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Abstract: It is desirable to combine the expressive power of deep learning with Gaussian Process
(GP) in one expressive Bayesian learning model. Deep kernel learning showed success as a deep
network used for feature extraction. Then, a GP was used as the function model. Recently, it was
suggested that, albeit training with marginal likelihood, the deterministic nature of a feature extractor
might lead to overfitting, and replacement with a Bayesian network seemed to cure it. Here, we
propose the conditional deep Gaussian process (DGP) in which the intermediate GPs in hierarchical
composition are supported by the hyperdata and the exposed GP remains zero mean. Motivated
by the inducing points in sparse GP, the hyperdata also play the role of function supports, but are
hyperparameters rather than random variables. It follows our previous moment matching approach
to approximate the marginal prior for conditional DGP with a GP carrying an effective kernel. Thus,
as in empirical Bayes, the hyperdata are learned by optimizing the approximate marginal likelihood
which implicitly depends on the hyperdata via the kernel. We show the equivalence with the deep
kernel learning in the limit of dense hyperdata in latent space. However, the conditional DGP
and the corresponding approximate inference enjoy the benefit of being more Bayesian than deep
kernel learning. Preliminary extrapolation results demonstrate expressive power from the depth of
hierarchy by exploiting the exact covariance and hyperdata learning, in comparison with GP kernel
composition, DGP variational inference and deep kernel learning. We also address the non-Gaussian
aspect of our model as well as way of upgrading to a full Bayes inference.

Keywords: deep Gaussian process; approximate inference; deep kernel learning; Bayesian learning;
moment matching; inducing points; neural network

1. Introduction

The deep Gaussian process [1] is a Bayesian learning model which combines both the
expressive power of deep neural networks [2] and calibrated uncertainty estimation. The
hierarchical composition of Gaussian Processes (GPs) [3] is the origin of expressiveness,
but also renders inference intractable, as the marginalization of GPs in the stage of com-
puting evidence is not analytically possible. Expectation propagation [4,5] and variational
inference [6-9] are approximate inference schemes for DGP. The latter has issues of poste-
rior collapse, which turns DGP into a GP with transformed input. References [8,9] address
this issue and compositional freedom [10] in such hierarchical learning. Nevertheless,
inferential challenges continue to slow the adoption of DGP.

Despite challenges, there has been progresses in understanding this seemingly simple
yet profound model. In the case where the GPs in the hierarchy are zero-mean, DGP exhibits
pathology, becoming a constant function as the depth increases [11]. Using the fact that the
exponential covariance function is strictly convex, references [12,13] studied the conditional
statistics for squared distance in function space, suggesting region in hyperparameter space
to avoid the pathology. Recently, reference [14] showed the connection between DGP and a
deep neural network with bottlenecked layers, and reference [15] suggested that a DGP
with a large width may collapse back to a GP.
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Others have found ways to work around the challenges of DGPs. The deep kernel
learning proposed in [16] gained the Bayesian character of GP and the expressive power
of a deep neural network without encountering intractability, as the learning of weight
parameters, treated as kernel hyperparameters, is an empirical Bayes. Similar ideas also
appeared in [17,18]. Hyperparameter learning in [16] was performed through marginal
likelihood, which can in principle prevent overfitting due to the built-in competition
between data fitting and model complexity [3]. However, [19] suggested that the lack of
Bayesian character in the deep feature extracting net might still result in overfitting if the
network has too many parameters.

Here, we propose a conditional DGP model in which the intermediate GPs (all but
the exposed GP) in the hierarchical composition are conditioned on a set of hyperdata.
These hyperdata are inspired by the inducing points in sparse GP [20-22], but they are
hyperparameters, not random variables. The conditional DGP is motivated by the expressive
power and Bayesian character of DGP [1], and the deep kernel learning with an objective in
marginal likelihood [16]. Due to the conditioning on the hyperdata, the intermediate GPs
can be viewed as collections of random feature functions centered around the deterministic
conditional mean. Thus, the intermediate GPs become approximately deterministic func-
tions when the hyperdata are sufficiently dense. Besides, lifting the intermediate GPs from
being zero mean might help avoid pathology too. Mathematically, we defined a marginal
prior for the conditional DGP; i.e., all intermediate GPs are marginalized, which assures
the Bayesian character when dealing with the feature functions. We then use the moment
matching method to approximate the non-Gaussian marginal prior as a GP [23], which
connects with observed data and allows the marginal likelihood objective. It should be
stressed that the effective kernel depends on the conditional mean and conditional covari-
ance in feature function via the hyperdata, which are optimized in the spirit of empirical
Bayes [24]. In the implementation, the hyperdata supporting each intermediate GP are
represented as a neural network function, u = nny (z) with u and z being the output and
input of hyperdata, similarly to the trick used in modeling the mean and variance for data
in the variational autoencoder [25].

