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Abstract. Limited expert time is a key bottleneck in medical imaging. Due to advances in image classification, Al
can now serve as decision-support for medical experts, with the potential for great gains in radiologist productivity
and, by extension, public health. However, these gains are contingent on building and maintaining experts’ trust in the
Al agents. Explainable Al may build such trust by helping medical experts to understand the Al decision processes
behind diagnostic judgements. Here we introduce and evaluate explanations based on Bayesian Teaching, a formal
account of explanation rooted in the cognitive science of human learning. We find that medical experts exposed to
explanations generated by Bayesian Teaching successfully predict the AI’s diagnostic decisions and are more likely to
certify the Al for cases when the Al is correct than when it is wrong, indicating appropriate trust. These results show
that Explainable Al can be used to support human-Al collaboration in medical imaging.

Keywords: Explainable Al, Medical imaging, Explanation-by-examples, Bayesian Teaching. Human-computer inter-

action. Healthcare, Image classification.

*Tomas Folke, tomas.folke@rutgers.edu

1 Introduction

Al has the potential to transform medicine, particularly in disciplines that are data-rich and rely
on image-based diagnosis such as radiology.' One of the main constraints for such disciplines
is specialist time. Modern image-classifiers could potentially help with the case load as they have
comparable diagnostic performance to trained medical professionals.* If easy diagnostic decisions
could be offloaded to artificial systems, this would allow human experts to focus on the most
challenging cases, thus reducing costs, increasing treatment volume, and improving diagnostic
performance. However, because of issues relating to legal and ethical accountability, it is unlikely
that artificial systems will make independent diagnoses in the immediate future.’ Instead, there
will be human Al collaboration, where Al serve as decision-support system that helps human

specialists by assisting with case-prioritisation or providing second opinions.°



The efficiency of human-Al collaboration depends on clinicians understanding and appropri-
ately trusting the Al system.” However, the most accurate image classifiers, deep neural networks,
are notoriously obscure, and hard even for Al experts to understand.® Moreover, while accurate,
image classifiers do make counter-intuitive errors and are susceptible to being fooled.” Thus, while
their opacity is deeply intertwined with their success, it poses a challenge for applying deep neural
networks on high stakes problems such as medical imaging—until we can develop methods that
allow clinicians to develop understanding and appropriate trust.

Explainable AI (XAI) addresses this problem by developing specialised explainer systems,
which have the aim of explaining Al inferences to human users.'® However, most work in XAI
has been done by computer scientists for computer scientists, resulting in technical explanations
that might help engineers to develop better Al systems, but are of limited utility for other types of
end-users.!! Indeed, of the many published approaches for explainable Al, a tiny minority have
tested their efficacy in a user study.'? The lack of systematic understanding of humans and Al as a
system remains a challenge.

Bayesian Teaching is an integrative framework and computational model that addresses these

13-15 and drawing upon deep con-

challenges. Rooted in the cognitive science of human learning,
nections to probablistic machine learning,'®!” Bayesian Teaching authentically integrates models
of human and machine learning in a single system. Bayesian Teaching casts the problem of XAl as
a problem of teaching—selecting optimal examples to teach the human user what the Al system has
inferred. Bayesian Teaching draws upon strong empirical foundations in cognitive science, where
it has been proposed as a model to explain the speed and robustness of learning from others.'* 1

We will evaluate two forms of explanation that we have previously validated for explaining

deep neural net image classification in ordinary (non-medical) images among non-expert partici-
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pants.'® First, explanation-by-examples, where we select examples from the training data that are
most likely to help the user predict the AI’s decision according to Bayesian Teaching. Second,
explanation-by-features, where saliency maps highlight the pixels in the image that most impacted
the AI’s decision. We combine these two methods so that users are not just exposed to influential
examples, but also saliency maps that showcase which features the Al paid attention to in each
example. Our preliminary work showed that these two methods of explanation complement each
other in that explanation-by-examples helps users identify trials when the Al was correct, whereas

explanation-by-features improves error detection, '8

so we used both methods to optimize the ex-
planations in this high impact use case.

