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ARTICLE INFO ABSTRACT

Keywords: Denitrification is a significant regulator of nitrogen pollution in diverse landscapes but is difficult to quantify. We

Denitrification examined relationships between denitrification potential and soil and landscape properties to develop a model

I{Jar;d use management that predicts denitrification potential at a landscape level. Denitrification potential, ancillary soil variables, and
rbanization

physical landscape attributes were measured at study sites within urban, suburban, and forested environments in
the Gwynns Falls watershed in Baltimore, Maryland in a series of studies between 1998 and 2014. Data from
these studies were used to develop a statistical model for denitrification potential using a subset of the samples
(N = 188). The remaining measurements (N = 150) were used to validate the model. Soil moisture, soil respi-
ration, and total soil nitrogen were the best predictors of denitrification potential (Rzadj = 0.35), and the model
was validated by regressing observed vs. predicted values. Our results suggest that soil denitrification potential
can be modeled successfully using these three parameters, and that this model performs well across a variety of
natural and developed land uses. This model provides a framework for predicting nitrogen dynamics in varying
land use contexts. We also outline approaches to develop appropriate landscape-scale proxies for the key model
inputs, including soil moisture, respiration, and soil nitrogen.

Nutrient pollution

1. Introduction

The acceleration of atmospheric nitrogen (N) fixation to plant-
available reactive forms by human activity has motivated studies of
regional N fate and transport (Vitousek et al., 1997). There is particular
interest in denitrification, an anaerobic microbial process that reverses
this process by converting reactive N into N gases; however, this process
is difficult to quantify, especially at large scales (Seitzinger et al., 2002).
In an analysis of 16 large watersheds in the northeastern United States,
denitrification was estimated to be the largest remaining N loss once
known input, output and storage terms were considered, accounting for
34% of total storage and loss on average (Van Breemen et al., 2002).
While regional mass balances such as these are helpful in quantifying the
importance of landscape denitrification, they provide no predictive
power or assessment of spatial variation in the process.

* Corresponding author.

Regional-scale denitrification models vary in their predictive goals,
with some focused on depicting mechanistic processes of the nitrogen
cycle, and others intended for regional landscape management, with
large differences in model algorithms and data inputs (Boyer et al.,
2006). While mechanistic models focus on how denitrification interacts
with microbial processes and soil parameters, regional management
models typically focus on quantifying the environmental conditions in
which denitrification is expected to occur. Urban ecosystems and land-
scapes pose a great challenge for these models. The complexity of
infrastructure, site disturbance, human behavior, and highly fragmented
land ownership in urban areas complicates parameterization of both
mechanistic and empirical denitrification models.

Multi-scale studies show that landscape denitrification potential is
driven by local-scale site characteristics rather than landscape-scale
factors (Russell et al., 2019). Models that quantify these finer-scale
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geochemical drivers, then, are critical to predicting large-scale net
denitrification fluxes that matter at the spatial scale of catchments. A
recent study was able to use stream nitrogen and phosphorus concen-
trations, channel characteristics, catchment land cover, and temperature
as linear predictors of denitrification potential at a regional (>100 km)
scale (Korol et al., 2019). However, these variables require great effort
to obtain, and cannot predict sub-catchment hotspot locations.

Denitrification is a difficult process to measure directly, and meth-
odological challenges have inhibited its estimation at ecosystem and
landscape scales (Groffman et al., 2006). In situ rates of denitrification
are particularly hard to measure and integrate, as they can range greatly
based on dynamic driver conditions. As a result, many studies focus
instead on potential rate measurements in ex situ laboratory assays,
where anoxic conditions and carbon and nitrate substrates can be
controlled. Denitrification potential assays quantify the maximum bio-
logical capacity of soils for denitrification, and have been applied in
landscape-scale studies of forested, agricultural and urban landscapes
(Bettez and Groffman, 2012; Bruland et al., 2006; Groffman and Craw-
ford, 2003).

