSITORY OF TEACHER
TRANSFORMERS

The first step in load data enrichment is to train inference
models based on high-resolution micro-PMU load data. In
this section, inference model training includes two stages:
load boundary inference model training, and load variability



0 5 10 15 20 25 30
Pu (kW)
Fig. 4. Observation from real high-resolution load data for a service
transformer.

parameterization. Also, keep in mind that the inference model
training process is performed for each service transformer with
a micro-PMU.

A. Training Load Boundary Inference Model

Based on real high-resolution load data, we have observed
that the average load over each low-resolution sampling in-
terval, P,, and the corresponding maximum/minimum load
within that interval demonstrate a nonlinear relationship, as
shown in Fig. 4. Note that P and P denote the upper and
lower bounds of instantaneous load within each sampling
interval, respectively. Considering this, the Gaussian Process
regression (GPR) technique, which shows excellent flexibility
in capturing nonlinearity, is leveraged to train load boundary
inference models [16]. One primary reason for choosing
GPR is that after running numerical tests, it demonstrated a
relatively better performance when applied to our dataset than
some other state-of-the-art nonlinear regression models, such
as the Support Vector Machine model and the Polynomial
regression model. Note that other regression models with
acceptable accuracy can also be integrated into our proposed
framework for load data enrichment. The basic idea behind
GPR is that if the distance between two explanatory variables
is small, we have high confidence that the difference between
corresponding dependent variables will be small as well.
Specifically, using GPR, the upper bound of instantaneous load
within the ¢’th hour, P(t), as a function of the hourly average
load can be written as:

P(t) = f(Pa(t)), (1)

where, P,(t) denotes the average load over the t’th hour.
Unlike deterministic approaches, where f(P,(t)) is assumed
to yield a single value for each P,(t), in GPR, f(P,(t)) is
a random variable. Intuitively, the distribution of f(P,(t))
reflects the uncertainty of functions evaluated at P, (t). In
GPR, the function f(P,(t)) is distributed as a Gaussian
process:

F(Pa(t)) ~ GP (u(Pa(t), K (Pa(t), Pa(t), ()

where, ©(P,(t)) reflects the expected value of the maxi-
mum load inference function, and the covariance function
K(P,(t), P,(t")) represents the dependence between the max-
imum loads during different hour intervals. In our problem,

the covariance function K (-,-) is specified by the Squared
Exponential Kernel function expressed as:

N2
K(P,(0). Pa(0) = afesp( - IO 22O g
where, || - || represents ly-norm, oy and X are hyper-
parameters, which are determined using cross-validation. In-
tuitively, (3) measures the distance between P,(t) and P,(t'),
which can also reflect the similarity between P(t) and
P(t'), as shown in Fig. 4. For each service transformer
with a micro-PMU, the average load and corresponding
maximum load during each hour interval are known and
provide a training dataset. Thus, applying (2) to the entire
training dataset consisting of N hourly average and maxi-
mum load pairs, {(P,(1), P(1)),---,(P,(N), P(N))}, an N-
dimensional joint Gaussian distribution can be constructed as:

F(Pa(1))
|~ (wE), o)
F(Pa(N))
where,
,LL(Pa(l))
n= : : (5a)
M(Pa(N))
K (Pu(1), Pa(1)) K(Pa(1), Pa(N))
- :

(5b)
The joint Gaussian distribution formulated in (4) represents a
trained nonparametric maximum load inference model. Also,
the same procedure can be applied to the hourly average and
minimum load pairs, {(P,(1), P(1)), -+, (P.(N),P(N)}, to
obtain a trained nonparametric minimum load inference model.
In summary, for each service transformer with a micro-
PMU, we can obtain two trained GPR models for inferring
the maximum and minimum loads based on the corresponding
hourly average load measured at the low-resolution sampling
intervals.

