symmetry

Article

Quantum Heat Engines with Singular Interactions

Nathan M. Myers *(, Jacob McCready ! and Sebastian Deffner >*

check for

updates
Citation: Myers, N.M.; McCready, J.;
Deffner, S. Quantum Heat Engines
with Singular Interactions. Symmetry
2021, 13, 978. https://doi.org/
10.3390/sym13060978

Academic Editor: Ralph V.

Chamberlin

Received: 29 April 2021
Accepted: 21 May 2021
Published: 31 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
fg43019@umbc.edu

2 Instituto de Fisica ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, Brazil

*  Correspondence: myersnl@umbc.edu (N.M.M.); deffner@umbc.edu (S.D.)

Abstract: By harnessing quantum phenomena, quantum devices have the potential to outperform
their classical counterparts. Here, we examine using wave function symmetry as a resource to
enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic
working medium can yield better performance than a fermionic medium. We expand upon this work
by incorporating a singular interaction that allows the effective symmetry to be tuned between the
bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to
Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of
“statistical anyons”, we explore the interplay between interparticle interactions and wave function
symmetry on engine performance.
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1. Introduction

Thermodynamics was originally developed as a physical theory for the purpose of
optimizing the performance of large-scale devices, namely steam engines [1]. Despite
these practically-focused origins, thermodynamics has proven enormously successful in
formulating universal statements, such as the second law. With the growing prominence of
quantum technologies, the field of quantum thermodynamics has emerged to understand
how the framework of thermodynamics can be extended to quantum systems [2]. One
of the principal goals of quantum thermodynamics is to discover how quantum features,
such as entanglement, superposition, and coherence, can be best leveraged to optimize the
performance of quantum devices.

In the tradition of thermodynamics, the analysis of quantum heat engines has provided
one of the primary tools for exploring how quantum effects change the thermodynamic
behavior of a system. A non-exhaustive list of literature analyzing quantum thermal
machine performance includes works examining the role of coherence [3-10], quantum
correlations [11], many-body effects [9,12-15], quantum uncertainty [16], relativistic ef-
fects [17-19], degeneracy [20,21], endoreversible cycles [22-24], finite-time cycles [8,25-27],
energy optimization [28], shortcuts to adiabaticity [7,12,13,29-35], efficiency and power
statistics [36-38], and comparisons between classical and quantum machines [22,39-41].
Implementations have been proposed in a wide variety of systems including harmonically
confined single ions [42], magnetic systems [43], atomic clouds [44], transmon qubits [45],
optomechanical systems [46,47], and quantum dots [48,49]. Quantum heat engines have
been experimentally implemented using nanobeam oscillators [50], atomic collisions [51],
and two-level ions [52].

A notable feature of quantum particles is that they are truly indistinguishable. To
account for this, the wave function of a multiparticle state is constructed out of the symmet-
ric (for bosons) or antisymmetric (for fermions) superposition of the single particle states.
This wave function symmetry has physical consequences in terms of state occupancy,
with any number of bosons allowed to occupy the same quantum state while fermions
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are restricted to single occupancy—the famous Pauli exclusion principle. The superposi-
tion arising from the symmetrization requirements also leads to interference effects that
manifest as “exchange forces” in the form of an effective attraction between bosons and
effective repulsion between fermions [53]. Wave function symmetry leads to quantum
modifications of thermodynamic behavior, allowing for more work to be extracted from in-
distinguishable particles through mixing [54], or as the working medium of a quantum heat
engine [24,55-57]. In [57], we showed that for a working medium of two non-interacting
identical particles, a harmonic quantum Otto engine exhibits enhanced performance if
the particles are bosons and reduced performance if they are fermions. In this paper we
expand upon these results by introducing an interaction proportional to the inverse square
of the interparticle distance in addition to the standard harmonic potential. This model is
often referred to as the singular [58] or isotonic oscillator [59].

This potential is of particular interest as it provides the basis for the Calogero—
Sutherland model [60,61], a system known to host generalized exclusion statistics (GES)
anyons [62,63]. In the framework of GES, the Pauli exclusion principle is generalized to al-
low for a continuum of state occupancy, from the single occupancy allowed to fermions up
to the infinite state occupancy allowed to bosons [62]. In the Calogero-Sutherland model
this anyonic behavior arises from tuning the interparticle interaction strength, effectively
interpolating between the bosonic and fermionic exchange forces [63].

