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Abstract

Neural network architectures are achieving superhuman performance on an

expanding range of tasks. To effectively and safely deploy these systems, their

decision-making must be understandable to a wide range of stakeholders. Methods

to explain artificial intelligence (AI) have been proposed to answer this challenge,

but a lack of theory impedes the development of systematic abstractions, which are

necessary for cumulative knowledge gains. We propose Bayesian Teaching as a

framework for unifying explainable AI (XAI) by integrating machine learning and

human learning. Bayesian Teaching formalizes explanation as a communication

act of an explainer to shift the beliefs of an explainee. This formalization decom-

poses a wide range of XAI methods into four components: (a) the target inference,

(b) the explanation, (c) the explainee model, and (d) the explainer model. The

abstraction afforded by Bayesian Teaching to decompose XAI methods elucidates

the invariances among them. The decomposition of XAI systems enables modular

validation, as each of the first three components listed can be tested semi-indepen-

dently. This decomposition also promotes generalization through recombination of

components from different XAI systems, which facilitates the generation of novel

variants. These new variants need not be evaluated one by one provided that each

component has been validated, leading to an exponential decrease in development

time. Finally, by making the goal of explanation explicit, Bayesian Teaching helps

developers to assess how suitable an XAI system is for its intended real-world use

case. Thus, Bayesian Teaching provides a theoretical framework that encourages

systematic, scientific investigation of XAI.
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INTRODUCTION

Over the past decade, neural network architectures have had impressive performance gains, reaching human or even
super-human performance in many tasks, including speech recognition, translation, and image classification.1 These
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architectures have the potential to revolutionize many human activities, including logistics, medicine, and law2-4; how-
ever, the responsible and safe deployment of these systems depend on them being understandable to human stake-
holders.5 Two solutions have been suggested to this problem: one is to design systems that are inherently interpretable
or transparent, which often involves a compromise in performance; the second is to develop bespoke solutions to
explain the decision-making of an obscure system post-hoc.6 In this paper, we present a third approach in which
explainability is analyzed as a problem of facilitating understanding of artificial intelligence (AI) systems by humans.
Thus, we propose a general approach to explaining AI systems by explicitly analyzing the problem of providing infor-
mation that enables a human to understand and predict the AI. The aim of this article is to introduce a unifying frame-
work to think about XAI in terms of decomposable components from a cognitive science perspective. We show how
this framework provides novel insights to prior research by explicating and modularizing the different components of
existing XAI systems. Once identified, these components can be validated, and we discuss the implications of such
validation for the generalizability of XAI solutions, adding a new dimension to XAI research.

The literature on explainable AI has exploded in recent years,7 but there is still a dearth of coherent theoretical
frameworks of XAI techniques,8 and the taxonomies that do exist are based on the technological substrate underlying
the explanation techniques as opposed to their pragmatic goals. This lack of theory hobbles XAI research because it
obscures what lessons can be safely transferred between studies and applications, and which components need to be re-
validated in new contexts. As a consequence, it reduces both the speed of knowledge accumulation and deployment of
safe, explainable AI systems across sectors. Additionally, most XAI solutions tend to be designed by software engineers
for engineers, and as such do not consider how to explain the target system to non-technical users.9-12 This is problem-
atic because successful explanation clearly depends on the users and their goals,13 and if an AI system is successfully
deployed, software engineers will be a small subset of the users.

Explainable AI is a complex problem, with both technological and psychological components. A theoretical frame-
work that formulates the problem of XAI in structured and normative ways may surface associations between different
methods and results that previously seemed disconnected. Such a framework also decomposes XAI problems into
abstractions that represent fundamental components and dependencies, that can be validated separately. Furthermore,
such a modular approach would support deployment, as it would allow formal testing as to what sub-components of
explanation generalize to what contexts. We propose Bayesian Teaching, which formalizes explanation as a social act
between a teacher and a learner, as such a framework. In the following section, we will explain how Bayesian Teaching
abstracts a wide range of XAI systems into the following four components (see Table 1): (a) the target inference, (b) the
explanation, (c) the explainee model, and (d) the explainer model. For concreteness, we show how to apply Bayesian
Teaching to decompose popular classes of XAI methods. Then, we illustrate how the decomposed parts can be validated
semi-independently through user studies, and reflect on how Bayesian Teaching promotes human-centeredness in XAI
research and application. Finally, we discuss generalization of the decomposed parts, including remarks on the manipu-
lation and recombination of the components.

