

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics

Vol. 31, No. 2, pp. 1489–1518

GLOBAL CONVERGENCE RATE ANALYSIS OF A GENERIC LINE
SEARCH ALGORITHM WITH NOISE⇤

A. S. BERAHAS† , L. CAO‡ , AND K. SCHEINBERG§

Abstract. In this paper, we develop convergence analysis of a modified line search method for
objective functions whose value is computed with noise and whose gradient estimates are inexact
and possibly random. The noise is assumed to be bounded in absolute value without any addi-
tional assumptions. We extend the framework based on stochastic methods from [C. Cartis and
K. Scheinberg, Math. Program., 169 (2018), pp. 337–375] which was developed to provide analysis of
a standard line search method with exact function values and random gradients to the case of noisy
functions. We introduce two alternative conditions on the gradient which, when satisfied with some
su�ciently large probability at each iteration, guarantees convergence properties of the line search
method. We derive expected complexity bounds to reach a near optimal neighborhood for convex,
strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood
on the noise is specified.

Key words. nonlinear optimization, line search, convergence rates, derivative-free optimization

AMS subject classification. 90C30

DOI. 10.1137/19M1291832

1. Introduction. We consider an unconstrained optimization problem of the
form

min
x2Rn

�(x),(1.1)

where f(x, ⇠) = �(x) + e(x, ⇠) is computable, while �(x) is not, and ⇠ is a random
variable with associated probability space (⌅,F , P). In other words f : Rn

⇥⌅ ! R
is a possibly noisy approximation of a smooth function � : Rn

! R, and the goal
is to minimize �. Alternatively, f(x) may be a nonsmooth function and �(x) its
smooth approximation; see, for instance, [12, 16]. Such problems arise in a plethora
of fields such as derivative-free optimization (DFO) [7, 11], simulation optimization
[19], and machine learning. There has been a lot of work analyzing the case when
e : Rn

⇥ ⌅ ! R is a random function with zero mean. Here, we take a di↵erent
research direction, allowing e(x, ⇠) to be stochastic, deterministic, or adversarial, but
assuming that |e(x, ⇠)|  ✏f for all x 2 Rn and all realizations of ⇠. While this
is a strong assumption, it is often satisfied in practice when f(x, ⇠) is a result of a
computer code aimed at computing (or approximating) �(x), but has inaccuracies
due to internal discretization [13, 14]. It will be evident from our analysis that the
modified line search method makes progress as long as kr�(x)k is su�ciently large
compared to the noise.

⇤Received by the editors October 7, 2019; accepted for publication (in revised form) March 16,
2021; published electronically June 8, 2021.

https://doi.org/10.1137/19M1291832
Funding: This work was partially supported by NSF grants CCF 16-18717 and TRIPODS

17-40796, by DARPA Lagrange award HR-001117S0039, and by a Google Faculty Award.
†Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI

48109 USA (albertberahas@gmail.com).
‡Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015

USA (liyuan@lehigh.edu).
§School of Operations Research and Information Engineering, Cornell University, Ithaca, NY

14850 USA (katyas@cornell.edu).

1489

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1490 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Line searches are classical and well-known techniques for improving the perfor-
mance of optimization algorithms [17]. They allow algorithms to be more robust,
less dependent on the choices of hyperparameters and typically ensure faster prac-
tical convergence rates. However, in their original form they rely on exact function
and gradient information. Many modern applications give rise to functions for which
computing accurate function values and/or gradients is either impossible or prohib-
itively expensive. Thus, it is desirable to extend the line search paradigm and its
analysis to such functions. In [6] a general line search algorithm was analyzed under
the conditions that the function values are exact but the gradient estimates are inex-

act and random. It is shown that under certain (realizable) probabilistic conditions
on the accuracy of the gradient estimates, the resulting line search has the same ex-
pected complexity (up to constants) as the line search based on exact gradients. In
[3] a general framework for complexity analysis of stochastic optimization methods
is proposed and applied to a trust region method. The same framework is used in
[18] to analyze a line search method applied to stochastic functions. This framework
is significantly more complicated than that in [6], but it also relies on casting the
algorithm as a stochastic process (a submartingale), and it is again shown that the
expected complexity is the same (up to constants) as that of regular deterministic
gradient descent, under certain probabilistic, and realizable, conditions on stochastic
function values and gradient estimates.

In this paper, we extend the analysis in [6] to apply to (1.1). In particular, we
assume that the gradient estimates are random and the function values are noisy. Since
the function values are noisy (unlike in [6]), the line search is modified to accept steps
that may potentially increase the current estimated value. This modification causes
significant changes in the analysis of the expected complexity rates, as the analysis
in [6] heavily relies on the fact that an objective function can never be increased
by the algorithm. Nevertheless, we are able to extend the results in [6] recovering
expected complexity bounds for the cases of convex, strongly convex, and nonconvex
objective functions. We note here that we derived the complexity bounds for the
condition on the gradient accuracy used in [6], as well as for the so-called norm

condition used, for example, in [4]. While, as we discuss later, each gradient accuracy
condition can have advantages over the other, depending on the setting, they can be
used interchangeably with relatively small adjustments to the analysis. Specifically,
the analysis of the supermartingale is not a↵ected by the choice of this condition, and
the key steps of the analysis of the line search method itself are analogous; however,
the constants stemming from the gradient condition appear di↵erently in the final
complexity bounds.

The conditions we impose on the line search algorithm are essentially the same
as in [6], while the conditions required for the analysis of the stochastic line search
[18], where the noise is unbounded, are more restrictive, and thus that analysis does
not apply to the case we consider here. In particular, while the function value noise
is allowed to be unbounded in [18], it is assumed that it is possible to reduce its
variance below any given threshold, for example, by sample averaging. In contrast
here we do not assume that the noise is stochastic, and thus we do not assume it
can be reduced or controlled. Also, the algorithm itself in [18] is more complicated
than a simple line search in order to handle unbounded noise. Moreover, the resulting
bounds in [18] have worse dependence on constants than those in [6] and the bounds
we derive in this paper. Finally, in both [3] and [18] the expected complexity bound is
derived for any ✏, arbitrarily small, under the assumption that the noise can be made
arbitrarily small accordingly (at least with su�cient probability). Here we establish a

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1491

connection between the level of noise and the convergence neighborhood. Obtaining
similar results for the setting in [3, 18] is nontrivial and is the subject of future work.

Our main motivation for this analysis is the recent popularity of smoothing meth-
ods for gradient estimates of black-box functions. Stochastic gradient approximations
can be computed at relatively low costs, e.g., via Gaussian smoothing [9, 16, 20]
and smoothing on a unit sphere [8], and used within a gradient descent algorithm.
This approach has been analyzed in [16] and more recently used in several papers for
the specific cases of policy optimization in reinforcement learning and online learn-
ing [8, 9, 20]. All of these papers employ specific fixed step length gradient descent
schemes within limited settings (e.g., convex functions). Our goal is to develop con-
vergence rate analyses for convex, strongly convex, and nonconvex functions, for a
generic line search algorithm based on gradient approximations, that can apply not
only to gradient descent, but also to quasi-Newton methods such as L-BFGS [17].

It turns out that the variance of the stochastic gradients computed via Gaussian
and unit sphere smoothing can be bounded from above by the squared norm of the
expectation, that is, kr�(x)k2, when � is the smoothing function [2]. This moti-
vates us to consider a simpler probabilistic condition on the accuracy of the gradient
estimates in addition to the one used in [6].

Assumptions. Throughout the paper we make the following assumptions.

Assumption 1.1 (Lipschitz continuity of the gradients of ���). The function � is

continuously di↵erentiable, and the gradient of � is L-Lipschitz continuous for all

x 2 Rn
.

Assumption 1.2 (lower bound on ���). The function � is bounded below by a scalar

�̂.

Assumption 1.3 (boundedness of noise in the function). There is a constant

✏f � 0 such that |f(x, ⇠)� �(x)| = |e(x, ⇠)|  ✏f for all x 2 Rn
and all realizations of

⇠.

Assumption 1.3 may seem very strong; however, we will show that under this
assumption the modified line search algorithm converges to a neighborhood of the
optimal solution whose size is defined by ✏f . Thus, if it is possible to control the
value of ✏f , then one can tighten the convergence neighborhood. This is possible in
many applications where, for example, values of �(x) are obtained as a limit to some
discretized computation and the error is controlled by the fineness of the discrete
grid [13, 14] or if �(x) is a smoothed approximation of f(x, ⇠) where the smoothing
parameter controls the error between f(x, ⇠) and �(x) [12, 16]. We stress here that
our algorithms and analysis do not assume that the noise is stochastic or that the
bound ✏f is controllable, just that it is known.

Summary of results. While we are motivated by some specific methods for
computing gradient estimates, in the remainder of the paper, we simply aim to es-
tablish complexity bounds on a generic modified line search algorithm applied to the
minimization of convex, strongly convex, and nonconvex functions, under the condi-
tion that the gradient estimate g : Rn

! Rn satisfies

kg(x)�r�(x)k  ✓kr�(x)k(1.2)

for su�ciently small ✓ with some probability 1 � �.1 The bound (1.2), known as
the norm condition, was first introduced in [5] and consequently used in a variety

1The norms used in this paper are Euclidean norms.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1492 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

of works (see, e.g., [4]). This bound is generally not realizable for generic stochastic
gradient estimates; however, it can be made to hold for several deterministic and
stochastic gradient estimates such as those used in [1, 7, 8, 16]. We establish expected
complexity bounds similar to those in [6], where the line search is analyzed under
a more complicated bound on kg(x) � r�(x)k using exact evaluations of � (i.e., no
noise in the function evaluations). The expected complexity bounds are established in
terms of desired accuracy ✏, under the assumption that ✏ is su�ciently big compared
to the error level ✏f . We derive specific bounds on ✏ with respect to ✏f for convex,
strongly convex, and nonconvex cases first for a gradient descent-type algorithm, and
then for an algorithm that uses any general descent direction. For completeness, we
derive complexity bounds for the condition on the gradient accuracy presented in [6],
but, due to the presence of noise, this condition is somewhat modified.

