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1. Introduction

A declining population may be saved from otherwise inevitable
extinction by the establishment of one or more beneficial mutations, a
phenomenon known as evolutionary rescue [1-4]. Such rescue may be
a desirable outcome, such as recovery of an endangered species, or an
undesirable one, such as cancer becoming resistant to chemotherapy. A
typical feature of evolutionary rescue is a U-shaped population growth
curve corresponding to initial decline, stabilization, and ultimate recov-
ery. This behavior has been established in mathematical models [3-5]
and observed in experiments on real populations [6-8].

Orr and Unckless wrote two seminal papers on the mathemat-
ics of evolutionary rescue [5,9]. They considered a population that
has experienced sudden environmental deterioration such that it can
no longer sustain itself. They then analyzed the possibility that this
endangered population is able to adapt sufficiently rapidly to avoid
extinction. They took into account the contributions of both standing
genetic variation and new mutations to adaptation. Using methods from
the theory of branching processes in combination with Haldane’s [10]
classic approximation of the probability of fixation, Orr and Unckless
obtained, for the first time, several highly interesting formulas for,
among other things, the probability that a population is rescued either
by standing genetic variation or by a new mutation, the expected size
of a rescued population at a given time, and the waiting time for the
first rescuing mutation.

Crucially, Orr and Unckless assumed that selection is weak: the
change in the environment reduces the mean absolute fitness of the
population slightly below 1, and beneficial mutations raise it slightly
above 1; or, in branching process parlance, they assumed that the
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endangered population is just barely subcritical, and the rescued pop-
ulation is just barely supercritical. They further assumed that mutation
is weak relative to selection.

The results of Orr and Unckless [5,9] have been extended in mul-
tiple ways through studies of different kinds of models (e.g., birth—
death processes [11], time-inhomogeneous branching processes [12],
Feller diffusion processes [13], population genetic models [14,15]),
making a variety of assumptions (e.g., density-dependent population
regulation [11,12], population structure [12], rescue by multiple muta-
tions [13,16], variable mutational effects [13,14,16], epistasis [14,16],
recombination [15], environmental deterioration [11]).

In the present work, we return to the branching process model ana-
lyzed by Orr and Unckless but make no assumptions about the strengths
of selection or mutation. We establish general results that coincide with
those of Orr and Unckless when selection and mutation are weak, but
can differ significantly in other scenarios. We also derive new results on
the number of independent beneficial mutations contributing to rescue.
Strong selection is frequently observed in nature, specially as a result
of human activity [17], although the extent to which strong selection
contributes to evolutionary rescue is unclear. Furthermore, mutation
rates are widely variable among species [18] and can be increased by
both genetic and environmental stress [19,20]. Thus, our results are of
more than purely theoretical interest because endangered populations
do not necessarily meet the assumptions of weak selection and weak

mutation.
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Table 1
Variables and parameters.
Symbol Description
X Total number of offspring of a wildtype individual
w Number of wildtype offspring of a wildtype individual
B Number of mutant offspring of a wildtype individual
0] Probability generating function (pgf) of X
F(@t) Joint pgf of the W and B offspring of a wildtype individual
G(1) Pgf of the B offspring of a mutant individual
r Degree of maladaptation of a wildtype individual
u Beneficial mutation rate
s Beneficial effect of a mutation
D Event of extinction of the population
R Event of rescue of the population
Z, Total number of individuals in the population at generation n
w, Number of wildtype individuals in the population at generation n
B, Number of mutant individuals in the population at generation n
G Probability of extinction of a population starting from one wildtype individual
q Probability of extinction of a population starting from one beneficial individual
Puw Probability of rescue of a population starting from one wildtype individual
Py Probability of rescue of a population starting from one beneficial individual
P(R) Probability of rescue
Prew(R) Probability of rescue from new mutations
P,(R) Probability of rescue from standing variation
m; Number of type-j offspring of a mother of type i
M Mean reproduction matrix with elements m;;
K Total number of beneficial mutations arising in a population
K Total number of beneficial mutations successful in rescuing a population
T Waiting time of the first appearance of a beneficial mutation
Ty Waiting time of the first appearance of a beneficial mutation successful in

rescuing a population

2. Model and preliminaries
2.1. Branching process

The population is modeled by a discrete-time branching process
consisting of two types of individuals: wildtype individuals and indi-
viduals carrying a beneficial mutation. For simplicity, we refer to the
latter as mutants. All individuals reproduce asexually, independently
of each other, and therefore experience hard selection [21]. Wildtype
individuals can have offspring of both types, whereas mutants can only
have offspring of their own type. All mutations are beneficial; there are
no back mutations.

