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ABSTRACT 

The U.S. is in the grips of a devastating opioid and heroin co-epidemic affecting nearly all socio-economic 

populations at great human (~7,800 new users/day) and financial ($78.5 billion/year) costs but with no 
obvious solution. We describe recent work and challenges to develop, integrate, and use several analytic 

multi-scale simulation models of these epidemics to develop insight into the epidemic’s complex underly-

ing dynamics, generate causal hypotheses, and inform effective policy interventions. We developed pre-
liminary agent-based, differential equation, network spread, and cellular automata models that reasonably 

replicate at multiple scales the past 17 years of this epidemic’s growth and spread at town, county, state, 

and national levels. Results suggest that some current approaches are unlikely to be very effective, some in 

fact may worsen the epidemic, and ultimately only certain combinations and sequences of policies are likely 
to have value, with important implications on both model architecture and policy optimization. 

1 INTRODUCTION 

The massive influx of prescription opioids and heroin into American communities and their heartbreaking 
societal impact is increasingly alarming to legislators, medical practitioners, and the general public, with 

near daily headlines and a recent report from the U.S. Surgeon General calling for immediate action (Office 

of the Surgeon General 2016). The interdependent opioid and heroin crises (and now fentanyl) gripping the 
United States are impacting all aspects of society at crippling social and financial cost, but with causal 

dynamics and effective interventions, strategies, and policies being largely unclear. Opioid-related over-

doses have more than quadrupled since 1999, reaching a staggering 33,000 deaths in 2015 (~90 per day) 

with roughly 15,000 due to prescription opioids, 13,000 to heroin, and 5,000 to emerging more dangerous 
synthetic substitutes (e.g. fentanyl and its derivatives) as abusers transition over time to increasingly more 

powerful drugs (National Center for Health Statistics 2016). The estimated economic burden of this crisis 

exceeds $78.5 billion/annually (Center for Disease Control and Prevention 2013, Florence et al. 2013) with 
abuse and overdose rates continuing to rise and no indication of abating (Figure 1); in March 2017, the 

governor of Maryland declared a statewide state of emergency and issued standing prescriptions for every 

citizen of Baltimore for the naloxone (Narcan) overdose antidote (The State of Maryland 2017). 
Effective interventions, however, are unknown due to the rate at which these epidemics have emerged, 

dynamics by which abuse begins and spreads across regions and social networks, and inter-relationships 

between each drug abuse type, substance availability, drug switching, and market forces – often leading to 

sub-optimal and even harmful interventions. For example, although many advocacy groups recommend 
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reduced opioid prescribing to address the problem at its source, other policy experts (and recent data) sug-

gest that efforts to limit supply in some cases may drive more users to cheaper and more easily available 
heroin, for which death rates are higher; relative street costs of opioids and heroin are roughly $100/gram 

versus $10/bag, with the latter being much more readily accessible. Law enforcement activities to restrict 

heroin supply also often result in huge amounts of fentanyl (easily produced in household kitchens, much 
of it tainted) flooding the market and resulting in mortality spikes of potentially more people than saved.  

One thing that is clear, however, is that current approaches are not working and in some cases may be 

exacerbating the crisis. Legislative reform, increased prescribing regulation, and state-to-state sharing of 

prescription monitoring databases also may cause as much harm as good, e.g. with some addicts switching 
to more dangerous cheaper drugs to avoid detection. Broader naloxone availability also may encourage 

addicts to practice riskier drug behaviors, while even less is known about the effectiveness of patient-level 

interventions (methadone maintenance therapy, treatment agreements, urine testing) (Seal et al. 2003, 
Brennan et al. 2016, Haegerich et al. 2014). The 2016 Surgeon General’s report thus recommended imme-

diate multi-faceted action including efforts to better understand both effectiveness and negative impacts of 

various response strategies, an ideal area for operations research modeling. We report on preliminary work 
to develop spatial-temporal models of these epidemics to help understand mechanisms by which drug abuse 

propagates within and between communities, analyze proposed interventions and unintended consequences, 

and develop explanatory models of historical patterns to help design more effective prevention strategies 

(Figure 2). Since a combination of interventions likely will be most effective and given the span of contrib-
uting dynamics (pain management attitudes, pharmaceutical proliferation, prescribing practices, illicit mar-

kets, etc), we have engaged individuals from all problem perspectives early in our model-building process 

  

Figure 1: Spread of opioid and heroin epidemics, 2000-2015. Overdose deaths by (a) state and (b) Massa-

chusetts county, showing geographic trends and dramatic increases since 2010 (sources: CDC, MA DPH). 