Organization. The paper is organized as follows. In section 2 we describe a
general line search algorithm that uses gradient approximations in lieu of the true
gradient, and noisy function evaluations of the objective function. We present the
stochastic analysis that allows us to bound the expected number of steps required
by our generic scheme to reach a desired accuracy in section 3. This analysis is
an extension of the results in [6] that accounts for noise in the objective function.
In section 4, we apply the results of section 3 to derive global convergence rates
and bounds on ✏ in terms of ✏f when the generic line search method is applied to
convex, strongly convex, and nonconvex functions. Finally, in section 5 we make
some concluding remarks and discuss avenues for future research.

2. A generic modified line search algorithm. In this section, we describe
a generic line search algorithm that uses gradient approximations in lieu of the true
gradient and that operates in the noisy regime. In general, line search algorithms
construct a possibly noisy approximation of the gradient at the current iterate xk,
gk = g(xk), and compute a search direction using this gradient estimate and possibly
additional information, e.g., a quasi-Newton search direction. The step size parameter
is then chosen; this could be constant, selected from a predetermined sequence of step
lengths (e.g., diminishing) or adaptive (e.g., via a back-tracking Armijo line search
[17, Chapter 3]). The framework of the generic line search method we analyze is given
in Algorithm 2.1. As is clear from Algorithm 2.1, the key components of this method
are (i) the construction of the gradient approximation (step 2), (ii) the choice of the
search direction (step 3), and (iii) the choice of the step size parameter and the iterate
update (step 4).

Algorithm 2.1 Generic Line Search Algorithm

Inputs: Starting point x0, initial step size parameter ↵0 > 0.

1: for k = 0, 1, 2, . . . do
2: Construct a gradient approximation gk:

Construct an approximation gk of r�(xk).
3: Construct a search direction dk:

Construct a search direction dk, e.g., dk = �gk or dk = �Hkgk.
4: Compute step size ↵k and update the iterate.

Algorithm 2.1 is a generic line search algorithm. We perform the analysis in
section 4 for the case where dk = �gk and then outline how the analysis can be
easily modified to the case of a more general search direction dk, under additional

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1493

assumptions on dk. In order to prove theoretical convergence guarantees, we need to
fully specify the manner in which the step size parameter is selected at every iteration
and how a new iterate is computed (line 4). We consider Algorithm 2.1 for which
the step size parameter ↵k varies under the condition that ↵k is chosen to satisfy a
modified version of the su�cient decrease Armijo condition,

f(xk + ↵kdk, ⇠)  f(xk, ⇠) + c1↵kd
T
k gk + 2✏f ,(2.1)

where c1 2 (0, 1) is the Armijo parameter, and ✏f is the upper bound on the noise
in the objective function. Note that the random variable ⇠ may have two di↵erent
realizations when computing f(xk +↵kdk, ⇠) and f(xk, ⇠); however, these realizations
may be dependent, independent, or identical. This does not a↵ect our analysis, and
thus for simplicity we do not assign specific notation to di↵erent realizations of ⇠.
If a trial value ↵k does not satisfy (2.1) for some particular realizations of ⇠, then
the iteration is called unsuccessful ; the new iterate is set to the previous iterate, i.e.,
xk+1 = xk, and the step size parameter is set to a (fixed) fraction ⌧  1 of the previous
value, i.e., ↵k+1 ⌧↵k. This step makes sense particularly when gk (and thus dk)
are random vectors and thus can be di↵erent even for the same xk. If the trial value
satisfies (2.1), then the iteration is called successful, the new iterate is updated based
on the search direction dk, i.e., xk+1 = xk + ↵kdk, and the step size parameter is set
to ↵k+1 ⌧

�1
↵k. Algorithm 2.2 fully specifies a subroutine for computing the step

size parameter and taking a step. Note that if ⌧ = 1, Algorithm 2.1 is a constant
step size parameter line search algorithm. Algorithm 2.2 receives ✏f as input from
Algorithm 2.1. We do not specify here if Algorithm 2.1 receives this quantity as input
from the user or has an ability to estimate it, as it may depend on a particular case.

Algorithm 2.2 Line Search Subroutine

Inputs: Current iterate xk, current gradient estimate gk, current search direction
dk, current step size parameter ↵k, backtracking factor ⌧ 2 (0, 1], Armijo parameter
c1 2 (0, 1), bound on the noise ✏f .

1: for k = 0, 1, 2, . . . do
2: Check su�cient decrease:

Check if (2.1) is satisfied.
3: if Condition Satisfied (successful step) then

xk+1 = xk + ↵kdk and ↵k+1 ⌧
�1

↵k.
4: else

xk+1 = xk and ↵k+1 ⌧↵k.
5: Outputs: New iterate xk+1, new step size parameter ↵k+1.

The modified Armijo condition has been used in [1]. The addition of the term 2✏f
ensures that a step is successful if ↵k is small enough and d

T
k gk is large enough. In [1]

the case of functions with arbitrary but bounded noise, such as the ones considered
here, were considered. However, unlike this paper the error of the gradient estimates
was also assumed to be bounded by a constant, and convergence rates were derived
for strongly convex objectives only.

3. Analysis of the underlying stochastic process. In this section, we de-
scribe the general mechanism that is used to provide the theoretical results of the
paper. This analysis is an extension of the analysis provided in [6] that accounts for
possible noise in the function evaluations, i.e., e(x) 6= 0.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1494 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

We begin by introducing several definitions, key assumptions, and theoretical re-
sults, similar to those in [6] but suitably modified as required for the analysis in this
paper. In particular, similar to [6], we view Algorithm 2.1 as a stochastic process, gen-
erated from a sequence of random function realizations f(xk, ⇠) and gradient estimates
Gk. With some abuse of notation and for simplicity of presentation, we introduce the
new probability space (⌦,F , P), which includes the randomness in both the function
and the gradient realizations. Since the function realizations used by the line search
are essentially replaced by their upper and lower bounds in our analysis, the nature
of ⌅ has no e↵ect on it.

The following quantities are random and are important in the analysis: the gradi-
ent estimate Gk, the step size parameter Ak, and the search direction Dk. Realizations
of these random quantities are denoted by gk = Gk(!k), xk = Xk(!k), ↵k = Ak(!k),
and dk = Dk(!k), respectively. For brevity, we will omit the !k in the notation.
The iterate Xk, given Xk�1 and Ak�1, is fully determined by Gk�1 and the noise in
the function value estimation during iteration k � 1. The noise may be stochastic or
deterministic; let Ek�1 denote all noise history up to iteration k � 1. Note that our
algorithm and its analysis are independent of the nature of the noise, but we include
Ek�1 in the algorithm history for completeness. We use FG,E

k�1 = �(G0, . . . , Gk�1, Ek�1)
to denote the �-algebra generated by G0, . . . , Gk�1 and Ek�1, that is to say, generated
by Algorithm 2.1 up to the start of iteration k.

Su�ciently accurate gradients. We assume that the random gradient approx-
imations Gk satisfy some notion of good quality with probability 1 � �. We use the
following general notion of su�ciently accurate gradients, similar to that presented
in [6].

Definition 3.1. A sequence of random gradients {Gk} is (1� �)-probabilistically
“su�ciently accurate” for Algorithm 2.1 if the indicator variables

Ik = {Gk is a su�ciently accurate gradient of � for the given Ak, Xk, and Dk}

satisfy the submartingale condition

P(Ik = 1|FG,E
k�1) � 1� �(3.1)

for all realizations of F
G,E
k�1, where F

G,E
k�1 = �(G0, . . . , Gk�1, Ek�1) is the �-algebra

generated by G0, . . . , Gk�1 and Ek�1. Moreover, we say that iteration k is a true
iteration if the event Ik = 1 occurs; otherwise the iteration is called false.

Definition 3.1 is generic, but somewhat less so than the equivalent definition in [6,
Definition 2.1], where second order models are also considered and as a result the defi-
nition of “su�cient accuracy” is not restricted to gradients. The reason Definition 3.1
is generic is because it can be particularized di↵erently depending on the way the gra-
dient estimates are generated. Specifically, in section 4 we define su�ciently accurate

in two di↵erent ways and derive expected complexity bounds for Algorithm 2.1. The
first definition is motivated by the specific setting where estimates gk are computed
via finite di↵erences, interpolation, or smoothing [1, 2, 7, 8, 16]. The second definition
is similar to that presented in [6].

Number of iterations N✏ to reach ✏ accuracy. The main goal of this section
is to derive bounds on the expected number of iterations E[N✏] required to reach a
desired level of accuracy ✏. We formally define N✏ as follows.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1495

Definition 3.2.
• If � is convex or strongly convex: N✏ is the number of iterations required until

�(Xk)� �
?
 ✏ occurs for the first time. Note that �

? = �(x?), where x
?
is

a global minimizer of �.

• If � is nonconvex: N✏ is the number of iterations required until kr�(Xk)k  ✏

occurs for the first time.

Thus N✏ is a random variable with the property �({N✏ > k}) ⇢ F
G,E
k�1, and thus

it is a stopping time for our stochastic process; see [6, section 2]. To bound E[N✏] we
assume that while k < N✏ the stochastic process induced by Algorithm 2.1 behaves
in a certain way. Specifically, it tends to make a certain amount of progress towards
optimality.

Measure of progress towards optimality and upper bound. As is done
in [6, section 2], let Zk denote a measure of progress towards optimality (from any
starting point x0 2 Rn), and let Z✏ be an upper bound for Zk for k < N✏.2 In
particular, our analysis will use the definitions of Zk and Z✏ as described in Table 3.1.

Table 3.1

Definitions of Zk and Z✏ for convex, strongly convex, and nonconvex functions.

Function Zk Z✏

Convex 1

�(Xk)��? � 1

�(X0)��?
1

✏ � 1

�(X0)��?

Strongly convex log
⇣

�(X0)��?

�(Xk)��?

⌘
log

⇣
�(X0)��?

✏

⌘

Nonconvex �(X0)� �(Xk) �(X0)� �̂

We are now ready to introduce the key assumption of the behavior of the sto-
chastic process {Ak, Zk} generated by Algorithm 2.1 under which we derive a bound
on E[N✏]. In section 4, we show that this assumption holds for our generic line search
algorithm, under a particular definition of su�ciently accurate gradient estimates,
and thus we will be able to derive the expected complexity bound.

