
ø

— —

–

dMR
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dMA
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= C(t)−F ×MA
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Table 1 
Studies included in the experimental dataset listed by author for ankle dorsiflexors, ankle plantarflexors, elbow extensors, elbow flexors, adductor pollicis, first dorsal 
interosseous, general grip muscles, and knee extensors derived from Frey Law and Avin (2010) and Looft et al. (2018).  

Functional muscle 
group 

Author, Date Male 
participants 

Female 
participants 

Target load (% 
MVC) 

Duty cycle 
(%) 

Cycle time 
(s) 

Number of data 
points 

Ankle dorsiflexors (Birtles et al., 2002) 14 8 100 50 3 20  
(Birtles et al., 2003) 5 5 100 50 3 20  
(Chung et al., 2007) 12 0 100 50 10 35  
(Egaña and Green, 2007) 7 0 30, 40, 50, 60, 80 33 6 86  
(Russ and Kent-Braun, 2003) 8 0 100 50 10 4  
(Russ et al., 2008) 15 0 100 70 10 10  
(Fimland et al., 2010) 13 0 100 83 30 7  
(Christie and Kamen, 2009) 4 4 50 100 1 1  
(Ciubotariu et al., 2004) 6 4 50, 80 100 1 2  
(Farina et al., 2005) 11 0 40 100 1 1  
(Houtman et al., 2002) 6 2 30 100 1 1  
(Houtman et al., 2003) 3 2 30, 40 100 1 7  
(Hunter et al., 2008) 8 7 20 100 1 1  
(Kent-Braun, 1999) 5 4 100 100 1 1  
(Lévénez et al., 2005) 11 1 50 100 1 1  
(Molbech and Johansen, 1973) 2 3 50 100 1 5  
(Ng et al., 2000) 6 5 30 100 1 1  
(Shahidi and Mathieu, 1995) 4 5 15, 30, 45, 60, 

75, 90 
100 1 6 

Ankle plantarflexors (Alway et al., 1987) 8 0 100 50 10 1  
(Alway, 1991) 6 0 30 100 1 1  
(Ciubotariu et al., 2004) 6 4 50, 80 100 1 2  
(Mademli and Arampatzis, 2008) 12 0 40 100 1 1  
(Matthijsse et al., 1987) 7 1 60 100 1 16  
(Molbech and Johansen, 1973) 2 3 50 100 1 5  
(Nordez et al., 2009) 8 0 40 100 1 1  
(Ohashi, 1993) 6 0 30, 40, 50 100 1 3  
(Shahidi and Mathieu, 1995) 4 5 15, 30, 45, 60, 

75, 90 
100 1 6 

Elbow extensors (Bilodeau, 2006) 4 4 100 86 35 17  
(Thomas and Del Valle, 2001) 3 1 50 60 10 5  
(Bonde-Petersen et al., 1975) 2 1 10–75 100 1 22  
(Fallentin and Jørgensen, 1992) 7 0 10, 40 100 1 2  
(Griffin et al., 2001a) 4 3 20 100 1 1  
(Griffin et al., 2001b) 3 4 20 100 1 1 

Elbow flexors (Bazzucchi et al., 2005) 6 0 30, 50, 80 100 1 3  
(Bonde-Petersen et al., 1975) 2 1 20–70 100 1 22  
(Calder et al., 2008) 5 5 25 100 1 2  
(Carlson, 1969) 15 0 20, 30, 40, 50 100 1 4  
(Deeb et al., 1992) 10 0 40, 60, 80, 100 100 1 4  
(Dimitrova et al., 2009) 3 3 20, 40, 60, 80, 

100 
100 1 5  

(Esposito et al., 1998) 7 0 80 100 1 2  
(Fallentin and Jørgensen, 1992) 7 0 10, 40 100 1 2  
(Felici et al., 2001) 6 0 80 100 1 1  
(Gamet and Maton, 1989) 3 2 10–30 100 1 25  
(Greiwe et al., 1998) 7 0 50 100 1 1  
(Hagberg, 1981) 9 0 15–55 100 1 53  
(Hendrix et al., 2009b) 4 5 30–75 100 1 36  
(Hermiston and Bonde-Petersen, 
1975) 