The paper is organized as follows. Section 2 gives a short survey of the current
literature on deep probabilistic models; the usage of moment matching in approximate
inference; and the inducing points in GP and DGP. Background on mathematical models of
GP and DGP, the marginal prior for DGP and the moment matching method are introduced
in Section 3. The conditional DGP with SE kernel in the exposed layer, its mathematical
connection with deep kernel learning, the parameter learning and the non-Gaussian aspect,
are described in Section 4. A preliminary demonstration on extrapolating two time-series
data is in Section 5, followed by a discussion in Section 6.

2. Related Work

In the literature on deep probabilistic models, [26] proposed the conditional neural
process in which the mean and variance functions are learned from the encoded repre-
sentation of context data in a regression setup for target data. Deep Gaussian processes
(DGPs) constitute one family of models for composition functions by conditioning input
to a GP on the output of another GP [1]. A similar idea appeared in the works of warped
GP [27,28]. The implicit process in [29] is a stochastic process embedding the Gaussian
distribution into a neural network. Solutions of stochastic differential equation driven by
GP are also examples of composite processes [30]. Variational DGP casts the inference
problem in terms of optimizing ELBO [6] or EP [5]. However, the multi-modalness of
DGP posterior [10,23] may arise from the fact that the hidden mappings in intermediate
layers are dependent [9]. Inference schemes capable of capturing the multi-modal nature of
DGP posterior were recently proposed by [8,9]. Depth of neural network models and the
function expressivity were studied in [31,32], and uncertainty estimates were investigated
in [33]. DGP in weight space representation and its variational Bayesian approach to DGP
inference were introduced in [34], which were based on the notion of random feature
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expansion of Gaussian [35] and arcsine [36] kernels. Deep hierarchical SVMs and PCAs
were introduced in [37].

Moment matching is a way to approximate a complex distribution with, for instance,
a Gaussian by capturing the mean and the second moment. Reference [38] considered a
GP regression with uncertain input, and replaced the non-Gaussian predictive distribu-
tion with a Gaussian carrying the matched mean and variance. Expectation propagation,
in [4], computed the vector of mean and variance parameters of non-Gaussian posterior
distributions. Reference [21] approximated the distribution over unseen pixels as a multi-
variate Gaussian with matched mean and covariance. Moment matching is also extensively
applicable to comparing two distributions [39] where the embedded means in RKHS are
computed. In generative models, the model parameters are learned from comparing the
model and data distributions [40].

Inducing points are an important technique in sparse GP [20,22,41,42] and DGP. In ad-
dition to being locally defined as a function’s input and output, [43] introduced a transfor-
mation to form a global set of inducing features. One popular transformation uses the basis
of Gaussian so that one can recover the local inducing points easily [43]. Transformation
using the basis of spherical harmonic functions in [44] allows orthogonal inducing features
and connects with the arcsine kernels of Bayesian deep neural network [45]. Reference [46]
employed the inter-domain features in DGP inference. Recently, [47] proposed a method to
express the local inducing points in the weight space representation. All the methods cited
here treated the inducing points or features in a full Bayes approach, as they are random
variables associated with an approximate distribution [24].

3. Background

Here, we briefly introduce the notions of the Gaussian process as a model for random
continuous function f(x) : RY — R. A deep Gaussian process [1] is a hierarchical composi-
tion of Gaussian processes for modeling general composite function f; o f; 1 0-- - fp o f1(x)
where the bold faced function f; : R +— R has an output consisting of H; independent
GPs, and similarly for f, : R i RH2 and so on. The depth and width of DGP are thus
denoted by L and Hj.p, respectively.

