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 Mining Smart Meter 
Data to Enhance 
Distribution Grid 
Observability for 
Behind-the-Meter 

Load Control

 By Yuxuan Yuan and Zhaoyu Wang

ISTRIBUTED ENERGY RESOURCES (DERs) 
are playing an increasingly important role 
in power systems. In 2023, five categories of 
DERs—distributed solar, 
electric vehicles (EVs), ener-

gy storage, residential smart thermostats, 
and small-scale combined heat and 
power—are expected to contribute about 
104 GW to the U.S. summer peak (see GTM, 
2018).  With the increasing integration of 
DERs in power distribution systems, dis-
tributed load control is imperative to 
smooth the fluctuations that they intro-
duce. However, a main challenge is that 
distribution systems lack systematic situa-
tional awareness because of their limited 
sensors. Furthermore, most customer-level 
behind-the-meter (BTM) DERs, such as 
rooftop photovoltaics (PVs), are being inte-
grated into distribution systems, which 
complicates the system monitoring and 

control. Enhanced electric grid monitoring is needed to 
promote renewable integration while ensuring reliability, 
but current approaches rely on expensive sensors.
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Significantly improving system situational awareness 
and providing valuable insights.
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In recent decades, the deployment of advanced meter-
ing infrastructure (AMI) in distribution systems provides a 
unique opportunity to extend the monitoring capability 
to the grid edges. AMI is a configured infrastructure of 
smart meters (SMs), meter data management systems 
(MDMSs), and communication networks, which enables 
two-way communication between customer meters and 
utilities. The introduction of AMI provides utilities with 
many features that were previously unreachable or had to 
be accomplished manually, thus significantly reducing 
labor costs. Based on an analysis from the U.S. Depart-
ment of Energy, AMI can help medium-to-large-sized util-
ities save an average of US$16.6 million in operation and 
maintenance costs over three years (see Office of Electric-
ity Delivery and Energy Reliability, 2016). Moreover, wide-
spread AMI has enabled utilities to collect an 
unprecedented amount of demand-side data that facili-
tate the transition to a data-enabled modernized power 
system. However, most electric utilities use AMI data only 
for billing. The challenge is that, without new computing 
innovations, SMs can provide only limited insights into 
grid performance.

In this article, an overview of AMI is presented, including 
concept, communications, and current applications. Then 
we introduce several advanced applications that allow 
unlocking the untapped potential of AMI data using 
machine learning techniques. The proposed solutions can 
significantly improve system situational awareness and pro-
vide valuable insights to better control BTM loads and DERs.

An Overview of AMI

AMI and SM Data Introduction
The Federal Energy Regulatory Commission (FERC)  
defines AMI as “a metering system that records customer 
consumption and possibly other parameters hourly or 
more frequently and that provides for daily or more fre-
quent transmittal of measurements over a communica-
tion network to a central collection point” (see FERC, 2020). 
AMI is developed on the basis of automatic meter reading 
(AMR). AMR is an older technology and can avoid the need 
for staff to manually record monthly energy consumption 
data. Compared to AMR, AMI is more expensive, but it 
offers more benefits. The core element of AMI is the SM, 
which is a device installed at a customer’s house or facili-
ty. As shown in Figure 1, unlike conventional electrome-
chanical meters that rely on a series of dials to record the 
total energy consumption, SMs use an LCD screen to show 
customer usage. The energy consumption reading of the 
SM is accumulative, and periodic usage is determined by 
subtracting the current reading from the previous one. 
SMs often use a meter multiplier to calculate the actual 
kilowatt-hour consumption. The multiplier is preceded by 
an “X” and marked on the front of the SM. Thus, the 
monthly usage times the multiplier is used to calculate 
the monthly bill. 