Denote by X the total number of offspring of a wildtype mother,
where X is a nonnegative integer-valued random variable with mean
E[X] = 1 - r, where r is the degree of maladaptation of a wildtype
individual (see Table 1 for a complete list of variables and parameters).
The absolute fitness of a wildtype individual is, therefore, 1 — r. We
assume throughout that 0 < 1 —r < 1, thatis, 0 < r < 1. Thus, a
population composed entirely of wildtype individuals is subcritical and
doomed to extinction in the absence of rescue'. The maladaptation is
assumed to arise from an abrupt change in the environment [3-5,9].

Each offspring of a wildtype individual may be mutant with proba-
bility u (the beneficial mutation rate) or wildtype with probability 1—u,
independently of other offspring. We denote the number of wildtype
and mutant offspring by W and B, respectively, so that we have X =
W + B. Conditioned on X, W and B have binomial distributions with
success probabilities 1 — u and u, respectively:

P(W=i,B=k—i|X=k)=<I:>(1—u)iuk‘i. ¢h)

Mutant individuals may exist in the population as standing genetic
variation or arise de novo through mutation. We assume a multiplicative
fitness model throughout, that is, mutants have absolute fitness (1 —
r)(1 + 5), where s is the beneficial effect of the mutation they carry.
Mutant individuals cannot accumulate additional beneficial mutations.
We assume that s is large enough to make (I — r)(1 + s) > 1. Thus, the

1 Many of the results in the paper are valid also in the critical case 1-r = 1,
that is, r = 0.

process of mutant individuals is supercritical and has the potential to
rescue the population from extinction.
Let ¢(t) be the probability generating function (pgf) of X

(o]
et =E[1¥] = Y *P(X = k). )
k=0
A complete specification of the pgf in Eq. (2) requires that the
distribution of X be known. To avoid uninteresting special cases, we
make the natural assumption that ¢(1) = P(X < o) = 1. Also, as
E[X] < 1, we must have ¢(0) = P(X =0) > 0.
With W and B as above, let P(i,j) = P(W = i,B = j) and
P(j) = P(B = j) be the offspring distributions for a wildtype and a
mutant mother, respectively, and define the pgfs

F.n= Y v/PW =i,B=)) 3
i,j>0
and
G@t) = Z Y P(B=j). )]
=0

Obviously ¢(f) = F(t,t) and for computations, the following result
is of interest.

Lemma 2.1.

Fw,n=¢ (0 -wv+u) .

Proof.

F(u,f) = Z VHP(W =i,B=))
L]
o k
=Y D rTPW =i, B=j| X =kP(X =k)
k=0 i=0

© k
= D ik <];>(1 - wu" " P(X = k)

k=0 i=0

= Z((l —wv+u)*P(X = k)
k=0

= (p((l —u)u+ut)
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by the binomial theorem. W
2.2. Extinction

Let W, and B, be the number of wildtype and mutant individuals,
respectively, in generation n. The total population size is Z, = W, + B,,.
Let further D denote the event of extinction (death) of the population,
that is

D= 0{2,, =0}.
n=0

Denote by ¢,, and g, the probabilities of extinction of the population
when starting from one wildtype individual and one mutant individual,
respectively:

q,=P(D| Wy =1,B,=0)
4y =P(D| Wy =0,By=1).

For convenience, we denote the corresponding rescue probabilities
by

Pw = 1 — 4w

pp=1-g,. (5)

As the mutant type is supercritical we have g, < 1, and by standard
branching process theory, g, can be found as the smallest solution in
[0,1] to the equation r = G(¢) (recalling that the process of mutant
individuals is a single-type process)

Next we must find the extinction probability ¢,, of a population that
starts from one wildtype individual. As there is a chance of a beneficial
mutation and mutants have a chance of avoiding extinction, we realize
that ¢g,, < 1. It can further be computed explicitly according to the
following result.