3.1. Gaussian Process

In machine learning, the attention is often restricted to the finite set of correlated ran-
dom variables f := {f(x1),---,f(xn)} corresponding to the design location
X = (x1,--+,xy)T. Denoting f; := f(x;), the above set of random variables is a GP
if and only if the following relations,

Elfi] = u(xi), E[(fi — wi) (fj — uj)] = k(xi,x;), ¢))

are satisfied for all indices i, j. For convenience, we can use f ~ GP(u, k) to denote the
above. The mean function y(-) : RY — R and the covariance function k(-,-) : R x R? - R
then fully specify the GP. One can proceed to write down the multivariate normal distribu-
tion as the pdf

pl) = xpl— (£~ m) K~ (£~ m)] @

1
——
VemNIK
The covariance matrix K has matrix element K;; = k(x;, x;), characterizing the correla-
tion between the function values. The covariance function k encodes function proper-
ties such as smoothness. The vector m := p(X) represents the mean values at corre-
sponding inputs. Popular covariance functions include the squared exponential (SE)
k(xi,x;) = o exp|—||x; — x| |?/(2¢?)] and the family of Matern functions. The signal mag-
nitude o and length scale ¢ are hyper-parameters.

The conditional property of Gaussians allows one to place constraint on the model
p(f). Given a set of function values u = f(Z), the space of random function f now only
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includes those passing through these fixed points. Then the conditional pdf p(f|u) has the
conditional mean and covariance:

m — m + Ky, K [u — m] ©)]
Kx — Kx — KxzK; 'Kzx 4)

where the matrix Kyxz represents the covariance matrix evaluated at X against Z.

3.2. Deep Gaussian Process

We follow the seminal work in [1] to generalize the notion of GP to the composite
functions f; o f; 1 0 ---f; 0 f1(x). In most literature, DGP is defined from a generative
point of view. Namely, the joint distribution for the simplest zero-mean DGP with L = 2
and Hy = Hj = 1 can be expressed as

p(f2, A11X) = p(falf1)p(A1X), ®)
with the conditional defined as f>|fi1 ~ GP(0,k(f1, f1)) and f; ~ GP(0,k(X,X).

3.3. Marginal Prior, Covariance and Marginal Likelihood

In the above DGP model, the exposed GP for f, is connected with the data outputy,
and the intermediate GP for f; with the data input X. In Bayesian learning, both fs shall be
marginalized when computing the evidence. Now we define the marginal prior as

p(f) = /dfl p(f2lf1)p(£1/X) . (6)

in which the bold faced f; representing the set of intermediate function values are marginal-
ized, but the exposed f; is not. Note that the notation f(x) = f2(f1(x)) is not ambiguous
in a generative view, but may cause some confusion in the marginal view as the label f;
has been integrated out. To avoid confusing with the exposed function f,(-), we still use
£ () to denote the marginalized composite function unless otherwise stated.

Motivated to write down an objective in terms of marginal likelihood, the moment
matching method in [23] was proposed, so one can approximate Equation (6) with a
multivariate Gaussian g(f|X) such that the mean and the covariance are matched. In the
zero-mean DGP considered in [23], the covariance matching refers to

E¢lfifj] = Eg, [Eg, g, [fifil] = / dfadfy f(f1(xi)) f2(f1(x)))p(f2lf1) p(£11X) . (7)

In the case where the squared exponential kernel is used in both GPs, the approximate
2
marginal prior q(f|X) = N (0, Kegr), with the effective kernel being kg = 02[1 + 2% (1-
2
exp(—|x; — x;|2/23))] 1 [23]. The hyperparameters include the length scale ¢ and signal
magnitude o with layer indexed at the subscript.

Consequently, the evidence of the data X, y associated with the 2-layer DGP can be
approximately expressed as

pyIX) ~ [ dep(ylBa(ex) . ®)

Thus, the learning of hyperparameters ¢s and /s in the zero-mean DGP model is through
the gradient descent on log p(y|X), and the gradient components a%% and % are needed

in the framework of GPy [48].

4. Model

Following the previous discussion, we shall introduce the model of conditional DGP
along with the covariance and marginal prior. The mathematical connection with deep



Entropy 2021, 23, 1387

50f15

kernel learning and the non-Gaussian aspect of marginal prior will be discussed. The dif-
ference between the original DGP and the conditional DGP is that the intermediate GPs in
the latter are conditioned on the hyperdata. Learning the hyperdata via the approximate
marginal likelihood is, loosely speaking, an empirical Bayesian learning of the feature
function in the setting of deep kernel learning.

