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Abstract

Observations that copper and homocysteine levels are simultaneously elevated in patients with cardiovascular disease has
generated interest in investigating the interactions between copper and homocysteine. Several prior studies have shown that
complexes of copper and homocysteine are toxic, leading to cardiovascular damage in vitro. It is not clear, however, why
related effects do not occur with other structurally similar, more abundant cellular thiols such as glutathione and cysteine.
Herein, a mechanism for a selective redox interaction between copper and homocysteine is demonstrated. It involves a
kinetically favored intramolecular hydrogen atom transfer that results in an alpha-amino carbon-centered radical known to

promote biomolecular damage.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
worldwide, accounting for approximately 17.9 million
deaths in 2016 according to the World Health Organization.
In addition, by 2030, CVD-related deaths are projected to
reach an annual rate of 23.6 million globally (Vittorini and
Clerico 2008). There is a need to better understand the bio-
logical mechanisms related to CVD, particularly those not
clearly associated with the traditional factors such as smok-
ing, obesity, hypertension and diabetes (Fonseca et al. 2004;
Aje 2009; Balagopal et al. 2011). To this end, alternative
risk factors and biomarkers for CVD are of significant inter-
est (Vittorini and Clerico 2008).

Elevated circulating levels (> 12—-15 uM) of homocyst-
eine (Hcy) are associated with CVD. Aberrant levels of
Hcy are also linked to Alzheimer’s disease, stroke, birth
defects, osteoporosis, cancer and many other major ill-
nesses (Schalinske and Smazal 2012). Hcy, however, is still
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not widely accepted as a CVD biomarker, despite intensive
study since 1991 (North American Symptomatic Carotid
Endarterectomy Trial Collaborators 1991; Codoier-Franch
and Alonso-Iglesias 2016). Biomarkers can be classified as
either risk factors that play causal roles in disease or as risk
markers that are associated with a disease but do not have
a clear role. The identification of new risk factors enables
the understanding of mechanisms that allow for the devel-
opment of novel treatment strategies (Tamura et al. 1996;
DeGoma et al. 2012). Biomarkers used by clinicians typi-
cally are required to play a causal role in a disease (Selleck
et al. 2017). Therefore, defining the role of Hcy in CVD
is essential for it to be optimally used as a non-traditional
prognostic and diagnostic tool.

Large clinical trials involving vitamin B and folate
supplementation therapy to lower Hcy levels have not led
to clear evidence showing a reduction in CVD (Smulders
and Blom 2011; Baggott and Tamura 2015). and the puta-
tive role of Hcy in disease continues to be explored (Al
Mutairi 2020). Baggot and Tamura (2015) investigated
the iron-promoted demethylation of methionine (Met) to
Hcy. They concluded that iron may be the actual CVD
causative agent, with elevated levels of Hcy simply serv-
ing as a surrogate measure of non-protein-bound iron.
More recently, Jakubowski and co-workers (Borowczyk
et al. 2018) showed that copper promotes relatively more
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efficient demethylation of Met to Hcy. Copper and iron
are well-known to mediate Fenton reactions. Schéneich
(Hong and Schoneich 2001; Mozziconacci et al. 2013)
has postulated that a Fenton reaction involving Met pro-
tein residues leads to a sulfur-centered radical cation
intermediate that aids the initiation of the demethylation
mechanism of Met to Hcy.

In addition to promoting the production of Hcy, cop-
per also forms complexes with Hcy that are detrimental
to endothelial cells (Kang 2011) and the cardiovascu-
lar system (Apostolova et al. 2003; Carrasco-Pozo et al.
2006). Kang (2011) has attributed the enhanced toxicity
of Cu-Hcy complexes to changes in the redox status of
copper by Hey. For example, Hcy significantly enhances
the low-density lipoprotein (LDL) oxidase activity of
ceruloplasmin via Hcy-induced conversion of Cu (II)-
ceruloplasmin to Cu (I)-ceruloplasmin (Exner et al.
2002). In addition, the Cu (I) chelator, bathocuproide
disulphonate, inhibits Cu-Hcy toxicity to cultured pri-
mary neurons (White et al. 2001).