2 1 25–70 100 1 14  

(Hoeger Bement et al., 2009) 0 20 25 100 1 1  
(Hunter and Enoka, 2001) 7 7 20 100 1 2  
(Hunter et al., 2002) 8 8 15 100 1 2  
(Hunter and Enoka, 2003) 7 7 20 100 1 2  
(Hunter et al., 2004a) 14 13 20 100 1 2  
(Hunter et al., 2004c) 10 10 20 100 1 2  
(Hunter et al., 2005) 8 0 20 100 1 1  
(Jubeau et al., 2012) 12 0 100 21 19 49  
(Kilbom et al., 1983) 18 0 25 100 1 2  
(Klass et al., 2008) 6 5 20 100 1 1  
(Krogh-Lund and Jørgensen, 1992) 11 0 15 100 1 1  
(Krogh-Lund, 1993) 11 0 40, 100 100 1 2  
(Krogh-Lund and Jørgensen, 1993) 10 0 30 100 1 1  
(Lloyd et al., 1991) 13 0 30 60 10 9  
(Lowery et al., 2002) 5 1 30, 50, 80 100 1 3  
(Lowery and O’Malley, 2003) 2 1 80 100 1 6  
(Mamaghani et al., 2001) 10 0 20, 40, 60 100 1 3  
(Mendez-Villanueva et al., 2009) 9 0 50 30, 60 20, 10 5  
(Mottram et al., 2006) 14 15 15 100 1 4  
(Muthalib et al., 2010) 10 0 100 21 19 49  
(Nicolas et al., 2008) 16 0 40 100 1 4 

(continued on next page) 
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Table 1 (continued ) 

Functional muscle 
group 

Author, Date Male 
participants 

Female 
participants 

Target load (% 
MVC) 

Duty cycle 
(%) 

Cycle time 
(s) 

Number of data 
points  

(Ohashi, 1993) 7 0 15–50 100 1 5  
(Ordway et al., 1977) 27 0 100 50 2 20  
(Orizio et al., 1992) 13 0 20, 40, 60, 80 100 1 4  
(Petrofsky and Phillips, 1980) 10 10 25–90 100 1 10  
(Riley et al., 2008) 7 8 20 100 1 1  
(Rudroff et al., 2005) 8 0 20 100 1 1  
(Rudroff et al., 2007a) 20 0 20 100 1 1  
(Rudroff et al., 2007b) 10 10 20 100 1 1  
(Rudroff et al., 2008) 10 0 20 100 1 1  
(Sacco et al., 1999) 4 6 20 100 1 1  
(Schulte et al., 2004) 13 2 40 100 1 1  
(Semmler et al., 1999) 6 6 15 100 1 1  
(Staudenmann et al., 2009) 10 0 20 100 1 1  
(Taylor et al., 2000) 5 4 50–86 50 10 65  
(Ulmer et al., 1989) 8 8 20, 25, 30, 50 100 1 4  
(Watanabe et al., 1995) 6 0 30 100 1 1  
(Yoon et al., 2007) 9 9 20, 80 100 1 4  
(Yoon et al., 2008) 6 9 20, 80 100 1 2 

Adductor pollicis (Ditor and Hicks, 2000) 12 12 100 71 7 18  
(Fulco et al., 2001) 12 21 50 50 10 6  
(Zattara-Hartmann et al., 1995) 6 0 80 100 1 1 

First dorsal 
interosseous 

(Fuglevand et al., 1995) 8 3 35 100 1 1  

(Fujimoto and Nishizono, 1993) 8 0 40 60 10 8  
(Huang et al., 2007) 4 10 75 100 1 1  
(Maluf et al., 2005) 20 0 20 100 1 1  
(Newham and Cady, 1990) 2 1 100 50 2 1  
(Tharion, 2006) 5 3 50 100 1 1 

General grip (Benwell et al., 2007) 6 6 30 60 5 4  
(Blackwell et al., 1999) 18 0 60 100 1 1  
(Bystrom and Sjøgaard, 1991) 4 4 10 100 1 1  
(Chatterjee and Chowdhuri, 1991) 74 0 40 100 1 3  
(Clark et al., 2008) 4 5 20 100 1 1  
(Ferguson and Brown, 1997) 10 0 40 100 1 1  
(Hunter et al., 2006) 16 18 20 100 1 2  
(Lind et al., 1978) 4 0 25, 40 100 1 2  
(Liu et al., 2005) 10 4 100 67 3 12  
(Longhurst et al., 1980) 24 0 40 100 1 1  
(Louhevaara et al., 2000) 21 0 46 100 1 1  
(Lydakis et al., 2008) 7 8 40 100 1 1  
(Momen et al., 2003) 7 6 40 100 1 1  
(Momen et al., 2004) 5 4 40 100 1 1  
(Momen et al., 2006) 10 10 40 100 1 2  
(Nagle et al., 1988) 10 0 30 100 1 1  
(Pepin et al., 1996) 9 16 30 100 1 1  
(Petrofsky et al., 1975) 0 51 40 100 1 1  
(Petrofsky and Lind, 1975) 62 3 40 100 1 2  
(Petrofsky et al., 1976) 0 3 40 100 1 1  
(Petrofsky and Laymon, 2002) 15 0 40 100 1 2  
(Saito et al., 2008) 8 8 100 50 10 12  
(Smolander et al., 1998) 10 0 20, 40, 60 100 1 3  
(Thompson et al., 2007) 18 20 20, 50 100 1 4  
(Urbanski et al., 1999) 10 0 67 100 1 1  
(Walamies and Turjanmaa, 1993) 13 27 50 100 1 1  
(West et al., 1995) 7 7 30, 50, 70 100 1 6  
(Williams, 1991) 6 0 70 100 1 1 