4.1. Conditional Deep Gaussian Process

In the simple two-layer hierarchy with width H; = H, = 1, the hyperdata {Z,u} =
{z1.m € R, uq.p € R} are introduced as support for the intermediate GP for f;, and the
exposed GP for f, remains zero-mean and does not condition on any point. Thus, f; can be
viewed as a space of random functions constrained with f1(z1.p1) = u1.p, and the Gaussian
distribution p(fi(x1.x5)|Z, u) has its conditional mean and covariance in Equation (3) (with
m on RHS set to zero) and (4), respectively. Following Equation (6), the marginal prior for
this conditional DGP can be similarly expressed as

p) = [ afip(Ealf)p(RIX,Z,u) ©)

With f; being conditioned on the hyperdata {Z, u}, one can see that the multivariate
Gaussian p(f1(x1.n5)|Z, u) emits samples in the space of random functions passing through
the fixed hyperdata so that Equation (9) is a sum of an infinite number of GPs. Namely,

f~ ;QP(O,kz(fl(X),ﬁ(X))),

with f; under the constraints due to the hyperdata and the smoothness implied in kernel
k1. Therefore, f are represented by an ensemble of GPs with same kernel but different
feature functions. We shall come back to this point more rigorously in Section 4.2.

Now we shall approximate the intractable distribution in Equation (9) with a multi-
variate Gaussian q(f|X, Z, u) carrying the matched covariance. The following lemma is
useful for the case where the exposed GP for f;|f; uses the squared exponential (SE) kernel.

Lemma 1. (Lemma 3 in [49]) The covariance in p(f) (Equation (9)) with the SE kernel
ka(x,y) = o2 exp|—(x —y)?/203] in the exposed GP for f>|f1 can be calculated analytically.
With the Gaussian conditional distribution, p(f1|X, Z, w), supported by the hyperdata, the effective

kernel reads
o3 [ (m; —m;)?

kege(xi, xj) = exp | —
N e 2(63+ 67)

where m; ; = m(x;;) and c;j := cov(fi1(x;), f1(x;)) are the conditional mean and covariance,
respectively, at the inputs x; ;. The positive parameter 51-2]- i= Cji + ¢jj — 2¢;j and the the length scale
4y dictates how the uncertainty about fq affects the function composition.

, (10)

Next, in addition to the hyperparameters such as os and /s, the function values
uy.p are hyperdata that shall be learned from the objective. With approximating the
non-Gaussian marginal prior p(f|X, Z, u) with q(f|X,Z,u), we are able to compute the
approximate marginal likelihood as the objective

L= —1og/dfp(y|f)q(f\x, Zu). (11)

The learning of all hyperparameter data follows the standard gradient descent used in
GPy [48], and the gradient components include the usual ones, such as 0K/ 94> in exposed
layer and those related to the intermediate layer 0K /0¢1 and the hyperdata 0Keg/du1.pm
through chaining with 0Keg/9(m; — m;) and 0K/ a&fj via Equations (3) and (4). To exploit
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the expressive power of neural network during optimization, the hyperdata can be further
modeled by a neural network; i.e.,

U = NNy (Z1:Mm) , (12)

with w denoting the weight parameters. In such case, the weights w are learned instead of
the hyperdata uy.p.

4.2. When Conditional DGP Is Almost a GP

In the limiting case where the probabilistic nature of f; is negligible, then the condi-
tional DGP becomes a GP with the transformed input; i.e., the distribution p(f;|X,Z,u)
becomes highly concentrated around a certain conditional mean f; (x). To get insight, we
reexamine the covariance in the setting where f; is almost deterministic. We can reparam-
eterize the random function f; at two distinct inputs x; » for the purpose of computing
covariance:

filxij) = m(x;j) + €, (13)

where m(x) is the conditional mean given the fixed Z and u. The random character lies in
the two correlated random variables, (¢;, e]')T ~ N(0,C), corresponding to the weak but
correlated signal around zero. Under that assumption, we follow the analysis in [9,38] and
prove the following lemma.

Lemma 2. Consider p(f) defined in Equation (9), with f,|f1 being a more general GP (ya, k2 )
and fi reparametrized as in Equation (13). The covariance, cov(f2(f1(x;)), f2(fa (Xj))), has the
following form:

o .
1+ fagn]- + %afni + Cijaiimj]kz(mi/ mj) + cijpa (m;) uy (m;) (14)

where the cs are matrix elements of kernel matrix C associated with the weak random variables €; |
in Equation (13). The notation m; ; := m(x; ;) and prime as derivative is used.