Although studies support the fact that the reduction
of Cu (II) to Cu (I) via Hcey plays a role in cellular toxic-
ity and tissue damage, (Hill et al. 1999; Mansoor et al.
2000; White et al. 2001; Jeremy et al. 2002; Koupparis
et al. 2006; Shukla et al. 2007) it is currently not clear
why Cu-Hcy, but not copper complexes with cysteine
(Cys) or glutathione (GSH), is so strongly linked to
cardiovascular damage via redox interactions. In prior
investigations, we have shown that Hcy exhibits dis-
tinctive redox chemistry compared to other biothiols
(Sibrian-Vazquez et al. 2010). This is because the Hcy
thiyl radical can undergo a kinetically favored hydrogen
atom transfer (HAT) reaction to afford a captodatively
stabilized C*-radical (Scheme 1). This property of Hcy
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Scheme 1 The Hcy thiyl radical undergoes a kinetically favored
intramolecular hydrogen atom transfer (HAT) to form a reducing
Ca-radical
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was first proposed by Zhao and co-workers (1994) to
occur under basic conditions (wherein the amino group
is predominantly neutral to promote captodative stabi-
lization), and subsequently shown by us to occur under
physiological conditions and in human blood plasma
(Wang et al. 2004, 2005). The HAT mechanism is kineti-
cally favored for Hcy compared to other biological thiols
due to the 5-membered ring transition state. This unique
property of Hcy, for example, allows its selective detec-
tion over Cys and GSH in neutral buffer and in human
blood plasma using mildly oxidizing chromogens such as
methyl viologen (Wang et al. 2004, 2005, 2009; Sibrian-
Vazquez et al. 2010). This is because the C*-radical is a
relatively potent reducing agent whereas the thiyl radi-
cal is oxidizing (Zhao et al. 1994). C%radical and the
thiyl radical reduction potentials have been reported as
E° (NH,=CHR"/NH,CHR")= — 1.9 V and E° (RS’, H'/
RSH)= + 1.3 V vs NHE, respectively (Wardman 1989;
Zhao et al. 1994).

The hypothesis driving the study described herein is
that a redox interaction between Hcy and copper leads
to HAT from sulfur to form the alpha-amino acid car-
bon radical. Since the HAT process is less favorable for
Cys and GSH thiyl radicals, this hypothesis potentially
explains the unique redox behavior and toxicity of Cu-
Hcy complexes (Kang, 2011). Importantly, C*-radicals
are well-known to lead to free radical and oxidative bio-
molecule damage, including protein carbonyl formation
and peptide fragmentation (Sibrian-Vazquez et al. 2010;
Schoneich 2012).

: . Met Cys Hcy GSH
thiol ' 4§ i ™
)’ - iy - o <
— “= & = B ’ E 4 é >3
\ — .\&\7// A\
®OOC%SH
eooc . SH NH,
W Cu?*
.
NH, E——
Hcy C® radical cu™

Fig.1 Cu2+as a selective oxidant of Hcy. Conditions: solutions
heated at reflux for 2 min containing, 0.1 ml of 0.5 M Tris buffer
pH=7.5, 0.5 ml of 5 mM thiols and CuClI2 (1:1)
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Fig.2 HPLC chromatograms (200 nm) showing: A, Peaks corre-
sponding to diketopiperazine stereoisomers la and 1b; B, chromato-
gram of 1a and 1b solution after gentle reflux for 2 min; C, chroma-
togram of a solution of 1a and 1b in the presence of CuCl2 (1 equiv)
after 10 min at room temperature, showing the disappearance of 1la
and 1b and the formation of 4. The formation of 4 is strong evidence
for the HAT mechanism (Scheme 2)

Results and discussion

To investigate the unique redox interaction between
Hcy and copper, CuCl, was dissolved in neutral buffer
with either Met, Cys, Hcy or GSH. Figure 1 shows that
a selective colorimetric reaction occurs between Cu (II)
and Hcy, as compared to Cu (II) and Met, Cys or GSH.
The Hcy-containing solution turned yellowish-brown
from blue, indicative of Cu (I) formation, as observed
previously (Apostolova et al. 2003).