B. Training Load Variability Inference Model

Given an hourly average load observation, simply determin-
ing load boundaries is not sufficient for load data enrichment.
We also have to learn how the load varies within these bounds.
It is observed from real high-resolution load data that when an
appliance is turned on, the load will jump to a certain level, as
shown in Fig. 5. This process can be modeled as the Markov
chain, which represents a system transitioning from one state
to another over time. Also, it is observed from Fig. 5 that once
the load has transitioned to a certain level, it will stay almost
invariant for a certain period of time. Therefore, the load state
duration demonstrates statistical properties, and there exists a
temporal correlation in state transition. Considering this, we
have employed a second-order Markov model to capture the
stochastic variability of the instantaneous load. Markov chains
of second order are processes in which the next state depends
on two preceding ones.
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Fig. 5. Load variations within a day captured by high-resolution ¢

Since load is continuous, the first step to parame!
Markov chain process is to discretize high-resolutic.. ivau
measurements. Specifically, for the ¢’th high-resolution load
observation during the ¢’th hour interval, the corresponding
observed state is determined as:

Si(i) =mns, nse{l,---,Ns},t=1,---,N,
P(t) — P(t) P(t) - P(t)
-1 N, N, ’
S

where, N, represents the total number of the unique discrete
states and P;(7) is the 4’th instantaneous load measurement
during the ¢’th hour.

Also, it is observed from real high-resolution load data
that different load levels display different stochastic processes.
Typically, an air-conditioner cyclically starts and stops in the
order of minutes. In contrast, the baseload, which is often
caused by lighting and electronic devices, shows significantly
longer cycles. In addition, the air-conditioning devices and
baseload appliances show different average load levels over
low-resolution sampling intervals due to different capacities.
Therefore, to capture the different transition processes, the
discretized observation states need to be divided into multiple
subsets according to the hourly average load measurements.
Each subset is used to train a Markov chain model. Specif-
ically, first, the entire collection of discretized observation
states is split into /N4 subsets according to the corresponding
low-resolution load observation, P,(t). The j’th subset is
obtained as:

it (n, < P,(i)—P(t) < n,

Dj:{St(i)}7 iE{l,--',N/},tE{l,”-,N},

" F((j—lj\)[xloo jxlOO)’

7
; N, )

) < Py(t) < F(
where, F'(-) is a function that returns percentiles of the entire
set of low-resolution load observations, and N’ is the total
number of discretized observation states in each low-resolution
sampling interval.

Then, for each subset D;, the stochastic process is parame-
terized by empirically estimating the transition probabilities
between discrete observed states in terms of a transition

* | Pr(Ns, Ng, Ng)

y
P.(1,11)| P.(1,12) ‘ P.(11, Ns)l
P.(12,1)| P-(211) | R(212) Pr(2,1,Ny)
P, = : P,(221) | Pr(Ns,1,1) | P,(N5,1,2) | -+ | P.(Ns,1,Ng)
PN P.(N,2,1) | Pr(N5,2,2) | -+ | Pr(N5,2,N5) .
P.(2,Ns, 1) : :
x P, (N, N, 1) P,.(N;, N, 2

Fig. 6. Representation of the 3D probability transition matrix.

matrix. A second-order Markov process consists of three
states: the previous state, the current state, and the next state.
Therefore, the stochastic transition matrix, P,, is a three-
dimensional (3D) array, as illustrated in Fig. 6. Each element
of P,, P.(z,y,z), represents the probability of moving to
state z under the condition that the previous state is = and the
current state is y. For each subset D, elements of P, can be
estimated from the frequencies of posterior states. Assume D
takes on the form of {S(i)},i = 1---, N/, where N/ is the
total number of observation states in D, then the occurrence
number at (z,y, z) can be counted as:

N!-1
n(z,y,z) = Z [SG—1)===z and
i=2
S(i) ==y and S(i+1)==2], (8)

where, [-] is the Iverson bracket which converts any logical
operation into 1, if the operation is satisfied, and O otherwise.
“==" stands for the “equal to” operator and “and” is the log-
ical and operator. Thus, the elements of transition probability
matrix are computed by:

PT(JI,y,Z):M7 x7y:17"'aNS' (9)
> n(,y,2)
For each subset D;,j =1,---, Ng, (9) is performed to obtain

a 3D stochastic transition matrix. Moreover, for each service
transformer with a micro-PMU, the entire above-mentioned
procedure for parameterizing variability is conducted to obtain
Ny stochastic transition matrices.

