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GLOBAL CONVERGENCE RATE ANALYSIS OF A GENERIC LINE
SEARCH ALGORITHM WITH NOISE*
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Abstract. In this paper, we develop convergence analysis of a modified line search method for
objective functions whose value is computed with noise and whose gradient estimates are inexact
and possibly random. The noise is assumed to be bounded in absolute value without any addi-
tional assumptions. We extend the framework based on stochastic methods from [C. Cartis and
K. Scheinberg, Math. Program., 169 (2018), pp. 337-375] which was developed to provide analysis of
a standard line search method with exact function values and random gradients to the case of noisy
functions. We introduce two alternative conditions on the gradient which, when satisfied with some
sufficiently large probability at each iteration, guarantees convergence properties of the line search
method. We derive expected complexity bounds to reach a near optimal neighborhood for convex,
strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood
on the noise is specified.
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1. Introduction. We consider an unconstrained optimization problem of the
form

(1.1) min ¢(z),

where f(z,£) = ¢(z) + e(z,€) is computable, while ¢(x) is not, and ¢ is a random
variable with associated probability space (2, F, P). In other words f : R"XZ — R
is a possibly noisy approximation of a smooth function ¢ : R" — R, and the goal
is to minimize ¢. Alternatively, f(z) may be a nonsmooth function and ¢(z) its
smooth approximation; see, for instance, [12, 16]. Such problems arise in a plethora
of fields such as derivative-free optimization (DFO) [7, 11], simulation optimization
[19], and machine learning. There has been a lot of work analyzing the case when
e : R" x Z — R is a random function with zero mean. Here, we take a different
research direction, allowing e(z, ) to be stochastic, deterministic, or adversarial, but
assuming that |e(x,&)| < ey for all x € R™ and all realizations of £&. While this
is a strong assumption, it is often satisfied in practice when f(x,&) is a result of a
computer code aimed at computing (or approximating) ¢(z), but has inaccuracies
due to internal discretization [13, 14]. It will be evident from our analysis that the
modified line search method makes progress as long as |V (z)|| is sufficiently large
compared to the noise.
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Line searches are classical and well-known techniques for improving the perfor-
mance of optimization algorithms [17]. They allow algorithms to be more robust,
less dependent on the choices of hyperparameters and typically ensure faster prac-
tical convergence rates. However, in their original form they rely on exact function
and gradient information. Many modern applications give rise to functions for which
computing accurate function values and/or gradients is either impossible or prohib-
itively expensive. Thus, it is desirable to extend the line search paradigm and its
analysis to such functions. In [6] a general line search algorithm was analyzed under
the conditions that the function values are ezxact but the gradient estimates are inez-
act and random. Tt is shown that under certain (realizable) probabilistic conditions
on the accuracy of the gradient estimates, the resulting line search has the same ex-
pected complexity (up to constants) as the line search based on exact gradients. In
[3] a general framework for complexity analysis of stochastic optimization methods
is proposed and applied to a trust region method. The same framework is used in
[18] to analyze a line search method applied to stochastic functions. This framework
is significantly more complicated than that in [6], but it also relies on casting the
algorithm as a stochastic process (a submartingale), and it is again shown that the
expected complexity is the same (up to constants) as that of regular deterministic
gradient descent, under certain probabilistic, and realizable, conditions on stochastic
function values and gradient estimates.

In this paper, we extend the analysis in [6] to apply to (1.1). In particular, we
assume that the gradient estimates are random and the function values are noisy. Since
the function values are noisy (unlike in [6]), the line search is modified to accept steps
that may potentially increase the current estimated value. This modification causes
significant changes in the analysis of the expected complexity rates, as the analysis
in [6] heavily relies on the fact that an objective function can never be increased
by the algorithm. Nevertheless, we are able to extend the results in [6] recovering
expected complexity bounds for the cases of convex, strongly convex, and nonconvex
objective functions. We note here that we derived the complexity bounds for the
condition on the gradient accuracy used in [6], as well as for the so-called norm
condition used, for example, in [4]. While, as we discuss later, each gradient accuracy
condition can have advantages over the other, depending on the setting, they can be
used interchangeably with relatively small adjustments to the analysis. Specifically,
the analysis of the supermartingale is not affected by the choice of this condition, and
the key steps of the analysis of the line search method itself are analogous; however,
the constants stemming from the gradient condition appear differently in the final
complexity bounds.

The conditions we impose on the line search algorithm are essentially the same
as in [6], while the conditions required for the analysis of the stochastic line search
[18], where the noise is unbounded, are more restrictive, and thus that analysis does
not apply to the case we consider here. In particular, while the function value noise
is allowed to be unbounded in [18], it is assumed that it is possible to reduce its
variance below any given threshold, for example, by sample averaging. In contrast
here we do not assume that the noise is stochastic, and thus we do not assume it
can be reduced or controlled. Also, the algorithm itself in [18] is more complicated
than a simple line search in order to handle unbounded noise. Moreover, the resulting
bounds in [18] have worse dependence on constants than those in [6] and the bounds
we derive in this paper. Finally, in both [3] and [18] the expected complexity bound is
derived for any e, arbitrarily small, under the assumption that the noise can be made
arbitrarily small accordingly (at least with sufficient probability). Here we establish a
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CONVERGENCE RATES FOR A LINE SEARCH WITH NOISE 1491

connection between the level of noise and the convergence neighborhood. Obtaining
similar results for the setting in [3, 18] is nontrivial and is the subject of future work.

Our main motivation for this analysis is the recent popularity of smoothing meth-
ods for gradient estimates of black-box functions. Stochastic gradient approximations
can be computed at relatively low costs, e.g., via Gaussian smoothing [9, 16, 20]
and smoothing on a unit sphere [8], and used within a gradient descent algorithm.
This approach has been analyzed in [16] and more recently used in several papers for
the specific cases of policy optimization in reinforcement learning and online learn-
ing [8, 9, 20]. All of these papers employ specific fixed step length gradient descent
schemes within limited settings (e.g., convex functions). Our goal is to develop con-
vergence rate analyses for convex, strongly convex, and nonconvex functions, for a
generic line search algorithm based on gradient approximations, that can apply not
only to gradient descent, but also to quasi-Newton methods such as L-BFGS [17].

It turns out that the variance of the stochastic gradients computed via Gaussian
and unit sphere smoothing can be bounded from above by the squared norm of the
expectation, that is, |[Vé(x)|?, when ¢ is the smoothing function [2]. This moti-
vates us to consider a simpler probabilistic condition on the accuracy of the gradient
estimates in addition to the one used in [6].

Assumptions. Throughout the paper we make the following assumptions.

AssuMPTION 1.1 (Lipschitz continuity of the gradients of ¢). The function ¢ is
continuously differentiable, and the gradient of ¢ is L-Lipschitz continuous for all
r e R".

AssuMPTION 1.2 (lower bound on ¢). The function ¢ is bounded below by a scalar

0.

AssuMPTION 1.3 (boundedness of noise in the function). There is a constant
er > 0 such that |f(z,&) — ¢(x)| = |e(x,&)| < €f for all x € R™ and all realizations of
&.

Assumption 1.3 may seem very strong; however, we will show that under this
assumption the modified line search algorithm converges to a neighborhood of the
optimal solution whose size is defined by e;. Thus, if it is possible to control the
value of €y, then one can tighten the convergence neighborhood. This is possible in
many applications where, for example, values of ¢(x) are obtained as a limit to some
discretized computation and the error is controlled by the fineness of the discrete
grid [13, 14] or if ¢(z) is a smoothed approximation of f(z,&) where the smoothing
parameter controls the error between f(x,¢) and ¢(z) [12, 16]. We stress here that
our algorithms and analysis do not assume that the noise is stochastic or that the
bound ey is controllable, just that it is known.

Summary of results. While we are motivated by some specific methods for
computing gradient estimates, in the remainder of the paper, we simply aim to es-
tablish complexity bounds on a generic modified line search algorithm applied to the
minimization of convex, strongly convex, and nonconvex functions, under the condi-
tion that the gradient estimate g : R™ — R"™ satisfies

(1.2) lg(x) = Vé(a)|| < OlIVo(2)]

for sufficiently small # with some probability 1 — §.! The bound (1.2), known as
the norm condition, was first introduced in [5] and consequently used in a variety

IThe norms used in this paper are Euclidean norms.
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of works (see, e.g., [4]). This bound is generally not realizable for generic stochastic
gradient estimates; however, it can be made to hold for several deterministic and
stochastic gradient estimates such as those used in [1, 7, 8, 16]. We establish expected
complexity bounds similar to those in [6], where the line search is analyzed under
a more complicated bound on ||g(x) — V¢ (z)|| using exact evaluations of ¢ (i.e., no
noise in the function evaluations). The expected complexity bounds are established in
terms of desired accuracy €, under the assumption that € is sufficiently big compared
to the error level e;. We derive specific bounds on € with respect to €; for convex,
strongly convex, and nonconvex cases first for a gradient descent-type algorithm, and
then for an algorithm that uses any general descent direction. For completeness, we
derive complexity bounds for the condition on the gradient accuracy presented in [6],
but, due to the presence of noise, this condition is somewhat modified.