Recall that when the gradient estimate gk is su�ciently accurate, the iteration is
called true, and this is assumed to happen with probability at least 1� �, conditioned
on the past. The following assumption is a modification of the assumption in [6,
section 2.4, Assumption 2.1]. Let zk = Zk(!k) be a realization of the random quantity
Zk. Note that zk = Zk(!k) is a measure of progress towards optimality.

Assumption 3.3. There exist a constant ↵̄ > 0, a nondecreasing function h(↵) :
R ! R, which satisfies h(↵) > 0 for any ↵ > 0, and a nondecreasing function

r(✏f) : R! R, which satisfies r(✏f) � 0 for any ✏f � 0, such that for any realization

of Algorithm 2.1 the following hold for all k < N✏:

(i) If iteration k is true (i.e., Ik = 1) and successful, then zk+1 � zk + h(↵k)�
r(✏f).

(ii) If ↵k  ↵̄ and iteration k is true, then iteration k is also successful, which
implies ↵k+1 = ⌧

�1
↵k.

(iii) zk+1 � zk � r(✏f) for all successful iterations k and zk+1 � zk for every

unsuccessful iteration k.

(iv) The ratio r(✏f)/h(↵̄) is bounded from above by some � 2 (0, 1).

2Fk and F✏ is the notation used in [6].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1496 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Assumption 3.3 provides guarantees of progress for the process Zk, using guar-
anteed increase h(↵k) and possible decrease r(✏f). These quantities will be specified
for each case (convex, strongly convex, nonconvex) in section 4. The key di↵erence
between Assumption 3.3 and the corresponding assumption in [6, section 2.4, Assump-
tion 2.1] is that on each successful iteration Zk may decrease by up to r(✏f). When
r(✏f) = 0, Assumption 3.3 reduces to the assumption in [6, section 2.4, Assumption
2.1] and in this case � can be chosen arbitrarily close to 0. When r(✏f) > 0, the process
Zk may decrease on some successful iterations; see Assumption 3.3(iii). Assumption
3.3(i) states that Zk is guaranteed to increase on true successful iterations by at least
the quantity h(↵k)�r(✏f), which is positive due to Assumption 3.3(iv). The constant
� serves as a parameter that measures how much h(↵k) dominates r(✏f). As we will
see, � can be chosen to be fixed, for example, � = 1

2 , and Assumption 3.3(iv) then
simply dictates that h(↵k) � 2r(✏f). The guaranteed value of progress h(↵k) is larger
when the target accuracy ✏ is larger, which in turn implies the connection between
the level of noise ✏f and the target accuracy ✏. In other words, � is not an algorithmic
parameter, it is simply a parameter whose value implies a particular bound on the
neighborhood of convergence.

As in [6] we define the following additional indicator random variables:

⇤k = {Ak > ↵̄}, ⇤̄k = {Ak � ↵̄},

⇥k = {Iteration k is successful, i.e., Ak+1 = ⌧
�1

Ak}.

Note that �(⇤k) ⇢ F
G,E
k�1, �(⇤̄k) ⇢ F

G,E
k�1, and �(⇥k) ⇢ F

G,E
k , that is, the random

variables ⇤k and ⇤̄k are fully determined by the first k � 1 steps of the algorithm,
while ⇥k is fully determined by the first k steps.

Without loss of generality, we assume that ↵̄ = ⌧
c
↵0 for some positive integer c.

In other words, ↵̄ is the largest value that the step size Ak actually achieves for which
part (ii) of Assumption 3.3 holds. Note that if ⌧ = 1, the algorithm uses a constant
step size and hence has to start with the value for which Assumption 3.3 holds, i.e.,
↵  ↵̄, in order to converge.

In summary, under Assumption 3.3, recalling the update rules for ↵k in Algorithm
2.1, we can write the stochastic process {Ak, Zk} as obeying the expressions below:

(3.2)

Ak+1 =

⇢
⌧
�1

Ak if ⇥k = 1,
⌧Ak if ⇥k = 0,

=

8
>>>><

>>>>:

⌧
�1

Ak if Ik = 1 and ⇤k = 0,
⌧
�1

Ak if ⇥k = 1, Ik = 0, and ⇤k = 0,
⌧Ak if ⇥k = 0, Ik = 0, and ⇤k = 0,
⌧
�1

Ak if ⇥k = 1 and ⇤k = 1,
⌧Ak if ⇥k = 0 and ⇤k = 1,

(3.3) Zk+1 �

8
<

:

Zk + h(Ak)� r(✏f) if ⇥k = 1 and Ik = 1,
Zk � r(✏f) if ⇥k = 1 and Ik = 0,
Zk if ⇥k = 0.

3.1. Analysis of the stochastic processes. We now present the derivation of
the bounds on E [N✏] under Assumption 3.3 by modifying the analysis in [6]. We start
by introducing a useful lemma from [6].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1497

Lemma 3.4. Let N✏ denote the stopping time. For all k < N✏, let Ik be the

sequence of random variables in Definition 3.1 so that (3.1) holds. Let Wk be a

nonnegative stochastic process such that �(Wk) ⇢ F
G,E
k�1 for any k � 0. Then

E
"
N✏�1X

k=0

WkIk

#
� (1� �)E

"
N✏�1X

k=0

Wk

#
.

Similarly,

E
"
N✏�1X

k=0

Wk(1� Ik)

#
 �E

"
N✏�1X

k=0

Wk

#
.

For brevity, we omit the proof of Lemma 3.4; see [6, Lemma 2.3].
The following lemma from [6] bounds the number of steps for which ↵k  ↵̄. The

proof depends only on the probabilities of di↵erent outcomes and not on the changes
in Zk; thus the proof from [6] applies directly.

Lemma 3.5. The expected number of steps for which ↵k  ↵̄ can be bounded as

E
"
N✏�1X

k=0

(1� ⇤k)

#


1

2(1� �)
E[N✏].

Proof. The proof uses Lemma 3.4 with Wk = 1� ⇤k and is the same as in [6].

We now turn to the derivation of the bound on

E
"
N✏�1X

k=0

⇤k

#
,

which requires a substantially more elaborate analysis than that in [6] but is similar
in spirit. The key di↵erence is that, while in [6] Zk never decreases, here we have to
account for all iterations where Zk may decrease, and bound their expected number.
For brevity of notation, we define the following quantities:

• NFS =
PN✏�1

k=0 ⇤̄k(1 � Ik)⇥k: the number of false successful iterations with
Ak � ↵̄.

• NTS =
PN✏�1

k=0 ⇤̄kIk⇥k: the number of true successful iterations with Ak � ↵̄.

• NF =
PN✏�1

k=0 ⇤̄k(1� Ik): the number of false iterations with Ak � ↵̄.

• NT =
PN✏�1

k=0 ⇤̄kIk: the number of true iterations with Ak � ↵̄.

• NTU =
PN✏�1

k=0 ⇤kIk(1�⇥k): the number of true unsuccessful iterations with
Ak > ↵̄.

• NU =
PN✏�1

k=0 ⇤k(1�⇥k): the number of unsuccessful iterations with Ak > ↵̄.

• NSS =
PN✏�1

k=0 (1 � ⇤̄k)⇥k: the number of successful iterations with Ak < ↵̄

(small Ak).
Since

E
"
N✏�1X

k=0

⇤k

#
= E

"
N✏�1X

k=0

⇤k(1� Ik)

#
+ E

"
N✏�1X

k=0

⇤kIk

#
 E[NF] + E[NT],(3.4)

our goal is to bound E[NF] + E[NT].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1498 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

We now establish several inequalities relating the quantities we just defined. We
begin with

(3.5) NT = NTS +NTU  NTS +NU .

The equality above holds because by Assumption 3.3(ii) there are no true unsuccessful

iterations when Ak = ↵̄.

Lemma 3.6. For any l 2 {0, . . . , N✏�1} and for all realizations of Algorithm 2.1,
we have

lX

k=0

⇤k(1�⇥k) 
lX

k=0

⇤̄k⇥k + log⌧

✓
↵̄

↵0

◆
,

and hence when l = N✏ � 1,

(3.6) NT  NFS + 2NTS + log⌧

✓
↵̄

↵0

◆
.

Proof. On successful iterations Ak is increased and on unsuccessful iterations Ak

is decreased. Hence, the total number of steps when Ak > ↵̄ and Ak is decreased is
bounded by the total number of steps when Ak � ↵̄ is increased plus the number of
steps required to reduce Ak from its initial value ↵0 to ↵̄. The first inequality of the
lemma is a simple consequence of this observation.

Now for l = N✏ � 1 this inequality becomes

NU  NTS +NFS + log⌧

✓
↵̄

↵0

◆
,

which, combined with (3.5), gives us (3.6).

Lemma 3.7. The expected number of false iterations with Ak � ↵̄ can be bounded

as

E[NF] 
�

1� �
E[NT].

Proof. The proof uses Lemma 3.4 and is the same as in [6].

Hence, by (3.5) and Lemmas 3.6 and 3.7, we have

E[NF] + E[NT] 
1

1� �
E[NT]


1

1� �
(E[NTS] + E[NU])


1

1� �

✓
E[NFS] + 2E[NTS] + log⌧

✓
↵̄

↵0

◆◆
.(3.7)

We now bound E[NSS], the number of successful iterations with Ak < ↵̄.

Lemma 3.8. The expected number of successful iterations with Ak < ↵̄ can be

bounded as

E [NSS] = E
"
N✏�1X

k=0

(1� ⇤̄k)⇥k

#


�

2(1� �)
E[N✏].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1499

Proof. We want to bound the expected number of successful iterations for which
↵k < ↵̄. Since on all successful iterations ↵k is increased, and ↵0 � ↵̄, then for each
such successful iteration there has to be an unsuccessful iteration with ↵k  ↵̄. Hence,

N✏�1X

k=0

(1� ⇤̄k)⇥k 

N✏�1X

k=0

(1� ⇤k)(1�⇥k) 
N✏�1X

k=0

(1� ⇤k)(1� Ik).

The last inequality follows from the fact that when ↵k  ↵̄, all true iterations are
successful, which implies (1 � ⇤k)Ik  (1 � ⇤k)⇥k. Now applying Lemmas 3.4 and
3.5 we have

E
"
N✏�1X

k=0

(1� ⇤k)(1� Ik)

#
 �E

"
N✏�1X

k=0

(1� ⇤k)

#


�

2(1� �)
E[N✏],

from which the result follows.