We determine a closed form for the thermal state density matrix for two particles
in the singular oscillator potential. By mapping to an equivalent system of “statistical
anyons” [24] consisting of a statistical mixture of bosons and fermions, we determine the
time-dependent internal energy while varying the oscillator potential. We then analyze
a quantum Otto cycle, demonstrating performance that interpolates between the bosonic
and fermionic of [57] as the interaction strength parameter is changed.

2. The Two-Particle Singular Oscillator

We begin by outlining the model, notation, and previous results from the literature
that are central to our analysis. We use the following Hamiltonian for two particles in a
singular oscillator potential [63,64],

hv(v—1)

2 2
g Pt + p2 ,
2111()(1 — X2)2

1
m + Emwz (X12 + X22) +

@
where the parameter v quantifies the strength of the interparticle interaction. Following
Calogero’s original approach [60], we rewrite this Hamiltonian in the center of mass and
relative coordinate frame using the momentum coordinate transformations P = p1 + p1,
p = (p1 — p1)/2 and the position coordinate transformations X = (x1 + x1)/2, X = x1 — X.
With this transformation, we can solve the dynamics of the center of mass and relative
coordinates separately,

Hey = P—2+1M 'G 2
CM — 2M 2 w 7 ( )
2
P 1 5,5, Ww-1)
H.,=>—+4= 7 -/
rel z‘u + zyw X + 4yx2 4 (3)

where M = 2m and p = m/2. We see that the center of mass Hamilton is identical to that
of an unperturbed harmonic oscillator for a single particle of mass 2m, while the relative
motion Hamiltonian is identical to that of a singular oscillator with a single particle of mass
m/2. Note that this approach is very commonly applied when solving the dynamics of
classical interacting oscillator systems [65].
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The eigenfunctions and eigenenergies of Equation (2) are well known, and those of
Equation (3) have been determined directly [59,60], using operator methods [66] and as a
generalization of the Morse potential [58]. The eigenfunctions are,

1 2
_ (pwyNat) [ el _HWXT N\ y—12 (B9 o
Prel (x) = ( - ) F(n+1/+1/2)x exp o L}, ( X ), 4)

with the corresponding eigenenergies,

1
Eo = hw <2n—|—1/+ 2), (5)

where n = 0,1,2, ... and L% (x) is the generalized Laguerre polynomial [67].

For indistinguishable quantum particles, the total wave function must remain sym-
metric under particle exchange for bosons, and antisymmetric for fermions. In the cen-
ter of mass and relative coordinate framework, the symmetry condition is satisfied by
Prel(x) = Pre(—x) for bosons and e (x) = —iPre(—x) for fermions [61]. Examining
Equation (4), we see that the parity depends on the value of the interaction strength
parameter v. Noting the relationship between the generalized Laguerre and Hermite
polynomials [68],

Ha, (x) = (—1)" 22" n! L, /2 (x?)

(6)
Hyyy1(x) = (=1)" 22" ntx L2 (x?),

along with the Gamma function identity [67],

F(n + ;) _emt o )
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we see that for v = 0, Equation (4) becomes,

e B 1 Hw 1/ Ju;;z [uw
lprel()(x)_ \/W |(7‘[7’l> e H2n< hX) (8)

Similarly, for v = 1, Equation (4) becomes,
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For v = 0 and v = 1, we see that the interaction potential vanishes, reducing
Equation (1) to the Hamiltonian of two particles in a pure harmonic potential. We note that
Equations (8) and (9) correspond to the eigenfunctions of the relative motion Hamiltonian
for two bosons and two fermions in a pure harmonic potential, respectively. The restriction
of Equation (8) to even and Equation (9) to odd Hermite polynomials ensures that the
proper exchange symmetry conditions are satisfied. This demonstrates that interacting
particles in the singular oscillator potential can be treated as noninteracting anyons in a
harmonic potential obeying generalized exclusion statistics [62], with v as the parameter
that controls the nature of the particle statistics. This behavior was first established by
Murthy and Shankar in the context of the thermodynamics of the Calogero-Sutherland
model [63].