Compared to AMR meters, which only record monthly 
energy data, SMs for single-phase residential or small com-
mercial customers can typically record real energy con-
sumption (kWh) and the instantaneous voltage magnitude 
(V) at 15-, 30- or 60-min intervals. For three-phase large 
commercial and industrial customers, utilities typically use 
a 15-min meter-reading interval to collect the real energy 
consumption (kWh), reactive energy consumption (kVArh), 
and instantaneous voltage magnitude (V) for each phase. 
For some large-scale industrial customers who operate 
sensitive machinery, SMs can be activated for measuring 
current transients and harmonics. Figure 2 shows an 
example of SM data. Each customer has an account num-
ber, and its energy usage data are recorded at each time 
stamp. In addition to the usage data, SMs can monitor the 
energized/de-energized status of customers. When an SM 
realizes that it is going to lose power, it sends a “last-gasp 
signal” to utilities for outage notification. Furthermore, 
when a customer calls to report a suspicious outage, the 
SM provides a meter-pinging function to determine if the 
customer has actually lost power, which can eliminate 
time-consuming truck rolls to verify power outages.

SM Data Communication and Storage
To provide near-real-time information, data communica-
tion is a critical technical requirement. AMI communica-
tion networks need to deliver accurate, reliable, and 
massive data streams in a timely manner. In the United 
States, the ANSI C12.18 standard defines a table structure 
for passing data between an SM and a utility. As shown in 
Figure 3, a typical AMI communication network has two 
layers. The first layer connects data concentrators with a 
head-end system (HES). An HES is hardware and software 
that can receive and transmit data and store short-term 
consumption data to support customer billing. The second 
layer links multiple neighboring SMs with a data concen-
trator. The AMI communication network can consist of 
either wireless or fixed-wired connections. Fixed-wired 
connections include power line carriers, fiber-optic cables, 
telephone dial-up modems, and digital subscriber 
lines. Wireless communication options include cellular 

(a) (b)

Figure 1. Examples of (a) an electromechanical meter and  
(b) an SM.
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Figure 2. Exemplary SM data from utilities.
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communications, Wi-Fi, low-power, long-range wireless 
networks, Zigbee, and Wi-SUN. Currently, there is no sin-
gle communications solution that is optimal for all utili-
ties. Utilities normally combine multiple technologies to 
build their communication networks. The selection of 
communication techniques is highly dependent on the 
geographic location and grid infrastructure. For example, 
urban utilities face very different communication chal-
lenges than rural utilities.

When SM data are collected by the HES, an MDMS is 
used for long-term data storage and management. The 
MDMS will import SM data and then validate, clean, and 
process them before using them for utility applications, 
such as geographic information systems and outage man-
agement systems. In the United States, not all utilities 
have their own MDMS because of financial constraints; 
small utilities prefer partnering with third-party data 
companies to store and process their SM data.

SM Data Applications
In the United States, federally sponsored programs have 
been promoting the widespread adoption of AMI in distri-
bution systems. But, to date, most utilities use SMs for 
remote billing and outage notifications only, without 
exploring insights or gaining actionable information, 
which significantly undervalues the SM data. The funda-
mental reason is that SM data are limited by several dis-
advantages. Specifically, unlike the microphasor 
measurement units (μPMUs) that provide high-resolution 
(e.g., 120 samples/s) and synchronized phasor data, SMs 
collect only low-resolution and unsynchronized energy 
and voltage magnitude measurements. Furthermore, SM 
data suffer from data-quality problems caused by com-
munication failures, meter malfunctions, and human 
errors. Figure 4 presents several common SM data-quality 
issues, including duplicates, constant zero readings, miss-
ing data, and outliers.

Despite the data-quality difficulties, SM data are a good 
resource for enhancing distribution grid monitoring and 
control, thanks to extensive customer-side installations. 
Compared to μPMUs, which are installed only on critical 

nodes in distribution systems, an SM can be installed for 
each customer. According to the U.S. Energy Information 
Administration, SM installations have grown dramatically 
since 2011. By the end of 2020, an estimated 107 million 
SMs were developed, which covers nearly 75% of the total 
U.S. households. As the number of SMs increases, massive 
customer-side data are collected by utilities. For the utili-
ties that have millions of observable customers, i.e., cus-
tomers with SMs, the total SM data with 15-min 
resolution can reach 10 TB per year. Such a massive data 
set contains rich information on customer consumption 
behaviors and system operation insights, which provides 
an opportunity to perform data-driven local control. The 
next section will introduce several advanced applications 
of SM data enabled by machine learning techniques, 
which can greatly improve distribution grid modeling and 
operation, thus facilitating the BTM load control.