BAYESIAN TEACHING

Bayesian Teaching formalizes explanation as a communication act between the explainer (teacher) and the explainee
(learner) by the following equation:

TABLE 1 Glossary of abstracted explainable artificial intelligence (XAI) components in Bayesian Teaching

Term Definition

Target inference, Θ The inference about the AI system that the XAI system is designed to help a user reach. Examples: the
classification decision, the decision rule, predictive distribution

Explanation, x A stimuli presented to a human user with the aim to shift their beliefs toward the target inference

Explainee/learner
model, PL Θjxð Þ

Probabilistic formalization of the agent who updates their belief of the target inference based on the
explanation received; in the XAI context, a model of the human user

Explainer/teacher
model, PT xjΘð Þ

Bayesian formalization of the agent that selects explanations for the learner to shift the learner's beliefs
toward the target inference (see Equation 1); in the XAI context, the XAI system.

2 of 12 YANG ET AL.



PT xjΘð Þ¼ PL Θjxð ÞP xð Þ
P

x0∈ΩPL Θjx0ð ÞP x0ð Þ : ð1Þ

The equation describes how a teacher PT should select an explanation x to best explain a target inference Θ, contingent
on their model of the learner PL. Specifically, it says that the probability of choosing an explanation x to explain the tar-
get inference Θ is proportional to the probability that the explanation x would lead the learner model PL to the target
inference Θ. Thus, Bayesian Teaching explicitly decomposes the explanation generation process into four components:
the target inference Θ; the explanation x; the learner model, which is captured by the posterior PL Θjxð Þ; and the teacher
model, which is captured by the selection posterior PT xjΘð Þ. The explanation is selected from a pre-specified set Ω, in
which each element has a prior probability P xð Þ of being selected. Note that in our account the XAI system takes an
active role in selecting explanations, while the human learner is assumed to be a passive recipient. Our framework can
be extended to model settings where a human user interacts with an XAI system by actively querying it. The extended
framework would involve formalizing the reduction of uncertainty about Θ, which can be derived from the learner
model PL Θjxð Þ [eg, in reference 14].

The aim of XAI is to improve human users' understanding of AI systems. As such, a successful explanation should
shift the user's belief to increase the fidelity between their internal model of the AI system and the AI system itself.
Bayesian Teaching provides a formal account of such intentional belief-shifting via explanation. One implication of the
belief-shifting perspective is that the success of an explanation is determined by how much it shifts a user's belief in a
desired direction. Bayesian Teaching specifies the components— Θ, x, PL Θjxð Þ, and PT xjΘð Þ—required to quantitatively
model this shift. Below we define and explain each of these components.

The target inference Θ is an aspect of the model that human users wish to understand. Possible target inferences
range from global aspects of the model, such as model parameters, to intermediate components, such as the model's
latent variables,15 to local targets, such as the model's prediction on a particular data point.16 Local targets can be
curated into a curriculum to inform model behavior on a holistic level. The size and complexity of the curriculum cap-
ture the trade-off between explanation completeness and explanation complexity. In general, the target Θ is related to
the behavior of the model to be explained. Specifically, one should consider how the target Θ aligns with the actual use
cases in deployment, such as debugging, verification, or acceptance testing.

The explanation x is the object provided to the end user to induce understanding about Θ. Common explanation
media include instances from the training data, features of the data (eg, saliency maps), and simplified models that
accurately describe the target model for some subset of the problem space. Toward the goal of enhancing understand-
ing, a key consideration when picking an x is ease of processing by human users. Appropriate media can often be
derived from the model's training data, as they are typically curated by and hence understandable to humans. Using
XAI of image classification as an example, one can take the training images at different level of granularity to produce
different types of x, including the images themselves,16,17 regions of an image,18 or pixels of an image.19 Other media
that are easy to process are intuitive decision rules, which can be captured as distilled rule sets or even entire models,
such as decision trees and linear models as is done in mimic learning.