Studies of denitrification potential in along rural to urban gradients
have demonstrated that urban conditions do not necessarily lead to low
denitrification potentials relative to rural settings with more abundant
organic matter and soil water precursors for denitrification (Walsh et al.,
2005). However, modeling denitrification across rural to urban land-
scapes is complicated by the spatially patchy distribution of high deni-
trification rates within small areas, i.e., hotspots, and across short time
scales, i.e., hot moments (Groffman et al., 2009, 2012; McClain et al.,
2003; Vidon et al., 2010). Integrated across the landscape these discrete
hot spots and hot moments cumulatively can account for a high pro-
portion of denitrification activity in many ecosystem types. Compared
with rural areas, urban areas can have unique denitrification hotspots
associated with concentrated nitrogen sources (e.g., septic systems,
leaky sewers) or with engineered structures such as constructed wet-
lands or stormwater control measures (SCM) that facilitate interaction
between nitrogen sources and wet soils with high denitrification po-
tential (Bettez and Groffman, 2012; Groffman and Crawford, 2003;
McPhillips and Walter, 2015; Rosenzweig et al., 2011; Zhu et al., 2005).

One approach to addressing the complexity of quantifying denitri-
fication potential across rural to urban gradients within heterogeneous
landscapes is to use statistical models to highlight the most influential
variables within a phenomenological modeling framework. Proxies can
then be developed for estimating the principal drivers in particular
ecosystems and landscapes. Studies have shown that denitrification
correlates with soil moisture and organic matter (Groffman and Craw-
ford, 2003; McPhillips and Walter, 2015), yet few studies have analyzed
the predictive power of these variables (or others) to identify key areas
of denitrification potential. Empirical models of denitrification (Ander-
son et al., 2015; Florinsky et al., 2004) have focused primarily on soil
moisture as a driving factor, assuming that high levels of soil moisture
and organic matter (SOM) co-occur within particular landscape zones.
These assumptions are reinforced by studies that show soils with high
moisture content to have high SOM due to the promotion of plant
growth and slow rates of organic matter decomposition in wet soils (Pei
et al., 2010). Recent studies have used topography to represent the
spatial distribution of both soil moisture and SOM, as both correlate
significantly with terrain variables (Anderson et al., 2015; Bieger et al.,
2019; Florinsky et al., 2004). Human modification of the natural
drainage framework and soil properties may make it difficult to identify
incidents of high soil moisture and SOM, and this additional complexity
should be taken into consideration in modeling efforts.

In this research, we compiled data from multiple studies of denitri-
fication potential in the Baltimore, MD USA metropolitan area to assess
the use of soil, hydrologic, and other landscape properties to develop a
predictive tool for landscape-scale modeling of denitrification potential.
Our objectives were to 1) assess how denitrification potential and
associated soil variables vary across soil depths and land uses within a
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region; (2) quantify controls on denitrification potential and their in-
teractions across urban, suburban, and forested landscapes; (3) assess
whether a universal denitrification model is appropriate for this range of
land use types; and 4) discuss how these controls could be linked to
geographic tools that provide proxies for the distribution of these vari-
ables across the landscape.

2. Methods
2.1. Data sources

We utilized published (Bettez and Groffman, 2012; Gift et al., 2010;
Groffman et al., 2002; Groffman and Crawford, 2003; Hale and Groff-
man, 2006; Harrison et al., 2012; Waters et al., 2014) and unpublished
(sampled in 2014) data from the Baltimore Ecosystem (BES) study, a
component of the U.S. National Science Foundation funded long-term
ecological research (LTER) network. Most studies were carried out in
the Gwynns Falls watershed; a main study site for BES that includes a
mix of urban and suburban (~75%) and forested (~20%) land and
numerous stormwater control measures (SCM) typical of the
mid-Atlantic Piedmont region of the U.S. (Doheny, 1999). These studies
included sites with a range of urban development density (urban, sub-
urban, exurban), land cover (forest versus herbaceous), wetland type
(forested versus SCM), stream restoration approaches, and other factors.
Here, our objective was to search for strong statistical relationships
across this diversity of urban sites.

The BES denitrification potential dataset (Groffman, 2016) contains
465 observations of denitrification potential (DEA) and a set of ancillary
variables including soil nitrate (NO3), ammonium (NH4), total nitrogen
(total N), microbial respiration (respiration), potential net N minerali-
zation (Nmin), potential net nitrification (Nnit), soil organic matter
(SOM), and soil moisture (Moisture), along with metadata such as land
use context and sampling depth. Data came from 66 urban, 109 subur-
ban, and 77 forested sites (Fig. 1). There were 387 shallow, 58 mid-
depth, and 37 deep samples (represented by 0-10 cm, 10-70 cm, and
70+ cm, respectively).