  

Figure 2: (a) Overall long-term research aims to develop validated models, conduct policy analysis, and 

generate causal hypotheses and insights; (b) Interdisciplinary multi-stakeholder research advisory consist-
ing of policy makers, state public health departments, addiction treatment, and social workers. 

(a) (b) 

(a) (b) 
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with all models also informed via ongoing feedback from an advisory group of policy makers, state public 

health departments, addiction treatment, and social workers serving multiple populations. 

2 MODELING APPROACHES 

2.1 Model Development and Challenges 

Three types of epidemic models were developed and validated iteratively, extending concepts used in sim-

ilar infectious disease, migration, and diffusion problems (Halasa et al. 2013, Mishra et al. 2014). Aside 
from a few stylized examples, little model-based research exists in the literature on this critical problem 

(Hoffer, Bobashev, and Morris 2009). Our work therefore has focused on establishing analytic frameworks 

and pilot results for differential equation, cellular automata, and network diffusion models (deterministic 

and stochastic), building on the respective strengths of each to capture (i) population-level interdependent 
dynamics, (ii) geographic-level topology spread, and (iii) individual-level influence across networks. For 

example, our differential equation model extends ‘susceptible-infected-recovered’ (SIR) epidemic ideas 

and includes single-region/single-drug and multi-region/multi-drug cases, where time periods and regions 
can represent multiple scales (weeks, months, years; towns, counties, states). Cellular automata constructs 

typically are useful to represent regional spread and evolution, and network diffusion constructs can help 

capture social influences, person-to-person spread, and within-population topologies (Pfeifer et al. 2008). 
A central idea of all models, separately and combined, is to capture the complex epidemic dynamics over 

time, between drugs, over different types of geographic topologies and scales, and based on different types 

of social networks within and across these communities (Figure 3). All models were developed in 

MATLAB and Python with an eye on their eventual combination into an integrated model. 
 Building on these basic foundations, technical aspects and challenges beyond traditional disease spread 

models include addressing heterogeneity, addiction progression, drug switching, market dynamics, supply 

and demand pricing, cumulative exposure to abusing individuals (including consequence awareness as dy-
namic functions of mortality rates), and person-to-person network influencers. Heterogeneous modeling 

considerations include multiple susceptible populations (naive, prescription users, chronic abusers), spread 

transmission modes (peer influence, drug availability, dependence history, regional migration), and drug 
classes (varying uptake, abuse duration, mortality rates). To address parameter estimation challenges, we 

are combining expert input with statistical fitting to state mortality data to maximize model-vs-empirical 

 

 

 

Figure 3: General epidemic dynamics: (a) Single-drug single-region causal loop diagram, (b) Examples of 

regional topologies (MA counties, Cape Cod towns), (c) Typical individual-level networks (Erdős-Rényi, 

Barabási-Albert). 

(a) (b) 

(c) 
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agreement (minimum mean squared error, absolute percentage error, etc.), as well as input sensitivity anal-

ysis. This also is involving experimentation with various search algorithms (e.g. evolutionary, swarm, tun-

neling, annealing). Model validation and refinement has included logic and assumption reviews with sub-
ject matter expert stakeholders, scenario testing across multiple settings, and directional verification. 

2.2 Dynamical Systems Models 

A common ‘top-down’ approach to modeling epidemics is via coupled dynamical equations such as in 
classic SIR models and their variations, which have both advantages and disadvantages. While they provide 

population-level views of system dynamics and are suitable at macro scales, they do not explicitly model 

individual elements (entities, agents, etc.) nor state transitions. Their mathematical formalism also has ad-

vantages in terms of numerical implementation and the possibility to examine mathematically a system’s 
stability and robustness to externalities. Prior efforts to develop system dynamics models of specific aspects 

of these epidemics include medical or nonmedical use and trafficking of pharmaceutical opioids, effects of 

public health interventions on nonmedical opioid use, and heroin recovery as a function of treatment re-
sources (Wakeland, Nielsen, and Schmidt 2012, White and Comiskey 2007, Prosper et al. 2011, Stanoev, 