The learner model PL Θjxð Þ is a computational model that describes how the user makes inferences about Θ when
given the explanations x. All XAI methods have a learner model, explicit or implicit. We advocate making the learner
model explicit to allow validation of this crucial component. The quality of the explanation generated depends on the
quality of the learner model used. An inaccurate learner model will lead to unreliable and confusing explanations
because the mapping between x and Θ would be inaccurate. Conversely, a perfect learner model could lead to optimal
explanation. The specifications of x, Θ, and PL Θjxð Þ provide the input, output, and the assertions to be tested in a vali-
dation. In much of the XAI literature, the learner model is embodied as a loss function. The loss function composes of
two parts: a mapping from x to a Θ0 that exists in the same mathematical space as Θ, and the loss part that can be used
to assign a probability to the target Θ based on how different Θ0 and Θ are.20

The teacher model PT xjΘð Þ specifies the explanation-generation process. As Equation 1 suggests, this selection pro-
cess is largely determined by the learner model. This is intuitive because a good teacher should consider the learner
when selecting an explanation. To find the optimal explanation, one could search for the x that maximizes PL Θjxð Þ,
and hence PT xjΘð Þ. This solution is equivalent to finding the x that maximizes the numerator of Equation 1 and thus
avoids the computation of the denominator. Other approaches to inference include sampling from the PT xjΘð Þ, which
will provide a sense of the relative effectiveness of near-optimal explanations.
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The Ω and P xð Þ terms describe additional constraints on the explanations considered in the explanation-generation
process. Ω specifies the pool of explanations to select from, and P xð Þ specifies which element in the pool is more likely
a priori. Factors that influence the design of Ω include cognitive load and intuition on regions on interest. Returning to
the image classification example, one may want to show a limited number of images as explanations to avoid cognitive
overload or limit saliency maps to only the lungs in an x-ray image for pulmonary disease detection. In the literature,
P xð Þ is often used to control the complexity of the explanation. For example, if the explanations to be provided x are
decision trees, shallower trees are given higher prior probability ðPðxÞÞ than deeper ones. P xð Þ can also capture the cost
for constructing the x in terms of computational resources, manual labor, etc.

DECOMPOSITION VIA ABSTRACTION

In the previous section, we have identified abstractions central to Bayesian Teaching. Here we demonstrate how these
abstractions facilitate decomposition of existing methods into component parts. We consider three popular classes of
XAI methods: explanation-by-examples, explanation-by-features, and mimic learning. These three methods differ with
regards to what explanatory medium they use, which is the most common distinguishing factor between current XAI
methods. However, all also make commitments regarding the target inference Θ, the learner model PL Θjxð Þ, and the
sampling of explanation in PT xjΘð Þ, as we illustrate in the following subsections.

Explanation-by-examples

Explanation-by-examples seeks to explain the behavior of a target model by presenting a subset of cases from the train-
ing data that strongly influenced the model's inference. For instance, to explain why a classifier categorized a certain
image as a cat as opposed to other animals, examples of cat may be provided to show what the classifier considers as
prototypical cats. The explanation-by-examples approach has many desirable properties: It is fully model-agnostic and
applicable to all types of machine learning21-23; it is domain- and modality-general24,25; and it can be used to generate
both global explanation15,17,26-28 and local explanation.29-31 In the context of Bayesian Teaching, explanation-by-
examples is obtained by setting x to be a data point from the training data.32 Below we use the Bayesian Teaching
framework to decompose two existing explanation-by-examples methods into the components described in Section 2.

Suppose you have an image classifier and you would like to understand how it represents its target classes. In a pre-
vious study based on Bayesian Teaching,15 the authors address this issue by finding a few examples from the training
data that captures the target model's class representations. Here the target Θ is the latent class means of a probabilistic
linear discriminant analysis (PLDA) model trained on the whole training dataset. The explanation x is a set of three
images from the training dataset for each class. The learner model, PL Θjxð Þ, computes the probability that a PLDA (the
mapping) assigns to Θ when trained on x instead of the full dataset. The teaching is based on max selection from
PT xjΘð Þ. The Bayesian Teaching paper15 also proposes that the goodness of x can be evaluated by whether the explana-
tions help humans predict the target model's classification in a two-alternative-forced-choice (2AFC) task.