Advanced Applications of SM Data Enabled by 
Machine Learning Techniques
With the advent of machine learning technologies, 
researchers now have powerful tools to further exploit the 
undiscovered values of SM data. Figure 5 summarizes 
some existing and emerging applications of SM data 
enabled by machine learning. This section focuses on four 
of these topics, including load profiling, demand-side flexibili-
ty estimation, BTM solar disaggregation, and grid modeling.

Customer Load Profiling
Customers’ typical load profiles are valuable for utilities in 
understanding customer consumption behaviors. With 
typical load profiles, each customer can be linked to one of 
the predefined classes. This information is utilized exten-
sively in distribution system operations, such as rate 
design, distribution system state estimation, load forecast-
ing, and network planning. The traditional approach to 
obtain typical load profiles is to simply average the con-
sumptions of residential, commercial, and industrial cus-
tomers, respectively. However, this method ignores 
different socioeconomic factors and weather conditions, 
thus reducing the profile representativeness. By using 
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Figure 4. Exemplary SM data-quality problems.
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machine learning techniques, load profiling can be cast as 
an unsupervised clustering problem and solved by multi-
ple well-developed algorithms, such as k-means and hier-
archical clustering. There are several challenges in 
performing load profiling by using these algorithms. First, 
most clustering algorithms suffer from the curse of 
dimensionality posed by time-series SM data because of 
the divergence of the Euclidean distance in a high-dimen-
sional space. The second issue involves some algorithm-
specific limitations. For example, hierarchical clustering is 
sensitive to outliers. The k-means algorithm can only han-
dle clusters with spherical or ellipsoid symmetry, which is 
not necessarily true of SM data sets. The third challenge is 
to find the optimal values of hyperparameters, such as the 
number of typical load profiles and scaling factors in ker-
nel functions.

To address these challenges, we have utilized a graph-
based clustering approach called spectral clustering to clas-
sify the typical load profiles. The proposed method is 
robust for high-dimensional SM data since it uses the dis-
tance on a graph rather than the Euclidean distance. More-
over, to avoid the manual selection of hyperparameters, a 
self-tuning strategy has been applied to calculate the 
k-nearest neighbors-based local distance for each custom-
er. The Davies–Bouldin validation index has been leveraged 
to determine the optimal number of typical load profiles. 
Figure 6 shows 22 seasonal typical load profiles with their 
proportions. These results are based on three-year SM data 

from about 3,000 residential customers in the midwestern 
United States. As shown in the figure, in spring, about 38% 
of customers have a peak demand in the evening (8 p.m.). 
In summer, the customer load behavior is different; most 
customers show similar behavioral tendencies, and the 
peak demand occurs during the afternoon interval (from 
4 p.m. to 6 p.m.). A possible reason is the higher energy con-
sumption from air conditioning in time periods with high-
er temperatures. Fall has more typical load profiles than 
other seasons because of the greater variability in custom-
er behaviors. Based on our observations, about 35% of cus-
tomers have double peaks, one in the morning (from 7 a.m. 
to 9 a.m.) and the other in the evening periods (from 6 p.m. 
to 10 p.m.), such as C12, C13, and C14. In winter, customer 
consumption behaviors are similar to those in spring. This 
is probably because the two seasons have a similar meteo-
rology in the midwestern United States.

