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Mining Smart Meter

Data to Enhance

Distribution Grid
Observability for

Behind-the-Meter
Load Control

Significantly improving system situational awareness
and providing valuable insights.

ISTRIBUTED ENERGY RESOURCES (DERSs)

are playing an increasingly important role

in power systems. In 2023, five categories of

DERs—distributed solar,

electric vehicles (EVs), ener-
gy storage, residential smart thermostats,
and small-scale combined heat and
power—are expected to contribute about
104 GW to the U.S. summer peak (see GTM,
2018). With the increasing integration of
DERs in power distribution systems, dis-
tributed load control is imperative to
smooth the fluctuations that they intro-
duce. However, a main challenge is that
distribution systems lack systematic situa-
tional awareness because of their limited
sensors. Furthermore, most customer-level
behind-the-meter (BTM) DERs, such as
rooftop photovoltaics (PVs), are being inte-
grated into distribution systems, which
complicates the system monitoring and
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control. Enhanced electric grid monitoring is needed to
promote renewable integration while ensuring reliability,
but current approaches rely on expensive sensors.
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In recent decades, the deployment of advanced meter-
ing infrastructure (AMI) in distribution systems provides a
unique opportunity to extend the monitoring capability
to the grid edges. AMI is a configured infrastructure of
smart meters (SMs), meter data management systems
(MDMSs), and communication networks, which enables
two-way communication between customer meters and
utilities. The introduction of AMI provides utilities with
many features that were previously unreachable or had to
be accomplished manually, thus significantly reducing
labor costs. Based on an analysis from the U.S. Depart-
ment of Energy, AMI can help medium-to-large-sized util-
ities save an average of US$16.6 million in operation and
maintenance costs over three years (see Office of Electric-
ity Delivery and Energy Reliability, 2016). Moreover, wide-
spread AMI has enabled utilities to collect an
unprecedented amount of demand-side data that facili-
tate the transition to a data-enabled modernized power
system. However, most electric utilities use AMI data only
for billing. The challenge is that, without new computing
innovations, SMs can provide only limited insights into
grid performance.

In this article, an overview of AMI is presented, including
concept, communications, and current applications. Then
we introduce several advanced applications that allow
unlocking the untapped potential of AMI data using
machine learning techniques. The proposed solutions can
significantly improve system situational awareness and pro-
vide valuable insights to better control BTM loads and DERs.

An Overview of AMI

AMI and SM Data Introduction

The Federal Energy Regulatory Commission (FERC)
defines AMI as “a metering system that records customer
consumption and possibly other parameters hourly or
more frequently and that provides for daily or more fre-
quent transmittal of measurements over a communica-
tion network to a central collection point” (see FERC, 2020).
AMI is developed on the basis of automatic meter reading
(AMR). AMR is an older technology and can avoid the need
for staff to manually record monthly energy consumption
data. Compared to AMR, AMI is more expensive, but it
offers more benefits. The core element of AMI is the SM,
which is a device installed at a customer’s house or facili-
ty. As shown in Figure 1, unlike conventional electrome-
chanical meters that rely on a series of dials to record the
total energy consumption, SMs use an LCD screen to show
customer usage. The energy consumption reading of the
SM is accumulative, and periodic usage is determined by
subtracting the current reading from the previous one.
SMs often use a meter multiplier to calculate the actual
kilowatt-hour consumption. The multiplier is preceded by
an “X” and marked on the front of the SM. Thus, the
monthly usage times the multiplier is used to calculate
the monthly bill.