Knee extensors (Armatas et al., 2010) 13 0 100 50 10 10  
(Bigard et al., 2001) 11 0 25, 70 100 1 2  
(Burnley, 2009) 8 0 100 60 5 10  
(Callahan et al., 2009) 8 8 100 50 10 8  
(Callahan and Kent-Braun, 2011) 0 11 100 50 10 9  
(Christensen and Fuglsang- 
Frederiksen, 1988) 

8 8 20 100 1 1  

(Clark et al., 2005) 11 11 25 100 1 2  
(Cox and Cafarelli, 1999) 5 5 30 100 1 1  
(Crenshaw et al., 1997) 9 2 25, 70 100 1 2  
(Deeb et al., 1992) 10 0 40, 60, 80, 100 100 1 4  
(Dias da Silva and Gonçalves, 2013) 0 9 20, 30, 40, 50 100 1 4  
(Easton et al., 2007) 5 5 30 100 1 10  
(Ebenbichler et al., 1998a) 9 9 30, 50, 70 100 1 3  
(Ebenbichler et al., 1998b) 9 9 30, 50, 70 100 1 3  
(Gerdle and Karlsson, 1994) 14 0 10, 25, 70 100 1 3  
(Grabiner et al., 1991) 9 0 30, 60 100 1 2  
(Greiwe et al., 1998) 7 0 100 100 1 1  
(Hamada et al., 2003) 4 0 100 63 8 30 

(continued on next page) 
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the raw RMS error from Eq. (11) are calculated for each muscle using 
each of the 54,621 permutations. The volume of F, R, k yielding the 
lowest errors (exceeding the minimum error by 10% of difference be
tween the minimum and maximum errors) in the first iteration for each 
muscle group was chosen as the region of interest for the second itera
tion, and the mesh size was adjusted to yield results in a reasonable 
amount of time. The possibility of infinitely long endurance times for 
any muscle group was precluded by limiting R-values at each iteration to 
be less than the corresponding F-values. The data was passed through 
this finer mesh, and the parameter volume corresponding to the lowest 
errors chosen again. The process was repeated until the volume of in
terest did not shrink between successive iterations. The parameter 
values resulting in the minimum error in the last iteration were chosen 
as the representative values for that group. 

3. Results 

While quantifying the effects of segregating joint level data by FMG, 
averages are calculated only for the ankle, elbow, and hand/grip joints 
and their respective constituent muscle groups. The knee joint is 
excluded from these analyses since data was only available for knee 
extensors, so no further division of data on the basis of FMG was possible 
for that joint. The simplest error calculation method, with no distinction 
being made regarding sex (S) or FMG but with separate model param
eters for each of the ankle, elbow, and hand/grip joints, predicts torque 
declines with an average error of 14.32% across the 3 joints as seen in 
Table 2. Dividing the data based on FMG yields an average error of 
11.55% for those three joints representing a marginal decrease. The 
average error for all FMGs studied including the knee extensors is 
11.17%. 

Further dividing the dataset by sex in addition to FMG brings the 
average prediction error down to 9.69%, with similar errors for females 

(9.69%) and males (9.70%). However, significant disparity exists be
tween the minimum errors for each S/FMG dataset, ranging from a 
minimum of 1.92% for the adductor pollicis to a maximum of 15.93% 
for the elbow flexors, both in females. Fig. 1 shows that the minimum 
and maximum errors for males also occur in the same muscle groups 
(5.23% for the adductor pollicis, and 14.40% for the elbow flexors). It is 
worth noting that of the 1,068 unique data points considered in the 
analysis, 449 (42%) represent elbow flexor data, possibly posing a 
greater challenge to the optimization algorithm in finding a common 
parameter set that accurately represents the performance of a diverse 
group of participants. 