3. Singular Oscillator Thermal State

The equilibrium thermodynamic behavior of the two-particle singular oscillator can
be determined from the canonical partition function,

Z = tr{exp(—pH)}. (10)
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Noting H = Hcwm + Hpel, the partition function can be split into the product of
individual partition functions for the center of mass and relative motion. The center of
mass partition function can be found straightforwardly in the energy representation using
the harmonic oscillator eigenenergies,

R _y _ 17 _ exp(phw/2)
ZCM—NZ:;Oexp( BEcm) Nz_;oexp< ﬁhw{N—i—z}) oxp(phc) — 1 (11)

We can find the relative partition function using Equation (5),

Zpol = éexp(—ﬁErel) = éexp(—ﬁhw {Zn +v+ ﬂ) _ exgig?z(;;%fa/))z:f]) (12)

The total canonical partition function is then,

ez ew(phelv—2)
7 Pentnl = (o) + 1lexp (o) — 1 "

Equation (13) can be identified as a product of bosonic and fermionic contributions. To
this end, note that the partition functions for two bosons and two fermions in a harmonic
potential are [24],

exp(2Bhw)

= [exp(Bhw) + 1][exp(Bhw) — 1]27 (14)

and,
— exp(Bhw)
Zp = [exp(Bhw) + 1][exp(Bhw) — 1] (15)

Therefore we can express the singular oscillator partition function (13) as,

Z = (Zg)" " (zZp)". (16)

This agrees with the partition function determined by Murthy and Shankar for the
Calogero-Sutherland model [63] and that of a statistical mixture of bosons and fermions in
a harmonic potential, using the framework of statistical anyons [24].

A fuller thermodynamic picture arises from the equilibrium thermal density matrix.
This can be determined in position representation using,

[e.0)

p0uy) = Y 5 exp(—BEY () 17)

n=0

The density matrix for the center of mass motion is given by the known thermal state
of the quantum harmonic oscillator [69],

1 Mwcsch(Bhw)

X exp(—A;I;lU [(X + Y)ztanh(ﬁzw) +(X - Y)%oth(ﬁr;wﬂ )

The density matrix for the relative motion can be found in closed form by combining
Equations (4) and (17) and applying the Hardy—Hille formula [70],

- n! 14 14 n __ 1 (x+]/)t ZW
Eor(nMH)L"(x)L"(y)t = Gyt 21— 1) exP(‘ 1t >I< 1—¢ ) (19

(18)
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where I, (x) is the modified Bessel function of the first kind [67]. This yields,

1 pw
PI'El(x’y) _Zrel Zh CSCh(ﬁhw)\/@

(20)
Iy P il
X exp( o (x +y ) coth(ﬁhw))Ivf%( 7 xycsch([%hw)).
The total thermal state density matrix in the position representation can then be
determined from the simple Cartesian product of pcy and pre, Equations (18) and (20),
respectively,

(X, Y, x,y) = pcm (X, Y)prel (X, y)- (21)

4. Singular Oscillator Dynamics

With the equilibrium behavior of the two-particle singular oscillator established, we
next consider the evolution of the system for a time-dependent parameterization of the
frequency, w = w(t). As in the case of the thermal state, we will treat the dynamics of the
relative and center of mass motion separately.

The dynamics of the center of mass coordinate, described by Equation (2), are that of
the well-studied time-dependent parametric harmonic oscillator [71]. The time-evolved
state can be determined using the path integral formulation by applying the appropri-
ate propagator,

pem (X, Y;t) = /dxo/dYo Ucwm(X, Xo; t) pem(Xo, Yo; 0) Usy (Y, Yos t), (22)

where Ucy (X, Xo; t) is given by [71],

M ZM B 2 2
X, Xo; t) = Zi X —2XXo+ Wi X3) ). 2
Uew (X, X03t) = \| 57 5P (37 (2 o+ Wi 3) ) )

Z; and W; are time-dependent solutions to the classical harmonic oscillator equation
of motion,

Zt + (UtzZt =0, (24)

with initial conditions Zg = 0, Zg = 1and Wy = 1, Wy = 0.