III. ENRICHING LOAD DATA FOR TRANSFORMERS WITH
ONLY SMART METERS

A. Determining Teacher Weights

Recall that our goal is to recover the high-resolution load
data masked by the low-resolution load data. In this procedure,
we leverage teacher models of transformers with micro-PMUs
for service transformer with only SMs. Note that there might
be more than one teacher transformer serving the same number
of customers as the student transformer supplies. Different
teacher transformers have different load behaviors. Thus, it
is necessary to determine the learning weights corresponding
to particular teacher transformers. These weights are deter-
mined by evaluating customer-level load similarity between
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the teacher and student transformers using low-resolution load
data.

Specifically, for the ¢’th customer served by a student trans-
former, we can obtain a typical daily load pattern, P;, which
reflects customer behavior and the total capacity of appliances
[17]. Then, for a student transformer serving /N, customers, we
can obtain N, daily load patterns, {Py,--- ,Py_}. Similarly,
for a teacher transformer supplying N* customers, we can
obtain N* daily load patterns. Since we have multiple teacher
transformers, we can obtain a set of load pattern collections.
The load pattern collection for the k’th teacher transformer
is denoted by {P%,--- ,Pé“vf},k =1,---, N, where, N, is
the total number of teacher transformers. Then, load similarity
between a student transformer and the %’th teacher transformer
is evaluated as:

N, NF

! 1 k _
Wk_WZZHPi_Pjuv k=1,

¢ i=1j=1

7Nt7 (10)

where, N* denotes the number of customers served by the &’th
teacher transformer. Thus, the teacher and student transformers
do not necessarily serve the same number of customers. The
W;’s in (10) are then normalized for a more convenient
mathematical representation:

Wi

Wi = =
k=1""k

Y

In summary, the normalized similarity weights reflect the
confidence of a student transformer to learn from multiple
teacher transformers for load data enrichment.

B. Enriching Load Data

Using the normalized teacher weights, along with the load
boundary and variability inference models derived in Section
II, we can conduct poor load data enrichment for service
transformers that only have SMs.

1) Inferring Load Boundaries: In Section II-A, for each
teacher transformer with high-resolution load data, we have
obtained two GPR models for inferring the maximum and
minimum loads given the corresponding average load over
each low-resolution sampling interval. These two models are
nonparametric and expressed in (4). Specifically, the trained
maximum load inference model for the k’th teacher trans-
former is expressed as:

Pi(1) Ji(Par(1))

~ N (i Bx). (12

Pk(N) fk(Pa,k(N))

To conduct load data enrichment, first, customer-level SM
data are aggregated to obtain the load supplied by the student
transformer, namely, {P, (1), -, P «(N)}. Note that the
transformer loss is approximated and added to the aggregate
load. Specifically, the total loss of a student transformer
supplying an aggregate load, P, ..(¢), is estimated as follows:

P7.(t)

PZ,*(t) = Pnll,* + PQ,

rate,*

Pryy, t=1,---,N, (13)
where, P,y . and Py . denote the no-load loss and full-load
loss, respectively. Pyt « denotes the kVA rating of the student
transformer. Py ., P «, and Prge « are typically provided
by transformer manufacturers. Note that the effect of reactive
power is ignored when estimating the loss because the reactive
power is typically small [18]. For conciseness, we assume
that P, .(¢) in the following sections has already included the
aggregate load and the corresponding total loss of the student
transformer.