2.2. Data exploration and visualization

The data were first stratified to evaluate the variation in DEA with
land use (urban, suburban, and forested) and sampling depth (shallow,
mid-depth, and deep), as described above. We tested the differences
between land uses and between sampling depths using ANOVA and
Tukey pairwise comparisons. We summarized the distributions in terms
of mean and standard deviation of variables across the urban, suburban,
and forested land uses.

We compiled soil and environmental variables for the shallow depth
samples, and excluded observations with missing values for any pre-
dictor variables (n = 312). We used principal component analysis (PCA)
to reduce the dimensionality of the data and visualize salient patterns.
Sample points were also plotted across a land use gradient to visualize
the relationship between land use context and the principal components.

2.3. Data analysis and modeling

We split the shallow depth (0-10 cm) data into two groups for model
development and cross-validation. Sampled data were taken at 35
discrete locations. Since data were taken at some locations at several
points in time, we used 25 of these locations for model development (N
= 188) and 10 for cross-validation (N = 150). A correlation table was
developed to demonstrate significant relationships between predictor
variables and DEA, and to show which predictor variables were highly
correlated with each other. Correlations were tested using a significance
level of p < 0.05. We also checked the distributions of predictor and
response variables to assess whether they were normally distributed; if
they were not, we chose to log-transform the variables. The variables
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Fig. 1. Map of sampling sites by land use type.

that were log-transformed prior to model selection and validation were
DEA, total N, and respiration.

We used this information to select a set of predictor variables with
which to model DEA and used linear regression to compare a set of nine
candidate models that included different combinations of main effects
and their interactions. Model selection used the Akaike information
criterion (AIC), with better models having lower AIC scores. The best
models (deemed equivalent where AAIC < 2) were then tested for
multicollinearity using the variance inflation factor (VIF). Models with
VIFs of above 10 that suggested high collinearity among predictor var-
iables were excluded from the selection process (Kutner et al., 2004),
and the best model was chosen. Following the selection of a best-fit
model of denitrification potential, we tested its performance using the
cross-validation dataset. Evaluation of model predictive capacity was
determined based on linear regression between observed vs. predicted
values (Pineiro et al., 2008). Model interaction terms were also included
to understand how individual variables drive DEA while holding other
variables constant. All analyses were conducted in the statistical soft-
ware program R (R Core Team, 2017).

3. Results
3.1. Denitrification variation with depth and land use

DEA decreased significantly with depth (Fig. 2) based on an ANOVA
test (F 430 = 16.22; p < 0.001). Pairwise comparisons showed that the
differences between shallow (0-10 cm) and mid-depth (10-70 cm)
samples were significant (DEAgiir = 951 ng/g soil/hr; Clogs = (464,
1438); p < 0.001), and differences between shallow (0-10 cm) and deep
(70-100 cm) samples were significant (DEAgjfr = 983 ng/g soil/hr; Clys
= (390, 1577); p < 0.001); there was no significant difference between
mid-depth (10-70 cm) and deep (70-100 cm) samples (DEAg;¢s = 32 ng/
g soil/hr; Clgs = (—689, 753); p = 0.99). Noting the observed DEA values
were significantly higher in the top 10 cm of soils, we focused model
development on this subset of soil depth. Statistical analysis revealed
there were no significant differences in denitrification potential between
urban, suburban or forested sites (ANOVA Fg 249 = 0.882; p = 0.42,
Fig. 3).

Predictor variables’ means and standard deviations are summarized
in Table 2, along with ANOVA test p-values to indicate differences be-
tween land use categories for each variable. Variables with significant
differences across land uses were NOs3, NHy, total N, SOM, and soil
moisture. Respiration, N mineralization, and N nitrification demon-
strated no significant differences between land uses.
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Fig. 2. Variation in DEA (denitrification potential) with depth. Tukey pairwise
comparisons show that there is no significant difference between 10-70 cm and
70-100 cm depths (p = 0.994), but the differences are statistically significant
between 0-10 cm and 10-70 cm and between 0-10 cm and 70-100 cm (p <
0.001 for both contrasts).
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Fig. 3. Variation in DEA (denitrification potential) with land use. There were
no significant differences between land use types (F3 249 = 0.882, p = 0.42).