Compared to AMR meters, which only record monthly
energy data, SMs for single-phase residential or small com-
mercial customers can typically record real energy con-
sumption (kWh) and the instantaneous voltage magnitude
(V) at 15-, 30- or 60-min intervals. For three-phase large
commercial and industrial customers, utilities typically use
a 15-min meter-reading interval to collect the real energy
consumption (kWh), reactive energy consumption (kVArh),
and instantaneous voltage magnitude (V) for each phase.
For some large-scale industrial customers who operate
sensitive machinery, SMs can be activated for measuring
current transients and harmonics. Figure 2 shows an
example of SM data. Each customer has an account num-
ber, and its energy usage data are recorded at each time
stamp. In addition to the usage data, SMs can monitor the
energized/de-energized status of customers. When an SM
realizes that it is going to lose power, it sends a “last-gasp
signal” to utilities for outage notification. Furthermore,
when a customer calls to report a suspicious outage, the
SM provides a meter-pinging function to determine if the
customer has actually lost power, which can eliminate
time-consuming truck rolls to verify power outages.

SM Data Communication and Storage

To provide near-real-time information, data communica-
tion is a critical technical requirement. AMI communica-
tion networks need to deliver accurate, reliable, and
massive data streams in a timely manner. In the United
States, the ANSI C12.18 standard defines a table structure
for passing data between an SM and a utility. As shown in
Figure 3, a typical AMI communication network has two
layers. The first layer connects data concentrators with a
head-end system (HES). An HES is hardware and software
that can receive and transmit data and store short-term
consumption data to support customer billing. The second
layer links multiple neighboring SMs with a data concen-
trator. The AMI communication network can consist of
either wireless or fixed-wired connections. Fixed-wired
connections include power line carriers, fiber-optic cables,
telephone dial-up modems, and digital subscriber
lines. Wireless communication options include cellular
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Figure 1. Examples of (a) an electromechanical meter and
(b) an SM.
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Account Time KWH or V Time KWH or V Time
100000001 KWH 201704010100 0.392 201704010200 0.257 201704010300
100000001 VOLTS 201704010100 239 201704010200 239 201704010300
100000002 KWH 201704010100 0.245 201704010200 0.204 201704010300
100000002 VOLTS 201704010100 241 201704010200 240 201704010300
100000003 KWH 201704010100 1.479 201704010200 0.417 201704010300
100000003 VOLTS 201704010100 240 201704010200 239 201704010300
100000004 KWH 201704010100 1.009 201704010200 0.555 201704010300
100000004 VOLTS 201704010100 241 201704010200 237 201704010300
100000005 KWH 201704010100 0.798 201704010200 0.809 201704010300
100000005 VOLTS 201704010100 239 201704010200 238 201704010300
100000006 KWH 201704010100 0.109 201704010200 0.188 201704010300
100000006 VOLTS 201704010100 241 201704010200 240 201704010300
100000007 KWH 201704010100 1.199 201704010200 1.512 201704010300
100000007 VOLTS 201704010100 241 201704010200 240 201704010300
100000008 KWH 201704010100 0.422 201704010200 0.419 201704010300
100000008 VOLTS 201704010100 239 201704010200 239 201704010300
100000009 KWH 201704010100 2.288 201704010200 2.278 201704010300
100000009 VOLTS 201704010100 243 201704010200 242 201704010300
100000010 KWH 201704010100 0.223 201704010200 0.257 201704010300
100000010 VOLTS 201704010100 242 201704010200 241 201704010300

Figure 2. Exemplary SM data from utilities.
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Figure 3. SM data collection and communication. HES: head-end system.
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communications, Wi-Fi, low-power, long-range wireless
networks, Zigbee, and Wi-SUN. Currently, there is no sin-
gle communications solution that is optimal for all utili-
ties. Utilities normally combine multiple technologies to
build their communication networks. The selection of
communication techniques is highly dependent on the
geographic location and grid infrastructure. For example,
urban utilities face very different communication chal-
lenges than rural utilities.

When SM data are collected by the HES, an MDMS is
used for long-term data storage and management. The
MDMS will import SM data and then validate, clean, and
process them before using them for utility applications,
such as geographic information systems and outage man-
agement systems. In the United States, not all utilities
have their own MDMS because of financial constraints;
small utilities prefer partnering with third-party data
companies to store and process their SM data.