The next observation is central to our analysis. It reflects the fact that the total
gain minus the total loss in Zk is bounded from above by Z✏. We observe that when
Ak � ↵̄ on true successful iterations this gain is bounded from below away from zero
by h(↵̄)� r(✏f) � (1� �)h(↵̄), and at other successful iterations the loss is bounded
above by r(✏f). This will allow us to bound E[NTS].

Lemma 3.9. The number of true successful iterations with Ak � ↵̄ can be bounded

as

NTS 
Z✏

(1� �)h(↵̄)
+

�

1� �
(NFS +NSS)(3.8)

and, hence,

E [NTS] 
Z✏

(1� �)h(↵̄)
+

�

1� �
E [NFS] +

�

1� �

�

2(1� �)
E[N✏].(3.9)

Proof. The proof follows directly from (3.3) and Assumption 3.3. Zk is increased
by at least h(↵̄) � r(✏f) at each true successful iteration when ↵k � ↵̄, and it may
be decreased by at most r(✏f) at each false successful iteration when ↵k � ↵̄ and at
each successful iteration when ↵k < ↵̄. Thus, we have

Z✏ � Zk � NTS(h(↵̄)� r(✏f))� r(✏f)(NFS +NSS).

Recalling that, by Assumption 3.3, r(✏f)  �h(↵̄) and � 2 (0, 1) we obtain (3.8),
while (3.9) follows further from Lemma 3.8.

Lemma 3.10. Under the condition that � <
1
2 �

�
2 , the number of false successful

iterations with Ak � ↵̄ can be bounded as

E [NFS] 
2�

1� 2� � �

Z✏

h(↵̄)
+

(1� �)�

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�
2
�

(1� �)(1� 2� � �)
E[N✏].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1500 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Proof. From (3.6) and Lemma 3.7, we have

E [NFS]  E [NF] 
�

1� �


E [NFS] + 2E [NTS] + log⌧

✓
↵̄

↵0

◆�
.

Then from Lemma 3.9 if follows that

E [NFS] 
�

1� �


1 + �

1� �
E [NFS] +

2Z✏

(1� �)h(↵̄)
+

�

1� �

�

1� �
E[N✏] + log⌧

✓
↵̄

↵0

◆�
.

Collecting the terms involving E [NFS] on the left and observing that 1� 1+�
1��

�
1�� =

1�2���
(1��)(1��) we can derive the bound

E [NFS] 
(1� �)�

1� 2� � �


2Z✏

(1� �)h(↵̄)
+

�

1� �

�

1� �
E[N✏] + log⌧

✓
↵̄

↵0

◆�
,

from which the result follows.

We can now derive the bound for E [NTS] using Lemmas 3.9 and 3.10 and col-
lecting the appropriate terms.

Lemma 3.11. Under the condition that � <
1
2 �

�
2 , the number of true successful

iterations with Ak � ↵̄ can be bounded as

E [NTS] 
1� 2�

1� 2� � �

Z✏

h(↵̄)
+

��

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�(1� 2�)�

2(1� �)(1� 2� � �)
E[N✏].

Proof. From Lemma 3.9, we have

E [NTS] 
Z✏

(1� �)h(↵̄)
+

�

1� �
E [NFS] +

�

1� �

�

2(1� �)
E[N✏].

Using the result from Lemma 3.10, it follows that

E [NTS]


Z✏

(1� �)h(↵̄)

+
�

1� �


2�

1� 2� � �

Z✏

h(↵̄)
+

(1� �)�

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�
2
�

(1� �)(1� 2� � �)
E[N✏]

�

+
�

1� �

�

2(1� �)
E[N✏]

=
1� 2�

1� 2� � �

Z✏

h(↵̄)
+

��

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�(1� 2�)�

2(1� �)(1� 2� � �)
E[N✏],

which completes the proof.

Lemma 3.12. Under the condition that � <
1
2 �

�
2 , the number of iterations with

Ak > ↵̄ can be bounded as

E
"
N✏�1X

k=0

⇤k

#


2

1� 2� � �

Z✏

h(↵̄)
+

(1� �)

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

��

(1� �)(1� 2� � �)
E[N✏].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1501

Proof. By (3.4), (3.7), and Lemmas 3.10 and 3.11, we have

E
"
N✏�1X

k=0

⇤k

#
 E[NF] + E[NT]


1

1� �
[E[NFS] + 2E[NTS] + log⌧ (↵̄/↵0)]


1

1� �


2�

1� 2� � �

Z✏

h(↵̄)
+

(1� �)�

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�
2
�

(1� �)(1� 2� � �)
E[N✏]

�

+
2

1� �


1� 2�

1� 2� � �

Z✏

h(↵̄)
+

��

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

�(1� 2�)�

2(1� �)(1� 2� � �)
E[N✏]

�

+
1

1� �
log⌧

✓
↵̄

↵0

◆

=
2

1� 2� � �

Z✏

h(↵̄)
+

(1� �)

1� 2� � �
log⌧

✓
↵̄

↵0

◆
+

��

(1� �)(1� 2� � �)
E[N✏],

which completes the proof.

Combining Lemmas 3.5 and 3.12, we have the key bound

E [N✏]  E
"
N✏�1X

k=0

⇤k

#
+ E

"
N✏�1X

k=0

(1� ⇤k)

#


2

1� 2� � �

Z✏

h(↵̄)
+

(1� �)

1� 2� � �
log⌧

✓
↵̄

↵0

◆

+
��

(1� �)(1� 2� � �)
E[N✏] +

1

2(1� �)
E[N✏].

Collecting the terms with E [N✏] on the left-hand side and multiplying both sides
by 1� 2� � � we obtain


1� 2� � � �

��

1� �
�

1� 2� � �

2(1� �)

�
E [N✏] 

2Z✏

h(↵̄)
+ (1� �) log⌧

✓
↵̄

↵0

◆
.

If the coe�cient in front of E [N✏] is positive, that immediately gives us a bound on
the expected stopping time E [N✏]. This coe�cient is

1� 2� � � �
��

1� �
�

1� 2� � �

2(1� �)
=

4�2 � 4� + 1� �

2(1� �)
=

(1� 2�)2 � �

2(1� �)
.

The smaller of the two roots of 4�2 � 4� + 1 � � is 1
2 �

p
�
2 

1
2 �

�
2 . Hence, we

have the following final bound.

Theorem 3.13. Under the condition that � <
1
2 �

p
�
2 , the stopping time N✏ is

bounded in expectation as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


2Z✏

h(↵̄)
+ (1� �) log⌧

✓
↵̄

↵0

◆�
.(3.10)

Remark 3.14. The result of Theorem 3.13 is a generalization of the result in

[6] to the case where the function is computed with some noise. Specifically, when

✏f = 0, and as a result r(✏f) = 0, then � = 0 and (3.10) reduces to the bounds in

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1502 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

[6]. We should note that the condition � <
1
2 corresponds to the condition p >

1
2 in

[6]. If, on the other hand, � = 0, then we recover the deterministic complexity bound.

If r(✏f) > 0, the quantity � can be chosen to be some fixed constant, for example,
1
2 . This implies the condition that � <

1
2 (1 �

1p
2
) and the bound (3.10) is adjusted

accordingly. We see that larger values of � imply tighter bounds on �; however, as will

be shown in the next section, they allow the algorithm to achieve better accuracy for

the same noise level ✏f . Thus, the constant � simply serves as a means to highlight

the trade-o↵ between imposing smaller bounds on � and achieving a smaller radius of

convergence.

4. Convergence analysis of the modified line search. In this section, we
derive expected complexity bounds for the modified line search Algorithm 2.1, where
the step size parameter is chosen using Algorithm 2.2.

We begin by stating the first condition on the gradient estimates which we use in
our analysis,

kgk �r�(xk)k  ✓kr�(xk)k for all k = 0, 1, 2, . . .(4.1)

for some ✓ 2 [0, 1). This condition is referred to as a norm condition and was in-
troduced and studied in [5] in the context of trust-region methods with inaccurate
gradients. Note that this condition implies that gk is a descent direction for the
function �. When unbiased stochastic estimators of r�(x) are available, gk can be
computed by averaging these estimators. If the variance of these estimators is bounded
by O(kr�(xk)k2), then condition (4.1) can be satisfied, with probability 1 � �, by
using a su�ciently large number of the estimators (batch size) to compute gk. We
chose to consider condition (4.1) because we are motivated by the specific setting
where estimates gk are computed via finite di↵erences, interpolation, or smoothing
[1, 2, 7, 8, 16].

In a more general stochastic setting, unless one knows kr�(xk)k, condition (4.1)
is hard or impossible to verify or guarantee. A simple way of making condition (4.1)
realizable is to replace kr�(xk)k with ✏, where ✏ is the desired convergence accuracy.
However, if the cost of obtaining gk that satisfies kgk � r�(xk)k  ✓✏ increases as
✏ decreases, replacing kr�(xk)k by its global lower bound ✏ can lead to ine�cient
algorithms.

In the literature, a significant number of attempts to circumvent the aforemen-
tioned di�culties in the case of general stochastic gradient estimates have been made;
see, e.g., [4, 6, 18]. In [4] a practical approach to estimate kr�(xk)k is proposed
and used to ensure that some approximation of (4.1) holds. In [6] and [18], (4.1) is
replaced with a condition that, for some  � 0,

kgk �r�(xk)k  ↵kkgkk for all k = 0, 1, 2, . . .(4.2)

holds with probability 1 � �, and it is discussed how this condition can be ensured.
Under this condition, expected complexity bounds are derived for a line search method
that has access to deterministic function values in [6] and stochastic function values
(with additional assumptions) in [18]. While this condition does not require the
variance to diminish with kr�(xk)k, it may be hard or impossible to ensure when ↵k

is very small, due to the noise. Thus, we propose the following modification of this
condition:

kgk �r�(xk)k  max{⇣✏g, ↵kkgkk} for all k = 0, 1, 2, . . . ,(4.3)

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1503

where ⇣ > 1 and ✏g � 0 (we precisely define ✏g in section 4.3). We extend the analysis
in [6] and derive complexity bounds based on (4.3) for our setting (i.e., noisy function
evaluations).