3.2. Principal component analysis (PCA) results

For initial data exploration, we visualized the relationships between
predictor variables through PCA (Table 3 and Fig. 4, n = 312); the
analysis yielded nine linear combinations (i.e., the principal compo-
nents). The first two components, PC1 and PC2, together explain 54% of
the variation (35% and 19%, respectively) in environmental variables
across the samples. Factor scores for the variables included in the PCA
indicated that NHy, total N, and soil moisture were most highly corre-
lated with PCA axis 1. Net nitrification and net N mineralization were
the most highly correlated variables with PCA axis 2 (Table 3). Sample
points were also plotted along a land use gradient (forested, restored,
suburban, urban, and exurban) (Fig. 4). The forested sites were clustered
along the PC1 axis, while the suburban sites aligned more closely with
the PC2 axis, suggesting the DEA values were driven by different
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variables for these land use types, even though differences in DEA across
land uses were not statistically significant (Fig. 3). This suggests co-
limitation of denitrification or that different drivers are prevalent in
urban, suburban, and forested land use types.

3.3. Multiple regression models for available shallow denitrification
potential data

Correlation analysis of the soil characteristics showed that DEA was
positively correlated with soil moisture, soil organic matter, total N, and
soil respiration (Table 1). The candidate models were developed using
these four variables and their interactions, with the response data
comprising the shallow depth (<10 cm) observations designated for
model development (n = 188). Of the candidate models, three models
had AAIC values within 2 (Ranks 1, 2, and 3; Table 4). The top ranked
model differed from the Rank 2 and 3 models by one additional term,
soil organic matter; the Rank 2 model omitted the interaction term be-
tween respiration and total N present in the Rank 1 and 3 models. Since
the differences in AIC between the three top ranked models were so
small, indicating that retaining the extra term resulted in no substantial
improvement in the model, we chose to proceed with the simplest model
(ranked #2). The equation for model rank #2 (F4,169 = 22.02; p < 0.001)
is below:

log(DEA) = 2.82 + 6.68*Moisture + 0.12xlog(Resp) + 1.14*log(TotalN)
— 1.77+log(Moisture)*log(TotalN)
(€3]

Model validation for this selected model was performed using the
model validation samples (n = 150). Regression of observed vs. pre-
dicted DEA values yielded an R? value of 0.36, with the linear model
having an intercept of 1.64 and slope of 0.745 (Fig. 5).

3.4. Testing interactions at varying levels of total N

Because the three top-ranked models included the interactions be-
tween total N and soil moisture, we explored the parameter space of soil
moisture and respiration at varying levels of total N. Although our top
model omitted the interaction between total N and respiration, we also
wanted to explore the parameter space of soil moisture and total N at
varying levels of respiration.

Total N clearly constrains DEA, allowing for the development of high
denitrification potential in wet and organic-rich sites (Fig. 6). At low
levels of total N, respiration has much less effect on DEA, and soil
moisture is the key driver of DEA under low N conditions. However, as
total N increases, respiration has an increasing effect, with high respi-
ration rates driving increased DEA for a given soil moisture level at
higher levels of N. Compensatory tradeoffs between respiration and soil
moisture are amplified at high levels of total N. At low total N and low
moisture level, DEA is insensitive to variation in soil respiration, and
DEA levels are always low. However, at high total N, moderate DEA can
be achieved even at low soil moisture levels. In this case, high respira-
tion values compensate for low soil moisture (and vice versa).

The relationship between soil moisture and total N at varying
respiration rates is complex; unlike the plots at varying levels of total N,
the relationship between soil moisture and total N remains similar across
different levels of respiration, with differences in the magnitude of DEA
(higher respiration rates yield higher DEA across all three plots). At low
levels of soil moisture, DEA increases substantially with increasing total
N. However, at higher levels of soil moisture, this pattern changes, and
DEA actually decreases with increased total N, the turning point
occurring at around 0.8 soil moisture.