Then, we assume the unknown upper bound of instan-
taneous load in terms of a function variable, Py .(t) =
fi(Pax(t)),t =1,---, N, follows a Gaussian distribution. By
appending Py .(t) at the end of (12), an (N + 1)-dimensional
Gaussian distribution can be formed as:

Py(1) Je(Pa k(1))
PNy || fe(Pur())
Pk,*(t) fk(Pa,*(t))
Y ik
MEEED

where, ¥, represents the training-test set covariances and
Y.« is the test set covariance. In (14), observations for
{Py(1),--- ,Px(N)} are known and denoted by p, =
{Pr(1)), -+ ,Dp(N))}. Thus, using the Bayes rule, the dis-
tribution of Py .(t) conditioned on Py, is obtained as:

Pra(t)pr ~ N (1 (1), 24(1)), (15)

where, . (t) = BT 5, 'p, and Z,(t) = B, — EL. X, 'S
Note that u.(t) denotes the most probable value of the



estimated upper bound of instantaneous load given the average
load during each low-resolution sampling interval.

Since we have N; teacher transformers, we can obtain
a total of V; estimated maximum load candidates, namely,
{uk(t), -+, ule(t)}. Also, considering load similarity be-
tween the student transformer and teacher transformers, a
weighted-averaging operation is performed on all the inferred
maximum loads to calculate a final estimated upper bound of
instantaneous load:

Ny
P.(t) =Y Wiu(t), t=1,---,N. (16)
k=1

The same procedure introduced above is also applied to
infer the unknown minimum load, P, (¢), using the known
average load over each low-resolution sampling interval. Once
we have obtained the estimated load boundaries, then the
trained probability matrices can be leveraged to infer load
variability within each boundary.

2) Inferring Load Variability: As introduced in Section
II-B, each teacher transformer has N, extracted transition
matrices corresponding to different load levels. Therefore,
the first step in inferring the unknown high-resolution load
variability is to determine which transition matrix to use. In
other words, we need to find the variability inference matrix
corresponding to the load level that the low-resolution load
measurement belongs to. This is achieved by splitting the
known low-resolution load observations of student transformer
into N4 subsets:

Piz{Pa,*(t)}v te{lf"’N}’j:l’“.’Nd’

if FGL%gS@)S&Aﬂ<F@%%E)(H)
Then, the j’th stochastic transition matrix of each teacher
transformer is selected for enriching the low-resolution load
measurements in the j’th subset of the student transformer,
P.. Moreover, considering that there is more than one teacher
transformer, i.e., for each subset P, we have N, transition
matrices to use. Thus, before proceeding to instantaneous load
variability inference, a weighted averaging process similar
to the load boundary estimation is conducted to obtain a
comprehensive transition modal:

Nt
Pl => WyPi* j=1,--- Ng (18)
k=1

where, PJ:* stands for the transition matrix for the k’th teacher
transformer based on the j’th subset of observation states,
D’;. Then, for each low-resolution load measurement to be
enriched, Pd* (t), the final targeted transition matrix, PJ.. and
the inferred load boundary, {P2(t), P’(t)}, are leveraged to
generate the targeted high-resolution load data. Specifically,
assume the previous state is Sf*(z — 1), and the current state
is Sg*(z), our goal is to determine the next state, Si*(z +1),
where, i = 1,---, N/, stands for the sequence number of
states within the ¢’th low-resolution sampling interval. To do
this, first, a random value at i, U, (¢), is generated from the

uniform distribution within the interval (0, 1). Then, the state
at (¢ + 1) is determined by:

Sg,*(z + 1) = Zx;

ze—1
z=1

i=2, N —1,

< ijPi* (SL.(i—1),8L,(i), 2). (19)
z=1

Note that the generated Sg;* (7)’s are discrete state samples,
therefore, they need to be transformed to specific load samples:

Si.(6) (PL(t) — PL(t))
N ’
i=1,---,N. (20)

Pl (i) = PL(t) +

Since there is more than one low-resolution time interval, the
above procedure is conducted for each low-resolution load ob-
servation. Also, since the low-resolution load observations are
grouped into multiple subsets, the entire procedure introduced
above is conducted through all subsets of low-resolution load
measurements. The detailed steps for load data enrichment for
a student service transformer is illustrated in Fig. 7.