Demand-Side Flexibility Quantification
System peak demand is one of the critical concerns for 
utilities. At peak times, the marginal cost of energy pro-
curement can be 10 times higher than for off-peak times. 
Flexibility quantification refers to estimating the portion 
of system peak demand that can be reduced or shifted. In 
practical systems, utilities use the customer daily peak 
demand to approximate flexibility for peak-shaving pro-
grams. However, this approximation can cause a consider-
able error since individual customers’ peak demands do 

Data-Quality
Assessment

Load Pattern
Extraction

Solar
Disaggregation

Probabilistic
Forecasting

Data
Mining

Algorithm Classification Learning Neural
Networks

Deep
Learning

Al Autonomous

Hierarchical
Forecasting

Spatial
Forecasting

SM Data

Demand
Response

Topology
Learning

Parameter
Learning

Phase
Identification

Load
Restoration

Customer
Characterization

Load Analysis Load Forecasting Load Management Network Analysis
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not necessarily coincide with the system peak, which 
poses a challenge to BTM load control. A better solution is 
to calculate the ratios of individual customers’ demands 
during the daily peak load times of the system to the daily 
system peak demand, which is called the coincident month-
ly peak contribution (CMPC). For observable customers with 
SMs, the CMPC can be directly computed based on real-
time SM data and system demand data recorded by a 
supervisory control and data acquisition system. For 
unobservable customers without SMs, a weighted cluster-
wise regression method can be used to estimate the CMPC 

using their monthly billing information. A flowchart of 
this method is described in Figure 7. The basic idea is to 
exploit the strong correlation between the CMPC and 
monthly energy consumption when the customers’ load 
profiles are similar. Based on the validation of a real SM 
data set, the estimated values can accurately track a cus-
tomer’s real CMPC, as shown in Figure 8.

BTM Solar Disaggregation
To date, most residential rooftop PVs are installed BTM. 
Hence, as described in Figure 2, SMs can only record a 
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Figure 6. (a) Seasonal typical load profiles. (Continued)
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customer net demand that equals the native load con-
sumption minus the PV generation. While customers have 
SMs, PV generation and customer native demand remain 
invisible to utilities. This invisibility greatly hinders the 
implementation of distributed load control. One simple 
solution is to install additional PV meters for monitoring 
each individual PV, which is cost-prohibitive. As an alterna-
tive low-cost solution, researchers have investigated solar 
disaggregation methods to infer customer native load con-
sumption and solar generation, which can be classified 
into two groups: model-based methods and data-driven 
methods. Model-based methods use multiple PV parame-
ters, such as location, size, inverter efficiency, tilt, and ori-
entation, along with weather information to estimate solar 
generation. The customer native demand then can be 
obtained by subtracting the estimated solar generation 
from SM data. Nevertheless, PV parameters can be incom-
plete or unavailable in practice, which makes the actual 
implementation of these methods costly. In contrast, data-
driven methods do not require physical parameters and 
rely only on historical solar generation and customer con-
sumption data to build the mapping functions. The main 
issue with the existing data-driven models is the availabili-
ty of historical solar data, especially for BTM systems.

To address these shortcomings, a probabilistic learn-
ing-based disaggregation model has been proposed to 
estimate the customer demand and PV generation with-
out using a historical solar data set. The flowchart of this 

method is described in Figure 9. The basic idea is to exploit 
the temporal correlation between nocturnal (Pm,n) and 
diurnal native demands (Pm,d) and the spatial correlation 
between unknown BTM PVs and solar examples in the 
same distribution system. The temporal correlation is 
modeled as a joint data distribution using a Gaussian mix-
ture model (GMM). Three typical solar exemplars, includ-
ing PVs facing east, south, and west, are utilized, 
demonstrating distinguishable features, as shown in Fig-
ure 10. Figures 11 and 12 present the disaggregated native 
demand and PV generation curves, respectively, for one 
customer over two weeks using the proposed method. It 
can be observed that the disaggregated curve closely 
tracks the actual profile, regardless of the consumption 
volatility on some days.