To demonstrate that the Hcy selectivity shown in
Fig. 1 is due to the kinetically favored HAT process,
analogous to what was previously observed for Hcy and
peptide-bound Hcy (Sibrian-Vazquez et al. 2010), the
effect of copper on the oxidation of the Hcy diketopip-
erazine 1 was investigated. Chiral diketopiperazines are
excellent models for studying the oxidation and race-
mization of peptides occurring via the generation of C*
radicals since they have similar bond angles to larger
naturally occurring peptides. In addition, their ready for-
mation of diastereomers upon racemization as a result
of C* formation obviates the need for chiral analytical
columns to follow the transformation (Mieden and Von
Sonntag 1989; Sibrian-Vazquez et al. 2010).

Diketopiperazine 1 (1 mM, as a mixture of 1a and
1b, Fig. 2) was synthesized as described previously
(Vigneaud et al 1938) and dissolved in MeOH: H,O
(7:3). Figure 2 shows the HPLC chromatogram of the
diastereoisomers 1a and 1b before (Panel A) and after
heating for 2 min at a gentle reflux (Panel B).

When CuCl, (1 eq.) is present in the solution contain-
ing 1a and 1b, the HPLC chromatogram of the mixture
(Panel C, Fig. 2) shows rapid disappearance of 1a and
1b at room temperature, in < 10 min, along with con-
version to 4 and disulfides (Fig. 3). Disulfide formation
is well-known as an accompanying, competing process
for HAT in the case of Hcy since HAT involves thiyl
radicals. Importantly, the production of 4 in the pres-
ence of Cu (II) is strong evidence for the formation of
a captodatively stabilized Hcy C*-radical intermediate
(Sibrian-Vazquez et al. 2010) via the mechanism shown
in Scheme 2.
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Fig.3 Top: HPLC-ESI-MS of product 4 from the copper-promoted
oxidation of 1. HPLC chromatogram (left). Mass spectrum (right).
Bottom: HPLC-ESI-MS of disulfide formed from the copper-pro-

The corresponding control experiment, using alanine
anhydride (5, Fig. 4), which does not possess a thiol-
containing side chain, led to no significant solution color
change or product formation in the presence of copper,
even after 2 min at reflux (Fig. 4 and Supporting Infor-
mation). This result supports the role of the Hcy side
chain and the HAT mechanism in promoting the reduc-
tion of Cu (II).

@ Springer

moted oxidation of 1. HPLC chromatogram (left). Mass spectrum
(right). This data supports the mechanism shown in Scheme 2

Conclusion

Several prior studies have shown that complexes between
copper and Hcy are toxic and can promote cardiovas-
cular damage in vitro (Mutari 2020). However, it is not
clear why Cu-Hcy, and not Cu-Cys or Cu-GSH, has been
specifically linked to CVD since similar chemistry is
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Scheme 2 The proposed mechanism of the oxidation of diketopipera-
zine (1) by Cu (1) to 4 via the HAT process
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Fig.4 The solution of alanine anhydride (5) and Cu (II) (right) shows
no color change in contrast to the solution of 1 or Hey plus copper.
This is consistent with the corresponding HPLC data showing the
relative diminished reactivity of 5 compared to 1 or Hcy with copper
(Supporting Information). This is strong evidence of the involvement
of the side chain of 1 in forming the C* reducing radical via the HAT
mechanism. Conditions: solutions heated at reflux for 2 min contain-
ing, 0.1 ml of 0.5 M Tris buffer pH=7.5, 0.5 ml of 5 mM thiols and
CuCl2 (1:1). left to right thiols in the copper-buffer solutions are:
no thiol, homocysteine (Hcy), homocysteine diketopiperazine (Hcy-
DKP) 1 and alanine anhydride 5

expected to occur between copper and other, relatively
more abundant biothiols, such as Cys or GSH. We have
shown herein that a redox interaction occurs selectively
between copper and Hcy, and that the selectivity is attrib-
utable to the kinetically favored formation of the strongly
reducing and relatively toxic C* radical of Hcy. Further
investigation of the relevance of this mechanism in the
pathogenesis of CVD is ongoing.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00726-021-02979-9.
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