4. Discussion

We demonstrate a novel approach to denitrification modeling using a
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Table 1
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Correlation matrix (r values) among denitrification potential and select groundwater and soil physiochemical characteristics. Significant correlations (p < 0.05) based
on Pearson’s correlation coefficient are shown in bold. DEA is denitrification potential (ng/g soil/hr), NOj is soil nitrate level (ug N/g dry soil), NH4 is soil ammonium
(pg N/g dry soil), total N is total soil nitrogen (ug N/g dry soil), Respiration is soil respiration rate (pg C/g/d), Nmin is potential net N mineralization (pg N/g/d), Nnit is
potential net N nitrification (ug N/g/d), SOM is soil organic matter (g/g), and Moisture is soil moisture content (g/g). Variables with an asterisk were included as

predictors in the DEA model selection process.

Groundwater Soil
DEA (ng/g  NOs (ug NH4 (ug N/ Initial Total N Soil Respiration*  Potential Net N Potential Net N Soil organic Soil
soil/hr) N/g dry g dry soil) * (pg N/g dry (pg C/g/d) Mineralization (ug N/ Nitrification (ug N/ matter* (g/ moisture*
soil) soil) g/d) g/d) g) (g/8)
DEA 1
NO3 0.339 1
NH, 0.352 —0.072 1
TotalN* 0.515 0.648 0.556 1
Respiration*  0.469 0.217 0.459 0.445 1
Nmin —0.134 0.190 —0.347 —0.154 —0.111 1
Nnit -0.017 0.137 0.008 0.090 —0.102 0.693 1
SOM* 0.189 0.078 0.195 0.205 0.248 —0.049 —-0.132 1
Moisture* 0.460 0.062 0.434 0.318 0.419 —0.238 —0.206 0.467 1
Table 2

Summary of mean and standard deviation of predictor variables in urban (N = 46), suburban (N = 144), and forested (N = 86) shallow samples. ANOVA p-values are

also shown, with statistically significant variables (p < 0.05) bold.

Variable” Urban Suburban Forested ANOVA p-value
Mean SD Mean SD Mean SD

NO; 3.90 4.71 3.03 5.35 1.80 2.86 0.031

NH,4 1.14 1.25 2.14 2.57 7.28 12.84 <0.001

TotalN 5.04 5.14 5.18 5.43 9.08 13.05 0.002
Respiration 105.72 182.07 61.20 133.23 65.07 163.17 0.212

Nmin 0.27 0.50 0.13 0.92 —0.08 1.46 0.156

Nnit 0.25 0.49 0.18 0.82 0.16 0.36 0.729

SOM 0.06 0.04 0.30 0.21 0.31 0.26 <0.001
Moisture 0.25 0.08 0.31 0.11 0.42 0.18 <0.001

# NOj is soil nitrate level (ug N/g dry soil), NHy is soil ammonium (ug N/g dry soil), total N is total soil nitrogen (ug N/g dry soil), Respiration is soil respiration rate
(ug C/g/d), Nmin is potential net N mineralization (ug N/g/d), Nnit is potential net N nitrification (ug N/g/d), SOM is soil organic matter (g/g), and Moisture is soil

moisture content (g/g).

Table 3
Loadings and correlation coefficients for the first two principal components (PC1
and PC2) for all shallow samples (n = 312).

PC1 PC2

Variable” Loading  Correlation Loading  Correlation
coefficient coefficient
NO3 —0.10 -0.17 0.15 0.19
NH4 —-0.53 —-0.88 -0.19 -0.23
TotalN —0.53 —0.88 —0.08 —-0.10
Respiration —0.33 —0.54 —0.08 —0.10
Nmin 0.34 0.57 —-0.55 —-0.67
Nnit 0.16 0.27 —0.68 —0.84
SOM —0.12 -0.19 -0.29 —0.36
Moisture -0.41 —0.69 -0.27 —0.33
Eigenvalue 2.77 1.49
% Variance 34.65% 18.66%
explained

# NOs is soil nitrate level (ug N/g dry soil), NH, is soil ammonium (ug N/g dry
soil), total N is total soil nitrogen (ug N/g dry soil), Respiration is soil respiration
rate (ug C/g/d), Nmin is potential net N mineralization (ug N/g/d), Nnit is
potential net N nitrification (ug N/g/d), SOM is soil organic matter (g/g), and
Moisture is soil moisture content (g/g).

comprehensive dataset across urban, suburban, and rural land uses, and
show that DEA is not significantly different across land uses. The drivers
of DEA that emerged in our model (moisture, respiration, and total N)
differed between land uses, suggesting that different factors limit DEA
across the land use types. Strong driver interactions between the

predictor variables reveal co-limitation of DEA, and show local variation
in soil parameters to be strong drivers which must be considered within
land use context.