Organization. The paper is organized as follows. In section 2 we describe a
general line search algorithm that uses gradient approximations in lieu of the true
gradient, and noisy function evaluations of the objective function. We present the
stochastic analysis that allows us to bound the expected number of steps required
by our generic scheme to reach a desired accuracy in section 3. This analysis is
an extension of the results in [6] that accounts for noise in the objective function.
In section 4, we apply the results of section 3 to derive global convergence rates
and bounds on € in terms of €; when the generic line search method is applied to
convex, strongly convex, and nonconvex functions. Finally, in section 5 we make
some concluding remarks and discuss avenues for future research.

2. A generic modified line search algorithm. In this section, we describe
a generic line search algorithm that uses gradient approximations in lieu of the true
gradient and that operates in the noisy regime. In general, line search algorithms
construct a possibly noisy approximation of the gradient at the current iterate xy,
gk = g(xy), and compute a search direction using this gradient estimate and possibly
additional information, e.g., a quasi-Newton search direction. The step size parameter
is then chosen; this could be constant, selected from a predetermined sequence of step
lengths (e.g., diminishing) or adaptive (e.g., via a back-tracking Armijo line search
[17, Chapter 3]). The framework of the generic line search method we analyze is given
in Algorithm 2.1. As is clear from Algorithm 2.1, the key components of this method
are (i) the construction of the gradient approximation (step 2), (ii) the choice of the
search direction (step 3), and (iii) the choice of the step size parameter and the iterate
update (step 4).

Algorithm 2.1 Generic Line Search Algorithm

Inputs: Starting point x, initial step size parameter agy > 0.
1: for k=0,1,2,... do

2: Construct a gradient approximation gg:
Construct an approximation g of Vé(zy).
3: Construct a search direction d;:
Construct a search direction dj, e.g., dp = —gi or dx, = —Hygg.

=

Compute step size o and update the iterate.

Algorithm 2.1 is a generic line search algorithm. We perform the analysis in
section 4 for the case where d = —gi and then outline how the analysis can be
easily modified to the case of a more general search direction dj, under additional
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assumptions on di. In order to prove theoretical convergence guarantees, we need to
fully specify the manner in which the step size parameter is selected at every iteration
and how a new iterate is computed (line 4). We consider Algorithm 2.1 for which
the step size parameter «y, varies under the condition that «j is chosen to satisfy a
modified version of the sufficient decrease Armijo condition,

(2.1) flar + arde, &) < f(zr, &) + crowdy g + 2¢4,

where ¢; € (0,1) is the Armijo parameter, and ¢y is the upper bound on the noise
in the objective function. Note that the random variable £ may have two different
realizations when computing f(z + agdy, §) and f(xg, £); however, these realizations
may be dependent, independent, or identical. This does not affect our analysis, and
thus for simplicity we do not assign specific notation to different realizations of &.
If a trial value oy does not satisfy (2.1) for some particular realizations of &, then
the iteration is called unsuccessful; the new iterate is set to the previous iterate, i.e.,
ZTxt+1 = Tk, and the step size parameter is set to a (fixed) fraction 7 < 1 of the previous
value, i.e., axq1 < Tag. This step makes sense particularly when g; (and thus dy)
are random vectors and thus can be different even for the same xj. If the trial value
satisfies (2.1), then the iteration is called successful, the new iterate is updated based
on the search direction dy, i.e., k41 = T + axdk, and the step size parameter is set
to agy1 < 7 tag. Algorithm 2.2 fully specifies a subroutine for computing the step
size parameter and taking a step. Note that if 7 = 1, Algorithm 2.1 is a constant
step size parameter line search algorithm. Algorithm 2.2 receives € as input from
Algorithm 2.1. We do not specify here if Algorithm 2.1 receives this quantity as input
from the user or has an ability to estimate it, as it may depend on a particular case.

Algorithm 2.2 Line Search Subroutine

Inputs: Current iterate xy, current gradient estimate gg, current search direction
d, current step size parameter «y, backtracking factor 7 € (0,1], Armijo parameter
¢1 € (0,1), bound on the noise €.
1: for k=0,1,2,... do
2: Check sufficient decrease:
Check if (2.1) is satisfied.
3: if Condition Satisfied (successful step) then
Tpr1 = Tp + apdy and apyq — 7 lag.
4: else
Ti+1 = Tk and Qg4 ¢ Tk
5: Outputs: New iterate xy41, new step size parameter ayj41.

The modified Armijo condition has been used in [1]. The addition of the term 2¢;
ensures that a step is successful if ay is small enough and dggk is large enough. In [1]
the case of functions with arbitrary but bounded noise, such as the ones considered
here, were considered. However, unlike this paper the error of the gradient estimates
was also assumed to be bounded by a constant, and convergence rates were derived
for strongly convex objectives only.

3. Analysis of the underlying stochastic process. In this section, we de-
scribe the general mechanism that is used to provide the theoretical results of the
paper. This analysis is an extension of the analysis provided in [6] that accounts for
possible noise in the function evaluations, i.e., e(x) # 0.
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We begin by introducing several definitions, key assumptions, and theoretical re-
sults, similar to those in [6] but suitably modified as required for the analysis in this
paper. In particular, similar to [6], we view Algorithm 2.1 as a stochastic process, gen-
erated from a sequence of random function realizations f(zy, £) and gradient estimates
G,. With some abuse of notation and for simplicity of presentation, we introduce the
new probability space (2, F, P), which includes the randomness in both the function
and the gradient realizations. Since the function realizations used by the line search
are essentially replaced by their upper and lower bounds in our analysis, the nature
of = has no effect on it.

The following quantities are random and are important in the analysis: the gradi-
ent estimate Gy, the step size parameter Ay, and the search direction Dy,. Realizations
of these random quantities are denoted by gr = Gg(wi), xr = Xg(wi), ok = Ag(wk),
and d = Dg(wg), respectively. For brevity, we will omit the wy in the notation.
The iterate X, given X, 1 and Ay_1, is fully determined by Gi_1 and the noise in
the function value estimation during iteration k — 1. The noise may be stochastic or
deterministic; let £_1 denote all noise history up to iteration k£ — 1. Note that our
algorithm and its analysis are independent of the nature of the noise, but we include
&1 in the algorithm history for completeness. We use FE_’gl =0(Goy ..., Gr—1,Ek-1)
to denote the o-algebra generated by Gy, ..., Gr_1 and E_1, that is to say, generated
by Algorithm 2.1 up to the start of iteration k.

Sufficiently accurate gradients. We assume that the random gradient approx-
imations G}, satisfy some notion of good quality with probability 1 — §. We use the
following general notion of sufficiently accurate gradients, similar to that presented
in [6].

DEFINITION 3.1. A sequence of random gradients {Gy} is (1 — 0)-probabilistically
“sufficiently accurate” for Algorithm 2.1 if the indicator variables

I, = 1{Gy, is a sufficiently accurate gradient of ¢ for the given Ay, Xy, and Dy}

satisfy the submartingale condition

(3.1) P(I, = 1FZ5) >1-6
for all realizations of ]-ffl, where ]-f;gl = o(Go,...,Gr-1,Ex—1) 1is the o-algebra
generated by Go,...,Gr—1 and Ex_1. Moreover, we say that iteration k is a true

iteration if the event I, = 1 occurs; otherwise the iteration is called false.

Definition 3.1 is generic, but somewhat less so than the equivalent definition in [6,
Definition 2.1], where second order models are also considered and as a result the defi-
nition of “sufficient accuracy” is not restricted to gradients. The reason Definition 3.1
is generic is because it can be particularized differently depending on the way the gra-
dient estimates are generated. Specifically, in section 4 we define sufficiently accurate
in two different ways and derive expected complexity bounds for Algorithm 2.1. The
first definition is motivated by the specific setting where estimates g, are computed
via finite differences, interpolation, or smoothing [1, 2, 7, 8, 16]. The second definition
is similar to that presented in [6].

Number of iterations N, to reach e accuracy. The main goal of this section
is to derive bounds on the expected number of iterations E[N,] required to reach a
desired level of accuracy €. We formally define N, as follows.
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DEFINITION 3.2.
o If ¢ is convex or strongly convex: N, is the number of iterations required until
d(Xk) — ¢* < e occurs for the first time. Note that ¢* = ¢(x*), where x* is
a global minimizer of ¢.
o If ¢ is nonconvex: N, is the number of iterations required until ||[Vo(Xy)|| < e
occurs for the first time.