IV. CASE STUDY

In this section, we have validated the proposed load data
enrichment approach using real high- and low-resolution load
data [19].

A. Dataset Description

The dataset includes real 1-second load data for eight
service transformers and hourly SM energy data for 185
customers. Among these customers, 36 are supplied by the
8 transformers with high-resolution load data (with micro-
PMUs), and the remaining 149 customers are fed by the other
34 service transformers with low-resolution load data (with
only SMs). To verify the performance of load data enrichment,
the utility has also installed extra measuring devices to record
1-second load data for the service transformers with only
SMs [19]. The time range of the dataset is two months. In
practice, micro-PMUs might have higher sampling rates than
one sample per second, however, there is no fundamental
difference in verifying the performance of our approach.

B. Enriching Low-resolution Load Measurements

Fig. 8 shows one-day actual and enriched 1-second load
data for a service transformer. As can be seen, the enriched
curve can accurately follow the actual basic load pattern. Note
that our goal is not to force the enriched 1-second data to
exactly track the actual load. Instead, our method is designed
to restore the statistical properties of instantaneous load given
known low-resolution load observations obtained from hourly
SM data.

One critical step of our proposed approach is to determine
the masked maximum and minimum loads given a known
average load observation on an hourly basis. Thus, it is of
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Fig. 9. The estimated maximum and minimum loads against the correspond-
ing actual values.

significance to examine the performance of the load boundary
inference process. To do this, we have employed the coefficient
of determination, R?, for fitness evaluation, which is defined
as:
o S i)
=l-="—— (2D
>oim1 (i —7)?

where, y; denotes the real maximum/minimum instanta-
neous load, ¢; denotes the corresponding inferred maxi-
mum/minimum instantaneous load, and y = % Zivzl y;. Fig.
9 illustrates the effectiveness of load boundary estimation,
and it can be seen that the estimated bound shows a linear
relationship with the actual bound. The R? values for the
upper and lower bounds are 0.80 and 0.83, respectively. This
can also corroborate the accuracy of our proposed method.
To fully evaluate the performance of our approach on load
boundary inference, we have also computed relevant error
metrics based on the high-resolution load in Fig. 8. The
error metrics include the absolute error (AE) and the root
mean square error (RMSE), and the results are summarized
in Table 1. The error metrics demonstrate that our method can
accurately recover the unknown upper and lower bounds of
the instantaneous load.

TABLE I
COMPUTED ERROR METRICS OF INFERRING LOAD BOUNDARY

Maximum AE  Minimum AE Median AE  RMSE
3.8 0.01 1.1 1.9
2.7 0.06 1.1 1.4
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Fig. 10. Distributions of the actual and enriched 1-second load in Fig. 8
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Fig. 11. Percentiles of the actual and enriched 1-second loads in Fig. 8

Note that our final goal is to recover the statistical prop-
erties of the high-resolution load within each low-resolution
sampling interval. Therefore, the performance of our pro-
posed approach needs to be evaluated from the perspective
of statistics. Fig. 10 illustrates the distributions of the actual
and enriched load samples on the load curves shown in Fig.
8. It demonstrates that the enriched load distribution closely
matches the actual load distribution. In comparison, the non-
enriched load curve, which only includes 24 load observations,
cannot sufficiently form a satisfactory distribution. In addition,
to quantitatively assess load enrichment performance, we have
examined the differences between the actual and enriched
load values corresponding to different percentiles, as shown
in Fig. 11. We have also evaluated the difference between
the percentiles of the enriched load and the actual load. The
computed maximum, minimum, median absolute errors of the
percentiles are 2.7, 0.31, and 1.5, respectively. The RMSE is
1.6. Therefore, the differences are small, which also proves
the effectiveness of our proposed approach from a statistical
perspective.