Similar to the previous method for explaining the class representation of a classifier, in the maximum-mean-discrep-
ancy-critic (MMD-critic) method,17 the authors aimed to find a small subset of data that can represent the entire data
set (as opposed to the latent means of the classes). They did this by modeling the data distributions, which allows for
the comparison between the target distribution and the learner-model induced distribution needed for example selec-
tion. Here the model to be explained is a kernel function on top of a deep neural net (DNN), and the target Θ is the data
distribution of a particular class induced by this model. The explanation x is a set of images from the training data, with
Ω restricting the set size and the classes from which the images can be sampled. The learner model, PL Θjxð Þ, is a func-
tion that describes how similar the data distribution induced by the kernel function (the mapping) on x is to Θ. The
teaching process of selecting x to induce the desired data distribution Θ is done via max selection. More specifically, the
work presents two sub-targets: “prototype” and “criticism.” The prototype selection aims to make the distribution
induced by the learner model on x match Θ as much as possible, whereas the criticism selection aims to make the two
differ as much as possible. The MMD-critic paper17 also presents an evaluation task that measures how much the expla-
nations help humans predict the model's predictions in terms of accuracy and response speed. To evaluate the model
with human participants, the authors bridged the gap between Θ (a data distribution) and the evaluated class prediction
by a nearest-neighbor-classifier based on the kernel distance in the DNN's final feature space.
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Explanation-by-features

Explanation-by-features seeks to explain AI decisions by drawing attention to sub-components of an instance of the
data that influence the output decision. In other words, this class of methods sets the x to be a constituent of a data
point, such as regions of an image, phrases in a document, or elements in a vector. Saliency maps is a form of
explanation-by-features used in image classification and is among the most popular XAI methods in recent years.33

Below we decompose two existing methods for generating saliency maps through the lens of Bayesian Teaching.
The Randomized Input Sampling for Explanation (RISE) method for generating saliency maps is a simple, model-

agnostic method that only requires access to the output probabilities—and not the internal workings—of the target
model to be explained.34 The target Θ is the predicted class label of a test image from the target model, typically a con-
volutional DNN. The explanation x is a mask over the test image: pixels that are salient for the classification are fully
unmasked. The learner model, PL Θjxð Þ, outputs the predictive probability of the class label specified in Θ by passing
the test image masked by x into the target model (the mapping). Teaching selects a mask by finding the expectation over
the mask for a particular class. While finding a mask that maximizes PT Θjxð Þ is possible, that mask is likely to focus on
a single salient region, whereas the expectation of the mask is likely to capture all salient regions. Indeed, despite differ-
ences of algorithmic approach, RISE can be viewed as a special case of Bayesian Teaching.16

In the SHapley-Additive-exPlanation (SHAP) method presented in reference 19, the authors generate feature
saliency values, which are the weights of a linear model that locally matches the target model's inferences. Here, the
target Θ is to perfectly match the target model's predictive distribution on a test data point. The explanation x is the
saliency of features, such as individual pixels of an image or words in a document. The learner model, PL Θjxð Þ, assumes
an additive linear model (the mapping), where the saliency values x are the weights of the linear model. The learner
model assumes two additional constraints referred to as missingness and consistency. Given the form of the model and
the target Θ to perfectly match a distribution, the authors prove that there is only one solution (ie, one set of weights)
that satisfy these constraints. This translates to the teaching process, PT xjΘð Þ, being a delta function on the solution.
The SHAP paper19 evaluates the goodness of x by asking human participants to assign weights to certain features in
order to compare the human-assigned weights to those generated by the method. Note that the SHAP method is closely
related to the LIME method of reference 18, which we will discuss in the following subsection. This connection pro-
vides a link between how explanation-by-features and mimic learning may morph into each other.

Mimic learning

Mimic learning, sometimes referred to as model distillation,35 is a class of explanation methods where the behavior of a
complex, obscure model is approximated by a simpler model that is easier for humans to interpret.36 Popular examples
are approximating the local behavior of a deep neural network with linear models18 or decision-trees.37 In terms of the
components introduced in Section 2, the explanation x is usually also the parameters of the learner model PL Θjxð Þ in
mimic learning.

The pioneering LIME method18 uses linear models to approximate the behavior of the target model locally. Here,
the target Θ is the decision boundary of the target model in the neighborhood of a test data point, where neighborhood
is defined by a combination of the kernel function and data augmentation used. The explanation x is the weights of a
linear model. This linear model maps the weights x to a linear decision boundary. The learner model, PL Θjxð Þ, is a func-
tion that quantifies how well the mapped decision boundary matches the decision boundary of the target model. The
teaching component of weight selection is done via maximizing PT xjΘð Þ. To transform the weights into a form that can
be easily processed by end users, the authors presented the features—such as regions of an image or words in a
document—that have positive weights.* The LIME paper18 presents three high-level tasks to evaluate explanations: par-
ticipants were tasked with competency testing (predicting which classifier generalizes better), feature debugging (identi-
fying harmful features), and model anomaly detection (identifying classifier irregularities).