In the remainder of this section, we present a convergence analysis for the generic
line search algorithm (Algorithms 2.1 and 2.2). The analysis is an extension of the
analysis presented in [6] to the case where functions are computed with noise (As-
sumption 1.3). We first consider the norm condition (4.1), and prove complexity
guarantees for the special case where dk = �gk (section 4.1) and general descent (sec-
tion 4.2). We then prove similar results for condition (4.3) (section 4.3). For brevity
we omit the results for general descent under condition (4.3) as these results are very
similar to those for (4.1).

4.1. Convergence under condition (4.1). We use the following notion of
su�ciently accurate gradients.

Definition 4.1. A sequence of random gradients {Gk} is (1� �)-probabilistically
“su�ciently accurate” for Algorithm 2.1 if there exists a constant ✓ 2 [0, 1�c1

2�c1
), such

that the indicator variables

Ik = {kGk �r�(Xk)k  ✓kr�(Xk)k}

satisfy the submartingale condition

P(Ik = 1|FG,E
k�1) � 1� �

for all realizations of F
G,E
k�1, where F

G,E
k�1 = �(G0, . . . , Gk�1, Ek�1) is the �-algebra

generated by G0, . . . , Gk�1 and Ek�1. Moreover, we say that iteration k is a true
iteration if the event Ik = 1 occurs; otherwise the iteration is called false.

For the remainder of this section, we make the following additional assumption.

Assumption 4.2 (su�ciently accurate gradients). The sequence of random gra-

dients {Gk} generated by Algorithm 2.1 is (1� �)-probabilistically “su�ciently accu-

rate” with � <
1
2 �

p
�
2 for some � 2 (0, 1).

Equipped with the above definitions, assumptions, and theorems, we now provide
convergence guarantees for the generic line search algorithm (Algorithms 2.1 and 2.2)
for convex, strongly convex, and nonconvex objective functions. We remind the reader
of the definition of the stopping time N✏ given in Definition 3.2.

For each true iteration (i.e., Ik = 1), we have

kgk �r�(xk)k  ✓kr�(xk)k,

which implies, using the triangle inequality, that

kgkk � (1� ✓)kr�(xk)k.(4.4)

We now show that Assumption 3.3 is satisfied. To this end, for the three classes of
functions, we show that there exists an upper bound ↵̄ on the step length parameter,
and functions h(↵) and r(✏f) such that the assumption is true. First, we derive an
expression for the constant ↵̄.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1504 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Lemma 4.3. Let Assumptions 1.1 and 1.3 hold. For every realization of Algorithm

2.1, if iteration k is true (i.e., Ik = 1), and if

(4.5) ↵k  ↵̄ =
2(1� 2✓ � c1(1� ✓))

L(1� ✓)
,

then (2.1) holds. In other words, when (4.5) holds, any true iteration is also a suc-
cessful iteration. Moreover, for every true and successful iteration,

�(xk+1)  �(xk)� c1↵k(1� ✓)2kr�(xk)k
2 + 4✏f .(4.6)

Proof. By Assumption 1.1, we have

�(xk � ↵kgk)  �(xk)� ↵kgk
T
r�(xk) +

↵
2
kL

2
kgkk

2
.

Applying the Cauchy–Schwarz inequality and (4.1) and (4.4), for every true iteration

�(xk � ↵kgk)  �(xk)� ↵kgk
T
r�(xk) +

↵
2
kL

2
kgkk

2

= �(xk)� ↵kgk
T (r�(xk)� gk)� ↵k


1�

↵kL

2

�
kgkk

2

 �(xk) + ↵kkgkkkr�(xk)� gkk � ↵k


1�

↵kL

2

�
kgkk

2

 �(xk) +
↵k✓

1� ✓
kgkk

2
� ↵k


1�

↵kL

2

�
kgkk

2

= �(xk)� ↵k


1� 2✓

1� ✓
�

↵kL

2

�
kgkk

2
.

By Assumption 1.3, we have

f(xk � ↵kgk, ⇠)  f(xk, ⇠)� ↵k


1� 2✓

1� ✓
�

↵kL

2

�
kgkk

2 + 2✏f .

From this we conclude that (2.1) holds whenever

f(xk, ⇠)� ↵k


1� 2✓

1� ✓
�

↵kL

2

�
kgkk

2 + 2✏f  f(xk, ⇠)� c1↵kkgkk
2 + 2✏f ,

which is equivalent to (4.5). Therefore, using Assumption 1.3 and (4.4), for every true

and successful iteration we have

�(xk+1)  �(xk)� c1↵k(1� ✓)2kr�(xk)k
2 + 4✏f ,

which completes the proof.

We should mention that when the error in the gradient approximation is zero, i.e.,
✓ = 0, we recover the step size parameter condition from the deterministic setting.
Moreover, when there is no noise in the function, i.e., ✏f = 0, we recover the su�cient
decrease condition of the deterministic gradient descent algorithm with an Armijo
backtracking line search.

Next, we state and prove a result for the case of false and successful iterations.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1505

Lemma 4.4. Let Assumption 1.3 hold. For every false and successful iteration of

Algorithm 2.1, we have

�(xk+1)  �(xk)� c1↵kkgkk
2 + 4✏f .

Proof. The proof of this lemma is straightforward. For every successful iteration
we have

f(xk+1, ⇠)  f(xk, ⇠)� c1↵kkgkk
2 + 2✏f .

Thus, by Assumption 1.3,

�(xk+1)  �(xk)� c1↵kkgkk
2 + 4✏f ,

which completes the proof.

The result of Lemma 4.4 shows the amount of decrease in false and successful

iterations. Note that the error term 4✏f illustrates that on false iterations the function
value may increase and that the increase is related to the noise in the function values.

4.1.1. Convex functions. In this section, we analyze the expected complexity
of Algorithm 2.1 in the case when � is a convex function.

Assumption 4.5 (convexity and boundedness of iterates). The function � is con-

vex and there exists a constant D > 0 such that

kx� x
?
k  D for all x 2 U ,(4.7)

where x
?
is some global minimizer of � (and �

? = �(x?)) and the set U contains all

iteration realizations.

This assumption may seem strong since it requires all iterates of the algorithm to
remain in a bounded region. When the objective function is not allowed to increase,
this assumption is simply ensured by assuming bounded level sets of �(x). In the
case of noisy function values in principle, iterates can wander out of a bounded region
with some small probability (as this would require a large sequence of false successful

iterations). Thus, ideally, we need to modify the algorithm to prevent it from going
outside of some predefined bounded region, which is known to contain x

?. Such
modification is simple and our analysis will still apply, but with some notational
complications. Therefore, we choose not to impose this modification explicitly. Note
that we only use this assumption in the convex case and drop it in the strongly
convex and nonconvex cases, and thus the nonconvex case convergence rates apply to
the convex case without (4.7).

We bound the number of iterations taken by Algorithm 2.1 until �(Xk)� �
?
 ✏

occurs. Let

��
k = �(Xk)� �

? and Zk =
1

��
k

�
1

��
0

.(4.8)

By this definition, N✏ is the number of iterations taken until Zk �
1
✏ �

1
��

0

= Z✏. Note

that, due to the noise in the function evaluations, ✏ cannot be chosen to be arbitrarily
small. We make an assumption on ✏ that explicitly defines the neighborhood of
convergence.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1506 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Assumption 4.6 (neighborhood of convergence, convex case).

✏
2
> max

⇢
8✏fLD2

�c1(1� ✓)(1� 2✓ � c1(1� ✓))
, 16✏2f

�
,

with the same � 2 (0, 1) as used in Assumption 4.2.

Remark 4.7. We will show that the above assumption implies Assumption 3.3(iv)
with the same constant �. Hence here we see the direct connection between � and the

lower bound on ✏. As discussed previously, � can be chosen to be
1
2 , for example.

By Lemma 4.3, whenever Ak  ↵̄, then every true iteration is also successful.
We now show that on true and successful iterations, Zk increases by at least some
function h(Ak)� r(✏f) for all k < N✏.

Lemma 4.8. Let Assumptions 1.3, 4.5, and 4.6 hold, and consider any realization

of Algorithm 2.1. For every iteration that is true and successful, we have

zk+1 � zk +
c1↵k(1� ✓)2

4D2
�

4✏f
✏2

.

Proof. By Assumption 4.5, for all x, y 2 Rn, we have

�(x)� �(y) � r�(y)T (x� y).

Thus, if x = x
? and y = xk, we have

���
k = �

?
� �(xk) � r�(xk)

T (x?
� xk) � �Dkr�(xk)k,

where we used the Cauchy–Schwarz inequality and (4.7). Thus, when k is a true

iteration, by (4.4) we have

kgkk
2
� (1� ✓)2kr�(xk)k

2
�

(1� ✓)2
⇣
��

k

⌘2

D2
.

If k is also a successful iteration, then

��
k ���

k+1 = �(xk)� �(xk+1) � c1↵kkgkk
2
� 4✏f �

c1↵k(1� ✓)2
⇣
��

k

⌘2

D2
� 4✏f ,

and thus

��
k + 4✏f ���

k+1 �

c1↵k(1� ✓)2
⇣
��

k

⌘2

D2
.

Dividing by
�
��

k+1

��
��

k + 4✏f
�
,

1

��
k+1

�
1

��
k + 4✏f

�

c1↵k(1� ✓)2
⇣
��

k

⌘2

D2
⇣
��

k+1

⌘⇣
��

k + 4✏f
⌘ .(4.9)

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1507

The left-hand side of (4.9) can be bounded by

1

��
k+1

�
1

��
k + 4✏f

=
1

��
k+1

�
1

��
k

+
1

��
k

�
1

��
k + 4✏f

=
1

��
k+1

�
1

��
k

+
4✏f⇣

��
k

⌘⇣
��

k + 4✏f
⌘


1

��
k+1

�
1

��
k

+
4✏f
✏2

,

where the last inequality holds since ��
k +4✏f � ��

k � ✏. The right-hand side of (4.9)
can be bounded by

c1↵k(1� ✓)2
⇣
��

k

⌘2

D2
⇣
��

k+1

⌘⇣
��

k + 4✏f
⌘ �

c1↵k(1� ✓)2
⇣
��

k

⌘2

D2
⇣
��

k + 4✏f
⌘2

�
c1↵k(1� ✓)2

4D2
,

where the first inequality holds since ��
k+1  ��

k + 4✏f , and the second due to the

fact that ��
k � ✏ > 4✏f (due to Assumption 4.6) and thus

��
k

��
k+4✏f

�
1
2 .