Proposition 2.2. Let y(1) = ¢ ((1 — u)t + uq,). The extinction probability
q,, is the unique solution in [0, 1] to the equation t = w(¢).

Proof. If u = 0, the equation reduces to ¢+ = ¢(#), the usual equation
for the extinction probability, and as 1 — r < 1, the unique solution is
t = 1. Assume u > 0 and let D denote the event of extinction. Condition
on the total number of offspring X and use the binomial theorem to
obtain

4u= Y, PD| X =kPX =k)
k=0
k
:ZZP(D|W:i,B:k—i)P(W:i,B:k—ilX:k)P(X:k)
k=0 j=0

k
=X 24 ('j)(l ~ W P(X = k)

= Y (gl —u) +ug)*P(X = k)

= (q,(1 — ) +ug,) .

Thus g, solves the equation ¢ = y(r). We next demonstrate that there
is exactly one solution in [0, 1] so the equation does indeed uniquely
determine g,,. As ¢ is strictly increasing and convex, so is y, and the
claim follows if we can show that y(0) > 0 and w(1) < 1; the graph of
y = w(r) must then intersect the line y = ¢ exactly once in [0, 1]. We
note that

v (0) = p(ug,) > ¢(0) > 0
and
y() =l —u+tug) <el)=1,

and the proof is complete. W

Mathematical Biosciences 341 (2021) 108708
2.3. Rescue

In our model a population may only experience one of two fates:
extinction or rescue. Thus, if a population does not go extinct, we
consider it rescued, and define the event R = D, so that the probability
of rescue is simply one minus the probability of extinction: P(R) =
1— P(D). Hence, a population starting from W, wildtype and B, mutant
individuals goes extinct if all the W}, + B, independent subpopulations
go extinct, and the probability of rescue is

P(R)=1-q,q,". 6)

If initially the population is composed entirely of wildtype indi-
viduals (B, = 0), rescue can only occur through new mutations. The
probability that this kind of rescue occurs is given by (see Eq. (6))

PrwR)=1-¢q"0. ™

Alternatively, rescue can occur from the B, mutant ancestors. This
scenario is modeled by ignoring the contribution of new mutations,
that is, u ~ 0. In this case, g,, = 1 because the wildtype population
is subcritical, and Eq. (6) becomes

Py(R)=1-g,°. ®)

The results from this section enable us to compute the probability of
rescue for any offspring distribution, any degree of wildtype maladapta-
tion (r), any selective benefit of a mutation (s), any beneficial mutation
rate (u), and any initial composition (W}, B). Fig. 1 illustrates the effect
of some of these parameters on the probability of rescue from new
mutations: the P, increases with increasing s (Fig. 1A), decreasing r
(Fig. 1B), and increasing u (Fig. 1C and D). The results shown in Fig. 1
were obtained assuming a Poisson offspring distribution. The observed
effects can be expected to occur for other offspring distributions.

In the next section we will consider the case of weak selection/weak
mutation, that is, when u, s, and r are all small. The formulas given
by Orr and Unckless [5,9] arise as approximations in our general
framework.

2.4. Weak Selection/Weak Mutation Approximation

Assuming weak selection, that is, sufficiently small r and s, we
can get approximations of Egs. (7) and (8) that express the survival
probabilities in terms of u,r,s,W,, and B,. We also assume that u
is small, by orders of magnitude, compared to r and s (i.e., weak
mutation).

2.4.1. Haldane approximation
Under weak selection, the expected number of offspring of a mutant
individual is (1 —r)(1 +s) ~ 1+(s—r) and Haldane’s [10] approximation

Py R2s—7) 9)

holds. We note here that although Haldane assumed a Poisson
distribution, his approximation holds more generally by a first-order
Taylor expansion of log¢ (similar to what we do in Eq. (10)). For
distributions that, unlike the Poisson, have a variance unequal to its
mean, there is an improved second-order approximation of p, [22].
For the purpose of this paper, however, we use the classical Haldane
approximation.