SM Data Applications

In the United States, federally sponsored programs have
been promoting the widespread adoption of AMI in distri-
bution systems. But, to date, most utilities use SMs for
remote billing and outage notifications only, without
exploring insights or gaining actionable information,
which significantly undervalues the SM data. The funda-
mental reason is that SM data are limited by several dis-
advantages. Specifically, unlike the microphasor
measurement units (u{PMUs) that provide high-resolution
(e.g.,, 120 samples/s) and synchronized phasor data, SMs
collect only low-resolution and unsynchronized energy
and voltage magnitude measurements. Furthermore, SM
data suffer from data-quality problems caused by com-
munication failures, meter malfunctions, and human
errors. Figure 4 presents several common SM data-quality
issues, including duplicates, constant zero readings, miss-
ing data, and outliers.

Despite the data-quality difficulties, SM data are a good
resource for enhancing distribution grid monitoring and
control, thanks to extensive customer-side installations.
Compared to pPMUSs, which are installed only on critical

nodes in distribution systems, an SM can be installed for
each customer. According to the U.S. Energy Information
Administration, SM installations have grown dramatically
since 2011. By the end of 2020, an estimated 107 million
SMs were developed, which covers nearly 75% of the total
U.S. households. As the number of SMs increases, massive
customer-side data are collected by utilities. For the utili-
ties that have millions of observable customers, i.e., cus-
tomers with SMs, the total SM data with 15-min
resolution can reach 10 TB per year. Such a massive data
set contains rich information on customer consumption
behaviors and system operation insights, which provides
an opportunity to perform data-driven local control. The
next section will introduce several advanced applications
of SM data enabled by machine learning techniques,
which can greatly improve distribution grid modeling and
operation, thus facilitating the BTM load control.

Advanced Applications of SM Data Enabled by
Machine Learning Techniques

With the advent of machine learning technologies,
researchers now have powerful tools to further exploit the
undiscovered values of SM data. Figure 5 summarizes
some existing and emerging applications of SM data
enabled by machine learning. This section focuses on four
of these topics, including load profiling, demand-side flexibili-
ty estimation, BTM solar disaggregation, and grid modeling.

Customer Load Profiling

Customers’ typical load profiles are valuable for utilities in
understanding customer consumption behaviors. With
typical load profiles, each customer can be linked to one of
the predefined classes. This information is utilized exten-
sively in distribution system operations, such as rate
design, distribution system state estimation, load forecast-
ing, and network planning. The traditional approach to
obtain typical load profiles is to simply average the con-
sumptions of residential, commercial, and industrial cus-
tomers, respectively. However, this method ignores
different socioeconomic factors and weather conditions,
thus reducing the profile representativeness. By using
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Figure 4. Exemplary SM data-quality problems.
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machine learning techniques, load profiling can be cast as
an unsupervised clustering problem and solved by multi-
ple well-developed algorithms, such as k-means and hier-
archical clustering. There are several challenges in
performing load profiling by using these algorithms. First,
most clustering algorithms suffer from the curse of
dimensionality posed by time-series SM data because of
the divergence of the Euclidean distance in a high-dimen-
sional space. The second issue involves some algorithm-
specific limitations. For example, hierarchical clustering is
sensitive to outliers. The k-means algorithm can only han-
dle clusters with spherical or ellipsoid symmetry, which is
not necessarily true of SM data sets. The third challenge is
to find the optimal values of hyperparameters, such as the
number of typical load profiles and scaling factors in ker-
nel functions.

To address these challenges, we have utilized a graph-
based clustering approach called spectral clustering to clas-
sify the typical load profiles. The proposed method is
robust for high-dimensional SM data since it uses the dis-
tance on a graph rather than the Euclidean distance. More-
over, to avoid the manual selection of hyperparameters, a
self-tuning strategy has been applied to calculate the
k-nearest neighbors-based local distance for each custom-
er. The Davies-Bouldin validation index has been leveraged
to determine the optimal number of typical load profiles.
Figure 6 shows 22 seasonal typical load profiles with their
proportions. These results are based on three-year SM data