Therefore, we have

1

��
k+1

�
1

��
0

!
�

1

��
k

�
1

��
0

!
=

1

��
k+1

�
1

��
k

�
c1↵k(1� ✓)2

4D2
�

4✏f
✏2

,

which completes the proof.

We now bound the amount of increase in false and successful iterations.

Lemma 4.9. Let Assumptions 1.3, 4.5, and 4.6 hold, and consider any realization

of Algorithm 2.1. For every iteration that is false and successful, we have

zk+1 � zk �
4✏f
✏2

.

Proof. For every false and successful iteration, by Lemma 4.4 we have

�(xk+1)  �(xk)� c1↵kkgkk
2 + 4✏f

 �(xk) + 4✏f .

The rest of the proof is essentially a simplified version of the proof of Lemma 4.8,
where the right-hand side in (4.9) is simply replaced with 0.

Let

h(↵) =
c1↵(1� ✓)2

4D2
and r(✏f) =

4✏f
✏2

.(4.10)

By Lemmas 4.3, 4.8, and 4.9 and Assumption 4.6, for any realization of Algorithm
2.1 (which specifies the sequence {↵k, zk}) and k < N✏, we have the following:

1. (Lemma 4.8) If k is a true and successful iteration, then

zk+1 � zk + h(↵k)� r(✏f) and ↵k+1 = ⌧
�1

↵k.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1508 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

2. (Lemma 4.3) If ↵k  ↵̄ and iteration k is true, then it is also successful.
3. (Lemma 4.9) If k is a false and successful iteration, then

zk+1 � zk � r(✏f).

4. (Assumption 4.6) r(✏f)
h(↵̄) < � for � 2 (0, 1).

Hence, Assumption 3.3 holds, with ↵̄ > 0 defined in (4.5), and with h(Ak) and r(✏f)
defined in (4.10).

We now use Theorem 3.13 and the definitions of ↵̄, h(↵̄), r(✏f), and Z✏ to bound
E[N✏].

Theorem 4.10. Let Assumptions 1.1, 1.3, 4.2, and 4.5 hold. Moreover, let As-

sumption 4.6 hold, i.e.,

✏
2
> max

⇢
8✏fLD2

�c1(1� ✓)(1� 2✓ � c1(1� ✓))
, 16✏2f

�
,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until �(Xk)� �
?
 ✏ occurs is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


M

✓
1

✏
�

1

�(x0)� �?

◆
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = 4LD2

c1(1�✓)(1�2✓�c1(1�✓)) .

Remark 4.11. If � = ✓ = ✏f = 0, our algorithm reduces to a deterministic line

search algorithm with exact function evaluations and gradients. When ✏f = 0, � can

be chosen arbitrarily small, and the lower bound on ✏ is 0. Notice that the complexity

bound has two components: the first component
8D2L

c1(1�c1)✏
achieves its minimum value,

32D2L
✏ , for c1 = 1/2 and is similar to the complexity bounds of the fixed step gradient

descent method for convex functions, and the second term log⌧
� 2(1�c1)

↵0L

�
bounds the

total number of unsuccessful iterations, on which ↵k is reduced.

4.1.2. Strongly convex functions. In this section, we analyze the expected
complexity of Algorithm 2.1 in the case when � is a strongly convex function.

Assumption 4.12 (strong convexity of ���). There exists a positive constant µ such

that

�(x) � �(y) +r�(y)T (x� y) +
µ

2
kx� yk

2
for all x, y 2 Rn

.

Under Assumption 4.12, let �? = �(x?), where x
? is the minimizer of �.

Recall the definition of ��
k (4.8). In this setting, we bound the number of iter-

ations taken by Algorithm 2.1 until ��
k  ✏ occurs. However, in this setting Zk is

defined as Zk = log
�

1
��

k

�
and the resulting complexity bound is logarithmic in 1

✏ .

Note that, similar to the convex case, due to the noise in the function evaluations, ✏
cannot be chosen to be arbitrarily small. We give a precise lower bound on ✏, and
thus explicitly derive a bound for the neighborhood of convergence.

Assumption 4.13 (neighborhood of convergence, strongly convex case).

✏ >
4✏f⇣

1� 2µc1(1�✓)(1�2✓�c1(1�✓))
L

⌘��
� 1

,

with the same � 2 (0, 1) as used in Assumption 4.2.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1509

Remark 4.14. The above assumption again implies Assumption 3.3(iv) with the

same constant �, which connects ✏f to the lower bound on ✏. Again, � can be chosen

to be
1
2 , for simplicity.

By Lemma 4.3, whenever Ak  ↵̄, then every true iteration is also successful.
We now show that on true and successful iterations, Zk increases by at least some
function h(Ak)� r(✏f) for all k < N✏.

Lemma 4.15. Let Assumptions 1.3, 4.12, and 4.13 hold, and consider any real-

ization of Algorithm 2.1. For every iteration that is true and successful, we have

zk+1 � zk � log
�
1� µc1↵k(1� ✓)2

�
� log

✓
1 +

4✏f
✏

◆
.

Proof. Assumption 4.12 implies that (x = xk and y = x
?)

�(xk)� �
?


1

2µ
kr�(xk)k

2;

see [15, Theorem 2.1.10]. Equivalently, using (4.4),

kgkk
2
� (1� ✓)2kr�(xk)k

2
� 2µ(1� ✓)2(�(xk)� �

?).

By (4.6), for every true and successful iteration we have

�(xk+1)  �(xk)� c1↵k(1� ✓)2kr�(xk)k
2 + 4✏f

 �(xk)� 2µc1↵k(1� ✓)2(�(xk)� �
?) + 4✏f ,(4.11)

and thus

�(xk+1)� �
?

�
1� 2µc1↵k(1� ✓)2

�
(�(xk)� �

?) + 4✏f .

Since we have that �(xk)� �
?
� ✏,

�(xk+1)� �
?

�
1� 2µc1↵k(1� ✓)2

�
(�(xk)� �

?) + 4✏f


�
1� 2µc1↵k(1� ✓)2

�
(�(xk)� �

?) +
4✏f
✏

(�(xk)� �
?)

=

✓
1� 2µc1↵k(1� ✓)2 +

4✏f
✏

◆
(�(xk)� �

?).

Thus, using the definition of ��
k , we have

��
k+1 

✓
1� 2µc1↵k(1� ✓)2 +

4✏f
✏

◆
��

k .

Since ✏ > 4✏f (due to Assumption 4.13), we have

��
k+1 

✓
1� 2µc1↵k(1� ✓)2 +

4✏f
✏

◆
��

k



✓
1� µc1↵k(1� ✓)2 �

4✏f
✏

µc1↵k(1� ✓)2 +
4✏f
✏

◆
��

k

=
�
1� µc1↵k(1� ✓)2

�✓
1 +

4✏f
✏

◆
��

k .

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1510 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Notice that since
�
1+ 4✏f

✏

�
> 0, ��

k > 0, and ��
k+1 � 0, this implies that 1�µc1↵k(1�

✓)2 � 0. Now taking the inverse and then the log of both sides and adding log��
0 , we

have

log

��

0

��
k+1

!
� log

��

0

��
k

!
� log

�
1� µc1↵k(1� ✓)2

�
� log

✓
1 +

4✏f
✏

◆
,

which completes the proof.

We note here that 1�µc1↵k(1�✓)2 � 0 holds for all ↵k  ↵̄ due to the constraint
✓ 2

⇥
0, 1�c1

2�c1

�
.

We now bound the amount of increase in false and successful iterations.

Lemma 4.16. Let Assumptions 1.3, 4.12, and 4.13 hold, and consider any real-

ization of Algorithm 2.1. For every iteration that is false and successful, we have

zk+1 � zk � log

✓
1 +

4✏f
✏

◆
.

Proof. For every false and successful iteration, by Lemma 4.4 we have

�(xk+1)  �(xk)� c1↵kkgkk
2 + 4✏f .

The rest of the proof is essentially a simplification of the proof of Lemma 4.15
with the middle term of the right-hand side of (4.11) replaced by 0.

Let

h(↵) = � log(1� µc1(1� ✓)2↵) and r(✏f) = log

✓
1 +

4✏f
✏

◆
.(4.12)

By Lemmas 4.3, 4.15, and 4.16 and Assumption 4.13, for any realization of Algo-
rithm 2.1 (which specifies the sequence {↵k, zk}) and k < N✏, we have the following:

1. (Lemma 4.15) If k is a true and successful iteration, then

zk+1 � zk + h(↵k)� r(✏f) and ↵k+1 = ⌧
�1

↵k.

2. (Lemma 4.3) If ↵k  ↵̄ and iteration k is true, then it is also successful.
3. (Lemma 4.16) If k is a false and successful iteration, then

zk+1 � zk � log

✓
1 +

4✏f
✏

◆
.

4. (Assumption 4.13) r(✏f)
h(↵̄) < � for some � 2 (0, 1).

Hence, Assumption 3.3 holds, with ↵̄ > 0 defined in (4.5), and h(Ak) and r(✏f) defined
in (4.12).

We now use Theorem 3.13 and the definitions of ↵̄, h(↵̄), r(✏f), and Z✏ to bound
E[N✏].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1511

Theorem 4.17. Let Assumptions 1.1, 1.3, 4.2, and 4.12 hold. Moreover, let As-

sumption 4.13 hold, i.e.,

✏ >
4✏f⇣

1� 2µc1(1�✓)(1�2✓�c1(1�✓))
L

⌘��
� 1

,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until �(Xk)� �
?
 ✏ occurs is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


2 log1/M

✓
�(x0)� �

?

✏

◆
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = 1� 2µc1(1�✓)(1�2✓�c1(1�✓))
L .

Remark 4.18. Again, if � = ✓ = ✏f = 0, our algorithm reduces to a deterministic

line search algorithm with exact function evaluations and gradients. The complexity

bound has two components: 4 log1/M
�
1
✏

�
, where M = 1 � 4µc1(1�c1)

L achieves its

minimum value, 1� µ
L , for c1 = 1/2 and is similar to complexity bounds of the fixed

step gradient descent method for strongly convex functions, and the second term again

is the bound on the total number of unsuccessful iterations.