To evaluate our system, we applied Bayesian Teaching to a deep neural net used to diagnose
pneumothorax in x-ray images. The explanations were integrated into an interface that carries
basic functionalities for viewing x-ray images. We designed an experiment that aimed to test (1)
participants’ understanding of the Al (captured by how well they could predict the AI’s decisions)
and (2) the development of appropriate trust (captured by when they chose to certify the of Al’s
decisions). Radiologists were recruited to evaluate whether medical professionals benefited from

the explanations generated by Bayesian Teaching. Our results confirmed the utility of explanation

both for understanding the Al and for developing appropriate trust in the Al system.

2 Methods

2.1 Participants

We recruited eight participants: One medical school student, one radiology resident from Mt Sinai

Hospital in New York, and six radiology residents from Guy’s and St Thomas’s Hospital in London.



The radiology residents all had an average of three years of experience working as radiologists

(Range: 1-10 years).

2.2 Materials

The experiment was conducted online so each participant completed the experiment on their own
computer. We maintained a standard image size to ensure comparability across sessions. To this

end we enforced a minimum screen size of 1064 x 600 pixels.

2.3 Bayesian Teaching

Bayesian Teaching is a method for selecting optimal explanatory examples. Explanation-by-
examples can be considered a social teaching act. The explainer (as the teacher) selects examples
to guide the explainee’s (as the learner) inference to a desired target. In Bayesian Teaching a good
explanation consists of a small subset of the training data that will, with high probability, lead a

learner model to the correct inference. The general equation for Bayesian Teaching is

P (e|D)Pr(D)
Pr(DIO) = 15 (610 Py (D)D" @

In this equation, D can be any subset of the training data; © denotes the inference of the Al to be
explained; Pr(D|©) is the probability of choosing D as the explanatory examples for the target ©;
P (©|D) is the learner’s posterior inference after receiving D; and Pr(D) describes an a priori
bias for a certain kind of examples (e.g., favoring smaller subsets); and the integral is over all
partitions of the training data consistent with Pr(D).

In this paper, the target © is the target model’s predicted label ¢* of a target image x*. The
Pr(D) spreads the probability uniformly over any D that is composed of a true positive, a true
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Fig 1 Selection of explanatory examples and saliency maps with Bayesian Teaching. The inputs to Bayesian Teaching
are: the target image x* and the label c¢* predicted by the target model; the training dataset; and the learner model,
which is a program that computes Pr,(0|D). The green box depicts the inner working of Bayesian Teaching. Image
sets D that satisfy Pr(D) are sampled at random. The learner model takes in a large number of random trials (each
row of {x*, D}) to produce the unnormalized teaching probabilities. Here, a set D with probability = 1 is selected as
the explanatory example. The final output is a set of ten images: the target image, the four examples selected, and the
saliency maps of these five images. The saliency maps are generated from the target model (AlbuNet).

negative, a false positive, and a false negative example from the training data, with labels predicted
by the target model. The learner model, P.(©|D), has exactly the same architecture as the target
model, but whereas the target model is trained on the entire training data set, the learner model is
only trained on the four examples in D. Given these specifications—the image-label pair {x*, ¢*},
the constraint of Pr(D), and a program that computes P, (0| D)—Equation 1 outputs the posteriors
on teaching sets D. A teaching set from the posterior is sampled by taking the maximum-a-
posteriori D.

Figure 1 shows a flowchart of how we implemented Bayesian Teaching. The inputs were the
target image x* and its label c*; the training dataset; and the learner model, which is a program that
computes Pr(©|D) := Pp(c*|x*, D). Ten thousand sets of D were sampled from Pr(D). For each
D, the (unnormalized) teaching probability, which is proportional to Py, (©|D), was computed. For
¢* = 1 and ¢* = 0, we randomly selected from sets of D that satisfied 1 — P.(©]|D) < € and

Pr(©|D) < e, respectively, where € is set to 107°.

The target mode, or the Al to be explained, is a deep neural network called AlbuNet used to di-



agnose pneumothorax in x-ray images.'” AlbuNet was trained on x-ray images with radiologists’
markings of regions of pneumothorax. The training data is the SIIM-ACR Pneumothorax Seg-
mentation dataset hosted on Kaggle.! To make inferences, AlbuNet first computes the probability
that pneumothorax is present for each pixel of the target image. It then takes these pixel-by-pixel
probabilities (hereafter referred to as AlbuNet probabilities) and makes a binary classification for
the full image by judging whether the number of pixels with AlbuNet probability greater than b,
is greater than b,. We developed a probabilistic version of the original thresholding model. The
new thresholding model has comparable accuracy (90% vs the original 86%) and is amenable to
the probabilistic inference required by Pr(©|D) in Equation 1.