4.1. Patterns of denitrification potential

We expected denitrification potential to be highest in the shallow
samples, due to a higher likelihood of microbial activity near the soil
surface. The observed trend in DEA with depth matches our expectations
and agrees with many previous studies which demonstrate decreasing
denitrification capacity with depth (Bettez and Groffman, 2012; Brye
et al., 2001; P.M. Groffman and Crawford, 2003; Jefferson et al., 2010;
Luo et al., 1998; Parkin and Meisinger, 1989; Saggar et al., 2013). Our
focus on surface processes is appropriate for urban landscapes, where
there is great interest in capturing and processing stormwater surface
runoff. However, it is important to note that activity at depth (more than
10 cm deep) can be significant (Morse et al., 2014) and is especially
important for processing of nitrate moving in shallow groundwater
(Gold et al., 2001; Vidon and Hill, 2004). This omission in our landscape
model should be explored further.

There were no significant differences in DEA between urban, sub-
urban and forested sites. Due to altered urban hydrology (Walsh et al.,
2005), changing nutrient export pathways (Kaushal and Belt, 2012), and
a “distinct urban biogeochemistry” (Kaye et al., 2006), we expected
urban environments to be poorly suited for nutrient uptake and pro-
cessing. However, denitrification potential has been shown to occur at
high rates in urban environments (Grimm et al., 2005; Groffman and
Crawford, 2003; Inwood et al., 2005). Groffman and Crawford [2003]
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Fig. 4. PCA (principal component analysis) for
all denitrification potential samples. Forested
sites were clustered along the PC1 axis, while
suburban sites aligned more closely with the PC2
axis, suggesting that DEA was controlled by
different variables in different areas. DEA is
denitrification potential (ng/g/hr), NOj is soil
nitrate levels (pg N/g dry soil), NH, is soil
ammonium (pg N/g dry soil), total N is total soil
nitrogen (ug N/g dry soil), Respiration is soil
respiration rate (ug C/g/d), Nmin is potential net
N mineralization (pg N/g/d), Nnit is potential net
N nitrification (pg N/g/d), SOM is soil organic
matter (g/g), and Moisture is soil moisture con-
tent (g/g).
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® Forested
= Suburban
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Table 4

02
PC1 (34.65%)

0.0

0.2

Model selection criteria used in ranking linear regression models predicting the denitrification potential (DEA) of sampled sites (N = 188). The best model (rank = 1)
had the lowest AICc value and the highest Akaike weight. There were ten candidate models, including a null model with intercept only (model rank = 10). Models
ranked 1, 2, and 3 were deemed equally suitable, given that AAICc <2.

DEA model rankings

Coefficient estimates (with standard error)®

Rank df AICc AAICc Akaike Cum. Moisture Resp. Total N SOM Moisture: Moisture: Resp.:
weight weight Resp TotalN TotalN
1 6 602.57 0 0.36 0.36 9.72 £ 2.36 0.01 £ 1.19 + -1.2+ —2.59 + 0.92 0.05 £ 0.09
0.15 0.31 0.6
2 4 603.19  0.62 0.26 0.62 6.68 + 1.91 0.12 + 1.14 + —1.77 £ 0.79
0.09 0.25
3 5 604.47 1.9 0.14 0.75 7.45 + 2.08 0+0.16 1+0.3 —2.19 + 0.91 0.09 + 0.09
4 5 605.23  2.66 0.09 0.85 7.77 + 3.56 0.2+0.24 111+ -0.31+0.86 —1.68 +0.84
0.27
5 3 606.17 3.6 0.06 0.91 2.96 + 0.96 0.13 + 0.64 +
0.09 0.12
6 6 606.24  3.67 0.06 0.96 9.61 + 3.95 0.13 + 0.91 + —0.58 + 0.9 —2.1+0.92 0.1 +0.1
0.25 0.33
7 4 607.17 4.6 0.04 1 6.56 + 3.54 0.35 + 0.62 + —0.87 + 0.82
0.23 0.12
8 3 636.5 33.93 0 1 10.28 + 0.62 + —1.35 4+ 0.88
3.75 0.24
9 2 636.74  34.17 0 1 4.77 £ 0.97 0.28 +
0.09
10 0 717.39 114.83 0 1