It is also of interest to examine the results obtained using
our proposed load data enrichment framework with a first-
order Markov chain model. Fig. 12 presents the actual high-
resolution load curve and the enriched load curve based on
a first-order Markov model. To assess the different effects of
the first- and second-order Markov models on load variation
inference, we have constructed the distributions of load state
duration, as shown in Fig. 13, where, D denotes the load
state duration. By comparing Fig. 13b and 13c with Fig.
13a, respectively, we can see that Fig. 13b is more similar
to Fig. 13a than Fig. 13c. This means that our proposed
method can recover the load variation with relatively higher
fidelity compared with the method with a first-order Markov
model. This can also be corroborated by Fig. 14, where,
the percentiles of load state duration corresponding to our
proposed method are closer to the percentiles corresponding
to the actual load.
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PV-installed customers. Quantitatively, for the first scenario,
the maximum, minimum, and median absolute errors between
the percentiles of the enriched load and the actual load are
1.91, 0.23, and 0.96, respectively. For the second scenario,
the three computed error metrics are 3.24, 1.85, and 2.40,
respectively. For the third scenario, the three computed error
metrics are 3.24, 1.85, and 2.40, respectively. In summary,
the error metrics demonstrate that our proposed load data
enrichment framework can adapt to PV integration.

D. Performing Time-series Power Flow Studies

To thoroughly examine the performance of our proposed
approach, we have conducted time-series power flow studies
by separately feeding the actual and enriched loads into a real
distribution system [20]. The one-line topology of the real
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distribution system is shown in Fig. 16. Bus voltages obtained
from power flow analysis, which are critical to distribution
system operators, are used to evaluate our proposed approach.
Specifically, we compare the distributions of bus voltages and
voltage ramps obtained from power flow studies based on
the actual and enriched high-resolution load data, respectively.
The reason for assessing voltage ramp is that voltage ramp is
significant for renewable energy integration [8]. The voltage
ramp AV is defined as the difference between the current
voltage value and the last voltage value.

Fig. 17 illustrates the distributions of voltages and voltage
ramps during a certain hour interval for Bus 57 in the real
distribution system. In Fig. 17a, it is observed that the em-
pirical probability density function (PDF) of voltage based on
the actual high-resolution load data can closely fit that based
on the enriched high-resolution load data. For comparison, we
have also performed a snapshot flow study using the average
load over the same hour interval. The per-unit voltage for
Bus 57 is 1.0124, which is a single value without statistical
properties. Therefore, the voltage distribution in Fig. 17a fully
proves the capability of our proposed approach for recovering
statistical characteristics masked by the low-resolution aver-
age load measurements. This capability can further enhance
distribution system observability and situational awareness. A
similar conclusion can be drawn for the voltage ramp, whose
distribution is shown in Fig. 17b. As can be seen, the two
voltage ramp distributions corresponding to the real rich load
data and the enriched load data closely match each other. In
comparison, the single bus voltage value based on the hourly
average load cannot demonstrate probabilistic properties. It is
important to point out that voltage distribution also depends
on the specific structure of distribution systems in addition
to specific load observations. For example, if a distribution
system has very short line segments and a strong connection
with a transmission system, then the bus voltage deviation
might not be significant. In contrast, for a weak grid-connected
distribution system with long line segments, the loads can have
a strong impact on bus voltages.

E. Performance Comparison

It is of significance to compare our approach with other
methods presented in previous works. We primarily focus on
comparing our approach with an allocation-based methodol-
ogy introduced in [8] and a noise-based technique presented in

[12], which are two primary load data enrichment approaches
in previous works.