In contrast to the original model, the modified model applies soft thresholds in the form of
logistic functions. Specifically, the probability that the image x has pneumothorax (¢ = 1) under

the modified model is given by
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In Equation 2, § = {wy, by, wy, by} are the parameters of the two soft thresholds; M is the number
of pixels in image x whose AlbuNet probability are > 0.05; j indexes the pixels in image x that
satisfy this criteria; and the infinity norm described by « picks out the pixels with maximal p;
value in x. In Equation 3, z;; denotes the AlbuNet probability for the ;" pixel in x, and x5 is a
normalized index between [0, 1] that measures that how many admitted pixels there are in x and

how many of the admitted pixels in x are smaller than the x;;. Note that x;, = 1 if all pixels in x

https://www.kaggle.com/c/siim-acr-pneumothorax—-segmentation
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are admitted and the corresponding x;; is the pixel with maximal AlbuNet probability in x.

To give an intuition for these equations, Equation 2 represents the image x by the pixels in it
that have the highest probability for ¢ = 1. The product of the two logistic functions in Equation 3
carves out a soft quadrant in the two dimensions represented by x.; (the probability of pixel be-
longing to a region with pneumothorax according to AlbuNet) and x., (a normalized measure of
the number of pixels with high AlbuNet probability) and assigns images with pixels in that quad-
rant a high probability to be ¢ = 1. Intuitively, an image will be represented in this quadrant of
high probability for ¢ = 1 if it has a large number of pixels with high AlbuNet probability.

The 6 = {wy, by, ws, by} of the target model was obtained by maximum likelihood training
using gradient descent on the cross-entropy loss computed on the entire training dataset. The
cross-entropy loss uses the P(c = 1|x, 6) defined in Equations 2-3. Similarly, the 6 for the learner
model is trained on the four examples in the selected D. The explanatory examples are selected
when the D produced a ¢ such that P(c = 1|x*,0) ~ 1if ¢* = 1 and P(c = 1|x*,0) = 0if ¢* = 0.
The saliency maps of all images are simply the map of AlbuNet probabilities for that image. The
saliency map is visualized using the hot colormap in Matplotlib®® with pure black and white fixed

to AlbulNet probability = 0 and 1, respectively.

2.4 Study Design

Our experiment consisted of three blocks of trials, following consent forms and general instruc-
tions, see Fig. 2. The first block evaluated how well the participants could predict the Al diagnoses.
The two subsequent blocks evaluated if the explanations developed appropriate trust by asking
them to certify the Al for different cases. One of these blocks involved examples and saliency

maps whereas the other just involved saliency maps. Each block consisted of 8 trials, with target



images counterbalanced based on the AI’s judgement, so that they included two each of true posi-
tives, true negatives, false positives and false negatives. In each block the presentation order of the

trials was randomised and differed between participants.
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Fig 2 A. Trial structure for the different blocks. B. Experimental Design.

Collectively the two certification blocks have sixteen target images, consisting of eight pairs.
Each pair was constructed to belong to the same Al judgement category, and to be as similar as
possible (in terms of L1 norm distance) within that category. The pairs were then split so that one
member of each pair was shown in the block involving saliency maps but no examples, and the
other was shown in the other block that involved both saliency maps and examples. Which image
in each pair belonged to each block was randomised and varied between participants.