The work in reference 37 distills a neural network into a soft decision tree. The target inference Θ is the predictive
distribution given by the target DNN on a set of test data points. The explanation x is a soft binary decision tree, which
needs to be further visualized when provided to a human end-user. The learner model, PL Θjxð Þ, is a function that quan-
tifies the match between the prediction distribution from the soft binary decision tree with parameter x (the mapping)
and that from the target DNN to be explained. P xð Þ is set to favor trees that have high-entropy in the paths taken over
the target test dataset. The teaching process of selection x is done via maximizing PT Θjxð Þ.
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Summary

In this section, we have demonstrated how existing XAI methods can be broken down into components according to
the abstraction provided by Bayesian Teaching. Such demonstration highlights that all XAI methods necessarily make
commitments about Θ, x, PL Θjxð Þ, and PT xjΘð Þ, and that these commitments can be made explicit. Having done the
decomposition, one can now validate and ground each component, as discussed in the next section. The decomposition
resulting from the abstraction provides a template to reason about which insinuations of the different components can
fit together. Component-specific validation tests the extent to which a component would generalize across selections of
other components and use cases. Therefore, the abstraction, validation, and generalization made possible by Bayesian
Teaching underscore the usefulness of our framework in systematizing research and development.

VALIDATION OF COMPONENTS

In software development, a unit test is a piece of code that invokes one unit of work and checks whether that unit
operates as intended. When developing a new function, it is considered good practice to write a unit test prior to writing
the function itself.38 One reason for starting with designing the unit test is that it assures the programmer that they are
trying to solve a well-specified problem and that they will know when they have succeeded. Unit testing in XAI is desir-
able for similar reasons. The strict control a unit test offers in software development might be unrealistic for much of
XAI work, but as an analogy it captures what we should aim for. Specifically, we want to systematically test the depen-
dency between inputs and outputs of a specific XAI component. This is different from a software unit test, in that com-
ponents cannot always be individually evaluated the way software units can, but a test can still be designed to evaluate
one specific component. Just as unit tests allow for robust integration of functions, appropriate evaluation of XAI com-
ponents supports their generalization beyond the original contexts in which they are introduced.

In software development, a successful unit test determines that the evaluated unit produces the desired input-output
dependency and nothing else. As we have alluded to throughout this article, the aim of XAI is to move the human
user's beliefs so that they accurately capture the AI system; hence, any unit test of an XAI component must be a user
study. The specific design of the user study and the metrics recorded should be informed by the real-world use case the
XAI system aims to solve: such as tweaking an AI system prior to release, improving human-AI teaming, or enabling
effective auditing. When AI is to influence high-stakes decisions in areas such as law and medicine, it might be helpful
to specify an assertion statement that puts thresholds on the metrics evaluated. For example, users need to accurately
catch the AI's mistakes 95% of the time, or they must have a normalized ranking loss below 0.05 when ranking the
importance of the input features on a given decision. The fact that one component passes a unit test does not imply that
it is suitable to explain any XAI model, for any user, with any goal, just like a software function passing a unit test does
not guarantee it will work in every software package. However, a successful unit test provides structured evidence that
one component of the XAI solution meets some clearly defined criterion and specifies the input-output interface that
ensures the proper working of that component. This information enables researchers and engineers to effectively reason
about whether a component is appropriate for their application, and if it is, they can confidently integrate it into their
application, leading to significant reductions in development time.

Validation of target inference

Evaluation of the target inference Θ requires x because x is the communication medium between the user and XAI sys-
tem. However, in this case x is auxiliary in that it does not need to come from a sensible learner model, hence making
the test independent of the learner-model component. The assumption of independence of the learner model is reason-
able when the range of x involved in the task can be efficiently covered by uniform sampling. Such evaluation tests
whether it is possible to achieve Θ by some x, but does not speak to the optimality of a specific x.

To evaluate the modularity of Θ, we can run a user study to measure a particular user metric on a given set of Θ's
and x's. For example, one can design the set of Θ's to be the predicted classes of three test images from three different
classes, the set of x's to be example sets with different set size (eg, 2, 3, or 4 images in a set), and the user-study metric
to be the probability that the user would predict a Θ given an x. If all the x's result in the same rank-order of Θ's on the
performance metric (eg, if human's prediction is always poor on a particular class regardless of the number of examples
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shown), we can conclude that Θ is independent of the set of x's considered. On the other hand, if the rank order of Θ
varies by x, the two should always be considered as a unit. Generalizing further, if the independence of Θ is established
over a wide range of x, it increases the probability that it will work similarly with a novel, yet untested x; otherwise,
each novel pairing need to be explicitly evaluated.