In a departure from previous work that found common values for the 
augmented recovery parameter for multiple joints (Looft et al., 2018), 
no such attempt has been made here. Notably, (Looft et al., 2018) found 
that hand/grip joint data could not be reconciled with the common r- 
value chosen for the other joints, but significant reduction in prediction 
error was still observed for that joint using r = 30. The fact that at least 
one joint was found to have a different augmented recovery parameter 
indicates that a common value for all joints (and especially for indi
vidual muscle groups) may not be possible, and we therefore instead 
report only the values that result in minimum error. k-values for some 
groups have been omitted due to insufficient IIC sample sizes available 
for making those predictions, but that data has nevertheless been used in 
aggregation with SIC samples to predict F and R for those same groups. 

4. Discussion 

It is generally accepted that agonistic and antagonistic muscle groups 
around a joint have different force production capabilities, but less 
attention has been paid to any potential difference in their fatigu
abilities. Markedly different fatigue rates have been observed in a 
handful of experimental studies involving the hip and the knee (Brasi
leiro et al., 2018; Kawabata et al., 2000; Krantz et al., 2020), but it re
mains to be seen whether this result holds true for joints in the upper 
body. Judging by F/R ratios estimated for combined sexes in Table 3, it 
can be surmised that ankle dorsiflexors (4.05) are more fatigue resistant 
than plantarflexors (7.22), and elbow flexors (3.45) are more fatigue 
resistant than the elbow extensors (12.48). 

The difference in fatiguability between the sexes has been the subject 
of considerable scrutiny. Several studies indicate that men may fatigue 
faster than women when performing submaximal SICs (Yoon et al., 
2007), IICs (Hunter et al., 2004b, Hunter et al., 2009), and maximal 
isokinetic contractions (Pincivero et al., 2003). However, similar fati
guabilities were observed for strength-matched men and women when 
performing submaximal IICs of the elbow flexors (Hunter et al., 2004c), 
and it is suggested that the difference in fatiguability is related to the 
absolute intensity of contractions and is affected by mechanisms distal to 
the neuromuscular joint (Hunter and Enoka, 2001). On the other hand, it 
has also been reported that while women are significantly more fatigue- 
resistant than men at the elbow joint, there is no significant difference at 
the ankle (Avin et al., 2010). Our results seem to confirm these general 
observations, with average F/R ratios being similar at the ankle for 

Fig. 1. Radar plot of model prediction errors by resulting from different levels 
of segregation (male, female, combined sexes and segregated FMGs, combined 
sexes and combined FMGs) for the ankle dorsiflexors (ADF), ankle plantar
flexors (APF), elbow extensors (EE), elbow flexors (EF), grip/adductor pollicis 
(G/AP), grip/first dorsal interosseous (G/FDI), general handgrip (G/GEN) and 
knee extensors (KE). 

Table 3 
F/R ratios for the different segregated datasets, calculated from parameters in 
Table 2.  

Joint Functional 
muscle group 

Female Male Combined 
sexes 

Combined sexes, 
combined FMGs 

Ankle ADF  9.22  7.53  4.05 4.46 
APF  7.17  7.32  7.22 

Elbow EE  9.10  14.99  12.48 4.82 
EF  4.90  6.94  3.45 

Hand/ 
grip 

AP  5.12  2.91  1.98 9.13 
FDI  1.00  4.54  4.09 
G/GEN  5.35  6.97  9.13 

Knee KE  7.62  9.28  10.87 10.87  
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males (7.42) and females (8.20), but much greater at the elbow for males 
(10.97) than for females (7.00). The F/R ratio for women averaged 
across all joints is 6.19 compared to 7.56 for men, indicating a somewhat 
greater propensity for fatigue-resistance in women. It may be noted that 
since there is only a single parameter set representing each group of 
participants, it is difficult to obtain a statistical measure of the signifi
cance of these differences based on those parameters alone. 

It must be noted that the difference between the minimum errors of 
3CC-r as dealt with previously (Looft et al., 2018) and in the present 
work are not necessarily representative of flaws in either methodology 
but rather of differences in the way the data is handled. The experi
mental datasets underlying both studies are different—this work ex
cludes studies that do not specify the composition of the participants by 
sex but includes those reporting SIC data. The previous 3CC-r analysis 
calculates errors only for IIC data which forms a relatively minor part of 
the dataset in this study, whereas this analysis reports prediction errors 
for both SIC and IIC data simultaneously, leading to a large disparity in 
the sample sizes for the two studies as seen in Table 4 and Fig. 2 (a). Data 
from only 41% of the participants listed in (Looft et al., 2018) were able 
to be used in this work due to the unavailability of information about the 

sex of the remaining participants, and this was the only data that 
contributed to estimation of the k-parameters here. However, this IIC 
data was also used along with the entirety of the SIC data to estimate F 
and R parameters for each group, unlike previous efforts where F and R 
were determined solely by optimizing predicted endurance times 
against curve fits of SIC data (Frey-Law et al., 2012; Frey-Law and Avin, 
2010). 