Proof. The assumption is that f,|f; ~ GP (2, kz) and that f1(x) a weak random function
€(x) overlaying a fixed function m(x). Atany two inputs x; ;, we expand the target function
f to the second order:

2,
fxij) = falfilxij)) = falmij) + € jfa(mif) + % ) (mi ), (15)

where the shorthanded notation m; := m(x;) and €(x;) := ¢; is used. Note that (e;, €;)
is bivariate Gaussian with zero mean and covariance matrix C. We use the law of total
covariance, cov(a,b] = cov(E[a|d],E[b|d]) + E[cov(a,b|d)] with a, b and d being some
random variables. To proceed with the first term, we calculate the conditional mean given
the es:

Elf(xij)lei €] = pa(mij) + e’ (m;) . (16)

Then one uses the fact that f>|f1, f;|f1 and fJ|fi are jointly Gaussian to compute the
conditional covariance, which can be expressed in a compact form:

cov[f (x;)f(xj)lei €] = O(ei, €))k(mi,m;) . (17)

The operator O accounts for the fact that cov|fj (m;), fr(mj)] = Bfnimjkz(mi, m;) and
cov(fa(m;), fy (m;)] = Bfnjkz(mi, m;). Thus, the operator reads

A € 612 2 2
O=1+ €Z‘ami + €jam]. + ?’aml + 78.,,1] + eie]-am]_m]_ . (18)



Entropy 2021, 23, 1387

7 of 15

Now we are ready to deal with the outer expectation with respect to the es. Note that

the covariance ¢;; := E[e;ej] = c(x;,x;) and variance ¢;; := E[e?] = c(x;, x;) are matrix

elements of C. Consequently, we prove the total covariance in Equation (14). O

Remark 1. Since the second derivatives 93, ko (m;, m;) = afnjkz(mi, mj) = —B%im]_kz(mi, ;)

hold for the stationary ky, the above covariance (Equation (14)) with up = 0 is identical to the

effective kernel in Equation (10) in the limit (3 > 51.2]-, which reads

(m; —m;)?
2

205

(ml- — m])z — 6%

covf (xa)f(x) e [L+ ==

512]] expl— ] (19)

Such a situation occurs when the inputs Z in hyperdata are dense enough so that f becomes almost
deterministic.

Consequently, in the limit when the conditional covariance in 62 is small compared
with the length scale 2, Equation (19) indicates that the effective kernel is the SE kernel
with a deterministic input m(x), which is equivalent to the deep kernel with SE as the
base kernel (see Equation (5) in [16]). On the other hand, when 62 and ¢, are comparable,
the terms within the first bracket in the RHS of Equation (19) are a non-stationary function
which may attribute multiple frequencies in the function f. The deep kernel with the
spectral mixture kernel (Equation (6) in [16]) as the base is similar to the effective kernel.

4.3. Non-Gaussian Aspect

The statistics of the non-Gaussian marginal prior p(f|X, Z, u) are not solely determined
by the moments up to the second order. The fourth moment can be derived in a similar
manner in [23] with the help of the theorem in [50]. Relevant discussion of the heavy-tailed
character in Bayesian deep neural network can be found in [51-53]. See Lemma A1 for the
details of computing the general fourth moment in the case where SE kernel is used in f5|f;
in the conditional 2-layer DGP. Here, we briefly discuss the non-Gaussian aspect, focusing
on the variance of covariance, i.e., by comparing E, [(f(x;) f (x;))?] and Eg[(f (x;) f (x}))*],
with p being the true distribution (Equation (9)) and g being the approximating Gaussian.

In the SE case, one can verify the difference in the fourth order expectation value:

B (m,v—mé)2 _(mi—mzj)z
1426% 1+6%
e Y e Y

Ep[(f (i) f(x1))?] = Eql(f (x:) f (7)) = 22 115 >0,

where we have used the fact that the inequalities (1 +26%)~1/2 > (14 6%)"! and
exp[—(1+26%)71] > exp[—(1 + 6%)~!] hold. Therefore, the inequality suggests the heavy-
tailed statistics of the marginal prior p(f(x;), f(x;)) over any pair of function values.

5. Results

The works in [54,55] demonstrate that GPs can still have superior expressive power
and generalization if the kernels are dedicatedly designed. With the belief that deeper
models generalize better than the shallower counterparts [56], DGP models are expected to
perform better in fitting and generalization than GP models do if the same kernel is used
in both. However, such expectation may not be fully realized, as the approximate inference
may lose some power in DGP. For instance, diminishing variance in the posterior over the
latent function was reported in [9] regarding the variational inference for DGP [6]. Here,
with a demonstration of extrapolating real-world time series data with the conditional
DGP, we shall show that the depth, along with optimizing the hyperdata, does enhance
the expressive power and the generalization due to the multiple length scale and multiple-
frequency character of the effective kernel. In addition, the moment matching method as
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an approximate inference for conditional DGP does not suffer from the posterior collapse.
The simulation codes can be found in the github repository.