1) Comparison with the Allocation-based Method: The
allocation-based method involves two steps. First, a low-
resolution substation- or feeder-level load profile is scaled
to obtain service transformer-level load profiles, according
to transformer capacity or peak load. Then, the scaled low-
resolution load profile is enriched using a variability library,
which is constructed by applying the discrete wavelet trans-
form algorithm to known high-resolution transformer-level
load measurements. An alternative to scaling low-resolution
load profile is to obtain a load pattern obtained by scaling
known typical load profiles of other transformers, as presented
in [8]. For conciseness, we refer to the techniques presented
in [8] as the allocation-based method. The performances of
our approach and the allocation-based approach are shown in
Fig. 18a and 18b, respectively, where the actual and enriched
load curves on a certain day are presented. In Fig. 18a, we
can observe that the basic pattern of the enriched 1-second
load can flexibly follow the actual load variation, despite
load uncertainty. The superior performance of our approach
results from two aspects, the fine spatial granularity of SM
data and the design of load boundary inference process. In
comparison, the allocation-based load enrichment approach
fails to accurately track the basic load pattern, as demonstrated
in Fig. 18b.

The performance of the allocation-based method can also
be evaluated by examining the R? values computed for the
load bounds, as shown in Fig. 19. We can observe that the
R? values are negative, which means that the estimated maxi-
mum/minimum bound offers a poor estimation of the variation
of the actual maximum/minimum bound. The unsatisfying
performance of the allocation-based approach can also be
viewed by observing the two scatter plots in Fig. 19, where,
most scatters are located above the upper-right diagonal line,
indicating an overestimation of the actual load bounds.

To further evaluate the performance of our approach and the
benchmark methods, we have also computed the cumulative
probability of the actual and enriched load presented in Fig.
18. The empirical cumulative distribution functions (ECDFs)
are illustrated in Fig. 21, where, we can observe that the
ECDF corresponding to our method is much closer to the
ECDF of the actual load than the ECDF corresponding to the
allocation-based method. To quantitatively assess the similarity
between the two ECDFs, we have computed the two-sample
Kolmogorov-Smirnov (KS) statistic for each method, using the
following equation:

D = sup|F,(P) — F.(P)], (22)
P

where, sup denotes the supremum of the set of distances.
F,(P) denotes the ECDF of the actual high-resolution load,
and F,(P) denotes the ECDF of the enriched load. Intuitively,
D measures the largest pairwise absolute distance between the
ECDFs of the actual load and the enriched load. In Fig. 21, we
can observe that the two-sample KS statistic for our method
is 0.14, which is significantly smaller than the statistic for the
allocation-based method, which is 0.40.



25

[ ‘ ‘

20 | ]
%15 ‘ ’ : f
- (L 0k ‘ I f ] H}\J
12 M \w""l‘ h U“.J '\ 'JM 1 ‘.’r‘ | HV'“‘" llﬂ‘\“l l H '\‘““‘ll‘g "H J ‘
00 “t é 1‘2 1‘6 50 o)

Time (Hour)

(a) Actual curve and the enriched curve using our
approach

30 T T
— Actual —— Allocation-based

0 4 8 12 16 20 24
Time (Hour)

(b) Actual curve and the enriched curve using an

allocation-based approach

T T
— Actual —— Noise-based

Time (Hour)

(c) Actual curve and the enriched curve using a noise-
based approach

Fig. 18.

N
o

20

w
o

Estimated P (kW)
N
o

>
Estimated P (kW)
>

o
o

0 10 20 30 40 0 5 10 15 20
Real P (kW) Real P (kW)
(a) Maximum (b) Minimum

Fig. 19. The estimated maximum and minimum load bounds obtained from
the allocation-based method against the corresponding actual values.

o
o
N
o

R?=-1666

w
o
-
o

Estimated P (kW)
N
S

o

Estimated P (kW)
>

o

o
o

0 10 20 30 40 0
Real P (kW)

Real P (kW)
(b) Minimum

(a) Maximum

Fig. 20. The estimated maximum and minimum load bounds obtained from
the noise-based method against the corresponding actual values.