Thus N, is a random variable with the property o(1{N,. > k}) C .7:,?;'51, and thus
it is a stopping time for our stochastic process; see [6, section 2]. To bound E[N,] we
assume that while k¥ < N, the stochastic process induced by Algorithm 2.1 behaves
in a certain way. Specifically, it tends to make a certain amount of progress towards
optimality.

Measure of progress towards optimality and upper bound. As is done
in [6, section 2], let Z; denote a measure of progress towards optimality (from any
starting point ¥y € R"), and let Z. be an upper bound for Z; for k < N.? In
particular, our analysis will use the definitions of Zj and Z, as described in Table 3.1.

TABLE 3.1
Definitions of Zy, and Ze for convex, strongly convex, and nonconvex functions.

Function Z, Ze

1 1 1 L
Convex X —F*  (Xo)—o* € ¢(Xo)—o*
Nonconvex #(Xo) — &(Xk) ¢(Xo) — ¢

We are now ready to introduce the key assumption of the behavior of the sto-
chastic process { Ay, Z;} generated by Algorithm 2.1 under which we derive a bound
on E[N,]. In section 4, we show that this assumption holds for our generic line search
algorithm, under a particular definition of sufficiently accurate gradient estimates,
and thus we will be able to derive the expected complexity bound.

Recall that when the gradient estimate g is sufficiently accurate, the iteration is
called true, and this is assumed to happen with probability at least 1 — ¢, conditioned
on the past. The following assumption is a modification of the assumption in [6,
section 2.4, Assumption 2.1]. Let z = Zi(wy) be a realization of the random quantity
Zy.. Note that z; = Zp(wg) is a measure of progress towards optimality.

ASSUMPTION 3.3. There exist a constant & > 0, a nondecreasing function h(a) :
R — R, which satisfies h(a) > 0 for any o > 0, and a nondecreasing function
r(ef) : R = R, which satisfies r(ef) > 0 for any e > 0, such that for any realization
of Algorithm 2.1 the following hold for all k < N¢:
(i) If iteration k is true (i.e., Iy = 1) and successful, then zx+1 > 2z + h(ag) —
r(es).
(ii) If ap < & and iteration k is true, then iteration k is also successful, which
implies a1 = T Lag.
(ili) 2zk+1 > 2z — r(ef) for all successful iterations k and zx41 > 21 for every
unsuccessful iteration k.
(iv) The ratio r(ef)/h(@) is bounded from above by some v € (0,1).

2F} and F. is the notation used in [6].
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Assumption 3.3 provides guarantees of progress for the process Zj, using guar-
anteed increase h(ay) and possible decrease 7(es). These quantities will be specified
for each case (convex, strongly convex, nonconvex) in section 4. The key difference
between Assumption 3.3 and the corresponding assumption in [6, section 2.4, Assump-
tion 2.1] is that on each successful iteration Zj may decrease by up to r(ey). When
r(es) = 0, Assumption 3.3 reduces to the assumption in [6, section 2.4, Assumption
2.1] and in this case 7y can be chosen arbitrarily close to 0. When r(ef) > 0, the process
Zy, may decrease on some successful iterations; see Assumption 3.3(iii). Assumption
3.3(i) states that Zj, is guaranteed to increase on true successful iterations by at least
the quantity h(ag) —r(es), which is positive due to Assumption 3.3(iv). The constant
«y serves as a parameter that measures how much h(ay) dominates r(es). As we will
see, v can be chosen to be fixed, for example, v = %, and Assumption 3.3(iv) then
simply dictates that h(ax) > 2r(es). The guaranteed value of progress h(cy) is larger
when the target accuracy e is larger, which in turn implies the connection between
the level of noise €y and the target accuracy e. In other words, +y is not an algorithmic
parameter, it is simply a parameter whose value implies a particular bound on the
neighborhood of convergence.

As in [6] we define the following additional indicator random variables:

AL = ]].{.Ak > 5[}, Ak = ]].{.Ak > 5[},

O = 1{Iteration k is successful, i.e., Ap11 = T_lAk}.

Note that o(Ay) C .7-',?_’51, o(Ay) C }f_’i, and 0(0) C }-kc,s, that is, the random
variables Ay and Ay are fully determined by the first k& — 1 steps of the algorithm,
while Oy is fully determined by the first k steps.

Without loss of generality, we assume that & = 7°qq for some positive integer c.
In other words, & is the largest value that the step size Ay actually achieves for which
part (ii) of Assumption 3.3 holds. Note that if 7 = 1, the algorithm uses a constant
step size and hence has to start with the value for which Assumption 3.3 holds, i.e.,
a < @, in order to converge.

In summary, under Assumption 3.3, recalling the update rules for ay, in Algorithm
2.1, we can write the stochastic process { A, Zx} as obeying the expressions below:

(3.2)
7 A, if I, =1and A, = 0,
1 .
_1 . N 7T A, fO,=1, I, =0, and A, =0,
Ak+1={:AAk ggk:é’ = TA if O, =0, I =0, and Ay =0,
k k=5 1A, if ©p =1 and Ay = 1,
TAk if@k:()andAkzl,

Zk+h<Ak)—T(6f) if O =1and I =1,
(3.3) Zit1 = Zy — T(Ef) if © =1 and I =0,
2y if O =0.

3.1. Analysis of the stochastic processes. We now present the derivation of

the bounds on E [N,] under Assumption 3.3 by modifying the analysis in [6]. We start
by introducing a useful lemma from [6].
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LEMMA 3.4. Let N. denote the stopping time. For all k < N, let I be the

sequence of random wvariables in Definition 3.1 so that (3.1) holds. Let Wy be a
nonnegative stochastic process such that o(Wy) C f,?ﬁ for any k > 0. Then

[Ne—1 [Ne—1 1
E Zwkfk] >(1=0)E | Y Wil.
L k=0 L k=0 i

Similarly,
TN.—1 TN—1 7
E ZWk(l—Ik)] < SE ZWk )
L k=0 L k=0 |

For brevity, we omit the proof of Lemma 3.4; see [6, Lemma 2.3].

The following lemma from [6] bounds the number of steps for which aj, < &. The
proof depends only on the probabilities of different outcomes and not on the changes
in Zy; thus the proof from [6] applies directly.

LEMMA 3.5. The expected number of steps for which ay < & can be bounded as

N.—1
E [Z (1= Ag)

k=0

1

Proof. The proof uses Lemma 3.4 with W), = 1 — Ay and is the same as in [6]. O

We now turn to the derivation of the bound on
N.—1
S,
k=0
which requires a substantially more elaborate analysis than that in [6] but is similar
in spirit. The key difference is that, while in [6] Z; never decreases, here we have to
account for all iterations where Z; may decrease, and bound their expected number.
For brevity of notation, we define the following quantities:
e Npg = Ziv;allik(l — It)Oy: the number of false successful iterations with
A > a.
e Npg = Z,iv;gl]\kfk@k: the number of true successful iterations with A > a.
o Np = kN;O_ll_Xk(l — Ij;): the number of false iterations with Ay > a.
o Ny = Zg;glf\kfk: the number of ¢rue iterations with A, > a.
e Npy = fgv;al/\k[k(l — Oy): the number of true unsuccessful iterations with
A > a.
e Ny = Zg;alAk(l —©y): the number of unsuccessful iterations with Ay > a.
e Ngg = iv;al(l — Ay)Og: the number of successful iterations with Ay < &

(small Ay).
Since

E

)

Ne.—1

(3.4) E lz Ak] =E lz Ar(1 = Iy)
k=0

k=0

Ne.—1

Z Akfk] < E[NF] + E[N7],
k=0

+E

our goal is to bound E[Ng| 4+ E[Nr].
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We now establish several inequalities relating the quantities we just defined. We
begin with

(3.5) Nr = Nrs + Nry < Nrs + Ny.
The equality above holds because by Assumption 3.3(ii) there are no true unsuccessful

iterations when A = a.

LEMMA 3.6. For anyl € {0,..., N.—1} and for all realizations of Algorithm 2.1,
we have

l

! _
. o
E Ar(1—-0y) < E AOy + log, <0zo> ,

k=0 k=0

and hence when l = N, — 1,

(3.6) Np < Nps + 2Nrps + log, (;) .
0

Proof. On successful iterations Ay, is increased and on unsuccessful iterations Ay
is decreased. Hence, the total number of steps when Aj > & and Ay is decreased is
bounded by the total number of steps when Ay > @ is increased plus the number of
steps required to reduce Ay from its initial value ag to @. The first inequality of the
lemma is a simple consequence of this observation.