5.1. Mauna Loa Data

Figure 1a,b shows fitting and extrapolating the classic carbon dioxide data (yellow
marks for training, red for test) with GPs using, respectively, the SE kernel and a mixture
of SE, periodic SE and rational quadratic kernels [3].

(t—t)? sin?(t —t') (t—t) 4
3 G 7
All the 0s are hyperparameters in the mixture kernel. As a result of the multiple time
scales appearing in the data, the vanilla GP fails to capture the short time trend, but the GP
with mixture of kernels can still present excellent expressivity and generalization. The log
marginal likelihoods (logML) were 144 and 459 for the vanilla GP and kernel mixture GP,
respectively. The two-layer zero-mean DGP with SE kernel in both layers performed better
than the single-layer counterpart. In Figure 1c, the GP with the SE[SE] effective kernel has
excellent fitting with the training data but has extrapolated poorly. The good fitting may

have resulted from the fact that the SE[SE] kernel does capture the character of multiple
length scales in DGP. The logML for the SE[SE] GP is 338.

kix (£,') = 67 exp[— ] + 63 exp| ]+ 63[1 +

2.0
15
1.0
0.5
0.0
-0.5
-1.0

=15

2.0

N

15
1.0

-

0.5
0.0

o

-0.5
1 -1.0

=15

0.0 0.2

08 10 00 02 02 06 08 10 0.0 02 04 06 08 10

(b) (0)

Figure 1. Extrapolation of standardized CO, time series data (yellow dots for training and red dots for test) using GP with

three kernels. The dark solid line represents the predictive mean, and the shaded area is the the model’s confidence. Panel

(a) displays the result using a single GP with an SE kernel. Panel (b) was obtained following the kernel composition in [3].

Panel (c) came from using the effective kernel of 2-layer zero-mean DGP with SE used in both layers [23]. (a) SE kernel;
(b) SE+periodic SE+RQ kernel; (c) SE[SE] kernel.

Next, we shall see whether improved extrapolation can arise in other deep models
or other inference schemes. In Figure 2, the results from DKL and from DGP using the
variational inference are shown. Both were implemented in GPFlux [57]. We modified
the tutorial code for hybrid GP with three-layer neural network as the code for DKL.
The result in Figure 2a does not show good fitting nor good extrapolation, which is
to some extent consistent with the simulation of a Bayesian neural network with ReLu
activation [32]. As for the DGP using variational inference, the deeper models do not show
much improvement compared to the vanilla GP, and the obtained ELBO was 135 for the
two-layer DGP (Figure 2b), and it was 127 for three-layer (Figure 2c).

0.0 0.2 0.4 0.6 0.8 1.0

(a)

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0

=15

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0

=15

0.0 0.2 0.4 0.6 0.8 1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

(c)

Figure 2. Extrapolation of standardized CO, using DKL and variational inference [6] for the DGP implemented in
GPFlux [57]. Panel (a) was obtained using the DKL with three-layer RELU network. Panel (b) shows the results from the
two-layer zero-mean DGP model. Panel (c) shows the results of the three-layer zero-mean DGP. (a) DKL; (b) Two-layer DGP;

(c) Three-layer DGP.
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Now we continue to show the performance of our model. In the two-layer model, we
have 50 points in hyperdata supporting the intermediate GP. A width-5 tanh neural network
is used to represent the hyperdata, i.e., 111.50 = nnw(z1.50). Then, the hyperparameters,
including 015, £12 and weight parameter w, were learned from gradient descent upon
the approximate marginal likelihood. The top panel in Figure 3a displays the prediction
and confidence from the posterior over f;, obtained from a GP conditioned on the learned
hyperparameters and hyperdata. The logML of the two-layer model was also 338, the same
as the SE[SE] GP, and in the bottom panel of Figure 3a one can observe a good fit with the
training data. More importantly, the extrapolation shows some high frequency signal in the
confidence (shaded region). In comparing ot with Figure 3 of [54], the high-frequency signal
only appeared after a periodic kernel was inserted. We attribute the high-frequency signal
to the propagation of uncertainty in f; (top panel) to the exposed layer (see discussion in
Section 4.2).