Trpevski, and Kocarev 2014, Hoffer, Bobashev, and Morris 2009). Mathematical epidemiology methods 

also have been used more broadly to model other types of concurrent contagions on networks.  
To provide some insight into our differential equation models, Figure 4 summarizes their general logic 

pseudocode, state variables, and inputs. The full model contains 84 state variables, 15 input variables, 84 

coupled equations, and 955 lines of code based on governing dynamics of the below general type, using the 

notation defined in Figures 4b-c: 

𝑢̇ = ℎ𝑟 ∗ 𝑠 + 𝑚𝑟 ∗ 𝑟 − (𝑎𝑝 + 𝑐𝑝 + ℎ𝑖(𝑠) + 𝑚𝑖(𝑟)) ∗ 𝑢 + (1 − 𝑎𝑚𝑡) ∗ 𝑣 + 𝑐𝑡 ∗ 𝑤 

𝑣̇ = 𝑎𝑝 ∗ 𝑢 − 𝑣 

𝑤̇ = 𝑐𝑝 ∗ 𝑢 − (𝑐𝑚𝑡 + 𝑐𝑡) ∗ 𝑤 

𝑟̇ = 𝑎𝑚𝑡 ∗ 𝑣 + 𝑐𝑚𝑡 ∗ 𝑤 − (𝑚ℎ𝑡(𝑢, 𝑣, 𝑤, 𝑟, 𝑠) + 𝑚𝑜𝑟 + 𝑚𝑟) ∗ 𝑟 + 𝑚𝑖(𝑟) ∗ 𝑢 

𝑠̇ = 𝑚ℎ𝑡(𝑢, 𝑣, 𝑤, 𝑟, 𝑠) ∗ 𝑟 − (ℎ𝑜𝑟 + ℎ𝑟) ∗ 𝑠 + ℎ𝑖(𝑠) ∗ 𝑢 

𝑧̇ = 𝑚𝑜𝑟 ∗ 𝑟 + ℎ𝑜𝑟 ∗ 𝑠 

Primary state variables at time t include the size of the opioid-free population u(t), individuals on acute 

v(t) or chronic w(t) pain prescriptions, opioid misusers r(t), heroin users s(t), and fatal overdoses z(t). Tran-
sition mechanisms between these states were identified or inferred from the medical literature; e.g., opioid-

to-heroin transitions were coded as a function of supply-vs-demand for prescription opioids. Impacts of 

changes in social attitudes, heroin potency, and prescription rates also were incorporated along with cou-

pling to similar equations and state variables for each adjacent region socially influencing prescription mis-
use and heroin use behaviors in the others. Heroin spread between regions was modeled by a threshold 

function with abuse initiated in heroin-free regions once the sum of heroin saturations of all neighboring 

regions exceeds user-input thresholds. While for illustration the simpler single-region single-drug model 
was implemented in VenSim (see causal loop diagram, Figure 3a), the full multi-region/multi-drug model 

was developed in research level code given its complexity and size. 

2.3 Agent-Based Models 

In addition to the above ODE models, we also developed two types of agent-based models (ABMs), namely 

cellular automata (CA) and social network analysis (SNA) models of between-region and between-person 

spread. ABMs follow a more ‘bottom-up’ framework in which individual units act according to a set of 

rules (deterministic or stochastic), with the state of each unit (entity) updated iteratively over time as func-
tions of neighboring or otherwise connected entities or nodes. Classical ABM methods include cellular 

automata models characterized by physical locations adjacent to each other on a grid or lattice, network 

models characterized by nodes connected to each other through relationships and communication channels, 
and hybrid models that exhibit a combination of these characteristics. While cellular automata constructs 
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typically are useful to represent regional spread and evolution (Pfeifer et al. 2008), network diffusion con-

structs can effectively capture social influences, person-to-person spread, and within-population network 
topologies. While often easier to implement, such models can be more difficult to parametrize than ODEs 

and can present substantial computational requirements. Agent-based approaches have been used to model 

virus propagation over social networks of different topologies, and spatio-temporal spread of contagions or 
competing concurrent pathogens over geographic regions (Prakash et al. 2012, Ganesh, Massoulié, and 

Towsley 2005, Perez and Dragicevic 2009, Newman 2005). Flexible agent-based frameworks instantiable 

to a wide range of spread phenomena, including discrete equivalents of traditional SIR-like models, also 

recently have been, although this type of approach has not been used to study interdependent opioid and 
heroin abuse (Stanoev, Trpevski, and Kocarev 2014). 