2.4.2. Standing variation
In the standing variation case with u ~ 0, the probability of rescue
in Eq. (8) becomes

P,(R)y~ 1—(1=2(s—r)bo
~ 1 —exp(=2By(s —r)),

which is “P,,,,” in Equation (2) in Orr and Unckless [5].
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Fig. 1. Effect of different parameters on the probability of rescue from new mutations, P, (R). In all cases we assumed an initial population size of W, = 10* wildtype individuals
(B, = 0 mutant individuals). (A) Selection coefficient of a beneficial mutation, s. Other parameters: r = 0.01 and u = 107>, (B) Degree of maladaptation of wildtype individuals, r.
Other parameters: s = 0.1 and u = 10~. (C-D) Beneficial mutation rate, u. Other parameters: (C) » = 0.01 and s = 0.02; (D) » = 0.09 and s = 0.1. Exact probabilities (red, continuous)
were calculated using Eq. (7), assuming a Poisson offspring distribution; ¢, and ¢,, were calculated by solving the equations = G(r) and ¢ = y(r) numerically in [0,1], respectively.
Approximate probabilities (blue, dashed) assuming weak selection/weak mutation were calculated using Eq. (14). Arrows of particular colors indicate identical combinations of

parameters.

2.4.3. New mutations
For the new mutation case, a standard first-order Taylor expansion
of the natural logarithm of ¢(f) around ¢ = 1 gives

log p(t) = log (1) + w(z -1
o(1)
=1-nNt-1 (10)

because ¢'(1) = 1 —r and ¢(1) = 1. (Note that for the Poisson offspring
distribution, this Taylor approximation is exact.) Now recall

w(®) =@ ((1 —wt +ug,)

from Proposition 2.2. By Eq. (10):

logw (1) & (1 —r) ((1 —u)t +uq, — 1) a1
and the equation ¢ = y(f) becomes
logt~ (1—=r) ((1—wt +ug,—1) . 12

Using g, ~ 1 —2(s — r) and the first-order Taylor expansion log? ~ ¢ — 1,
around 7 = 1, Eq. (12) becomes

t—1a=r)(0-—wt+ul-2s—r)-1)

the solution of which is

- 22U + 25U — ru—2rsu —u—r

w )

—r—u+ru

which gives
Py = 1- qw

 2ru—2su— 2r2u — 2rsu

~ —r—u+ru

2uls —
Gl 13)
r

where the last approximation neglects the third-order terms 2r2u and
2rsu in the numerator, and « and ru in the denominator. Eq. (7) becomes

Prew(R) = 1 —exp(—p,, W)

1 —exp <_ M) as)

-
which is “P,,,,” in Equation (3) in Orr and Unckless [9].

The weak selection/weak mutation approximation in Eq. (14) per-
forms well when the assumptions are met under a Poisson offspring
distribution (Fig. 1A, green arrow). However, it performs less well
when selection is relatively strong (Fig. 1A and 1B). In some scenarios,
the approximation breaks down completely, even when the mutation
rate is weak relative to selection (Fig. 1D, high u). The reason for
this discrepancy is that it relies on Haldane’s approximation (Eq. (9)),
which ignores a rs term. For example, using the parameters of Fig. 1D
(rs = 0.009) and u = 1073 the probability of rescue according to Eq. (14)
is Pw(R) = 0.8916, which is far from the exact value of P, (R) =
0.1812 from Eq. (7). But if we approximate the probability of fixation
as p, = 2(s —r —rs), replace it in Eq. (12), solve for g¢,,, and use the full
result without further approximations, we get P, (R) = 0.1814.