In evaluating Θ, it is also important to distinguish between two forms of belief-updating in the context of XAI appli-
cation. When auditing AI systems, the assumption is that the human user has access to the ground truth. Consequently,
the XAI solution should help the user to develop an accurate model of the AI's “beliefs,” captured by the user's ability
to predict the AI's generalization behavior. In this case, Θ would be focused on predictive behavior, as in most of
Table 2. When collaborating with AI systems, humans may have worse access to the ground truth than the
AI. Consequently, the XAI and AI systems should work together to improve the human perception of the ground truth.
In this case, in addition to understanding the AI, Θ should also include how the explanations lead human users to the
ground truth. Providing explanation for teaching the ground truth returns Bayesian Teaching to its root in pedagogical
modeling and shows how XAI and pedagogy are closely related.

Validation of explanation

The medium of explanation can be evaluated partly independently from all other components of Bayesian Teaching.
The reason for this partial independence is that explanation media can be evaluated along a dimension that is task-
independent: ease-of-processing. It is self-evident that all else being equal, an explanation that is easy for humans to
process should be preferred. Ease-of-processing can be decomposed into two primary elements: alignment with the
human cognitive-perceptual system, and complexity. Different representations of the same underlying information can
vary in human ease-of-processing. For example, humans can interpret probabilistic information more accurately when
it is presented as natural frequencies rather than conditional probabilities,39 especially if the natural frequencies are
visualized as icon arrays.40,41 Research on data-visualization and risk-perception has studied how to optimize informa-
tion presentation for human understanding,42-44 and XAI researchers could benefit from implementing these lessons.

Whereas information should always be presented in a way that is maximally interpretable to humans, information
complexity involves a trade-off. More-complex information comes at a processing cost, but complexity can also add
value. The solution to this trade-off is constrained by the complexity of the target inference to be explained Θ and the
processing capacity of the target users. Domain experts tend to have a greater tolerance for complexity in their area of

TABLE 2 A list of the components obtained from existing explainable artificial intelligence methods presented in references 15,17-19,34,

and 37

Target inference Θ Explanation x

Learner
model
PL Θjxð Þ Human evaluation task

(i) Latent variables of the target model (eg, class
means of PLDA)15

Images from
training data15,17

PLDA15 Predicting the target model's
predictions15,17

(ii) Modeled data distribution of a particular class17 Mask over target
image19,34

Kernel
function on
DNN17

User-assigned salience19

(iii) Predicted class labels on target data points34 Model
parameters18,37

DNN
classifier34

Competency testing: which
classifier generalizes better18

(iv) Predictive distributions given by the target model
on target data points19,37

Features (eg,
regions of an
image)18

Additive linear
model18,19

Feature debugging: identify
harmful features18

(v) The decision boundary of the target model in the
neighborhood of target data points18

Soft decision
tree37

Model anomaly detection:
identify classifier
irregularities18

Note: For brevity, the mapping of the learner model that maps x to Θ is listed, but the probability assignment is left out. In addition to the target inference Θ,
explanation x and learner model PL Θjxð Þ mentioned in Section 2, the human evaluation tasks used in these papers are listed. The teacher's selection PT xjΘð Þ is
left out, because most of the methods investigated maximize that probability.
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expertise, possibly because they have developed strategies to chunk task-relevant information more efficiently.45,46 To
summarize, the appropriate complexity of an explanation is determined by the complexity of Θ, as well as the capacity
of the users, as such complexity needs to be evaluated with reference to a specific Θ, on the target population for the
intended XAI solution.

There have been some attempts to create unit-tests for explanation media without reference to a specific learner
model.12,47 For example, Lage and colleagues evaluated explanation media that varied on multiple complexity metrics.
Their evaluation consisted of three different tasks: prediction (predicting the AI system's decision), verification (deter-
mining whether the system made an accurate decision), and counter-factual analysis (determining whether changing a
single input feature would alter the system's classification). They measured the response time, accuracy, and subjective
satisfaction of human participants in each condition. This provides a strong template for how to evaluate explanation
media, but their results are not easily interpretable because they did not account for the complexity trade-off discussed
previously.