4.1.3. Nonconvex functions. In this section, we analyze the expected com-
plexity of Algorithm 2.1 in the case when � is a nonconvex function. Again, we first
specify the neighborhood of convergence. In this setting Zk = �(X0)� �(Xk).

Assumption 4.19 (neighborhood of convergence, nonconvex case).

✏
2
>

2✏fL

�c1(1� ✓)(1� 2✓ � c1(1� ✓))
,

with the same � 2 (0, 1) as used in Assumption 4.2.

Remark 4.20. The role of � is the same as in the convex and strongly convex

cases.

Let

h(↵) = c1↵(1� ✓)2kr�(xk)k
2 and r(✏f) = 4✏f .(4.13)

By Lemmas 4.3 and 4.4 and Assumption 4.19, for any realization of Algorithm
2.1 (which specifies the sequence {↵k, zk}) and k < N✏, we have the following:

1. (Lemma 4.3) If k is a true and successful iteration, then

zk+1 � zk + h(↵k)� r(✏f) and ↵k+1 = ⌧
�1

↵k

2. (Lemma 4.3) If ↵k  ↵̄ and iteration k is true, then it is also successful.
3. (Lemma 4.4) If k is a false and successful iteration, then

zk+1 � zk � 4✏f .

4. (Assumption 4.19) r(✏f)
h(↵̄) < � for some � 2 (0, 1).

Hence, Assumption 3.3 holds, with ↵̄ > 0 defined in (4.5), and h(Ak) and r(✏f) defined
in (4.13).

We now use Theorem 3.13 and the definitions of ↵̄, h(↵̄), r(✏f), and Z✏ to bound
E[N✏].

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1512 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Theorem 4.21. Let Assumptions 1.1, 1.2, 1.3, and 4.2 hold. Moreover, let As-

sumption 4.19 hold, i.e.,

✏
2
>

2✏fL

�c1(1� ✓)(1� 2✓ � c1(1� ✓))
,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until kr�(Xk)k  ✏ occurs is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


M

✏2
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = (�(x0)��̂)L
c1(1�✓)(1�2✓�c1(1�✓)) .

Remark 4.22. Again, if � = ✓ = ✏f = 0, our algorithm reduces to a deterministic

line search with the exact gradients. The complexity bound has two components:
2M
✏2 ,

where M = (�(x0)��̂)L
c1(1�c1)

achieves its minimum value, 4(f(x0)� f̂)L, for c1 = 1/2 and is

similar to complexity bounds of the fixed step gradient descent for nonconvex functions,

and the second term, as before, is the bound on the total number of unsuccessful

iterations.

4.2. General descent. For simplicity, in the analysis of the previous sections
we assumed that the search direction at every iteration was defined as dk = �gk.
Here, we show how our analysis can be extended to account for more general search
direction, e.g., the quasi-Newton search direction where dk = �Hkgk [17], provided
the search directions satisfy, together with (4.1), the following conditions:

• There exists a constant � > 0, such that

d
T
k gk

kdkkkgkk
 �� for all k.(4.14)

• There exist constants 1, 2 > 0, such that

1kgkk  kdkk  2kgkk for all k.(4.15)

Of course, in this setting, the modified line search would be given by (2.1), and the
convergence analysis would have dependence on �, 1, and 2.

All we need to do is derive an expression for ↵̄ for the general search direction
case and prove analogues of Lemmas 4.3 and 4.4. First, we change the bound on ✓

in Definition 4.1. In particular we will require that ✓ 2
⇥
0, (1�c1)�

1+(1�c1)�

�
. Now we can

prove the following lemma.

Lemma 4.23. Let Assumption 1.1 hold. For every realization of Algorithm 2.1, if
iteration k is true (i.e., Ik = 1), and if

(4.16) ↵k  ↵̄ =
2

L2


(1� c1)(1� ✓)� � ✓

1� ✓

�
,

then (2.1) holds. In other words, when (4.16) holds, any true iteration is also a

successful iteration. Moreover, for every true and successful iteration,

�(xk+1)  �(xk)� c1↵k�1(1� ✓)2kr�(xk)k
2 + 4✏f .

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1513

Proof. The proof is very similar to that of Lemma 4.3. First, from Assumption
1.1, we have

�(xk+1)  �(xk) + ↵kd
T
kr�(xk) +

L

2
k↵kdkk

2
.

Applying the Cauchy–Schwarz inequality and (4.1) and (4.4), for every true iteration
we have

�(xk + ↵kdk)  �(xk) + ↵kd
T
kr�(xk) +

↵
2
kL

2
kdkk

2

= �(xk) + ↵kd
T
k (r�(xk)� gk) + ↵kd

T
k gk +

↵
2
kL

2
kdkk

2

 �(xk) + ↵kkdkkkr�(xk)� gkk+ ↵kd
T
k gk) +

↵
2
kL

2
kdkk

2

 �(xk) +
↵k✓

1� ✓
kdkkkgkk+ ↵kd

T
k gk +

↵
2
kL2

2
kdkkkgkk

 �(xk) + ↵kd
T
k gk + ↵k


✓

1� ✓
+

↵kL2

2

�
kdkkkgkk.

Now, using Assumption 1.3, we have

f(xk + ↵kdk, ⇠)  f(xk, ⇠) + ↵kd
T
k gk + ↵k


✓

1� ✓
+

↵kL2

2

�
kdkkkgkk+ 2✏f .

From this we conclude that (2.1) holds whenever

f(xk, ⇠) + ↵kd
T
k gk + ↵k


✓

1� ✓
+

↵kL2

2

�
kdkkkgkk+ 2✏f

 f(xk, ⇠) + c1↵kd
T
k gk + 2✏f ,

or equivalently, since ↵k > 0,


✓

1� ✓
+

↵kL2

2

�
kdkkkgkk  �(1� c1)d

T
k gk.

Using (4.14), the above expression holds whenever ↵k satisfies (4.16). Therefore, using
Assumption 1.3, (4.15), and (4.4), for every true and successful iteration we have

�(xk+1)  �(xk)� c1↵k�1(1� ✓)2kr�(xk)k
2 + 4✏f ,

which completes the proof.

Next, we state and prove a result for the case of false and successful iterations.

Lemma 4.24. For every false and successful iteration of Algorithm 2.1 we have

�(xk+1)  �(xk)� c1�↵k1kgkk
2 + 4✏f .

Proof. For every successful iteration we have

f(xk+1, ⇠)  f(xk, ⇠) + c1↵kd
T
k gk + 2✏f .

Thus, by Assumption 1.3, (4.15), and (4.4)

�(xk+1)  �(xk) + c1↵kd
T
k gk + 4✏f

 �(xk)� c1↵k�kdkkkgkk+ 4✏f

 �(xk)� c1↵k�1kgkk
2 + 4✏f ,

which is a repetition of the last part of the proof of Lemma 4.23.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1514 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

The rest of the analysis (deriving expected complexity bounds) applies almost
without change, taking into account the influence of the constants �, 1, and 2.

4.3. Convergence under condition (4.3). In this section we demonstrate
how our analysis can be extended to a di↵erent setting in terms of gradient estimate
computations. To avoid introducing new notation, we will keep the discussion at a
high level, which will hopefully be clear to the reader. The precise derivations in this
sections are straightforward extensions of the derivations above.

As we have pointed out before, the key condition (4.1) can be satisfied by various
gradient approximation schemes discussed in [2]. However, all these schemes require
O(n) function evaluations to obtain gk that satisfies (4.1). This can be expensive
in a high-dimensional setting. On the other hand, in many applications a stochastic
estimate ofr�(x) may be directly available, and thus gk can be computed by a sample
averaging scheme. Since we assume that the function values are computed with noise,
we cannot assume that these stochastic estimates are unbiased. However, as in the
case of the function noise, we can assume that this bias is bounded.

Assumption 4.25 (biased gradient estimates). For each x, we have an ability to

compute a random vector h(x, ⇠), which is a (possibly) biased estimate of r�(xk), and
the bias is bounded by a known constant ✏g, i.e., for all x

kE[h(x, ⇠)]�r�(x)k  ✏g,

where the expectation is over random variable ⇠.

Thus, for any ⇣ > 1, by averaging a su�ciently large number of samples h(x, ⇠)
we can compute a (random) g such that kg � r�(x)k  ⇣✏g, with su�ciently high
probability. On the other hand, without knowing kr�(xk)k we cannot ensure (4.1).
Here, we present the outline of the analysis of our modified line search method where
(4.1) is replaced with condition

kgk �r�(xk)k  max{⇣✏g, ↵kkgkk}

for some ⇣ > 1 and  � 0. Essentially, we want to relax (4.1) as long as ↵kkgkk

is not so small that kgk � r�(xk)k  ↵kkgkk cannot be enforced with su�ciently
high probability. When this happens, we want (4.1) to hold, which we can ensure by

kgk � r�(xk)k  ⇣✏g, as long as kr�(xk)k >
⇣✏g
✓ . Thus we need to add this lower

bound on the gradient to our definition of the stopping time.

Definition 4.26.
• If � is convex or strongly convex: N✏ is the number of iterations required until

either �(Xk)��
?
 ✏ or kr�(xk)k 

⇣✏g
✓ occurs for the first time. Note that

�
? = �(x?), where x

?
is a global minimizer of �.

• If � is nonconvex: N✏ is the number of iterations required until kr�(Xk)k 

max{✏, ⇣✏g
✓ } occurs for the first time.

For brevity, in this section we do not derive all the results, or state all the inter-
mediate lemmas, but rather state the key results, without proof. We first present the
analogue of Definition 4.1 where (4.1) is replaced with (4.3).

Definition 4.27. A sequence of random gradients {Gk} is (1��)-probabilistically
“su�ciently accurate” for Algorithm 2.1 if there exist constants ⇣ > 1 and  � 0, such
that the indicator variables

Ik = {kGk �r�(Xk)k  max{⇣✏g, AkkGkk}}

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1515

satisfy the submartingale condition

P(Ik = 1|FG,E
k�1) � 1� �

for all realizations of F
G,E
k�1, where F

G,E
k�1 = �(G0, . . . , Gk�1, Ek�1) is the �-algebra gen-

erated by G0, . . . , Gk�1 and Ek�1 for all realizations. Moreover, we say that iteration

k is a true iteration if the event Ik = 1 occurs; otherwise the iteration is called false.