The dynamics of the relative coordinate, described by Equation (3), are that of the
time-dependent parametric singular oscillator. The corresponding propagator for this
Hamiltonian has also been determined exactly [72-75],

m/XXo mxx
Urel (X, x0, 1) :m Ju-1,2 <thO>
t

. (25)
X exp(—;z’(v +1/2)+ i(Z',gxz + th%)>,

207y

where J, (x) denotes the Bessel function of the first kind [67] and Z; and W; are the same
as in Equation (24). As in the center of mass case, the time-evolved density matrix for the
relative motion is given by,

Prel(XI Y;t) = /de/dyO urel(xrxo;t) prel(xOryo;O) u:el(yryo;t)- (26)

While the integrals in Equation (22) can be carried out analytically [76-78], the product
of Bessel functions in Equation (26) makes determining a closed-form expression for general
values of v difficult. To determine an analytical expression for the time-evolved state, we
instead turn to the framework of statistical anyons [24].

In [24], we showed that the behavior of a pair of particles in a non-interacting statistical
mixture of boson and fermion pairs is, on average, fully equivalent to that of interacting
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particles obeying generalized exclusion statistics. In this framework, the generalized
exclusion statistics parameter is equivalent to the probability that a given pair of particles
in the statistical mixture are fermions, pg [24]. In the context of this work, this means that
we can exactly map the behavior of particles in a singular oscillator potential to the average
behavior of a statistical mixture of bosons and fermions in a harmonic oscillator potential.
Using this mapping, the singular oscillator density matrix is given by,

p(x1,%2,y1,y2:t) = (1 — pE) pﬂzz(xbxz,yuyz; t) + pr pfl?r(xhxbyl,yz; t), (27

where p}(lﬁi(xl, X2,Y1,Y2;t) and p}(l?r(xl, X2,Y1,Y2;t) are the time-evolved states for two non-
interacting bosons and fermions in a harmonic potential, respectively. The full expressions
were determined in [57] and are provided in Appendix A for completeness. Note that in
Equation (22), we have switched back into the individual particle frame. Recalling that
the generalized exclusion statistics parameter for the singular oscillator is given by the
interaction strength [63], we have the relation pg = v.

The time-dependent average energy can be determined in the usual manner,

(Hi) = tr{p(x1,%2,y1,y2:t) Ht }. (28)

Using Equation (27), this becomes,
(Hi) = (1= v) (i) + v{Hy). (29)

In [57], we found <H}(1§2) and <H}(1F)> to be,

ar

(HE) = "% " (3coth(Bhen) + esch(Bhan) ~ 1), (30)
and,
(HE) = "9 o (3coth(Bhewy) + esch(Bhewo) + 1), 1)

where wy is the frequency at t = 0 and Q* is a dimensionless parameter that measures the
degree of adiabaticity of the evolution [71],

Q" =

oo (w (wPz? + 22) + (wPWP + WE) . (32)

For a perfectly adiabatic stroke, Q* = 1, and in general, Q* > 1 [42,71]. By combining
Equations (29)—(31), we find,

(H;) = %Q* (3 coth(Bwolt) 4 csch(Bwoh) + 2v — 1). (33)

Note that (H;) = (wt/wo)Q*(Hp), where (Hp) is the internal energy of the equilib-
rium thermal state, which can be determined from Equation (13) using,

9
op

This expression for (H;) agrees with the result of [55], which determined the time-
dependent average energy of the singular oscillator using the scale invariance of the potential.

(Hy) = —— In(Z). (34)

5. The Quantum Otto Cycle

The quantum Otto cycle, like its classical counterpart, consists of four strokes: (1)
isentropic compression, (2) isochoric heating, (3) isentropic expansion, and (4) isochoric
cooling. For our working medium of two particles confined within a singular oscillator,
the isentropic strokes consist of increasing the oscillator frequency for compression and
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decreasing it for expansion. The cycle is illustrated graphically in Figure 1. During an
isentropic stroke, the state of the working medium evolves unitarily with constant von
Neumann entropy, thus fulfilling the isentropic condition. This is notably different from the
classical Otto cycle in which the isentropic strokes are thermodynamically adiabatic and
reversible. For the quantum cycle, the finite time unitary strokes are not generally adiabatic
(i.e., in accordance with the quantum adiabatic theorem) and thus subject to “quantum
friction” in the form of nonadiabatic excitations to other energy states [2].