Validation of learner model

The accuracy of the learner model PL Θjxð Þ is essential for effective explanation in the Bayesian Teaching framework. In
order to be effective the learner model should capture both the user's belief prior to exposure to explanation, as well as
the inferential processes the user applies to update their beliefs given the explanation. Thus, both the prior belief PL Θð Þ
(implicit in a Bayesian learner model) and the posterior beliefs PL Θjxð Þ should be evaluated. Because of this focus on
human belief, both the development and the optimization of learner models depend on lessons from cognitive science
as well as computer science. How well the learner model aligns with actual users can be evaluated by the fidelity
between the modeled response to a given explanation x and the user's actual response. This involves specifying a Θ,
sampling x, computing PL Θjxð Þ, and running a user study that measures the fidelity between the learner model and the
actual intended users. When assessing the calibration of the learner model, it is important to cover a wide range of
PL Θjxð Þ.16 This implies evaluating both explanations that the learner model predict will improve user understanding
and explanations expected to be detrimental. If the learner model accurately predicts the full range of user behavior in
response to explanation, it can be considered to have passed the key test.

Different users vary in their prior beliefs, inferential biases, and goals. As such, it is often unrealistic to develop one
general learner model that captures all users well. Instead, we propose to develop different learner models for different
user classes, such as AI engineers and clinicians. The modular nature of the Bayesian Teaching framework often allows
for varying the learner model PL Θjxð Þ to fit the current user, while keeping Θ and x constant.

Aside from providing targeted explanations, formal learner models can add value to explainable AI by encoding
general human inferential biases. For example, recent evidence from human reinforcement learning suggests that peo-
ple learn more from information that supports their existing beliefs, relative to information that contradicts them.48,49

A well-designed learner model should incorporate such biases, so that they can be accounted for and leveraged for
effective explanation. We recommend a modular encoding of such biases that can easily interface with any learner
model, treating it as a meta-model, so as to speed up the development cycle of new XAI solutions.

Validation of teacher model

The evaluation of the teaching process, PT xjΘð Þ, by definition depends on the specified x, Θ, and probability PT . Equa-
tion 1 shows that teaching is fully determined by Θ, x, the learner model given by PL Θjxð Þ, Ω, and P xð Þ. Thus, valida-
tion of these components implies the validation of the teaching process. By virtue of Bayes' rule, a user task suitable for
evaluating the learner model will also be suitable for evaluating the teaching process. The former should focus on cov-
ering a wide range of PL Θjxð Þ, while the latter should ensure the achievement of a particular PL Θjxð Þ.

Additionally, Bayesian Teaching defines the effectiveness of an explanation by the extent to which it shifts a user's
belief toward a target inference. The belief-shifting framework puts an upper bound on explanation effectiveness: If the
user holds the target belief prior to being exposed to the explanation, there is no way to measure a potential positive
impact of the explanation. As such, it only makes sense to test XAI interventions when there is a misalignment between
user beliefs about the target AI system and the ground truth.
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Validation on use cases

The appropriate target inference Θ is determined by the use case the user wishes to solve. To give an example, suppose
a doctor wishes to understand why an AI image classifier diagnosed a particular patient with cancer, the XAI system
may want to expose the decision-boundary around that particular image. In this case, a target inference that focuses on
the decision boundary would be more suitable than one that focuses on matching the modeled data distribution.

There can be multiple ways to design the Θ and x to address the same use case. The pros and cons of each design often
need to be evaluated empirically with user studies. Returning to the previous example of understanding the decision
boundary around a data point, one can also set up a Bayesian Teaching problem to show what variation of masks would
change the class label on the test data point from one to the other [c.f., 31]. This design would correspond to setting Θ
to be the different class labels (eg, positive and negative) and x to be a set of masks. Yet another way to explain the deci-
sion boundary is to give example data points from both side of the decision boundary. In this case, Θ could be the
predicted label of the test data point, x would be a set of data-label pairs, and Ω or P xð Þ can be used to enforce data-label
pairs from both classes.50

Use cases are often arranged in a hierarchy, where the higher-level use case depends on the performance in the lower-
level use cases. This hierarchy can lead to a hierarchy of nested Bayesian Teaching problems. Returning to our medical exam-
ple, a chief radiologist at the same hospital might want to prioritize what images should be passed along to a radiologist and
what images can be automatically classified by the AI system. Here, the target inference relate to the general decision-
boundaries of the model (not a specific image), with a special focus on determining regions where the decision-boundaries
are poorly aligned with the ground truth (cases when the AI system are likely to make mistakes). One may tackle this use case
by designing a two-level Bayesian Teaching problem, where the lower level problem aims to explain decision boundary
around a data point as described above, and the higher level problem aims to curate the appropriate data points to cover the
overall boundary. In the higher level problem, Θ can thus be the overall decision boundaries, x is a set of local decision
boundaries, and the learner model describes how the local decision boundaries are stitched together.