Now for [ = N, — 1 this inequality becomes

a4
Ny < Nrs + Npg + log, <a> ;
0

which, combined with (3.5), gives us (3.6). O

LEMMA 3.7. The expected number of false iterations with Ax > & can be bounded
as

o
E[Nr] < ——E[N7].
[NF] < {—5E[NT]
Proof. The proof uses Lemma 3.4 and is the same as in [6]. a

Hence, by (3.5) and Lemmas 3.6 and 3.7, we have
1
E[NF] +E[Nr] < -—E[N7]
1
< — (E[Nrs] + E[Nu])

1-96

(3.7) < 1715 (E[NFS] + 9E[Nis] + log. (5‘0)) .

We now bound E[Ngg], the number of successful iterations with Ay < a.

LEMMA 3.8. The expected number of successful iterations with Ap < & can be
bounded as

N.—1

> (1- Ay

k=0

E[Ngs] =E
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Proof. We want to bound the expected number of successful iterations for which
ap < . Since on all successful iterations ay, is increased, and oy > @, then for each
such successful iteration there has to be an unsuccessful iteration with a, < @. Hence,

Ne—1 N.—1 N—1
D =A00 < Y (1-A)(1—0x) < > (1= Ap)(1— L)
k=0 k=0 k=0

The last inequality follows from the fact that when «y < @, all true iterations are
successful, which implies (1 — Ag)Ix < (1 — Ax)Ok. Now applying Lemmas 3.4 and
3.5 we have

Ne.—1 Ne—1

)
E 1—A)(1 -1 < /E 1-A < — E[N,
Do B(L—T) | <E| Y ( k)| < 50 —3) [Nel,
k=0 k=0
from which the result follows. O

The next observation is central to our analysis. It reflects the fact that the total
gain minus the total loss in Zj is bounded from above by Z.. We observe that when
Ay > @ on true successful iterations this gain is bounded from below away from zero
by h(a) —r(ef) > (1 —v)h(@), and at other successful iterations the loss is bounded
above by r(es). This will allow us to bound E[Npg].

LEMMA 3.9. The number of true successful iterations with Ay > & can be bounded

as
Ze 9

. Nrg < N N,
(3.8) TS_(I—y)h(o‘z)+1—7( Fs + Nss)
and, hence,

Ze gl gl 0

. < — __— _E[NJ.

(3.9) E[Nrs] < A= )h@) + 7 7VE[NFS] + 1 T 5)E[N]

Proof. The proof follows directly from (3.3) and Assumption 3.3. Zj is increased
by at least h(a) — r(ey) at each true successful iteration when ay > @&, and it may
be decreased by at most 7(es) at each false successful iteration when oy > @& and at
each successful iteration when oy < @. Thus, we have

Lo > Ly > NTs(h(@) — T(Ef)) — T(ef)(NFS + NSS)-

Recalling that, by Assumption 3.3, r(ef) < vyh(a@) and v € (0,1) we obtain (3.8),
while (3.9) follows further from Lemma 3.8. ad

LEMMA 3.10. Under the condition that § < % — 3, the number of false successful
iterations with A, > @ can be bounded as

20 Z. (1—==)9 @ 52y
=25 h(a) T T-20—~ 8" (a0> M T R

E[Nps] <
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Proof. From (3.6) and Lemma 3.7, we have

E[Nps] < E[NF] < L(; E [Ngs| + 2E [Ngs] + log, <§;>} .

Then from Lemma 3.9 if follows that

§ 1+ 27, ) a
E[Nrs] < {VE [Nrs] + + Ne] + log. (a)] :

“1-0|1—7 (I=vh(@) 1-~v1-94
Collecting the terms involving E [Ngg] on the left and observing that 1 — i% =
ﬁm we can derive the bound
(I—7)¢ 2Z. ) a
E|N < E[N,] + 1 291,
[ FS}_l—Q(S—'y (l—’y)h(d)+1_71_§ [ ]+0g7— o0
from which the result follows. d

We can now derive the bound for E [Nrg] using Lemmas 3.9 and 3.10 and col-
lecting the appropriate terms.

LEMMA 3.11. Under the condition that & < s — 2, the number of true successful
iterations with Ay, > & can be bounded as

1-26 Z. 0 a ~v(1 —28)8
ElNesl < =55 @ T 102 =5 % (a0> Ao =20 =) Vel

Proof. From Lemma 3.9, we have

Z. 0 Y d
E|[Ntg| < E[N —— E[N].
Nesl = @ T 1At T e g P
Using the result from Lemma 3.10, it follows that
E [Nrs]
<L
~(L=)h(a@)
y 26 Z, (1—=7)d a 5%y
1 — E|[N.
TS [To2 o ha) T 12— %% o) TT=0)0 =26 =) N
¥ 6
S E|[N.
p gy runs B
1-20 Z v a v(1—26)6
= 1 — E[Ne],
1-25—~yh(a)  1-25—~ " <a0> a2 =y
which completes the proof. 0

LEMMA 3.12. Under the condition that § < % — 3, the number of iterations with
A > @ can be bounded as

N.—1
E [Z Ay
k=0

E[N.].

S1-26 @)  1-2—7 " \ay)  A-08)(1—-20—7)
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Proof. By (3.4), (3.7), and Lemmas 3.10 and 3.11, we have

E lNilAk] < E[Nr] + E[N7]

k=0
1
1 20 Z. (1—7) a 5%y
<
_1—6[1—25—7h(a)+1—25—710g7< >+ 5) 1 =25 =) Ve
o [ 1-20 Z. ) a 1 — 268
+1—5[1—25—7h(d)+1—26— log, (a) )1 — 25 — y)E[NS]}

L1 1 1 07
1-96 87 (67
o 2 Ze (1_7) o ’76
T2 k@) T T-20-4 %8 (a ) T asoa =yt

which completes the proof. 0

Combining Lemmas 3.5 and 3.12, we have the key bound

Z Ay Zl(l —Ak)l

k=0

< 2 Z. + (1_7) 1 E
S1-20—~qhla)  1-20—~ ° \ag
6 1

R T TR L Al kT

[ /\

E [N.] +E

E[N..

Collecting the terms with E [IV] on the left-hand side and multiplying both sides

by 1 — 2§ — v we obtain
Z «a
— + (1 —7)log, ()
@ (1 —7)log o

If the coefficient in front of E [N,] is positive, that immediately gives us a bound on
the expected stopping time E [N,]. This coefficient is

v 1-20—vy
1-6  201-90)

~vé _1—26—7_462—464-1—7_(1—26)2—
1-6 201-6) 2(1 —9) o 2(1—-9)

1-20—~—

The smaller of the two roots of 462 — 45 +1 — ~ is % — 77
have the following final bound.

IN

1 _
5 — 3. Hence, we

THEOREM 3.13. Under the condition that § < 5 — %+, the stopping time N is
bounded in expectation as follows:

(3.10) E[N] < 2_(12(52&_ , i(i) + (1 —7)log, (;)] :

REMARK 3.14. The result of Theorem 3.13 is a generalization of the result in
[6] to the case where the function is computed with some noise. Specifically, when
er =0, and as a result v(ef) = 0, then v = 0 and (3.10) reduces to the bounds in
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[6]. We should note that the condition § < % corresponds to the condition p > % in
[6]. If, on the other hand, § = 0, then we recover the deterministic complexity bound.
If r(ef) > 0, the quantity v can be chosen to be some fized constant, for example,

1. This implies the condition that § < 1(1 — %) and the bound (3.10) is adjusted

accordingly. We see that larger values of v imply tighter bounds on §; however, as will
be shown in the next section, they allow the algorithm to achieve better accuracy for
the same noise level ey. Thus, the constant v simply serves as a means to highlight
the trade-off between imposing smaller bounds on § and achieving a smaller radius of
convergence.

4. Convergence analysis of the modified line search. In this section, we
derive expected complexity bounds for the modified line search Algorithm 2.1, where
the step size parameter is chosen using Algorithm 2.2.

We begin by stating the first condition on the gradient estimates which we use in
our analysis,

(4.1) g — Vo(xp)|| < 0|Vo(zy)|| forall k=0,1,2,...

for some 6 € [0,1). This condition is referred to as a norm condition and was in-
troduced and studied in [5] in the context of trust-region methods with inaccurate
gradients. Note that this condition implies that g; is a descent direction for the
function ¢. When unbiased stochastic estimators of V¢(z) are available, gi can be
computed by averaging these estimators. If the variance of these estimators is bounded
by O(|[Vé(x1)]|?), then condition (4.1) can be satisfied, with probability 1 — §, by
using a sufficiently large number of the estimators (batch size) to compute gi. We
chose to consider condition (4.1) because we are motivated by the specific setting
where estimates g, are computed via finite differences, interpolation, or smoothing
[1, 2,7, 8, 16].

In a more general stochastic setting, unless one knows |V¢(zy)||, condition (4.1)
is hard or impossible to verify or guarantee. A simple way of making condition (4.1)
realizable is to replace || V¢(zy)|| with €, where € is the desired convergence accuracy.
However, if the cost of obtaining g that satisfies ||gr — Vo (zi)|| < fe increases as
e decreases, replacing ||[V¢(zi)| by its global lower bound e can lead to inefficient
algorithms.