The isochoric strokes consist of coupling the working medium to a hot (cold) bath to
increase (decrease) the energy of the system while holding the oscillator frequency constant.
We make the standard assumption that the thermalization time is sufficiently short such
that the working medium has achieved a state of thermal equilibrium with the bath by the
end of each isochoric strokes, which removes the need to explicitly model the system-bath
interaction [12,15,24,29,32,42,57,79,80]. Note that, unlike the classical quasistatic Otto cycle,
the quantum Otto cycle is fundamentally irreversible [2]. The working medium is only in a
state of thermal equilibrium with the cold and hot baths at points A and C, respectively.
The nonadiabatic nature of the isentropic strokes will drive the system away from these
equilibrium states during the rest of the cycle. The thermalization of the resulting out-of-
equilibrium states during the isochoric strokes is then the source of the irreversibility of the
cycle [2].

(H)

w1 w2

Figure 1. Energy—frequency diagram of a quantum Otto cycle.

We consider a linear driving protocol for duration 7, such that the time dependence of
the frequency is given by,

+ 1/2
w0 = (wg +(sz) , (35)

for the compression stroke and,

) I\ 172
wr = (wr—dw—) (36)

for the expansion stroke. Note that for this driving protocol, Equation (24) can be solved
analytically and yields solutions in terms of the Airy functions [76].

To determine the average heat and work exchanged during each stroke, we use the
following method. We determine the internal energy at the beginning of the compression
stroke (point A in the cycle) from a thermal equilibrium state with the cold bath. Then
using Equation (33), we determine the internal energy at the end of the compression stroke
(point B). The change in internal energy between A and B gives the average work done
on the system (W;). We can find the the internal energy at point C using the thermal
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equilibrium state with the hot bath. The change in internal energy between C and B gives
the average heat exchanged with the hot bath (Q>). Again, applying Equation (33), we find
the internal energy at the end of the expansion stroke (point D). The change in internal
energy between C and D gives the average work done by the system (W;). Finally, we can
then use the difference in internal energy between points D and A to find the average heat
exchanged with the cold bath (Q4).

With the average work and heat for each stroke in hand, we can then calculate the
efficiency from the ratio of the total work to the heat input and the power from the ratio of
total work to the cycle time,

_ (W) +(W5)
n=- Q) and P=-— Toye . (37)

We consider isentropic strokes of equal duration, 71 = 73 = 7. As we do not explicitly
model the system—bath interaction, we represent the duration of the isochoric strokes as
a multiplicative factor of the isentropic stroke duration. Thus, we can represent the total
cycle time as Tcyc = 27. The full expressions for the efficiency and power are cumbersome
and detailed in Appendix B.

In Figure 2, we plot the engine efficiency as a function of the ratio of bath temperatures.
Confirming the results of [57], we see that the efficiency is greatest in the non-interacting
bosonic limit of v = 0 and least in the non-interacting fermionic limit of v = 1. Between
these limits, we observe that increasing the interaction strength from zero to one inter-
polates the efficiency smoothly between the bosonic and fermionic bounds. In Figure 3,
we plot the engine efficiency as a function of the stroke time, 7. Again, we see that v = 0
provides the greatest efficiency and v = 1 the worst, with intermediate values of v falling
between these limits. We see that increasing the stroke time results in increasing efficiency,
approaching the bound of # = 1 — wy/w+ achieved in the limit of perfectly adiabatic
strokes (Q* = 1). We note that in the limit of long stroke times the efficiency converges
to this limit for all values of v. This indicates that the influence of the interaction on the
engine performance is a fundamentally nonequilibrium effect. The oscillatory behavior of
the efficiency arises from the form of Q* for the linear protocol.

Next, we examine the power output of the engine as a function of the ratio of bath
temperatures, as shown in Figure 4. As with the efficiency, we see that the bosonic limit
(v = 0) gives the greatest power output, and the fermionic limit (v = 1) gives the least.
Intermediate values of v fall between these bounds. In Figure 5, we plot the power as a
function of the stroke time. As in the case of the efficiency, we see that the shift in the power
output arising from the interaction vanishes as the stroke time increases.