from about 3,000 residential customers in the midwestern
United States. As shown in the figure, in spring, about 38%
of customers have a peak demand in the evening (8 p.m.).
In summer, the customer load behavior is different; most
customers show similar behavioral tendencies, and the
peak demand occurs during the afternoon interval (from
4 pm. to 6 pm.). A possible reason is the higher energy con-
sumption from air conditioning in time periods with high-
er temperatures. Fall has more typical load profiles than
other seasons because of the greater variability in custom-
er behaviors. Based on our observations, about 35% of cus-
tomers have double peaks, one in the morning (from 7 a.m.
to 9 am.) and the other in the evening periods (from 6 p.m.
to 10 p.m.), such as C12, C13, and C14. In winter, customer
consumption behaviors are similar to those in spring. This
is probably because the two seasons have a similar meteo-
rology in the midwestern United States.

Demand-Side Flexibility Quantification

System peak demand is one of the critical concerns for
utilities. At peak times, the marginal cost of energy pro-
curement can be 10 times higher than for off-peak times.
Flexibility quantification refers to estimating the portion
of system peak demand that can be reduced or shifted. In
practical systems, utilities use the customer daily peak
demand to approximate flexibility for peak-shaving pro-
grams. However, this approximation can cause a consider-
able error since individual customers’ peak demands do
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Figure 5. A summary of advanced SM data applications. Al: artificial intelligence.
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not necessarily coincide with the system peak, which
poses a challenge to BTM load control. A better solution is
to calculate the ratios of individual customers’ demands
during the daily peak load times of the system to the daily
system peak demand, which is called the coincident month-
ly peak contribution (CMPC). For observable customers with
SMs, the CMPC can be directly computed based on real-
time SM data and system demand data recorded by a
supervisory control and data acquisition system. For
unobservable customers without SMs, a weighted cluster-
wise regression method can be used to estimate the CMPC
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using their monthly billing information. A flowchart of
this method is described in Figure 7. The basic idea is to
exploit the strong correlation between the CMPC and
monthly energy consumption when the customers’ load
profiles are similar. Based on the validation of a real SM
data set, the estimated values can accurately track a cus-
tomer’s real CMPC, as shown in Figure 8.

BTM Solar Disaggregation
To date, most residential rooftop PVs are installed BTM.
Hence, as described in Figure 2, SMs can only record a
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Figure 6. (a) Seasonal typical load profiles. (Continued)
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Figure 6. (Continued) (b) Proportions of typical load profiles.

customer net demand that equals the native load con-
sumption minus the PV generation. While customers have
SMs, PV generation and customer native demand remain
invisible to utilities. This invisibility greatly hinders the
implementation of distributed load control. One simple
solution is to install additional PV meters for monitoring
each individual PV, which is cost-prohibitive. As an alterna-
tive low-cost solution, researchers have investigated solar
disaggregation methods to infer customer native load con-
sumption and solar generation, which can be classified
into two groups: model-based methods and data-driven
methods. Model-based methods use multiple PV parame-
ters, such as location, size, inverter efficiency, tilt, and ori-
entation, along with weather information to estimate solar
generation. The customer native demand then can be
obtained by subtracting the estimated solar generation
from SM data. Nevertheless, PV parameters can be incom-
plete or unavailable in practice, which makes the actual
implementation of these methods costly. In contrast, data-
driven methods do not require physical parameters and
rely only on historical solar generation and customer con-
sumption data to build the mapping functions. The main
issue with the existing data-driven models is the availabili-
ty of historical solar data, especially for BTM systems.

To address these shortcomings, a probabilistic learn-
ing-based disaggregation model has been proposed to
estimate the customer demand and PV generation with-
out using a historical solar data set. The flowchart of this
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method is described in Figure 9. The basic idea is to exploit
the temporal correlation between nocturnal (P, ) and
diurnal native demands (Py,4) and the spatial correlation
between unknown BTM PVs and solar examples in the
same distribution system. The temporal correlation is
modeled as a joint data distribution using a Gaussian mix-
ture model (GMM). Three typical solar exemplars, includ-
ing PVs facing east, south, and west, are utilized,
demonstrating distinguishable features, as shown in Fig-
ure 10. Figures 11 and 12 present the disaggregated native
demand and PV generation curves, respectively, for one
customer over two weeks using the proposed method. It
can be observed that the disaggregated curve closely
tracks the actual profile, regardless of the consumption
volatility on some days.