@ Total N is total soil nitrogen (pg N/g dry soil), Resp is soil respiration rate (ug C/g/d), SOM is soil organic matter (g/g), and Moisture is soil moisture content (g/g).

reported higher variability in denitrification potential in urban areas
compared to rural areas, which is logical given the heterogeneous nature
of urban landscapes. However, for our dataset, variability in denitrifi-
cation potential was higher in forested and suburban land uses as
compared to urban (Fig. 3). Since soil moisture, respiration, and total N
emerged as the most important predictors of denitrification potential,
we also examined differences in these three variables between the three
land use classifications. Soil moisture and total N showed statistically
significant differences between land uses (Table 2). These results suggest
that while one denitrification model is applicable to all land uses, the
mechanisms for modeling soil moisture and total N should vary. We

suggest appropriate future modeling directions below.

It should be noted that denitrification potential does not necessarily
reflect the actual denitrification rates occurring in the field. Denitrifi-
cation potential and rate have been shown to correlate well (Groffman
and Tiedje, 1989), but a lack of anoxic conditions, carbon source, or
available nitrate can lead to locations with high denitrification potential
but low actual rate. There is a clear need for analysis of relationships
between actual and potential denitrification rates in urban areas and/or
demonstration that measurements of denitrification potential are
mechanistically predictive in ecosystem and landscape-scale nitrogen
mass balances (Groffman et al., 2006).
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Fig. 5. Observed vs. predicted denitrification for model validation. The solid
line represents the fit between observed vs. predicted, and the dashed line
shows the 1:1 line.

Although for this study, we looked exclusively at freshwater systems
with no tidal influence, recent research suggests higher DEA rates in
tidally-influenced systems, likely due to higher soil moisture, organic,
and nutrient content (Korol and Noe, 2020). Future research should
consider these unique tidal freshwater forested wetlands as hotspots of
denitrification potential, and examine how these locations fit into the
framework presented in this study.

4.2. Best models predicting denitrification potential

The variables that emerged in the final model (moisture, respiration,
and total N) reveal patterns that have not yet emerged from prior
modeling efforts. We hypothesized that soil organic matter would be a
strong predictor of denitrification potential. Organic matter is a logically
strong predictor of denitrification potential as it provides an index of the
supply of carbon to support heterotrophic denitrifiers and of the po-
tential for oxygen consumption by overall heterotrophic activity. Bettez
and Groffman [2012] demonstrated strong correlations between deni-
trification potential and soil moisture [R? = 0.66), soil organic matter
(R? = 0.89), microbial biomass C (R? = 0.79), and respiration [R? =
0.81) in an analysis of a subset of the samples in our datasets. Many
other studies have also found soil organic matter to be a strong predictor
of denitrification potential (Burford and Bremner, 1975). However, our
model development and selection process concluded that soil respiration
was a stronger predictor than organic matter (Table 1). This is perhaps
not a surprising result, as respiration is driven by increased levels of
labile carbon and is therefore a more direct controller of heterotrophic
activity than total organic matter content. Respiration may be a
particularly useful/important predictor of denitrification in urban wa-
tersheds, where hydrologic changes have altered relationships between
water table depth, stream channel depth, soil moisture and organic
matter content (Groffman et al., 2003). It should be noted that a complex
microbial process such as respiration is driven by many environmental
factors (e.g. soil moisture, organic matter) and other microbial pro-
cesses; therefore, respiration as a variable may integrate other factors
that are difficult to quantify or account for in the model.

Total N also emerged as a strong predictor of DEA in our study. The
inclusion of total N is novel, as in many current models, soil moisture (or
a topographic proxy) is assumed to be the primary driver of denitrifi-
cation (Anderson et al, 2015; Florinsky et al., 2004). A recent
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metagenomic analysis of denitrification gene abundance revealed that
both soil moisture and nitrate were critical in selecting for denitrifying
microbial communities (Nadeau et al., 2019). Denitrification rates have
also been elevated due to increased nitrogen deposition, supporting our
inclusion of total N as a key predictor (Palacin-Lizarbe et al., 2020). The
emergence of total nitrogen as an important predictor, separate from soil
moisture, represents a significant finding. Given the mechanisms gov-
erning denitrification, it is not surprising that our selected model
(ranked 2 in Table 4) included indicators of all three key drivers with soil
moisture, respiration, and total N, as well as interactions between these
terms.