When averaged across sex and FMGs, we find prediction errors for all 
isometric contractions to be in the range of 7–13% MVC. (Looft et al., 
2018) found errors in the range of 6–10% MVC for IICs alone. A visual 
comparison of the model errors may be seen in Fig. 2 (b). 

A number of important limitations remain in the techniques 
employed in this analysis. With each data point being associated with a 
different but not necessarily unique set of task parameters, the point-by- 
point method of evaluation of torque decline for this data lends itself 
poorly to the weeding out of outliers, and their inclusion in the dataset 
may skew the estimated model parameters especially in cases where the 
total number of studies in the evaluation group is small. An inevitable 
amount of transcription error also arises during the conversion of torque 
decline data from a graphical to the tabular form, in addition to those 
generated during the recording of the original data. The inclusion of 
studies where data is reported as an aggregate for its male and female 
participants can lead to a misrepresentation of the torque decline values 
for both sexes since the average value is assumed to be true for each of 
the reported number of participants of each sex. The exclusion of studies 
not specifying participant sexes also reduces the overall sample size, but 
this was a necessary compromise to ensure the data was more repre
sentative of each sex. While data from every participant has been given 
equal weightage regardless of the associated task parameters, there ex
ists a preponderance of data from SICs with only 17% of the participants 
performing IICs as evident from Table 4. The combined analyses are also 
more representative of the male population who comprised 72% of the 
contributing 2,306 participants. Males comprised 71% of the partici
pants contributing to SIC data and 76% of those performing IICs. The 
fraction of participants performing IICs that were female was rather low 
in the case of the ankle and elbow (10–14%), but better for the 
remaining joints (23–47%) as seen in Fig. 3 (a) and Table 5. For SICs, this 

Table 4 
A comparison of the sample sizes and minimum prediction errors in Looft et al. 
(2018) and in the current study, broken down by contraction type (SIC/IIC). For 
both studies only IIC data contributed to estimation of the augmented recovery 
parameter k. F, R were not estimated in Looft et al. (2018), but are estimated in 
the current study using both SIC and IIC data. For the current study, minimum 
errors reported are averaged across both sexes and the constituent FMGs about 
each joint.  

Joint This study Looft et al. (2018) 

SIC IIC Average min. error: SIC +
IIC (% MVC) 

IIC Min. error: IIC 
(% MVC) 

Ankle 167 95  9.3 247  5.7 
Elbow 586 92  12.8 143  9.9 
Hand/ 

grip 
605 110  7.2 362  8.7 

Knee 559 92  11.8 168  8.6  

Fig. 2. Radar plots of (a) the sample sizes used in this work and in Looft et al. (2018), broken down by contraction type, and (b) the minimum prediction errors (in % 
MVC) of the two studies. 
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figure ranged from 23 to 30% for all joints (Fig. 3 (b) and Table 5). It is 
hoped that future experimental work focused on fatigue will have more 
equitable distributions of male and female participants to so that the 
findings of this and other similar studies can be refined, and so that the 
models developed thereby are equally representative of both sexes. 

The primary impetus for this analysis was to develop a clearer un
derstanding of the 3CC-r model’s predictions as applied uniformly to 
predicting torque declines for both SICs and IICs in a method targeted to 
tease out differences between the sexes and between different FMGs. We 
split the aggregated data into subgroups first by FMG and then addi
tionally by participant sex, and found that each split reduced average 
prediction errors by approximately 19% compared to the previous 
segregation level and resulted in a net reduction of 34% average error 
when compared to segregation only on the basis of active joint. The 
currently employed dataset, though vast, underrepresents IICs, and it is 
expected that as more detailed experimental IIC data is available the 
model parameters can be similarly recalculated to reduce prediction 
errors further. Further work to extend this model to more realistic tasks 
may focus on the velocity dependence of the force development and 
relaxation factors for dynamic tasks. 

In summary, we find that male and female populations are best 
represented by different model parameters calculated individually for 
different FMGs, and that this approach significantly reduces the average 
prediction error for each joint. Sustained and intermittent isometric 
contractions are treated equally as belonging to a continuum of iso
metric contractions to allow the estimation of model parameters that 
best fit the entire dataset. 
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