Topology and Parameter Identification

A complete and accurate system model is essential for
modern distribution system operations and BTM load
control. However, there are still many utilities that do not
have any digital system models and rely on paper-based
maps to do their work. These maps are usually outdated
and incomplete because of frequent system expansions
and DER installations. This lack of system knowledge
inhibits effective system monitoring and control. One
approach for solving this problem is to widely perform
field inspections to verify system connections and line
parameters. This manual solution is labor intensive and
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Figure 7. The flowchart of a weighted clusterwise regression model.

time consuming, especially for large-scale systems with
thousands of overhead lines and underground cables.
Hence, some studies have made efforts to explore data-
driven approaches to capture the inherent dependencies
among field measurements for topology and parameter
identification. Specifically, the term topology identification
refers to finding the connectivity of different nodes in
entire networks. The term parameter identification means
calculating the resistance (R) and reactance (X) of each
branch. In the literature, existing data-driven methods
generally rely on full coverage of yPMUs and the availabili-
ty of prior knowledge of the network, such as the R/X
ratios of all branches. The reason for these assumptions is
that a yPMU can provide high-granular phase angle infor-
mation, while the prior knowledge of the network can sig-
nificantly reduce the search space of the optimization
process. Nevertheless, these assumptions are not neces-
sarily applicable to practical distribution systems, espe-
cially for old systems that need to perform topology and
parameter identification. To tackle these shortcomings, a
novel two-stage data-driven framework has been pro-
posed to identify network topology and parameters
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separately, using only SM measurements and a low-cost
conductor library.

In the first stage, the procedure of identifying topol-
ogy from SM data is cast as a graph theory problem:
how to approximately estimate the weighted Laplacian
matrix of the network. The basic idea is that the
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ed stochastic neighbor embedding.

network connection information can be easily extract-
ed by exploiting the unique property of the weighted

Laplacian matrix. Furthermore, to relax

the phase

angle information, the branch-flow model is utilized to
formulate our model. The proposed topology identifi-
cation method has been tested on the IEEE 13- and
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37-bus test feeders shown in Fig-
ure 13. The time-series nodal load
demand is obtained from our
real-world SM data sets. The volt-
age measurements are calculated
using a power-flow analysis. The
estimated weighted Laplacian
matrix of each feeder is described
in Figure 14. In the figure, the
absolute value of each entry in
the matrix is represented by the
edge width. As can be observed,
the connectivity of different
nodes is obtained by distinguish-
ing entries close to zero and large
nondiagonal entries. Based on
500 Monte Carlo simulations, the
proposed method can achieve
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knowledge of the types of conduc-
tors in a system without knowing
the exact R/X ratio of each branch.
Thus, information can easily be
found in utility inventory records
or guidance for distribution sys-
tems at a particular voltage level.
Moreover, since the original opti-
mization is nonconvex, we have
applied the Big M technique and
semidefinite programming relax-
ation to tackle the bilinear term
and nonconvex quadratic equali-
ties. After the relaxation, the sin-
gle branch parameter estimation
can be modeled as two optimiza-
tion models: a nonlinear least

absolute d?"latlons (LAD) model Figure 14. The estimated weighted Laplacian matrices of two test feeders using the proposed
and a nonlinear least squares (LS)  topology identification model: (a) I[EEE modified 13-bus feeder and (b) IEEE 37-bus feeder.
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Figure 15. An example of a five-layer distribution network. P and Q denote the real and reactive

power flowing from the upstream bus.

model. The performance of our solution has been validated
on IEEE 13-bus and 37-bus test feeders. The results are
depicted in Figures 17 and 18. It can be observed that the
proposed model precisely recovers the line impedance of
each branch under all test cases. In terms of R, the largest
relative errors are less than 0.001%; as for X, the largest rel-
ative errors are less than 0.0005%.