Figure 5 summarizes our SNA model logic, similar to co-pathogen spread and computer virus problems 

(Pastor-Satorras and Vespignani 2001, Kempe, Kleinberg, and Tardos 2003, El-Sayed et al. 2012), where 
nodes represent individuals or subpopulations connected via directed arcs weighted by adjacency or rela-

tionship strength. Our pilot CA model similarly updates ‘neighbor’ cells over time as functions of adjacent 

state variables, with adjacency defined via grid or lattice structures. In either case, topologies can be defined 
by geography or social connections, with common types of social networks including Erdős-Rényi, Bara-

bási-Albert, and Watts-Strogatz (da Fontoura Costa and Andrade 2007). To-date we implemented pilot 

models of licit (S) and illicit (A) drug use levels at each node, updated each time step based on external total 

neighbor influences and internal reinforcement/decay mechanisms (denoted by G and M respectively). 
These mechanisms can be binary or continuous (e.g. degree to which individual or sub-population abuses 

a drug) relative to some threshold r, the former represented by governing equations of the type 

𝑆(𝑦, 𝑡) = max (𝑆(𝑦, 𝑡 − 1), ∏
𝑥≠𝑦

[1 − (𝑆(𝑥, 𝑡 − 1)𝑆𝑃(𝑥, 𝑦))] > 𝑟) and 

𝐴(𝑦, 𝑡) = max (𝑆(𝑦, 𝑡 − 1), ∏
𝑥≠𝑦

[1 − (𝑆(𝑥, 𝑡 − 1)𝑆𝑃(𝑥, 𝑦)𝐴𝑃(𝑥, 𝑦))] > 𝑟) 

and the latter by 

𝑆(𝑦, 𝑡) = min([𝑆(𝑦, 𝑡 − 1)𝑀(𝑦) + Σ𝑥≠𝑦𝑆(𝑥, 𝑡 − 1)𝑆𝑃(𝑥, 𝑦)], 1) and 

𝐴(𝑦, 𝑡) = min([𝐴(𝑦, 𝑡 − 1)𝐺(𝑦) + Σ𝑥≠𝑦𝑆(𝑥, 𝑡 − 1)𝑆𝑃(𝑥, 𝑦)𝐴𝑃(𝑥, 𝑦)], 1) . 

(a)  Begin ODE Pseudo-code; 

Read inputs from spreadsheet 
Initialize state & input matrices 
For each time step 
   For each region 
      For each sub-population 
        Update ODEs    
            Compute total social influence 
                clean → opioid, heroin abuse 

  Update acute, chronic patients 
  Update illicit market supply 
  Transition opioid licit users: 

                acute → abuse, heroin, clean; chronic → abuse, heroin, clean 
            Transition abusers: 
                opioid → heroin, clean, death; heroin → opioids, clean, death  
             If illicit demand > supply (any) 
          abuse → switch, clean, death  
      Next sub-population 
      Compute total death region R 
   Next region 
   Compute total death time T 
Next time step 
Output results 
End;   

(b)  State variables (dynamic over time t for each region) 
 u(t) Drug-free population 
 v(t) Acute pain opioid prescription population 
 w(t) Chronic pain opioid prescription population 
 r(t) Opioid illicit users 
 s(t) Heroin illicit users 
 x(t) Fatal overdoses 

 (c)  Model input rates Value 
 ap Acute prescribing .03-.15 
 cp Chronic prescribing .03-.15 
 hr Heroin abuse recovery .01-.10 
 mr Opioid abuse recovery .08-.15 
 ct Chronic termination .30-.38 
 cmt Chronic-to-abuse trans .15-.30 
 amt Acute-to-abuse transition .01-.05 
 hor Heroin overdose risk .0049-.0066 
 mor Opioid abuse overdose  .0010-.0012 
 mht Drug seeking rate .3-.7 
 mi Misuse influence 80-200 
 hi Heroin influence 800-2000 