Topology and Parameter Identification
A complete and accurate system model is essential for 
modern distribution system operations and BTM load 
control. However, there are still many utilities that do not 
have any digital system models and rely on paper-based 
maps to do their work. These maps are usually outdated 
and incomplete because of frequent system expansions 
and DER installations. This lack of system knowledge 
inhibits effective system monitoring and control. One 
approach for solving this problem is to widely perform 
field inspections to verify system connections and line 
parameters. This manual solution is labor intensive and 
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time consuming, especially for large-scale systems with 
thousands of overhead lines and underground cables. 
Hence, some studies have made efforts to explore data-
driven approaches to capture the inherent dependencies 
among field measurements for topology and parameter 
identification. Specifically, the term topology identification 
refers to finding the connectivity of different nodes in 
entire networks. The term parameter identification means 
calculating the resistance (R) and reactance (X) of each 
branch. In the literature, existing data-driven methods 
generally rely on full coverage of μPMUs and the availabili-
ty of prior knowledge of the network, such as the R/X 
ratios of all branches. The reason for these assumptions is 
that a μPMU can provide high-granular phase angle infor-
mation, while the prior knowledge of the network can sig-
nificantly reduce the search space of the optimization 
process. Nevertheless, these assumptions are not neces-
sarily applicable to practical distribution systems, espe-
cially for old systems that need to perform topology and 
parameter identification. To tackle these shortcomings, a 
novel two-stage data-driven framework has been pro-
posed to identify network topology and parameters 

separately, using only SM measurements and a low-cost 
conductor library.

In the first stage, the procedure of identifying topol-
ogy from SM data is cast as a graph theory problem: 
how to approximately estimate the weighted Laplacian 
matrix of the network. The basic idea is that the 
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network connection information can be easily extract-
ed by exploiting the unique property of the weighted 
Laplacian matrix. Furthermore, to relax the phase 

angle information, the branch-flow model is utilized to 
formulate our model. The proposed topology identifi-
cation method has been tested on the IEEE 13- and 

37-bus test feeders shown in Fig-
ure 13. The time-series nodal load 
demand is obtained from our 
real-world SM data sets. The volt-
age measurements are calculated 
using a power-flow analysis. The 
estimated weighted Laplacian 
matrix of each feeder is described 
in Figure 14. In the figure, the 
absolute value of each entry in 
the matrix is represented by the 
edge width. As can be observed, 
the connectivity of different 
nodes is obtained by distinguish-
ing entries close to zero and large 
nondiagonal entries. Based on 
500 Monte Carlo simulations, the 
proposed method can achieve 
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100% accuracy on 13- and 37-bus 
test feeders.

In the second stage, a novel bot-
tom-up sweep parameter identifi-
cation method has been developed 
to estimate R and X of each 
branch. The unique feature of our 
solution is that it does not infer 
parameters in a system-wide fash-
ion but performs branch-level 
parameter estimation in an alter-
nating manner. This alternating 
strategy solves the dimensionality 
issue and enables parallel compu-
tation of all line sections, thus pro-
viding good scalability for large 
distribution grids. To achieve this, a 
radial distribution network is first 
decomposed into multiple layers, 
as shown in Figure 15. Then, 
the proposed bottom-up sweep al-
gorithm begins with the last 
branches at the bottom layer and 
estimates line parameters and 
power flows layer by layer in an al-
ternate manner. For each branch, 
the line impedance estimation es-
tablishes the voltage drop using 
the nonlinear branch-flow model. 
The flowchart is demonstrated in 
Figure 16.

To narrow down the search 
space and handle the ill-condi-
tioning issue, a library of R/X 
ratios is added as a constraint in 
the single branch parameter esti-
mation. This library only requires 
knowledge of the types of conduc-
tors in a system without knowing 
the exact R/X ratio of each branch. 
Thus, information can easily be 
found in utility inventory records 
or guidance for distribution sys-
tems at a particular voltage level. 
Moreover, since the original opti-
mization is nonconvex, we have 
applied the Big M technique and 
semidefinite programming relax-
ation to tackle the bilinear term 
and nonconvex quadratic equali-
ties. After the relaxation, the sin-
gle branch parameter estimation 
can be modeled as two optimiza-
tion models: a nonlinear least 
absolute deviations (LAD) model 
and a nonlinear least squares (LS) 
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model. The performance of our solution has been validated 
on IEEE 13-bus and 37-bus test feeders. The results are 
depicted in Figures 17 and 18. It can be observed that the 
proposed model precisely recovers the line impedance of 
each branch under all test cases. In terms of R, the largest 
relative errors are less than 0.001%; as for X, the largest rel-
ative errors are less than 0.0005%.