In the literature, a significant number of attempts to circumvent the aforemen-
tioned difficulties in the case of general stochastic gradient estimates have been made;
see, e.g., [4, 6, 18]. In [4] a practical approach to estimate ||V¢(xy)|| is proposed
and used to ensure that some approximation of (4.1) holds. In [6] and [18], (4.1) is
replaced with a condition that, for some x > 0,

(4.2) llgr — Vo(xk)|| < kagllgk|| forall k=0,1,2,...

holds with probability 1 — §, and it is discussed how this condition can be ensured.
Under this condition, expected complexity bounds are derived for a line search method
that has access to deterministic function values in [6] and stochastic function values
(with additional assumptions) in [18]. While this condition does not require the
variance to diminish with ||[V¢(z)||, it may be hard or impossible to ensure when ay
is very small, due to the noise. Thus, we propose the following modification of this
condition:

(4.3) lgr — Vo(xr)|| < max{(eq, kag|gr||} forall k=0,1,2,...,
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where ¢ > 1 and €; > 0 (we precisely define €, in section 4.3). We extend the analysis
in [6] and derive complexity bounds based on (4.3) for our setting (i.e., noisy function
evaluations).

In the remainder of this section, we present a convergence analysis for the generic
line search algorithm (Algorithms 2.1 and 2.2). The analysis is an extension of the
analysis presented in [6] to the case where functions are computed with noise (As-
sumption 1.3). We first consider the norm condition (4.1), and prove complexity
guarantees for the special case where d, = —gy, (section 4.1) and general descent (sec-
tion 4.2). We then prove similar results for condition (4.3) (section 4.3). For brevity
we omit the results for general descent under condition (4.3) as these results are very
similar to those for (4.1).

4.1. Convergence under condition (4.1). We use the following notion of
sufficiently accurate gradients.

DEFINITION 4.1. A sequence of random gradients {Gy} is (1 — 0)-probabilistically
“sufficiently accurate” for Algorithm 2.1 if there exists a constant 6 € |0, é:zi ), such
that the indicator variables

I = I{||Gr = Vo(Xi) || < 0IVO(Xi)II}
satisfy the submartingale condition
P(I, = 1FS5) >1-4

for all realizations of ]-',?fi, where .7:,?;81 = o(Go,...,Gr-1,E—1) 1is the o-algebra
generated by Go,...,Gr—1 and Ex_1. Moreover, we say that iteration k is a true
iteration if the event I, = 1 occurs; otherwise the iteration is called false.

For the remainder of this section, we make the following additional assumption.

AssuMPTION 4.2 (sufficiently accurate gradients). The sequence of random gra-
dients {Gr} generated by Algorithm 2.1 is (1 — 8)-probabilistically “sufficiently accu-

rate” with § < § — @ for some v € (0,1).

Equipped with the above definitions, assumptions, and theorems, we now provide
convergence guarantees for the generic line search algorithm (Algorithms 2.1 and 2.2)
for convex, strongly convex, and nonconvex objective functions. We remind the reader

of the definition of the stopping time N, given in Definition 3.2.
For each true iteration (i.e., Iy = 1), we have

lgr = V()| < 0IIVe(xr)ll,
which implies, using the triangle inequality, that
(4.4) gkl = (1 = 0)[IVe(zy)]l-
We now show that Assumption 3.3 is satisfied. To this end, for the three classes of
functions, we show that there exists an upper bound @ on the step length parameter,

and functions h(«) and 7(es) such that the assumption is true. First, we derive an
expression for the constant a.
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LEMMA 4.3. Let Assumptions 1.1 and 1.3 hold. For every realization of Algorithm
2.1, if iteration k is true (i.e., Iy = 1), and if

2(1 — 20 — ¢, (1 —0))
L(1-10) ’

(45) ap < a=

then (2.1) holds. In other words, when (4.5) holds, any true iteration is also a suc-
cessful iteration. Moreover, for every true and successful iteration,

(4.6) $wri1) < Glan) — cran(l = 0)* [V (zx)[|* + des.

Proof. By Assumption 1.1, we have

2
A

Bk — ag) < o) — 0nar "V (k) + L g

Applying the Cauchy—Schwarz inequality and (4.1) and (4.4), for every true iteration

27,
O(xk — angr) < ¢(xk) — g’ Vo(zg) + %H%HQ

= (k) — angi” (Vo(azx) — gr) — a {1 - O[;L} llgx|I?

L
< olon) + el 199(e1) - ull = o 1= %55l

«

10 9 ayL 9
< - — 1 — —
< ¢(ak) + - 9||9k|| Qg { 5 } llgl

_ 1-20 oL 9
—olon) - on | T - %5 | Il

By Assumption 1.3, we have

1-20 aiL

2
- k= % ;.
T 5 }Ilgkll + 2¢

flxy —agr, &) < far, &) — o [

From this we conclude that (2.1) holds whenever

1-20 oL
- ] lgrll” + 265 < f(2k,€) — cranllgell® + 2€y,

o) - x| T=5 = %

which is equivalent to (4.5). Therefore, using Assumption 1.3 and (4.4), for every true
and successful iteration we have

$wrs1) < Slar) — cran(l = 0)? [V (zr)||* + ey,

which completes the proof. 0

We should mention that when the error in the gradient approximation is zero, i.e.,
0 = 0, we recover the step size parameter condition from the deterministic setting.
Moreover, when there is no noise in the function, i.e., ¢, = 0, we recover the sufficient
decrease condition of the deterministic gradient descent algorithm with an Armijo
backtracking line search.

Next, we state and prove a result for the case of false and successful iterations.
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LEMMA 4.4. Let Assumption 1.3 hold. For every false and successful iteration of
Algorithm 2.1, we have

(rrr1) < P(wr) — cra|grl|® + de;.

Proof. The proof of this lemma is straightforward. For every successful iteration
we have

flare1,€) < f@r, &) — cronllgell® + 2¢;.

Thus, by Assumption 1.3,

P(zhy1) < Plan) — cronllgell + 4ey,

which completes the proof. ]

The result of Lemma 4.4 shows the amount of decrease in false and successful
iterations. Note that the error term 4ey illustrates that on false iterations the function
value may increase and that the increase is related to the noise in the function values.

4.1.1. Convex functions. In this section, we analyze the expected complexity
of Algorithm 2.1 in the case when ¢ is a convex function.

ASSUMPTION 4.5 (convexity and boundedness of iterates). The function ¢ is con-
vex and there exists a constant D > 0 such that

(4.7) le —a*|| <D forallx €U,

where x* is some global minimizer of ¢ (and ¢* = ¢(x*)) and the set U contains all
iteration realizations.

This assumption may seem strong since it requires all iterates of the algorithm to
remain in a bounded region. When the objective function is not allowed to increase,
this assumption is simply ensured by assuming bounded level sets of ¢(x). In the
case of noisy function values in principle, iterates can wander out of a bounded region
with some small probability (as this would require a large sequence of false successful
iterations). Thus, ideally, we need to modify the algorithm to prevent it from going
outside of some predefined bounded region, which is known to contain x*. Such
modification is simple and our analysis will still apply, but with some notational
complications. Therefore, we choose not to impose this modification explicitly. Note
that we only use this assumption in the convex case and drop it in the strongly
convex and nonconvex cases, and thus the nonconvex case convergence rates apply to
the convex case without (4.7).

We bound the number of iterations taken by Algorithm 2.1 until ¢(Xj) — ¢* < e
occurs. Let

1 1
(4.8) AY = §(Xp) —¢* and Zp=— — —.
Ay Af

By this definition, N, is the number of iterations taken until Z; > % — ﬁ = Z.. Note

0
that, due to the noise in the function evaluations, e cannot be chosen to be arbitrarily
small. We make an assumption on e that explicitly defines the neighborhood of
convergence.
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ASSUMPTION 4.6 (neighborhood of convergence, convex case).

8¢ LD?
2 f 2
1
‘ >max{’ycl(1—9)(1—29—01(1—9))’ Gef}’

with the same v € (0,1) as used in Assumption 4.2.

REMARK 4.7. We will show that the above assumption implies Assumption 3.3(iv)
with the same constant ~v. Hence here we see the direct connection between v and the
lower bound on €. As discussed previously, v can be chosen to be %, for example.

By Lemma 4.3, whenever A, < @, then every true iteration is also successful.
We now show that on true and successful iterations, Zj increases by at least some
function h(Ay) — r(es) for all k < N..