0.30"

0.25

0.20

0.15

0.10

0.05

Thot/ T
0 2 4 6 S 10 hot/ cold

Figure 2. Efficiency as a function of the bath temperature ratio for v = 0 (blue, dashed), v = 1/2
(red, solid), and v = 1 (green, dot-dashed). Parameters are wy = éw = 7 = 1.
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0.5

0.4

0.3

0.2

0.1

0 1 2 3 A 5°

Figure 3. Efficiency as a function of the stroke time for v = 0 (blue, dashed), v = 1/2 (red, solid),
and v = 1 (green, dot-dashed). Parameters are wg = T. = 1, T, = 4, 0w = 3.
P

0.6

0.5
0.4
0.3
0.2

0.1

, .
1.5 2.0 2.5 3.0 3.5 4.0Th0t/Tco]d

Figure 4. Power as a function of the bath temperature ratio for v = 0 (blue, dashed), v = 1/2 (red,
solid), and v = 1 (green, dot-dashed). Parameters are wy = dw = 7 = 1.

0.6,
0.5
0.4
0.3
0.2

0.1

0 1 2 3 4 57

Figure 5. Power as a function of the stroke time for v = 0 (blue, dashed), v = 1/2 (red, solid), and
v = 1 (green, dot-dashed). Parameters are wy = T = 1, T, = 4, 0w = 3.

Examining both efficiency and power plots, we observe that the zeroes for efficiency
and power all occur at finite values of the bath temperature ratio or stroke time. These
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zeroes mark the transition to the parameter regimes where the cycle no longer satisfies the
conditions,
<Q2> >0, <Q4> <0, and <Wl> + <W3> = <Wt0t> <0, (38)

where we use the convention that work or heat flowing into the system is positive. These
are known as the positive work conditions and must be met for the cycle to function as an
engine. In the parameter regimes where the positive work conditions are not satisfied,
efficiency and power are no longer meaningful metrics of performance. In these regimes,
the cycle functions instead as a heater, accelerator, or refrigerator. In a heater, work is put
into the system to induce heat flow into both baths, ((Q2) < 0, (Qs) < 0, (Wiet) > 0). Inan
accelerator, work is put into the system to enhance the flow of heat from the hot to the cold
bath ((Q2) > 0, (Q4) < 0, (Wiot) > 0). Lastly, in a refrigerator, work is put into the system
to induce heat flow from the cold to the hot bath ((Q,) < 0, (Qg4) > 0, (Wiot) > 0).

We note that the values of the bath temperature ratio and stroke time for which the
system transitions out of the engine regime vary for different values of v. To further explore
this relationship, in Figure 6, we show the parameter space under which the cycle functions
as each type of thermal machine for different interaction strengths. We see that for short
stroke times, v = 0 displays the smallest heater and accelerator regimes, and the largest
engine regime, while v = 0 displays the largest heater and accelerator regimes, and the
smallest engine regime. Intermediate values of v fall between these limits. In general,
we see that as cycle time increases, the heater and accelerator regimes vanish, as do the
differences in the parameter space for the different values of v.

0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25

1 1

5 50z
&

10 0 =

15 15

2.5 ) . 2.5
T T T

(@) (b) (©)
Figure 6. Parameter regimes where the cycle functions as a refrigerator (dark blue, top), heater (light blue, upper middle), accelerator
(tan, lower middle) and engine (orange, bottom) for (a) v = 0, (b) v = 0.5, and (c) v = 1. Parameters are wy = dw = 1.

6. Discussion

In this work, we have analyzed the performance of a quantum Otto engine with a
working medium of two interacting particles in a singular oscillator potential, includ-
ing the efficiency, power output, and parameter regimes where the cycle functions as
different types of thermal machines. We have determined the full time-dependent dynam-
ics using the framework of statistical anyons and shown that by changing the strength
of the interparticle interaction, we can interpolate between the performance of bosonic
and fermionic working mediums. We see that the impact of the singular interaction on
the engine performance vanishes for long stroke times, as the engine approaches fully
adiabatic performance, indicating that the performance differences are a fundamentally
nonequilibrium phenomena. Consistent with the results of [57], we have found that the
best performance in regards to both efficiency and power arises in the limit of v = 0,
in which the interparticle interaction vanishes and the particles behave as ideal bosons
in a pure harmonic potential. While interacting particles yield reduced performance in
comparison to ideal bosons, they yield enhanced performance in comparison to ideal
fermions. As performance depends directly on the interaction, such an engine may have
other applications as well, for instance using differences in performance to measure the
generalized exclusion statistics parameter of an anyonic system.
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By incorporating interparticle interactions, we extend our exploration of the impact of
wave function symmetry on heat engine performance to a more physically realistic model.
The inverse square interaction potential in particular arises in the case of electron—dipole
interactions [81,82] and, as previously noted, as the basis of the Calogero-Sutherland
model. In general, solving the dynamics of interacting systems is significantly more
challenging than in the idealized case. Here, we demonstrate the usefulness of the statistical
anyon framework in overcoming this challenge, as it provides a simple and novel method
for mapping the dynamics of interacting particles to that of a mixture of ideal bosons
and fermions.