Open Source SM Data Set
Because of data privacy and concerns, most utilities are 
hesitant to share their system models and SM data with 
the public, which poses a great challenge to many 
researchers. To bridge this gap, with permission from our 

utility partner, we have shared a 
real distribution grid model with 
one-year SM data for researchers 
and engineers to perform valida-
tion and demonstration. The sys-
tem consists of three feeders, 240 
primary buses, and multiple grid 
components, such as substation 
transformers with load tap chang-
ers, secondary distribution trans-
formers, and capacitor banks. 
There are 1,120 customers, and all 
of them are equipped with SMs to 
record hourly real energy con-
sumption (kWh). One can down-

load the data set at http://wzy.ece.iastate.edu/Test 

system.html, including the system description, SM data, 
OpenDSS model, and MATLAB code for quasi-static time-
series simulation.

Conclusion and Future Work
With the increasing penetration of DERs, distribution sys-
tems are gradually transforming from traditional grids to 
smart grids. Utilities need to improve systematic situa-
tional awareness to execute BTM load-control strategies. 
Although SM data may be of relatively low resolution and 
suffer from various data-quality problems, they can still 
provide valuable insights for utilities. In this article, we 
have discussed AMI data structure, communication, and 
several advanced applications enabled by machine learn-
ing, including typical load profiling, demand-side flexibili-
ty quantification, BTM solar disaggregation, and topology 
and line parameter identification. Previous works and our 
proposed solutions on these topics have been discussed 
and presented.

In 2020, investments in distribution systems were esti-
mated to exceed US$41.8 billion. It is foreseeable that the 
increasing development of distribution systems will inevita-
bly bring new challenges to BTM load controls and system 
operations. Hence, to ensure a reliable and resilient electrici-
ty supply, we have envisaged several research directions. 

1)	New sensor technologies, such as μPMUs, have recently 
been introduced to enhance real-time distribution 
system monitoring. These sensors can provide high-
resolution voltage and current phasors not available 
from SMs. It will be interesting to investigate how the 
data from such sensors can be used to facilitate SM 
data analytics. 

2)	As the number of EVs continues to rise, the impact of 
EV charging on distribution grids is increasing. By com-
bining EV charging profiles and SM data, the impact of 
the uncoordinated charging of EVs on distribution grids 
can be studied in detail. Moreover, thanks to real-time 
measurement and two-way communication capabilities, 
SMs have the potential to assist utilities in effectively 
managing various EV charging facilities. 
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3)	Microgrids provide a promising solution to manage the 
power of different distributed generation. However, 
traditional mathematical model-based control 
schemes are not necessarily applicable to practical 
microgrids. Accurate and complete model information 
is difficult to obtain because of the widespread uncer-
tain dynamics and disturbances in microgrids. Conse-
quently, for the future smart grid, it is of great 
significance to explore data-driven adaptive control by 
taking advantage of a large amount of SM data. 

4)	A recent survey of 1,000 utilities in 10 countries 
showed that about 80% of utilities realize big data 
problems as crucial for smart grids. Current data-driv-
en models are mainly conducted on megabit or giga-
byte data sets, which may not be suitable for big data. 
In the near future, utilities will collect, store, and pro-
cess terabyte SM data sets, which can cause a heavy 
burden in data analysis. Thus, high-performance algo-
rithms, such as federated learning and parallel com-
puting, should be further investigated to help with 
real-time SM applications. 

5)	Adopting the latest machine learning techniques on 
SM data analytics will receive increasing attention. 
These algorithms will provide good opportunities in 
further understanding customer behaviors. The critical 
issue is to develop data-driven models with high inter-
pretability. This will help utility engineers to acknowl-
edge machine learning techniques and apply them in 
real-world distribution systems.
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