LEMMA 4.8. Let Assumptions 1.3, 4.5, and 4.6 hold, and consider any realization
of Algorithm 2.1. For every iteration that is true and successful, we have

clak(l - 9)2 4Ef
Zk+1 ZZk—FT—ET

Proof. By Assumption 4.5, for all z,y € R™, we have
3(x) = o(y) = Vo(y)" (= —y).
Thus, if z = 2* and y = xx, we have
—Af = 0" — oar) = Vo(an)" (¢ —ax) = ~D||Ve(ai)],

where we used the Cauchy—Schwarz inequality and (4.7). Thus, when k is a true
iteration, by (4.4) we have

(1-02(ay)’

lgrll* = (1 = 0)[Vo(ar)|* = o8

If k is also a successful iteration, then

crag(1—6)?2 (A}f)Q

AL = AL = b(xn) — $lare) > craullgel|® — ey > D2 — dey,
and thus
2 ¢ 2
. . crax(l—0) (Ak>
Ak+4€f_Ak+1Z D2 .
Dividing by (A7, ) (A} + 4ey),
é 2
1 1 clak(l — 9)2 (Ak>

(4.9) NN = D (Af+1) (AZ +4€f).
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The left-hand side of (4.9) can be bounded by

1 1 1 1 N 1 1
Ay A Hder AL AL A AD ey
1 1 N dey
At AL (A7) (A +4)
1 1 46f
=~ 0 — = T’
AR, AL e

where the last inequality holds since Af +dep > Aﬁ > €. The right-hand side of (4.9)
can be bounded by

crap(l—6)? (Azf crag(l —0)? (Aﬁ)z
>
D? (Aiﬂ) (Ai + 46f) D (Ai + 4€f)2

S crop(l — 9)2,
- 4D?

where the first inequality holds since Ai 1 < Ai + 4ey, and the second due to the

Vv
-

. AP
fact that Af > € > 4ey (due to Assumption 4.6) and thus Af+k46f

Therefore, we have
( 1 1 ) < 11 ) 1 L am(1-0?° 4
N Ad ] T\ A Ad | T Ae T A =T apz T 2
Al A AL AY) AL, AT D ¢
which completes the proof. ]

We now bound the amount of increase in false and successful iterations.

LEMMA 4.9. Let Assumptions 1.3, 4.5, and 4.6 hold, and consider any realization
of Algorithm 2.1. For every iteration that is false and successful, we have

4€f
k1 = 2k — R

Proof. For every false and successful iteration, by Lemma 4.4 we have

O(zhy1) < G(r) — crapllgrll® + 4ef
< o(wr) + 4dey.

The rest of the proof is essentially a simplified version of the proof of Lemma 4.8,

where the right-hand side in (4.9) is simply replaced with 0. d
Let
cra(l —6)?2 de
(4.10) h(a) = i and  r(ef) = E—Qf

By Lemmas 4.3, 4.8, and 4.9 and Assumption 4.6, for any realization of Algorithm
2.1 (which specifies the sequence {ayg, 2 }) and k < N, we have the following:
1. (Lemma 4.8) If k is a true and successful iteration, then

Zig1 > 2z + h(ag) —r(ep) and agyr = T lag.
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2. (Lemma 4.3) If ay, < & and iteration k is true, then it is also successful.
3. (Lemma 4.9) If k is a false and successful iteration, then

Zgy1 > 2 — r(ef).

4. (Assumption 4.6) ;L((E(llf)) < v for v € (0,1).
Hence, Assumption 3.3 holds, with & > 0 defined in (4.5), and with h(Ay) and r(ey)
defined in (4.10).
We now use Theorem 3.13 and the definitions of &, h(@), r(ef), and Z. to bound
E[N].
THEOREM 4.10. Let Assumptions 1.1, 1.3, 4.2, and 4.5 hold. Moreover, let As-
sumption 4.6 hold, i.e.,

8erLD?

2 f 2
m 1

<= ax{”ycl(l—9)(1—29—01(1—0))’ GEf}’

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until ¢(Xy) — ¢* < € occurs is bounded as follows:

= 2o () 0 (3)]

_ 4LD?
where M = c1(1—-0)(1—20—c1(1-0)) *

REMARK 4.11. If § = 0 = €5 = 0, our algorithm reduces to a deterministic line
search algorithm with ezact function evaluations and gradients. When ey =0, v can

be chosen arbitrarily small, and the lower bound on € is 0. Notice that the complexity
8D2L
c1(l—cy)e

bound has two components: the first component achieves its minimum value,

%, for ¢c1 = 1/2 and is similar to the complexity bounds of the fized step gradient

descent method for convex functions, and the second term log._ (%) bounds the
total number of unsuccessful iterations, on which oy, is reduced.

4.1.2. Strongly convex functions. In this section, we analyze the expected
complexity of Algorithm 2.1 in the case when ¢ is a strongly convex function.

ASSUMPTION 4.12 (strong convexity of @). There exists a positive constant p such
that

o) 2 6(u) + Vo) (@ —v) + Slle —yl* Jor all .y € R".

Under Assumption 4.12, let ¢* = ¢(x*), where x* is the minimizer of ¢.

Recall the definition of Af (4.8). In this setting, we bound the number of iter-
ations taken by Algorithm 2.1 until Af < € occurs. However, in this setting Z is
defined as Z; = log (ﬁ) and the resulting complexity bound is logarithmic in %
Note that, similar to thé convex case, due to the noise in the function evaluations, e
cannot be chosen to be arbitrarily small. We give a precise lower bound on €, and

thus explicitly derive a bound for the neighborhood of convergence.
ASSUMPTION 4.13 (neighborhood of convergence, strongly convex case).
dey
(1 B 2,wl(1—e)(1z29—01(1—9)))_'V 1

€>

b

with the same v € (0,1) as used in Assumption 4.2.
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REMARK 4.14. The above assumption again implies Assumption 3.3(iv) with the
same constant v, which connects €5 to the lower bound on €. Again, v can be chosen
to be 3 5, for simplicity.

By Lemma 4.3, whenever A < @&, then every true iteration is also successful.
We now show that on true and successful iterations, Zj increases by at least some
function h(Ay) — r(es) for all k < N..

LEMMA 4.15. Let Assumptions 1.3, 4.12, and 4.13 hold, and consider any real-
ization of Algorithm 2.1. For every iteration that is true and successful, we have

4e
Zpy1 > 2k — log (1 — perag(l — 9)2) — log (1 + f>
Proof. Assumption 4.12 implies that (z = xx and y = 2*)
1
P(zr) — ¢" < @HV(ﬁ(l’k)HQ;

see [15, Theorem 2.1.10]. Equivalently, using (4.4),

lgrll* = (1 = 0)IVe(w)|* = 2u(1 — 0)*(d(xx) — ¢*).

By (4.6), for every true and successful iteration we have

O(it1) < d(an) — cran(l — 0)? |V (zp)||* + deg
(4.11) < ¢(ar) — 2peran(l — 0)*($xx) — ¢*) + dey,

and thus
P(Tt1) — 9" < (1 —2ucrap (1l — 0)?) (p(ar) — ¢F) + de;.
Since we have that ¢(zy,) —
P(Tpy1) — ¢* < (1 —2pucia (1 —0)?) (¢ ) + ey
<

dey
1 —2puciap(1 —6)?) (¢ )+ 7((15(17@) —¢")
4e
= (1 —2pciag(l —60)% + €f> (¢(zr) — ¢%).
Thus, using the definition of Aﬁ, we have
é 2 4 dey @
Ak+1 < |(1-2uciap(l—0)"+ . AN
Since € > 4e; (due to Assumption 4.13), we have

4e
Ai_ﬂ <1 —2ucion (1 — 60)% + ef) Af
4 4
< (1 — perag(l —60)? — ﬁuclak(l —0)* + 6f> A}f
€

= (1 - pera(1 - 60)?) (1 + 46)0) NG
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Notice that since (1+24) > 0, A? > 0, and A}, | > 0, this implies that 1— i ay,(1—

€

)2 > 0. Now taking the inverse and then the log of both sides and adding log Ag, we

have
Ay AY de;
log <A¢0 ) > log (Ag’> — log (1 — perag(l — 0)2) — log (1 + e) ,

k+1 k
which completes the proof. ]
We note here that 1 — pcyag(1—60)2 > 0 holds for all ap < & due to the constraint
e [0,5=2).
——

We now bound the amount of increase in false and successful iterations.

LEMMA 4.16. Let Assumptions 1.3, 4.12, and 4.13 hold, and consider any real-
ization of Algorithm 2.1. For every iteration that is false and successful, we have

4
Zk4+1 > 2 — log (1 + €f> .
€
Proof. For every false and successful iteration, by Lemma 4.4 we have

(1) < O(xr) — cragllgrl|® + de;.