In the first block, each trial began with participants diagnosing the target image on a con-
tinuous rating scale with the endpoints labelled as “Certain pneumothorax present” and “Certain
pneumothorax absent”. Responses were coded as an integer between 0 and 100, with O corre-
sponding to certain absence of pneumothorax and 100 to certain presence. They could zoom in on
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the target image and invert its colours, and they had unlimited time to make their judgement. After
making their diagnosis participants were shown four examples (one at a time). The examples were
presented in a fixed order, starting with a true positive Al diagnosis followed by a true negative,
a false positive and a false negative. For each example participants were informed of the ground
truth, the Al classification, and the Al probability judgement of pneumothorax. Participants were
also presented with a saliency map of the example image, and were able to zoom and invert col-
ors of the example. Participants decided how long to view each example. Once participants had
viewed all examples they were shown the target image with the AI’s saliency map, after which
we asked them to predict the Al diagnosis of the target image. Participants made their prediction
on a “reminder screen’ that reminded them how they themselves had diagnosed the target, while
also showing them miniatures of all the examples, and the target image, with the option to expand,
zoom and invert any of the images. They made their prediction on a continuous rating scale sim-
ilar to the diagnostic scale described earlier. Once they had made their prediction they received
feedback on the accuracy of their prediction.

The order of the two certification blocks were randomised between participants. In one certifi-
cation block participants were given the same information as in the prediction phase, in the other
they only viewed a saliency map of the target image. As opposed to the first block, in the certifica-
tion blocks they were also shown the AI’s judgement on the target image. Participants were asked
whether they would certify the Al for images similar to the target (a binary judgement), report
whether they agreed with the AI’s diagnosis, and finally justify their certification decision. They
could select multiple justifications among the following alternatives: (1) The robot got the correct
answer, (2) The robot was appropriately confident, (3) The robot looked in the right place, (4) The

examples are informative, (5) I am not certain I should certify, (6) Other. If participants selected
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(4)—(6) they had to elaborate in free text, but regardless of their choices they always had the option

to elaborate in free text if they wished.

2.5 Statistical models

All analysies were conducted in R (v 4.0.3). Bayesian regression models were fitted in brms (v
2.14.0). We used regularizing priors to ensure convergence: Cauchy (0, 10) for the intercept mean,
Normal(0, 10) for the beta-coefficients, and Half-Student-t(3, 0, 2.5) for the intercept standard
deviation. All models were sampled 2000 times in 4 different chains following 1000 warm-up
samples per chain, resulting in 8000 posterior samples. All posteriors were checked for chain

convergence.

3 Results
3.1 First order accuracy

To assess the first-order diagnostic accuracy of our radiologists we compared two nested Bayesian
linear models: one predicting diagnoses from only participant-wise random intercepts (capturing
participant-specific response biases) and one model that added a fixed effect for the ground truth
of the target image (capturing the discriminant ability of the radiologists). The second model fitted
the data better than the first model, as indicated by a higher leave-one-out expected log point-wise
predictive density (ELPD,,,)* than the first model (A = 6.5, se = 2.4), indicating that radiologists
could successfully diagnose pneumothorax. The posterior mean of this effect was 21.19 (95%
credible interval = 7.69-33.83) on a 100-point scale, suggesting that radiologist judgements (their

diagnoses using the continuous rating) differed on average about 20 points between trials when
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Fig 3 Diagnosing and predicting pneumothorax. A. The participants can reliably identify cases when pneumothorax
is present. B. The participants can reliably predict Al classifications. C. The participants can reliably predict Al
classification even when controlling for their own first order diagnoses. (A & B) Light blue points capture unique
trials; red diamonds and lines capture individual participants; and black lines and points capture the group level
trends. Error bars represent 95% bootstrapped confidence intervals. (C) Points indicate trial-level observations. The
probability ribbon capture the posterior distributions of the regression lines from the hierarchical Bayesian model.

pneumothorax was present and trials when pneumothorax was absent. For a descriptive overview

of these results see Fig. 3 A.

3.2 Predictive accuracy

The radiologists correctly predicted the AI's judgement on 6 out of 8 trials on average (range =
5-7), see Fig. 3 B. Previous work on non-experts suggests that absent intervention humans ex-
pect the AI’s judgement to mirror their own.'® To account for this we fitted three nested Bayesian
linear models predicting radiologist predictions of the Al diagnoses. The null-model contained
participant-wise intercepts and a fixed effect of the radiologist’s diagnosis for that trial. The sec-
ond model added a fixed effect for the AI’s classification (coded as O for “pneumothorax absent”
and 1 for “pneumothorax present”). The third model added an interaction term between the AI’s

classification and the radiologist diagnosis. Radiologists could effectively predict the Al even when
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accounting for their first-order diagnosis as illustrated by the second model fitting the data better
than the first model (FLPD,,, A = 11.8, se = 3.5). The third model fitted the data marginally
better than the second model (K LPD,,, A =0.5, se = 2.3), implying that the first order diagnostic
judgements might impact predictions of the Al differently when the Al is correct relative to when
it is wrong, but we have too few observations to reach a strong conclusion.