The actual high-resolution load curve and the enriched load curves.

10

o
©

D=0.14

S~p-=032

o
o

I
~

Actual

Cumulative Probability

—Our Method
0.2 D =040 Allocation-based | |
0 ’ . . : .
0 5 10 15 20 25 30
P (kW)

Fig. 21.  Cumulative probability distributions of the actual load and the
enriched load in Fig. 18.

2) Comparison with the Noise-based Method: The basic
idea of the noise-based approach is to add Gaussian noise
to a typical or known low-resolution load profile. Fig. 18c
shows the actual 1-second load curve and the enriched load
curve obtained by the noise-based approach. One primary
shortcoming of the noise-based approach is that it can not
faithfully capture the cyclicity of the load state. This short-
coming can be observed in Fig. 18c, where, the enriched load
curve clutters the plot and does not present a clear duration
of load state. The unsatisfactory performance of the noise-
based approach can also be corroborated by Fig. 20, where,
the negative R? values demonstrate poor explanations of the
inferred maximum/minimum load bound on the actual load
bound. The computed D value for the noise-based method
is 0.32, which is greater than 0.14, as shown in Fig. 2I.
This demonstrates that our method has a better performance
than the noise-based method in terms of the two-sample KS
statistic.

To quantitatively compare the aforementioned three ap-
proaches, we have also computed the normalized mean abso-
lute error (nMAE) and the normalized root mean square error
(nRMSE) based on the load curves in Fig. 18. Specifically,
nMAE and nRMSE are computed as follows:

Sit [P =P ()]

nMAE = —"——— x 100%, (23)
St (P()—P(1)?
nRMSE = e x 100%,  (24)
Pmaac

where, n; is the total number of samples in a day with a
resolution of 1 second, i.e., 86400. P(t) and P(t) denote the
actual and estimated loads at time ¢, respectively. P, de-
notes the peak of the actual load. The computed error metrics
are summarized into Table II. We can see that compared to
the allocation- and noised-based methods, our approach has
smaller errors.

TABLE 11
COMPUTED ERROR METRICS BASED ON LOAD CURVES IN FIG. 18

Our Approach  Allocation-based  Noise-based
12.3 22.8 21.9
16.4 28.1 27.5

nMAE (%)
nRMSE (%)




V. CONCLUSION

This paper is devoted to temporally enriching low-resolution
load data for service transformers that only have SMs, us-
ing high-resolution load data from service transformers with
micro-PMUs and SMs. The entire process includes two stages,
determining the maximum and minimum load bounds using
known low-resolution load measurements and trained regres-
sion models, and inferring load variability within load bound-
aries using trained probabilistic transition models. The regres-
sion and transition models are trained using high-resolution
load data from service transformers with micro-PMUs. We
have used real high-resolution load data to prove that our
approach is able to accurately recover high-resolution load data
masked by the average load measurements over low-resolution
sampling intervals. The enriched high-resolution load data
can significantly enhance utilities’ grid-edge observability and
situational awareness of distribution systems. Our paper’s key
findings are summarized as follows:

o The 1-second load within an hourly interval can be 40%
times larger or smaller than the corresponding average
load during the same hour interval. By performing power
flow studies, we have found that using the hourly average
load for conducting power flow analysis cannot accu-
rately capture the actual condition of distribution systems.
Therefore, performing low-resolution power flow studies
might cause significant errors, especially for those dis-
tribution networks that have a weak grid connection and
long line segments.

o The numerical experiments have verified that our pro-
posed approach shows strong robustness and adaptability
to PVs.

o The numerical experiments have also demonstrated that
our approach can accurately recover statistical properties
of the instantaneous load within each low-resolution sam-
pling interval of SM. The power flow studies show that
our approach can faithfully reflect distribution system’s
actual voltage conditions from a statistical perspective.
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