The rest of the proof is essentially a simplification of the proof of Lemma 4.15

with the middle term of the right-hand side of (4.11) replaced by 0. |
Let
2 dey
(4.12) h(a) = —log(l — pei1 (1 —60)°a) and  r(ef) =log 1+ —|.
€

By Lemmas 4.3, 4.15, and 4.16 and Assumption 4.13, for any realization of Algo-
rithm 2.1 (which specifies the sequence {ay, 2z, }) and k < N, we have the following:
1. (Lemma 4.15) If k is a true and successful iteration, then

Zpy1 > 2k + h(ag) —r(ef) and  apy1 =7 tag.

2. (Lemma 4.3) If oy, < & and iteration k is true, then it is also successful.
3. (Lemma 4.16) If k is a false and successful iteration, then

4
241 2> 2 — log <1+ Ef) .
€

4. (Assumption 4.13) 2((2)) < v for some v € (0, 1).
Hence, Assumption 3.3 holds, with & > 0 defined in (4.5), and h(Ay) and r(es) defined
in (4.12).
We now use Theorem 3.13 and the definitions of &, h(@), r(ef), and Z, to bound
E[N].
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THEOREM 4.17. Let Assumptions 1.1, 1.3, 4.2, and 4.12 hold. Moreover, let As-
sumption 4.13 hold, i.e.,
4€f

€> e
(1 _ 2#c1(170)(1220761(179))) 1

)

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until p(Xy) — ¢* < € occurs is bounded as follows:

E[N] < (12_(12(525)_7 {210g1/M (W) + (1 —7)log, <5>} :

0

where M =1 — 2#61(1—0)(1229—@(1—9)).

REMARK 4.18. Again, if 6 = 0 = €5 = 0, our algorithm reduces to a deterministic
line search algorithm with exact function evaluations and gradients. The complexity
bound has two components: 4log; s (%), where M = 1 — w achieves its
minimum value, 1 — %, for ¢y = 1/2 and is similar to complexity bounds of the fized
step gradient descent method for strongly convex functions, and the second term again
is the bound on the total number of unsuccessful iterations.

4.1.3. Nonconvex functions. In this section, we analyze the expected com-
plexity of Algorithm 2.1 in the case when ¢ is a nonconvex function. Again, we first
specify the neighborhood of convergence. In this setting Z, = ¢(Xo) — &(Xk).

ASSUMPTION 4.19 (neighborhood of convergence, nonconvex case).

2 > 2€fL
ver (1 —60)(1 =20 — 1 (1 —0))’

with the same v € (0,1) as used in Assumption 4.2.

REMARK 4.20. The role of v is the same as in the convex and strongly convex
cases.

Let
(4.13) h(a) = cra(l — 0)?||Vo(xy)|? and r(ef) = 4ey.

By Lemmas 4.3 and 4.4 and Assumption 4.19, for any realization of Algorithm
2.1 (which specifies the sequence {ay, z;}) and k < N,, we have the following:
1. (Lemma 4.3) If k is a true and successful iteration, then

Zit1 > 2z + hlag) —r(ef) and  opq1 = Loy

2. (Lemma 4.3) If oy, < & and iteration k is true, then it is also successful.
3. (Lemma 4.4) If k is a false and successful iteration, then

Zht1 = 2 — 4deg.

4. (Assumption 4.19) 2((66{)) <~ for some ~ € (0,1).
Hence, Assumption 3.3 holds, with & > 0 defined in (4.5), and h(A) and 7(ey) defined
in (4.13).

We now use Theorem 3.13 and the definitions of &, h(@), r(es), and Z, to bound
E[N].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1512 A. S. BERAHAS, L. CAO, AND K. SCHEINBERG

THEOREM 4.21. Let Assumptions 1.1, 1.2, 1.3, and 4.2 hold. Moreover, let As-
sumption 4.19 hold, i.e.,
2 > 2€fL

ver (1 —60)(1 =20 — 1 (1 —0))’

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until |Vo(Xy)|| < € occurs is bounded as follows:

E[N] < (12_(12(525)_7 6%2 + (1 =) log, (;)] :

o d(x —¢3)L
where M = c1(17§)((13;9—c1(176))'

REMARK 4.22. Again, if 6 = 0 = €5 = 0, our algorithm reduces to a deterministic

line search with the exact gradients. The complexity bound has two components: QE—JZI,

where M = % achieves its minimum value, 4(f (xo)— f)L, for ¢ = 1/2 and is
similar to complexity bounds of the fized step gradient descent for nonconvez functions,
and the second term, as before, is the bound on the total number of unsuccessful

iterations.

4.2. General descent. For simplicity, in the analysis of the previous sections
we assumed that the search direction at every iteration was defined as dy = —gi.
Here, we show how our analysis can be extended to account for more general search
direction, e.g., the quasi-Newton search direction where dy, = —Hygy [17], provided
the search directions satisfy, together with (4.1), the following conditions:

e There exists a constant 8 > 0, such that

d{gk

(4.14) — e < -
k[l g

153 for all k.

e There exist constants 1, k2 > 0, such that
(4.15) Ellgell < lldill < rallgell  for all k.

Of course, in this setting, the modified line search would be given by (2.1), and the
convergence analysis would have dependence on 3, k1, and ks.

All we need to do is derive an expression for @ for the general search direction
case and prove analogues of Lemmas 4.3 and 4.4. First, we change the bound on 6
in Definition 4.1. In particular we will require that 6 € [O, %) Now we can
prove the following lemma.

LEMMA 4.23. Let Assumption 1.1 hold. For every realization of Algorithm 2.1, if
iteration k is true (i.e., Iy = 1), and if

2 [A-—c)(1-0)B-90
(416) O[kga—rlw 1_9 9

then (2.1) holds. In other words, when (4.16) holds, any true iteration is also a
successful iteration. Moreover, for every true and successful iteration,

O(whr1) < dlar) — cranBra(L — 0)%|Ve(ar)|? + e
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Proof. The proof is very similar to that of Lemma 4.3. First, from Assumption
1.1, we have

d(xrs1) < O(wr) + ardi V(xr) + §||akdkH2.

Applying the Cauchy—Schwarz inequality and (4.1) and (4.4), for every true iteration
we have

2L
B(xr + ardy) < d(zy) + ardf Vo(zy) + %”dkHQ
T T aiL 2
= ¢lar) + ardy, (VO(ar) — gr) + ardi gr + =5l dill
T O‘%L 2
< d(zx) + arlldullIVo(zr) = gull + andi gi) + == di|

2
ai Lkg
k2 ll || g

agl
< o(ax) + g lldelllgn ] + ondigi +

0 apLk
< oo + andfon + an [ g + 222 .

Now, using Assumption 1.3, we have

0 arLk
f(@g + andi, &) < fan, &) + ardy g + { b2

d 2¢¢.
o+ 25 Nl + 265

From this we conclude that (2.1) holds whenever

0 L
f(xkaf) +akd£gk+ak L_e ak2ﬂ2

< f(xkag) + Clakdggk + 2€fa

] delllgn ] + 2¢;

or equivalently, since oy > 0,
0 OékLKJQ
[1 9 2
Using (4.14), the above expression holds whenever oy, satisfies (4.16). Therefore, using
Assumption 1.3, (4.15), and (4.4), for every true and successful iteration we have

P(x141) < Plak) — cranBri(l = 0)2(|V(w)||” + 4ey,
which completes the proof. ]

] ldilllgell < —(1 - er)d gs.

Next, we state and prove a result for the case of false and successful iterations.
LEMMA 4.24. For every false and successful iteration of Algorithm 2.1 we have
P(zrs1) < ¢(ax) — c1Bokr||gell® + 4.
Proof. For every successful iteration we have
F(wr11,€) < flaw, &) + crandg gi, + 2¢5.
Thus, by Assumption 1.3, (4.15), and (4.4)
P(zr11) < @(x) + crapdy g, + dey
< ¢(xk) — crawpBldillllgrll + ey
< ¢(an) — cronBrallgll® + ey,
which is a repetition of the last part of the proof of Lemma 4.23. O
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The rest of the analysis (deriving expected complexity bounds) applies almost
without change, taking into account the influence of the constants 3, k1, and k.

4.3. Convergence under condition (4.3). In this section we demonstrate
how our analysis can be extended to a different setting in terms of gradient estimate
computations. To avoid introducing new notation, we will keep the discussion at a
high level, which will hopefully be clear to the reader. The precise derivations in this
sections are straightforward extensions of the derivations above.

As we have pointed out before, the key condition (4.1) can be satisfied by various
gradient approximation schemes discussed in [2]. However, all these schemes require
O(n) function evaluations to obtain g that satisfies (4.1). This can be expensive
in a high-dimensional setting. On the other hand, in many applications a stochastic
estimate of V¢(x) may be directly available, and thus g; can be computed by a sample
averaging scheme. Since we assume that the function values are computed with noise,
we cannot assume that these stochastic estimates are unbiased. However, as in the
case of the function noise, we can assume that this bias is bounded.