Introducing a time-dependent interaction strength would open up the possibility of
optimizing performance by varying the behavior of the particles between that of bosons
and fermions during the engine cycle. Engine power output could also be optimized by
minimizing the duration of the compression and expansion strokes while suppressing nona-
diabatic excitations [83], which can be accomplished using shortcuts to adiabaticity [84,85].
However, for an accurate performance assessment in such cases, it is important that the
cost of implementing the shortcut is also accounted for [29-31,35,86-88]. We leave these as
topics to be explored in future work.

The Calogero—Sutherland model described by Equation (1) has received extensive
study in the context of generalized exclusion statistics, and due to its direct connection to
spin-chain models, such as the Haldane-Shastry chain [89-92], which provide a promis-
ing route for experimental realization in trapped atom systems [93-96]. Such systems
may provide a means of experimentally implementing a singular quantum heat engine.
Furthermore, generalized exclusion statistics anyons can be used to replicate the thermody-
namic behavior of fractional exchange statistics anyons that manifest in two-dimensional
systems [24]. These anyons are highly sought after due to their close relationship to
non-ableian anyons, which may be used to implement fault-tolerant topological quantum
computers [97]. However, direct observation and manipulation of fractional exchange
statistics anyons is extremely difficult [98]. Using the well-established framework of heat
engines to understand the thermodynamic behavior of systems that display intermediate
statistics, such as the singular oscillator examined here, may lead to better methods of
detection and control for fractional exchange statistics anyons.
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Appendix A

In this appendix we provide the full expressions for the time-dependent density
operators for two bosons and two fermions in a harmonic potential. The density operator
for bosons is,

(B) N mw < —Bhw )
X1,X2,Y1,Ya;t) = e -1
Phar (1, %2, Y1, Y2 1) 2711‘1(Wt2 +Zt2w2)
y {em(w?:’:ztzwz) [i(x%+x§7y%,y%)(WtWt+ZtZ'tw2)ﬂu(x%+x§+y%+y%)coth(/3hw)+2w(x1y1+x2y2)csch(/3hw)] (A1)

N em [i(x%-&-x% —y% —y%) (W,Wt+Ztth2)—w(x%+x%+y% +y%)coth(/3hw)+2w(x2y1 +x1y2)csch(/5hw)] }

The density operator for fermions is,

(F) ) — mw Bhw
phar(x1/x2/y1'y2’ t) - znh(wtz + ZtZwZ) (e 1)

m [i(x%-&-x%—y%—y%)(WtWt+Zthw2)—w(x%-&-x%-i—y%+y%)coth(ﬁhw)+2w(x1y1+x2y2)csch(ﬁhw)]
% d WP +7] (A2)

m
M(WZ+27w?)

. [i(x%+x% 7y%7y%) (WiWi+Z Zw?) 7w(x%+x%+y%+y%)coth(ﬂhw)+2w(xzyl +x1y2)csch(ﬂhw)] }

Note that Z; and W; are the same as in Equation (24).

Appendix B

In this appendix we provide the full expressions for the engine efficiency and power
output. The efficiency is,

wq [ Q3 (=3 coth(Byhw-) — csch(Byhiwr) +2v — 1) 4 3 coth(Bchiwy) + esch(Bchiwy) —2v +1
wr | Qi (=3 coth(Bchwy) — csch(Bchwy) +2v — 1) + 3 coth(Byfiws) + esch(Bphw) —2v +1]°

(A3)

where Q7 is the adiabaticity parameter for stroke 1 (compression) and Q3 is the adiabaticity
parameter for stroke 3 (expansion). The power output is,

p —421_ [wo (3 coth(Bchwy) + esch(Behwy) — 2v + 1) + w (Q7 (—3 coth(Bchwy) — csch(Bchiwg) +2v — 1) (Ad)

+ 3 coth(Byhw) + esch(Bphw) — 2v + 1) + Qiwo(—3 coth(Bhwr) — esch(Byhiw) +2v —1)].
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