To more fully explore the relationship between radiologist predictions, radiologist diagnoses,
and the classification of the Al, we studied the posterior coefficients of the third model, see also
Fig. 3 C. Radiologists predictions tend to be more positive when the Al did classify pneumothorax
than when it did not, even when they themselves found pneumothorax very unlikely (posterior
mean = 12.47, 95% credible interval = -2.38-27.22). When the Al did not classify pneumothorax
as present there was no relationship between radiologist diagnoses and their prediction of the Al
(posterior mean = 0.00, 95% credible interval = -0.22—-0.22). But for the trials when the Al classi-
fied pneumothorax as present there was a positive relationship between radiologist diagnoses and
their prediction of the AI (posterior mean = 0.37, 95% credible interval = 0.10-0.64). The dif-
ference in intercepts indicate that the explanations worked: radiologist predictions were typically
more positive on the rating scale for positive Al classifications than negative Al classifications,
when accounting for their own diagnostic judgement. The difference in slopes indicate that the
participants’ own diagnoses serve as priors for the prediction of the Al for target images where the

Al is correct, but not when it is wrong.

3.3 Certifications

There are three key questions that we aim to address with regards to certifications: 1) Are par-

ticipants more likely to certify the Al for images where it makes a correct diagnosis than where
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it makes mistakes? 2) Are they more likely to certify correct trials for the block with examples
relative to the block without examples? 3) What justifications do participants provide for their
certification judgements and what do these tell us about their decision processes? We address the
first two questions with Bayesian regression models, to maintain analytic coherence. Because the
third question is more qualitative and open-ended we only explore it descriptively.

To test whether radiologists are more likely to certify images that the Al classifies correctly,
and whether the examples impact these judgements, we fit and evaluate three Bayesian hierarchical
logistic regression models. The null model predicted certification judgements (certified coded as
1, not certified coded as 0) from random intercepts at the participant level, the second model added
Al correctness as a fixed-effect predictor, the third model added fixed effects for the explanation
block and an interaction term between explanation block and Al correctness.

The main-effect model accounted for the data better than the null-model (ELPD;,, A =7.0, se
= 4.0) or the interaction model (ELPD,,, A = 1.8, se = 1.1). These results imply that participants
are more likely to certify trials when the AI classifies the target correctly (Mean OR = 5.12, 95
% Credible interval = 2.21-10.72), but that there is no reliable difference in certifications between
the block with examples and the block without examples, see Fig. 4. Also note that certification
probabilities tend to be below chance when the Al is incorrect but above chance when the Al is
correct. Because the two blocks are not reliably different we will collapse them in our subsequent
discussion on certification justifications.

Our participants certified 46 cases where the Al was correct versus 25 cases when the Al was
wrong. They chose not to certify 39 cases when the Al was wrong, relative to 18 cases when the
Al was correct. In 16 out of 25 cases when participants certified the Al despite it being wrong, they

justified their certification in terms of agreement with the Al. This suggests that these certification
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Fig 4 Certifying the Al. A. The participants are more likely to certify the Al for trials when it is correct than when
it is incorrect, but the example block is not reliably different from the no-example block. The gray dashed line
indicates chance performance, which in our task would be the result of always certifying the Al, never certifying the
Al or certifying at random. Error bars represent 95% bootstrapped confidence intervals. B. Participants certification
decisions are predominantly driven by whether they agree with the Al or not. Data are from 6 out of the 8 participants
where we explicitly asked about their agreement with the AI’s diagnosis.
judgements are grounded in participant errors, which in turn implies that the ground truth is not a
reliable proxy of participant belief in this task. Because we are interested in how radiologists justify
certification in relation their own diagnostic judgements, we focus on 6 of the 8 participants that
were explicitly asked if they agreed with the Al before they justified their certification decisions.
Certification decisions appear to be primarily driven by agreement with the Al, see Fig. 4 B.
For the three cases where participants certified the Al despite disagreeing with it, they left open-
ended responses clarifying their thinking. All of these responses suggest that they believed the Al
actually got the overall classification correct, but had either been too confident or not confident
enough regarding pneumothorax elsewhere in the lung, based on the saliency map. In the five
cases where participants chose not to certify, the most common justifications were either that the