Open Source SM Data Set

Because of data privacy and concerns, most utilities are
hesitant to share their system models and SM data with
the public, which poses a great challenge to many
researchers. To bridge this gap, with permission from our
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Using P, Q of / + 1 Layer
and SM Data at Nodes

A

Y

Solve rand x of Each
Branch in Layer /

Yy

Update P, Q of Layer / I=1-1

No

End

Figure 16. The flowchart of a bottom-up alternating method.
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utility partner, we have shared a
real distribution grid model with
one-year SM data for researchers
and engineers to perform valida-
tion and demonstration. The sys-
tem consists of three feeders, 240
primary buses, and multiple grid
components, such as substation
transformers with load tap chang-
ers, secondary distribution trans-
formers, and capacitor banks.
There are 1,120 customers, and all
of them are equipped with SMs to
record hourly real energy con-
sumption (kWh). One can down-
load the data set at http://wzy.ece.iastate.edu/Test
system.html, including the system description, SM data,
OpenDSS model, and MATLAB code for quasi-static time-
series simulation.

Conclusion and Future Work

With the increasing penetration of DERs, distribution sys-
tems are gradually transforming from traditional grids to
smart grids. Utilities need to improve systematic situa-
tional awareness to execute BTM load-control strategies.
Although SM data may be of relatively low resolution and
suffer from various data-quality problems, they can still
provide valuable insights for utilities. In this article, we
have discussed AMI data structure, communication, and
several advanced applications enabled by machine learn-
ing, including typical load profiling, demand-side flexibili-
ty quantification, BTM solar disaggregation, and topology
and line parameter identification. Previous works and our
proposed solutions on these topics have been discussed
and presented.

In 2020, investments in distribution systems were esti-
mated to exceed US$41.8 billion. It is foreseeable that the
increasing development of distribution systems will inevita-
bly bring new challenges to BTM load controls and system
operations. Hence, to ensure a reliable and resilient electrici-
ty supply, we have envisaged several research directions.

1) New sensor technologies, such as pPMUs, have recently
been introduced to enhance real-time distribution
system monitoring. These sensors can provide high-
resolution voltage and current phasors not available
from SMs. It will be interesting to investigate how the
data from such sensors can be used to facilitate SM
data analytics.

2) As the number of EVs continues to rise, the impact of
EV charging on distribution grids is increasing. By com-
bining EV charging profiles and SM data, the impact of
the uncoordinated charging of EVs on distribution grids
can be studied in detail. Moreover, thanks to real-time
measurement and two-way communication capabilities,
SMs have the potential to assist utilities in effectively
managing various EV charging facilities.



3) Microgrids provide a promising solution to manage the
power of different distributed generation. However,
traditional mathematical model-based control
schemes are not necessarily applicable to practical
microgrids. Accurate and complete model information
is difficult to obtain because of the widespread uncer-
tain dynamics and disturbances in microgrids. Conse-
quently, for the future smart grid, it is of great
significance to explore data-driven adaptive control by
taking advantage of a large amount of SM data.

4) A recent survey of 1,000 utilities in 10 countries
showed that about 80% of utilities realize big data
problems as crucial for smart grids. Current data-driv-
en models are mainly conducted on megabit or giga-
byte data sets, which may not be suitable for big data.
In the near future, utilities will collect, store, and pro-
cess terabyte SM data sets, which can cause a heavy
burden in data analysis. Thus, high-performance algo-
rithms, such as federated learning and parallel com-
puting, should be further investigated to help with
real-time SM applications.
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Figure 18. The results of line parameter estimation of a 37-bus
test feeder.

5) Adopting the latest machine learning techniques on
SM data analytics will receive increasing attention.
These algorithms will provide good opportunities in
further understanding customer behaviors. The critical
issue is to develop data-driven models with high inter-
pretability. This will help utility engineers to acknowl-
edge machine learning techniques and apply them in
real-world distribution systems.
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