AssUMPTION 4.25 (biased gradient estimates). For each x, we have an ability to
compute a random vector h(x, ), which is a (possibly) biased estimate of Vo (xy), and
the bias is bounded by a known constant €4, i.e., for all x

[E[A(z,8)] = Vé(z)|| < €,
where the expectation is over random variable &.

Thus, for any ¢ > 1, by averaging a sufficiently large number of samples h(x, &)
we can compute a (random) g such that ||g — Vo(x)|| < (e4, with sufficiently high
probability. On the other hand, without knowing ||V¢(zy)|| we cannot ensure (4.1).
Here, we present the outline of the analysis of our modified line search method where
(4.1) is replaced with condition

lgr = Vo (ar) || < max{Cey, mewk |gll}

for some ¢ > 1 and x > 0. Essentially, we want to relax (4.1) as long as kol gkl
is not so small that ||gr — Vé(zi)| < rkakllgr|| cannot be enforced with sufficiently
high probability. When this happens, we want (4.1) to hold, which we can ensure by
llgr — V(x| < Ceg, as long as ||Vo(xy)| > %. Thus we need to add this lower
bound on the gradient to our definition of the stopping time.

DEFINITION 4.26.

e If ¢ is convex or strongly convex: N, is the number of iterations required until
either ¢(Xy) —¢* <€ or ||[Vo(zr)| < C% occurs for the first time. Note that
¢* = ¢(x*), where x* is a global minimizer of ¢.

o If ¢ is nonconver: N, is the number of iterations required until ||Vo(Xy)|| <
max{e, %} occurs for the first time.

For brevity, in this section we do not derive all the results, or state all the inter-
mediate lemmas, but rather state the key results, without proof. We first present the
analogue of Definition 4.1 where (4.1) is replaced with (4.3).

DEFINITION 4.27. A sequence of random gradients {Gy} is (1—0)-probabilistically
“sufficiently accurate” for Algorithm 2.1 if there exist constants ¢ > 1 and k > 0, such
that the indicator variables

I, = 1{||Gk — Vo(Xp)|| < max{Ceq, kAL G| }}
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satisfy the submartingale condition
P(I, = 1|FS5) >1-6

for all realizations off,?fl, where kaj =0(Go,...,Gr-1,Ek—1) is the o-algebra gen-
erated by Gy, ...,Gr_1 and Ex_1 for all realizations. Moreover, we say that iteration
k is a true iteration if the event I, = 1 occurs; otherwise the iteration is called false.

We assume (as was done in section 4.1) that Assumption 4.2 holds for Defi-
nition 4.27. In order to prove expected complexity bounds under (4.2), we make
the following minor modification to Algorithm 2.2. When the step is successful,
apy1 = min{7 Yoy, max }, where apay > 0.

LEMMA 4.28. Let Assumptions 1.1 and 1.3 hold. For every realization of Algo-
rithm 2.1, if iteration k is true (i.e., Iy = 1), and if

(4.17) akS&min{Z(IQQCl(IQ)) 2(101)}7

L(1-6) " L+2k

then (2.1) holds. In other words, when (4.17) holds, any true iteration is also a
successful iteration. Moreover, for every true and successful iteration,

(4.18) ¢(xk+1>s¢<xk>—clakmin{<1—e>2, . 2}|w<xk>||2+4ef-

(1 + Kamax)

Furthermore, for every false and successful iteration of Algorithm 2.1, we have

G(zrt1) < dak) — cra|gnl|® + dey.

We should note that if g is the true gradient, we recover the step size parameter
condition from the deterministic setting.

We now present the complexity bounds for condition (4.3) for convex (Theorem
4.29), strongly convex (Theorem 4.30), and nonconvex (Theorem 4.32) functions.

THEOREM 4.29. Let Assumptions 1.1, 1.3, 4.25, 4.2, and 4.5 hold. Moreover, let
Assumption 4.6 hold, i.e.,

86fD2

~e; min { (1—9)(1—22—01(1—9)) 1—c; }

€2 > max , 166? ,

? (L+2k) (1+Kamax )2

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until p(Xy) — ¢* < € or ||Vo(Xy)|| < C% occurs
is bounded as follows:

1= 25 (L ) 0 (2)]

D2
{(179)(1729701(179)) 1—cq } .
L P (L+2k)(1+Kamax)?

where M =

c1 min
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THEOREM 4.30. Let Assumptions 1.1, 1.3, 4.25, 4.2, and 4.12 hold. Moreover, let
Assumption 4.13 hold, i.e.,
dey ey

. —0)(1—20—c,(1—6 —c - 791,02
(1——2uclnnn{(1 =200 ”,(L+anﬁ1+2amm>2}) _1 4K

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until ¢(Xi) — ¢* < € or [|[Vo(Xi)|| < % occurs
is bounded as follows:

€ > max

REMARK 4.31. In the last two theorems the bound on E[N.| depends on e but
not on €4. This bound should be understood as the bound on expected complexity to
reach e-accuracy in terms of the function value. If ||Vo(Xi)| < % occurs before
the e-accuracy in the function value is reached, the bound clearly still holds. The
next theorem derives the bound on the complexity of reaching e-accuracy in terms
of IVO(Xk)||, which applies to convexr and nonconvex functions, and has no direct

implications on accuracy in terms of the function value.

THEOREM 4.32. Let Assumptions 1.1, 1.2, 1.3, 4.25, and 4.2 hold. Moreover, let
Assumption 4.19 hold, i.e.,

2¢; ey
{ (1—-6)(1—20—c1 (1—6)) 1—c; }’ 62 ’
L

62 > max

Y€1 1M ? (L+2k) (1+Kamax )2

with the same v € (0,1) as used in Assumption 4.2. Then the expected number of
iterations that Algorithm 2.1 takes until |Vo(Xy)|| < € occurs is bounded as follows:

BN < g |+ (= log, ().

(1-20)2 -~
_ p(z0)—
where M = . min{ (1-6)(1-20—c;(1-6)) T—cy } :
! L (TH2m) (It ramax) 2

REMARK 4.33. If 0 = 0 = kK = € = ¢4 = 0, our algorithm reduces to a de-
terministic line search algorithm with exact function evaluations and gradients. The
dependence on the target accuracy € is the same as that of a deterministic line search
algorithm.

REMARK 4.34. Independent of the condition used on the gradient accuracy (con-
dition (4.1) or (4.2)), the dependence on € (the target accuracy) and o (the probability
of a true iteration) is the same. Moreover, in the setting where § = k = €5 =0, the
results are identical. Finally, determining which condition is stronger is not trivial as
it depends on the iteration-specific quantities |Vé(xk)ll, |lgxll, and ay.
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5. Final remarks. We presented the analysis of a modified line search method
that can be applied to functions with bounded noise, and where the gradient approxi-
mations gy are possibly random, e.g., Gaussian smoothed gradients [16, 20] or sphere
smoothed gradients [8, 9]. However, as a special case, we recover results for gradient
approximations that are not random (§ = 0), e.g., finite difference approximations
[1, 10] or linear interpolation gradient approximations [7].

Furthermore, we discuss the effect of the parameter 7, which plays a crucial
role in the analysis presented. This parameter depends on the error in the function
evaluations, and effectively controls the size of the neighborhood of convergence, i.e.,
the lower bound on the e. When there is zero error in the function evaluations, i.e.,
e(x) = 0 for all x € R™, v can be chosen arbitrarily close to zero, in which case we
recover the exact convergence results from [6].

Finally, while our analysis assumes that the step size parameter is chosen using
an adaptive line search procedure (Algorithm 2.2), and thus varies at every iteration,
it also holds for a constant step size parameter choice. Namely, if g < & and 7 =1,
then a < & for all k, and all true iterations are also successful iterations. Thus, as a
special case of the analysis presented in section 4, we recover results for a fixed step
size parameter procedure. We should note that the second term in the complexity
bounds is zero in the case where 7 = 1 and oy = a.

We establish a bound on the expected number of iterations N, that the algorithm
takes until it reaches the desired near-optimal neighborhood. This is in contrast with
the analyses of many other stochastic algorithms (such as stochastic gradient), where
a bound is established on the expected “proximity” to the optimum (e.g., the expected
smallest size of the gradient) achieved sometime during a given number of iterations.
However, in all these cases there are no guarantees that the algorithm will remain
in the near-optimal neighborhood, once it reaches it. To analyze the behavior of a
stochastic algorithm, near optimality is a nontrivial task and requires considering the
nature of the function in and near such a neighborhood. For example, for nonconvex
functions, where the algorithm may converge to a near-saddle point, it will very likely
leave the neighborhood and never return to it. On the other hand, if the objective
function is strongly convex in the near-optimal neighborhood, then the algorithm
is very likely to either stay in this neighborhood or keep returning to it frequently.
Formally analyzing this behavior is the subject of a separate study.
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