The interaction plots (Fig. 6) demonstrate likely co-limitation of DEA
by total N, respiration and soil moisture. These co-limitation effects may
explain the significant differences in these drivers among urban, sub-
urban and forested sites, even though there were no significant differ-
ences in DEA across the land uses. Sites with high respiration rates
(urban sites, Table 2) may have also been low in total N and/or soil
moisture, whereas forested sites which tended towards higher total N
and moisture values may have been limited by lower respiration rates.
These complex relationships highlight local variation in soil parameters
as a stronger control than landscape patterns, and allow for the deni-
trification model proposed in this study to be used across different land
uses and, thus, across different predictor variable parameter spaces.

4.3. Implications of results for modeling DEA at the watershed scale

Using the model developed in this study to predict denitrification
across unmonitored settings requires identification of landscape scale
proxies for our key predictor variables; soil moisture, respiration, and
total N. Soil moisture modeling has been active for many decades but is
greatly complicated in urban environments by the presence of grey
infrastructure which routes water independently of topography, which
is a key predictor for many hydrologic models. A promising develop-
ment is the i-Tree Hydro model (Wang et al., 2008), built upon TOP-
URBAN model concepts (Valeo and Moin, 2000), which uses a
topographic framework to effectively route water from upslope imper-
vious and pervious areas to predict likelihood for soil saturation. This
i-Tree Hydro model dynamically models infiltration and may better
account for transport of nitrogen using the coupled i-Tree Buffer tool
with its weighting of export coefficients (Stephan and Endreny, 2016).
Other watershed models have used road network maps to enhance land
cover maps to improve runoff quantity estimates (Endreny and Thomas,
2009), but have not explicitly explored the resulting soil moisture re-
gimes. There is a need to better couple natural and human-influenced
water routing processes to allow for more accurate and robust esti-
mates of soil moisture across urban landscapes.

Proxies for soil respiration can potentially be derived from estimates
of soil temperature, which has been shown to be a strong driver of
variation in soil respiration, especially when coupled with precipitation
(Raich et al., 2002). In addition, adding leaf area index (LAI) to as an
index of carbon supply improved the model’s ability to predict soil
respiration (Reichstein et al., 2003). The increasing availability of sat-
ellite images of LAI and soil temperature and precipitation data suggests
that the prospects for modeling soil respiration as a factor driving DEA
are promising.

Development of proxies for N supply to denitrifiers could focus on
modification of existing export coefficient models. These models can be
modified to depict the spatial distribution of both point and nonpoint
sources of N across landscapes (Stephan and Endreny, 2016). However,
in order to predict DEA, locations of high nitrate concentrations should
be identified, which has proven difficult in developed landscapes. While
nitrate yield in suburban and urban watersheds has been shown to be
more than 10 times higher than that of completely forested watersheds,
retention of N in these disturbed watersheds has been found to be sur-
prisingly high (Groffman et al., 2004). These dynamics suggest that
sources of N, as well as the flowpaths and removal mechanisms, must be
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Fig. 6. Interaction plot showing how soil moisture and soil respiration controls on DEA vary with different levels of total nitrogen, and how soil moisture and total
nitrogen controls on DEA vary with different rates of respiration. Respiration has no effect on DEA at low levels of total N, but its effect amplifies as total N increases.
At high N levels, soil respiration and soil moisture have compensatory effects on DEA. At all rates of respiration, DEA increases with increased total N at low soil
moisture, but DEA decreases with increased total N at higher soil moisture (above 0.8).

linked in order to get a full picture of nitrate supply to denitrifiers in
these watersheds (Ledford et al., 2017, Sudduth et al., 2013).

5. Conclusion

There is a strong need to model denitrification potential in mixed use
landscapes in order to guide resource conservation and management.
Using available data from the Baltimore region, we demonstrated that
denitrification occurs primarily in the shallow soil depths, and that
denitrification potential is not inherently different across land use types.
Our data analyses identified soil moisture, respiration, and total N as
coherent controls of denitrification potential in the study region; these
variables can be represented in statistical models to predict denitrifi-
cation across rural to urban gradients. A major challenge for future
research is to develop models and/or geographic data sources that can
depict spatial and temporal variation in the key predictor variables of
denitrification potential.
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