GENERALIZATION

In Section 2, we showed that Bayesian Teaching provides an abstract template to think about XAI by highlighting that
explanation is a kind of goal-directed communication between the XAI system and human. In Section 3, we showed
how to break down existing XAI methods into components according to this abstract template. From the decomposi-
tion, two complementary threads emerge. The first is the validation of components. In Section 4, we argued that valida-
tion should be done and that modular testing of certain components is possible. The second thread is the generalization
of the components by means of recombining them to form novel XAI methods, which we discuss below. The two
threads are complementary in that validated components would promote the validity of the recombination, even absent
a holistic testing of the system. However, because evaluation of individual components is rarely done, below we simply
entertain the recombination and leave their validity as a research direction.

Table 2 shows the components from the decomposition via abstraction in Section 3. Using Table 2, we make some remarks
about trends that surfaced from the decomposition, including novel methods that could be formed by recombination.

Explanation

Most XAI methods are distinguished or classified by the x component. We argue that a coherent theory that includes
all necessary components is more desirable. The coherence and completeness of such a perspective not only clarify the
connections among XAI methods but also offer systematic guidance on how to manipulate and compose them
effectively.

Teacher component

Most methods select explanations by maximizing PT xjΘð Þ. In the likely case of uncertainty in learner model and com-
plexity penalty, strictly maximizing can lead to consistent suboptimal explanation. In general, max selection is not
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robust when the modeled inference of the user does not fully match that of the actual user.51 Probabilistic selection,
though less convenient, can lead to better average performance in these cases and naturally supports testing whether
explanations that are predicted to be effective indeed are.

Θ and evaluation task

Not all Θ and evaluation task are equally well aligned. For example, the goal of explaining predicted class labels in Θ
(iii) is very well aligned to the user task of predicting the target model's predictions in evaluation task (i). In contrast,
the predictive label target in Θ (iii) and the selection of a competent model in evaluation task (iii) are not directly
related. Such misalignment requires additional consideration: is it possible that a simple modification of Θ could
improve this alignment? For example, would it be better to modify Θ to be the difference between the two target models'
predictive probability on some test data points? An alternative solution would be to select a curriculum of target data
points that will help the user to figure out the more competent model. Such curricula can be fleshed out in another
Bayesian Teaching problem, where the new x is a sequence of Θ, and the new Θ will explicitly specify measures of dis-
crimination between the two models.

Recombination

If a Θ is on the level of the generalization behavior of the model in data space [eg, Θ, in the Table 2 (iii)-(v)], this Θ will
work together with any x. This observation allows for the generation of new XAI methods from recombination. For
example, one can find a soft decision tree [x, in the Table 2 (iii)] to best match the decision boundary of a target model
[Θ, in the Table 2 (v)]. On the other hand, if Θ is on the level of a model's latent variable or parameters [eg, Θ, in the
Table 2 (i)], both the x and the mapping of the learner model are limited to models with the same parametric form. In
summary, this illustration of how Bayesian Teaching can decompose and recombine existing XAI methods is beginning
to hint at how Bayesian Teaching can identify reusable, modular components akin to a software development process.

CONCLUSION

We have argued for the importance of the development of systematic abstractions, validation, and generalization for
explainable AI. Whereas the current state of the art in the field depends on solutions that are problem-specific, render-
ing the study of XAI to be a series of unconnected engineering problems, we advocate for a systematic, scientific
approach to XAI. We present a theoretical framework based on Bayesian Teaching, which unifies the human and
machine aspects of the problem and is strongly supported by research in cognitive science. Bayesian Teaching intro-
duces a collection of abstractions that facilitate systematic thinking about XAI, which allows for the decomposition of
diverse prior approaches. The abstractions presented by Bayesian Teaching support systematic validation of compo-
nents, a necessary aspect of modern software development, which ensures that component parts of our model behave
as expected through component-wise user studies. We further argue that abstraction and validation together support
generalization—the ability to recompose validated aspects of models into new XAI methods for rapid deployment on
new tasks and domains. Through this systematic approach, Bayesian Teaching supports the a cumulative science of
XAI that incorporates best practices of behavioral research and software development.
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