Lastly, the three-layer model using 37 and 23 hyperdata in the f; and f; layer, re-
spectively, has its results in Figure 3b. Those hyperdata were parameterized by the same
neural network used in the two-layer model. The training had a logML of 253, resulting
in a good fit with the data. The extrapolation captured the long term trend in its predic-
tive mean, and the test data were mostly covered in the confidence region. In the latent
layers, more expressive patterns overlaying the latent mappings seemed to emerge due
to the uncertainty and the depth of the model. The learned 07,3 ~ (0.49,0.86,2.56) and
013 ~ (0.014,1.2,0.46) show that different layers managed to learn different resolutions.

Latent function f1(x) Latent function f1(x)

- —— cond. mean
278 ¢ hyperdata

—— cond. mean 2
* hyperdata 18
0.0 0.2 0.4 0.6 0.8 1.0 e
Target function f2(f1(x)) 14
test data A

- train data
1{ —— pred. mean

0o 02 04 o6 o 10
Latent function f2(f1(x))

—— cond. mean
hyperdata

Target function f3(f2(f1(x)))

2 test data
- train data
—— pred. mean

(a) (b)

Figure 3. Extrapolation of the standardized CO, using conditional DGP. Panel (a) is for the two-layer
model, and (b) for the three-layer model. Top and middle panels shows the mean and confidence in the
posterior over the latent functions. See text for details. (a) Two-layer conditional DGP; (b) Three-layer
conditional DGP.

5.2. Airline Data

The models under consideration can be applied to the airline data too. It can be seen
in Figure 4 that the vanilla GP was too simple for the complex time-series data, and the
GP with the same kernel composition could both fit and extrapolate well. The logML
values were -11.7 and 81.9 for the vanilla GP and kernel mixture GP, respectively. Similarly,
the SE[SE] kernel captured the multiple length scale character in the data, resulting in a
good fit with logML 20.9, but poor extrapolation.
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0.0 0.2 0.4 0.6 0.8 1.0

(b) (©)

Figure 4. Extrapolation of the standardized airline data with three different GPs. (a) SE kernel; (b) SE+periodic SE+RQ kernel;

(c) SE[SE] kernel.

Here, we display the results using the DKL, variational inference DGP, both two-layer
and three-layer, in Figure 5. For the airline data, the DKL with a ReLu neural network as
feature extractor panel (Figure 5a) had similar performance to its counterpart on CO; data,
as did the variational DGP(Figure 5b,c).

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(b) (c)

Figure 5. Extrapolation of the standardized airline data using DKL (a), 2-layer DGP (b) and 3-layer DGP (c). (a) DKL;
(b) Two-layer DGP; (c) Three-layer DGP.

Our two-layer model, aided by the probabilistic latent layer supported by 13 hyperdata,
showed improved extrapolation along with the high-frequency signal in prediction and
confidence. The optimal logML was 28.5, along with the learned ¢7, = (3.03,0.73), {1, =
(0.026,2.19) and noise level 0, = 0.004. As shown in Figure 6b, the latent function supported
by learned hyperdata shows an increasing trend on top of an oscillating pattern, which led
to the periodic extrapolation in the predictive distribution, albeit only the vanilla kernels
were used. It is interesting to compare Figure 6b with Figure 6a, as the latter model had 23
hyperdata supporting the latent function, and the vanishing uncertainty learned in the latent
function produced an extrapolation that collapsed to zero. The logML in Figure 6a is 7.25
with learned 07, = (2.18,0.59), ¢1, = (0.3,0.07), and noise level ¢;, = 0.02.

Latent function f1(x) Latent function f1(x)
—— cond. mean 7.5

+ hyperdata
5.0

2.5

0.0

-2.5

—— cond. mean
* hyperdata

-5.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
3 Target function f2(f1(x)) 3 Target function f2(f1(x))
test data | — test data
»| = train data f 2 train data
—— pred. mean f ) —— pred. mean
1 1
0 0
1 -1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) (b)

Figure 6. Extrapolation of airline data using conditional DGP. The upper panel shows the learned
latent function and uncertainty from hyperdata learning, and the bottom panel shows the extrapola-
tion from the past data. (a) The first model had 23 hyperdata supporting the latent GP. (b) The other
model had 13. (a) 2-layer cDGP with 23 hyperdata; (b) 2-layer cDGP with 13 hyperdata.
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6. Discussion