Al was looking in the wrong place or open-ended responses. Here the responses again allude to

getting judgements right for parts of the lung but making mistakes elsewhere, or that the Al has
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been performing poorly for a certain type of cases (e.g. lungs with prior surgical intervention or
other pathology); therefore, despite the Al getting the particular case right, they would not want
to certify it for similar images. Collectively these results illustrate that the explanations enable

radiologists to engage in complex reasoning about the Al judgements and capacity.

4 Discussion

In this study we have demonstrated that explanations generated by Bayesian Teaching help medical
experts predict Al diagnoses and can be used to inform certification decisions. There are two main
limitations of this study: because of challenges associated with recruiting medical experts our
sample size is modest, and we have only demonstrated the effectiveness of our framework for a
single pathology (pneumothorax) and a single imaging type (x-rays). We are currently working to
address both these limitations, as we are exploring additional recruitment channels to increase our
sample for the current setup while designing variations of this experiment for other disorders (e.g.
melanoma, breast cancer) and imaging types (e.g. CT scans, MRI, ultrasound).

Should our results generalise, they may have transformative impact on the medical domain by
speeding up (and reducing the risks associated with) large scale uptake of Al as decision support in
medical imaging. The result would be reduced wait times for diagnostic tests and freed up expert
time to focus on challenging cases. Because Bayesian Teaching is a mathematical framework that
is agnostic about which model is to be explained and the means of explanation, it can easily be
adapted to different diagnoses, Al systems, and imaging types with little overhead.

The flexibility of the method also invites applications beyond medicine. This same method
is applicable to other processes that require expert judgments about images including, for exam-

ple, vehicular perception and self-driving in autonomous vehicles, insurance risk assessment, and
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cyber-physical systems in manufacturing.??> Moving beyond image classification, Bayesian Teach-
ing as a framework can improve Al support in any human endeavour including finance, logistics,
and law. By demonstrating that Bayesian-Teaching-generated explanations can be used to teach
domain experts to predict Al decisions and reason about Al judgements, we provide evidence of

its suitability as an XAl method targeting end users in real-world settings.
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List of Figures

1 Selection of explanatory examples and saliency maps with Bayesian Teaching. The
inputs to Bayesian Teaching are: the target image x* and the label c¢* predicted by
the target model; the training dataset; and the learner model, which is a program
that computes P, (©|D). The green box depicts the inner working of Bayesian
Teaching. Image sets D that satisfy Pr(D) are sampled at random. The learner
model takes in a large number of random trials (each row of {x*, D}) to produce
the unnormalized teaching probabilities. Here, a set D with probability ~ 1 is se-
lected as the explanatory example. The final output is a set of ten images: the target
image, the four examples selected, and the saliency maps of these five images. The
saliency maps are generated from the target model (AlbulNet).

2 A. Trial structure for the different blocks. B. Experimental Design.
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Diagnosing and predicting pneumothorax. A. The participants can reliably iden-
tify cases when pneumothorax is present. B. The participants can reliably predict
Al classifications. C. The participants can reliably predict Al classification even
when controlling for their own first order diagnoses. (A & B) Light blue points
capture unique trials; red diamonds and lines capture individual participants; and
black lines and points capture the group level trends. Error bars represent 95%
bootstrapped confidence intervals. (C) Points indicate trial-level observations. The
probability ribbon capture the posterior distributions of the regression lines from
the hierarchical Bayesian model.

Certifying the Al. A. The participants are more likely to certify the Al for trials
when it is correct than when it is incorrect, but the example block is not reliably
different from the no-example block. The gray dashed line indicates chance perfor-
mance, which in our task would be the result of always certifying the Al, never cer-
tifying the Al, or certifying at random. Error bars represent 95% bootstrapped con-
fidence intervals. B. Participants certification decisions are predominantly driven
by whether they agree with the Al or not. Data are from 6 out of the 8 participants

where we explicitly asked about their agreement with the AI’s diagnosis.
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