Figure 4: ODE model summary (84 state variables, 15 input variables, 84 coupled equations, 955 lines 
of code): (a) general logic pseudo-code, (b) dynamic state variables, (c) input scenario rate variables. 
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Three network spread model variations were developed to represent different node definitions and mod-
eling scales: binary where both S and A levels are restricted to the integers 0 or 1 corresponding to individual 

no-use/use patterns; mixed where S is allowed to take real values between 0 and 1 corresponding to a more 

general definition of exposure and awareness; and continuous where both variables are real values between 
0 and 1 corresponding to the proportion of users within a node’s internal populations. Important aspects of 

these models include the effects of additional drugs (primarily fentanyl), treatment availability, street avail-

ability, relative pricing, mortality awareness, stochastics, and population variability. We so far assume ho-
mogeneous populations (socio-economics, addiction risks, transition rates, etc.), although we plan to intro-

duce further stochastics and revisit all model assumptions with key stakeholders to ensure we are appropri-

ately capturing all important considerations and dynamics. 

3 RESULTS 

3.1 Model Validation and Preliminary Results 

Figures 6 and 7 summarize pilot results, illustrating both model face-validity and the potential to inform 

effective interventions and avoid unintentionally harmful policies. ODE model-generated annual mortality 
across Massachusetts counties (Figure 6a) closely replicates empirical data from 2000-2015 (Figure 1) with 

trends in abuse and death rates associated with each drug also agreeing with media reports. Agent-based 

results also are starting to produce face-validity, with rational within and between region epidemic growth 

and spread patterns across geographic and social networks (Figure 7). Applications of the agent based 
model to simulated networks of various sizes and architectures (Figure 3b) using similar parameters resulted 

in a broad range of growth and spread patterns that domain subject matter experts felt appear reasonable. 

Network types tested included 2-dimensional lattices of the type used in cellular automata models to map 
geographical adjacency, as well as graph-based models of real-world phenomena such as small-world clus-

tering or preferential attachment effects. 

3.2 Policy and Intervention Analysis 

In terms of effective interventions, a combination of increased addiction treatment and reduced chronic pain 
prescribing appears to have the greatest impact (Figure 6b) whereas restricting acute pain prescribing, while 

frequently advocated (Dowell, Haegerich, and Chou 2016), without increased treatment options may sig-

nificantly increase heroin mortality given its inexpensive availability (Office of the Surgeon General 2016). 

Interventions such as methadone maintenance therapy, treatment agreements, and urine testing (Starrels et 
al. 2010, Brennan et al. 2016) also have limited evidence in the literature of effectiveness if used alone. 

Moreover, combined interventions are likely to be more effective since restricted supply alone may cause 

individuals with untreated dependence to seek more dangerous alternatives (approximately 80% of heroin 

       

Begin ABM Network model; 
Read network topology, inputs Compute adjacency influence: 
Initialize matrices, variables     susceptibility level change 
For each replication      addiction level change 
   For each time step Update random decay & growth: 
      For each node     within addicted patients 
         SNA calculations     within susceptible patients 
      Next node N  Generate drug-type conversion: 
      Copy new to old state matrix     addiction, susceptibility, decay 
Next time step T  Generate mortality based on:     
   Update within-rep statistics     addiction, suscept, drug type 
Next replication R If addiction level > susceptibility 
Compute between-rep stats     susceptibility ≡ addiction level 
End;   

Figure 5: Overview of (left) general logic mechanisms and (right) pseudo-code for agent-based net-

work opioid/heroin epidemic model (790 lines of code). 
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users start with opioid misuse; roughly 4% of prescription opioid abusers transition to heroin (National 

Center for Health Statistics 2016). While common interventions include prescription strength and duration 

limits, prescription drug monitoring programs (PDMPs), naloxone distribution, and safe storage and dis-

posal (Haegerich et al. 2014), if not thoughtfully planned together with treatment or social interventions, 
stringent prescribing guidelines may create heroin/fentanyl markets and a worsening epidemic with associ-

ated mortality, economic, and social consequences. For example, in 2016 five states (NY, ME, MA, NH, 

IN) set 7-day maximums for first-time acute opioid or ED prescriptions (Massachusetts House of 
Representatives 2016, Maine Senate 2016, New York State Senate 2016) and Ohio began requiring physi-

cians to check the state’s PDMP before prescribing opioids beyond 7 days to prevent “doctor shopping”, 

drug diversion, and fatal interactions with benzodiazepine sedatives (Ohio Department of Mental Health 
Services and Addiction 2016). 