We assume (as was done in section 4.1) that Assumption 4.2 holds for Defi-
nition 4.27. In order to prove expected complexity bounds under (4.2), we make
the following minor modification to Algorithm 2.2. When the step is successful,
↵k+1 = min{⌧�1

↵k, ↵max}, where ↵max > 0.

Lemma 4.28. Let Assumptions 1.1 and 1.3 hold. For every realization of Algo-

rithm 2.1, if iteration k is true (i.e., Ik = 1), and if

(4.17) ↵k  ↵̄ = min

⇢
2(1� 2✓ � c1(1� ✓))

L(1� ✓)
,
2(1� c1)

L+ 2

�
,

then (2.1) holds. In other words, when (4.17) holds, any true iteration is also a

successful iteration. Moreover, for every true and successful iteration,

�(xk+1)  �(xk)� c1↵k min

⇢
(1� ✓)2,

1

(1 + ↵max)2

�
kr�(xk)k

2 + 4✏f .(4.18)

Furthermore, for every false and successful iteration of Algorithm 2.1, we have

�(xk+1)  �(xk)� c1↵kkgkk
2 + 4✏f .

We should note that if gk is the true gradient, we recover the step size parameter
condition from the deterministic setting.

We now present the complexity bounds for condition (4.3) for convex (Theorem
4.29), strongly convex (Theorem 4.30), and nonconvex (Theorem 4.32) functions.

Theorem 4.29. Let Assumptions 1.1, 1.3, 4.25, 4.2, and 4.5 hold. Moreover, let

Assumption 4.6 hold, i.e.,

✏
2
> max

8
<

:
8✏fD2

�c1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o , 16✏2f

9
=

; ,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until �(Xk) � �
?
 ✏ or kr�(Xk)k 

⇣✏g
✓ occurs

is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


M

✓
1

✏
�

1

�(x0)� �?

◆
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = 4D2

c1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o .

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1516 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

Theorem 4.30. Let Assumptions 1.1, 1.3, 4.25, 4.2, and 4.12 hold. Moreover, let

Assumption 4.13 hold, i.e.,

✏ > max

8
><

>:
4✏f⇣

1� 2µc1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o⌘��
� 1

,
⇣
2
✏
2
g

2µ✓2

9
>=

>;
,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until �(Xk) � �
?
 ✏ or kr�(Xk)k 

⇣✏g
✓ occurs

is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


2 log1/M

✓
�(x0)� �

?

✏

◆
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = 1� 2µc1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o
.

Remark 4.31. In the last two theorems the bound on E[N✏] depends on ✏ but

not on ✏g. This bound should be understood as the bound on expected complexity to

reach ✏-accuracy in terms of the function value. If kr�(Xk)k 
⇣✏g
✓ occurs before

the ✏-accuracy in the function value is reached, the bound clearly still holds. The

next theorem derives the bound on the complexity of reaching ✏-accuracy in terms

of kr�(Xk)k, which applies to convex and nonconvex functions, and has no direct

implications on accuracy in terms of the function value.

Theorem 4.32. Let Assumptions 1.1, 1.2, 1.3, 4.25, and 4.2 hold. Moreover, let

Assumption 4.19 hold, i.e.,

✏
2
> max

8
<

:
2✏f

�c1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o ,
⇣
2
✏
2
g

✓2

9
=

; ,

with the same � 2 (0, 1) as used in Assumption 4.2. Then the expected number of

iterations that Algorithm 2.1 takes until kr�(Xk)k  ✏ occurs is bounded as follows:

E[N✏] 
2(1� �)

(1� 2�)2 � �


M

✏2
+ (1� �) log⌧

✓
↵̄

↵0

◆�
,

where M = �(x0)��̂

c1 min
n

(1�✓)(1�2✓�c1(1�✓))
L ,

1�c1
(L+2)(1+↵max)2

o .

Remark 4.33. If � = ✓ =  = ✏f = ✏g = 0, our algorithm reduces to a de-

terministic line search algorithm with exact function evaluations and gradients. The

dependence on the target accuracy ✏ is the same as that of a deterministic line search

algorithm.

Remark 4.34. Independent of the condition used on the gradient accuracy (con-

dition (4.1) or (4.2)), the dependence on ✏ (the target accuracy) and � (the probability

of a true iteration) is the same. Moreover, in the setting where ✓ =  = ✏g =0, the
results are identical. Finally, determining which condition is stronger is not trivial as

it depends on the iteration-specific quantities kr�(xk)k, kgkk, and ↵k.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1517

5. Final remarks. We presented the analysis of a modified line search method
that can be applied to functions with bounded noise, and where the gradient approxi-
mations gk are possibly random, e.g., Gaussian smoothed gradients [16, 20] or sphere
smoothed gradients [8, 9]. However, as a special case, we recover results for gradient
approximations that are not random (� = 0), e.g., finite di↵erence approximations
[1, 10] or linear interpolation gradient approximations [7].

Furthermore, we discuss the e↵ect of the parameter �, which plays a crucial
role in the analysis presented. This parameter depends on the error in the function
evaluations, and e↵ectively controls the size of the neighborhood of convergence, i.e.,
the lower bound on the ✏. When there is zero error in the function evaluations, i.e.,
✏(x) = 0 for all x 2 Rn, � can be chosen arbitrarily close to zero, in which case we
recover the exact convergence results from [6].

Finally, while our analysis assumes that the step size parameter is chosen using
an adaptive line search procedure (Algorithm 2.2), and thus varies at every iteration,
it also holds for a constant step size parameter choice. Namely, if ↵0  ↵̄ and ⌧ = 1,
then ↵k  ↵̄ for all k, and all true iterations are also successful iterations. Thus, as a
special case of the analysis presented in section 4, we recover results for a fixed step
size parameter procedure. We should note that the second term in the complexity
bounds is zero in the case where ⌧ = 1 and ↵0 = ↵̄.

We establish a bound on the expected number of iterations N✏ that the algorithm
takes until it reaches the desired near-optimal neighborhood. This is in contrast with
the analyses of many other stochastic algorithms (such as stochastic gradient), where
a bound is established on the expected “proximity” to the optimum (e.g., the expected
smallest size of the gradient) achieved sometime during a given number of iterations.
However, in all these cases there are no guarantees that the algorithm will remain
in the near-optimal neighborhood, once it reaches it. To analyze the behavior of a
stochastic algorithm, near optimality is a nontrivial task and requires considering the
nature of the function in and near such a neighborhood. For example, for nonconvex
functions, where the algorithm may converge to a near-saddle point, it will very likely
leave the neighborhood and never return to it. On the other hand, if the objective
function is strongly convex in the near-optimal neighborhood, then the algorithm
is very likely to either stay in this neighborhood or keep returning to it frequently.
Formally analyzing this behavior is the subject of a separate study.

REFERENCES

[1] A. S. Berahas, R. H. Byrd, and J. Nocedal, Derivative-free optimization of noisy functions

via quasi-Newton methods, SIAM J. Optim., 29 (2019), pp. 965–993, https://doi.org/10.1137/
18M1177718.

[2] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, A Theoretical and Empirical

Comparison of Gradient Approximations in Derivative-Free Optimization, preprint, https://
arxiv.org/abs/1905.01332, 2019.

[3] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg, Convergence rate analysis of a

stochastic trust region method via supermartingale, INFORMS J. Optim., 1 (2019), pp. 92–110.
[4] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization

methods for machine learning, Math. Program., 134 (2012), pp. 127–155.
[5] R. G. Carter, On the global convergence of trust region algorithms using inexact gradient

information, SIAM J. Numer. Anal., 28 (1991), pp. 251–265, https://doi.org/10.1137/0728014.
[6] C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained optimization

methods based on probabilistic models, Math. Program., 169 (2018), pp. 337–375.
[7] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Opti-

mization, MPS-SIAM Ser. Optim. 8, SIAM, Philadelphia, 2009, https://doi.org/10.1137/1.
9780898718768.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1518 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

[8] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, Global convergence of policy gradient

methods for the linear quadratic regulator, in Proceedings of the 35th International Conference
on Machine Learning, PMLR, 2018, pp. 1467–1476.

[9] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, Online convex optimization in the bandit

setting: Gradient descent without a gradient, in Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2005, pp. 385–394.

[10] C. T. Kelley, Implicit Filtering, Software Environ. Tools 23, SIAM, Philadelphia, 2011, https:
//doi.org/10.1137/1.9781611971903.

[11] J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization methods, Acta
Numer., 28 (2019), pp. 287–404.

[12] A. Maggiar, A. Wächter, I. S. Dolinskaya, and J. Staum, A derivative-free trust-region

algorithm for the optimization of functions smoothed via Gaussian convolution using adaptive

multiple importance sampling, SIAM J. Optim., 28 (2018), pp. 1478–1507, https://doi.org/10.
1137/15M1031679.

[13] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J.
Optim., 20 (2009), pp. 172–191, https://doi.org/10.1137/080724083.

[14] J. J. Moré and S. M. Wild, Estimating computational noise, SIAM J. Sci. Comput., 33 (2011),
pp. 1292–1314, https://doi.org/10.1137/100786125.

[15] Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic, Boston, MA,
2004.

[16] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions,
Found. Comput. Math., 17 (2017), pp. 527–566.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res.,
Springer, New York, 2006.

[18] C. Paquette and K. Scheinberg, A stochastic line search method with expected complexity

analysis, SIAM J. Optim., 30 (2020), pp. 349–376, https://doi.org/10.1137/18M1216250.
[19] R. Pasupathy, P. Glynn, S. Ghosh, and F. S. Hashemi, On sampling rates in simulation-

based recursions, SIAM J. Optim., 28 (2018), pp. 45–73, https://doi.org/10.1137/140951679.
[20] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution Strategies as a Scalable

Alternative to Reinforcement Learning, preprint, https://arxiv.org/abs/1703.03864, 2017.

D
ow

nl
oa

de
d

07
/0

9/
21

 to
 7

6.
21

4.
13

9.
17

1.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