What did we gain and lose while modifying the original DGP defined in Equation (6)
by additionally conditioning the intermediate GPs on the hyperdata? On one hand, when
the hyperdata are dense, the conditional DGP is mathematically connected with the deep
kernel learning, i.e., a GP with warped input. On the other hand, in the situations when less
dense hyperdata are present and the latent GPs are representations of random functions
passing through the hyperdata, the conditional DGP can be viewed as an ensemble of deep
kernels, and the moment matching method allows us to express it in a closed form. What
do we lose in such an approximation? Apparently, the approximate g for the true marginal
prior p in Equation (9) cannot account for the heavy-tailed statistics.

In the demonstration, the presence of hyperdata constrains the space of the intermedi-
ate functions and moves the mass of the function distribution toward the more probable
ones in the process of optimization. Comparing the SE[SE] GP, which represents an ap-
proximate version of zero-mean 2-layer DGP, against the conditional DGP model, the con-
strained space of intermediate functions does not affect the learning significantly, and the
generalization is improved. Besides, the uncertainty in the latent layers is not collapsed.

One possible criticism of the present model may result from the empirical Bayes
learning of the weight parameters. Although the weight parameters are hyperparameters
in both our model and in DKL, it is important to distinguish that the weight parameters
in our model parameterize u;.);, which supports the intermediate GP, representing an
ensemble of latent functions. In DKL, however, the weight parameters fully determine the
one latent function, which might lead to overfitting even though marginal likelihood is
used as an objective [19]. A possible extension is to consider upgrading the hyperdata to
random variables, and the associated mean and variance in q(u1.)) can also be modeled as
neural network functions of Z. The moment matching can then be applied to approximate
the marginal prior [ dfidup(f;|f1)p(£1/X,Z,u)q(u).

7. Conclusions

Deep Gaussian processes (DGPs), based on nested Gaussian processes (GPs), offer the
possibility of expressive inference and calibrated uncertainty, but are limited by intractable
marginalization. Approximate inference for DGPs via inducing points and variational infer-
ence allows scalable inference, but incurs costs by limiting expressiveness and causing an
inability to propagate uncertainty. We introduce effectively deep kernels with optimizable
hyperdata supporting latent GPs via a moment-matching approximation. The approach
allows joint optimization of hyperdata and GP parameters via maximization of marginal
likelihood. We show that the approach avoids mode collapse, connects DGPs and deep kernel
learning, effectively propagating uncertainty. Future directions on conditional DGP include
that consideration of randomness in the hyperdata and the corresponding inference.
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Appendix A

Lemma A1. Consider the marginal prior for 2-layer conditional DGP [Equation (9)] with f,|f1
being a GP with SE kernel, and f1|Z, u being another GP with conditional mean p and conditional
covariance k. The general fourth moment is the following sum over distinct doublet decomposition,

BLF () ) 06 ()] = orf ettt ot

Dab Dcd - Vazb,cd

with Vypeq = (kg + kpe — kac — kpg) /03 and Dy = 1+ (kaa + kppp — 2kgp) / €3, Furthermore,
the expressions,

—(mg — mb)z
26%(Duh - VaZb,Cd/Dcd)

Xap,cd = EXP

7

and
(mg —my)(me —myg) Vap ca
E%(DﬂbDCd - Vzb,cd)

a

ﬁab,cd = exp [_

Proof. Denoting the function value h, := f1(x,), we can rewrite the product of the covari-

hiT Jalh]ae
(7[ ]ub,cd;[ ]b,d)

ance function ky(hg, hy)ka(he,hy) = exp where the row vector

[h]aTb,cd = (hg, hp, he, hy) and the matrix

o Jo 0
J4 - (0 JZ) 7
where J; is the 2-by-2 matrix with ones in the diagonal and minus ones in the off-diagonal.
The above zeros stand for 2-by-2 zero matrices in the off-diagonal blocks. The procedure
of obtaining expectation value with respect to the 4-variable multivariate Gaussian distri-

bution N ([h] 54| V4, Ky) is similar to the previous one in obtaining the second moment.
Namely, applying Lemma 2 in [23],

1yt
exp(—5ViALV,
Elka(ha, 1o )ka(he, ha)] = p(142+ ]?{434 ) ,

in which the calculation of inverse of 4-by-4 matrix Iy + K4J4 and its determinant is quite
tedious but tractable. [
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