The agent-based network model produced similar results and insights. Figure 7b illustrates the opioid 

mortality rates among high school students into their early 20s by source of addiction initiation (acute pre-

scribing, chronic prescribing, nonmedical) versus the potential decrease in each from introduction of vari-
ous targeted interventions (solid lines), suggesting 50-75% reductions. Proposed potential interventions 

include legislative limits on prescription strength and duration, pushes for increased prescriber and patient 
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Figure 7: Agent-based network spread results. (a) Susceptibility and addiction levels across nodes and 
time steps for simulated networks with geographic lattice-based (top rows) vs. social preferential attach-

ment (bottom rows) topologies. (b) Potential impact on reducing heroin mortality of acute, chronic, and 

nonmedical interventions implemented in 2020 (solid lines) versus if no interventions (dashed lines). 

   

Figure 6: ODE model validation and illustration: (a) Model-based overdose deaths by MA county, 
2000-2015; (b) Example of potential consequence of reduced acute opioid prescribing causing in-

creased heroin mortality. 

(a) (b) 

(a) (b) 
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transparency, prescription and drug monitoring programs, naloxone distribution, and safe storage and dis-

posal (Haegerich et al 2014). Such regulatory measures are thought to reduce unused opioid medications 

and prevent drug diversion for nonmedical use. Legislative reform and opioid regulation approaches, how-
ever, may have unintended consequences. For example, individuals with untreated dependence may switch 

to cheaper but more dangerous drugs to avoid detection; roughly 4% of individuals misusing prescription 

opioids transition to heroin, while 80% of heroin users started with opioid misuse (Office of the Surgeon 
General 2016). Stringent prescribing guidelines also may provide significant market opportunities for her-

oin, which is cheaper, more easily available, and has higher overdose death rates. More broadly, these 

results illustrate how such approaches can be used to gain insights into the interdependent mechanisms 

through which nonmedical prescription opioid use and heroin use propagate within and between commu-
nities. 

3.3 Hypothesis Generation, Parameter Search, and Computational Issues 

Model parameterization and computational issues are being approached as follows. Due to significant un-
certainty in parametrization, we conducted a sensitivity analysis to determine which parameters had the 

greatest systemic impact. We then performed a multi-dimensional search on the five most sensitive param-

eters, comparing model outputs to historical overdose deaths, aiming to maximize the agreement between 
model predictions and empirical data (as quantified by the mean squared error). This analysis was replicated 

across data sets (using overdose counts from both all of the Commonwealth of Massachusetts and only 

Barnstable county on Cape Cod), and was run separately piecewise for the 2000-2012 and 2012-2015 in-

tervals, since historical data suggest significant changes in overdose dynamics from 2012 onwards. Figure 
8a summarizes run times for one replication of the agent based network model with an increasing number 

of nodes, which as shown tends to increase exponentially as the model approaches realistic sizes.  

 Figures 8b and 8c similarly summarize brute force times to estimate key parameters identified through 
factorial screening, which increase non-linearly as a function of the number of parameters searched on. A 

more extensive search would require increased computational power or more advanced optimization algo-

rithms as described above. We also are starting to use the models in more theoretic manners to produce 
insight and inference, such as within a hypothesis generation approach to identify the top K parameteriza-

tion vectors that best explain historical data from any region or regions. The general idea is to review these 

results with subject matter experts for discussion, plausibility, and meaning. We also have started to use 

a. SNA model run times b. ODE parameter search 

 

Nodes Steps 
CPU 
secs 

Memory 
MB 

Search 
terms 

Steps 
CPU 
secs 

Memory 
MB 

20 20 0.9 304 1 10 .003 0.4 

20 100 3.6 342 1 100 .02 0.6 

20 300 19.2 336 1 1000 .185 0.6 

40 20 2.7 348 2 10 .021 0.6 

40 100 10.1 374 2 100 1.93 1.7 

40 300 37.2 393 2 1000 191.4 155 

80 20 49.1 985 3 10 .187 0.6 

80 100 112 956 4 10 1.897 1.8 

80 300 270 1130 5 10 19.42 23.2 

100 20 334 2516 6 10 194.4 158 

100 100 510 2538 7 10 11005 3104 

100 300 1071 2793 8 10 n/a error 

Figure 8: Computational requirements: (a) Agent-based mode as a function of model size, (b)-(c) Param-
eter search optimization on ODE model as function of number of search parameters and model size. 

(c) 
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structural versions of the ODE models to explore if certain theoretic properties (stability, reproductive num-

ber, endemic equilibria, bifurcation, and so on) can be shown to exist or to identify conditions under which 

they exist, which also could inform policy making in important manners. 

4 DISCUSSION 

Substance abuse epidemics have existed for centuries, but none perhaps as devastating, widespread, and 

heartbreaking as the current opioid and heroin crises that are affecting nearly all population strata nation-
wide and abroad. Effective local and policy interventions, however, remain elusive and unclear. In other 

settings with complex causal, behavioral, social, and economic dynamics, system science methods and 

model abstraction have been useful for helping understand the overall context, interdependencies, and cou-

pled logic chains. Such models also can be used to help develop insight, rapidly test large numbers of 
potential interventions, estimate underlying parameters and rates, identify interesting and important inter-

actions, and generate and down-select a set of viable hypotheses and policies for further evaluation. In the 

present context, the pilot models developed and described in this paper illustrate this potential utility to 
inform the current opioid crisis and help policy makers, clinicians, and treatment experts develop effective 

potential interventions. 

As examples, this paper illustrated the potential impact of changes in opioid prescribing patterns, social 
interventions, addiction treatment capacity expansion, and others. To our knowledge this is among the first 

research to develop multi-substance multi-scale models of this type and to consider interdependent abuse 

of multiple substances. While model-informed policy development has been conducted in a range of tradi-

tional epidemiology applications (Halasa et al, 2013, Mishra et al, 2014) and some efforts have modeled 
opioid or heroin use independently, little has been done to integrate these two aspects into a comprehensive 

model (Hoffer, Bobashev, and Morris, 2009). Furthermore, much like the well-meaning “managing pain as 

the fifth vital sign” healthcare campaign appeared to be important to promote widely, models of the types 
described here can help identify potential unintended negative consequences of ideas that initially appear 

logical. In our case, the negative effects of law interventions to interrupt heroin distribution and of reducing 

opioid prescribing – without co-investment to prevent fentanyl distribution and build treatment capacity – 
are good examples of this “squeeze the bubble” phenomenon.  

While our analysis to-date has focused on just two geographic settings as proof-of-concept (all counties 

within Massachusetts, all towns within Barnstable county), future work will include additional populations 

across the country, under different assumptions, and at multiple scales, as well as incorporate additional 
modeling details, heterogeneity, and sources of random behavior, such as via stochastic differential equa-

tions, influence accumulation, and decision-to-abuse thresholds. Qualitative ethnography methods, adopted 

from health service research, also are proving very useful for model development, identification of im-
portant process logic details, and to provide insight to historical spread patterns that can inform intervention 

design. Two major technical challenges to-date have included model parameterization and calibration, pri-

marily due to data availability issues, and computational requirements for large-scale agent-based models 

and parameter estimation search routines. To address and mitigate these issues, we are collaborating with 
additional domain experts to identify initial values and confidence intervals for measures not addressed in 

the literature, are exploring more efficient techniques for large matrix storage and algebra, and are devel-

oping more advanced, non-exhaustive search algorithms. 

5 CONCLUSION 

This paper described the development, validation, and preliminary use of analytic simulation models (sys-

tem dynamics, agent-based, cellular automata) of the geographic-temporal spread of the inter-related opioid 
and heroin epidemics gripping the U.S. The overall intent is to use these models to help policy makers 

analyze and optimize effective combinations of interventions. As shown, these models can reasonably rep-

licate the epidemic to-date both over time and region-to-region, and thus can complement other efforts to 

limit this national public health crisis, and reduce regional and population disparities, given greater abuse 
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of cheaper/worse drugs among lower socio-economic groups. More broadly, results can significantly im-

prove the understanding of substance abuse epidemics from a systems perspective and accelerate effective 

policy and intervention strategy discovery. Ultimately our hope is to contribute to the identification of ef-
fective combinations of policies and interventions that reduce the heartbreaking suffering, mortality, and 

costs from these and similar future epidemics.  
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