3. Population size

We next turn to the question of how the mean population size
changes over time. Let the vector (W, B,) be the number of wildtype
and mutant individuals in generation n, and consider its expected value,
the vector (E[W,], E[B,]). In standard branching process notation, let
m;; denote the number of type-j offspring of a mother of type i. For
simplicity, let the types be denoted by w and b, for wildtype and
mutant, respectively. The mean reproduction matrix is

M =< e > , as)
Mpp
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In our specific model, recall E[X] = 1-r, the total number of offspring
of a wildtype individual to get m,,,, = (1 —r)(1 —w), —r)u, and
my, = (1 = r)(1 + s) so that

1-—
Mz(l_’)( ou I-T-s >

and it is readily seen by induction that its nth power is

Gy GO = —w
M":(l—r)”< s+u >, (16)
0 (1+s)"

Myp = (1

which grows ~ (1 —r)"(1+s)" as n — o0, and the mutants ultimately
dominate the population. Specifically, as n — o,

u
1 0
— _M"> s+u .
(I=r)"(d+s)" ( 0 1 )

Starting from the vector (W, By) where W, and B, are fixed, we
have

E[(W,, B,)] = (Wy, B)) M" .

The total population size is Z, = W, + B,. Thus, the expected total
population size, E[Z,] = E[W, + B,], starting from (W}, B,y) ancestors
is

E[Z,] = W, (1—r)" (HLu(l )"+ ﬁ(l - u)">+B0(l—r)”(l+s)” an
and asymptotically
E[Z,1~ (1= ry'(1+ 57" (W, =+ By) .

Eq. (17) takes into account all populations, including those that go
extinct. In Section 5.1 we derive the expected population size of rescued
populations.

4. Beneficial mutations
4.1. Number of beneficial mutations

Let A be the event that at least one beneficial mutation has arisen
in a population started from one wildtype individual, and let = P(A).

As above, let ¢ be the pgf of the number of offspring X (Eq. (2)).

Proposition 4.1.

t:l—(p((l—t)(l—u)).

The probability n is the unique solution to the equation

Proof. The right-hand side function is increasing in ¢. By putting in
t = 0 and 7 = 1, respectively, we get the endpoint values 1 — (1 — u)
and 1 — ¢(0), both of which are in (0, 1), and hence the right-hand side
function intersects the line y = ¢ exactly once in [0, 1]. Next, condition
on the number of offspring X of the ancestor, and the number B of
those offspring that are mutants:

n=PA) =Y PA|X=kPX =k
k=1

=Y D PA|X=kB=)P(B=j|X=kPX =k

© k
=ZZ PA| X = kB—_])( )u’(l—u)k/P(X K, (18)

the sum starting at k = 1 because P(A | X = 0) = 0. Next, note that we
have P(A| X =k,B=j)=1for j > 1, and for j = 0:
PA|X=kB=0)=1-(1-pF.

The term in Eq. (18) with j = 0 equals

Z 1= =n*) (1 ~uPX = k)

Mathematical Biosciences 341 (2021) 108708

and the rest of the sum is

ZZ ( )u’(l ~ WP = k)=

=1 j=1

)

2(1 —a —u)k) P(X = k).

k=1

Add these together to get 1 — (p((l - —u)) and the proof is
complete. W

Note that, as there has to be at least one beneficial mutation for
there to be rescue, we obviously have n > p,. Also note that with
v = 1 —t, the proposition may be rewritten as v = @(v(1 — u)) where,
by Lemma 2.1, the right-hand side equals the pgf of W integrated over
the event that B = 0:

@ —w) = F(v,0)

= zufP(W=i,B=o>
i=0

=E[WW:;B=0].

Next let K be the total number of beneficial mutations ever arising in
a population. Its expected value is given by

Proposition 4.2.

E[K] =W, __uElX]
1= (1l —wE[X]

Proof. Firstlet W, =1 and let v = E[K]. We first rule out the possibility
that v = co. To this end, let W be the total number of individuals ever
born in a branching process with mean E[X]=1-r < 1. Then

v< E[W]=E [iu/n] = i(l—r)"z =
n=0 n=0

Next, condition on the number X of offspring of the ancestor, and the
number B of those that are mutants. Noting that E[K | X = 0] =0 we
get

o k
v:E[K]:ZZE[K|X:k,B:j]P(B:le:k)P(X:k)

k=1 j=0

o
M»

G+ (k- J)V)< )u’(l—u)" IP(X =k)

k=1 j=0
© k
_(1—V)ZZJ< >u/(l—u)k IP(X =k)
k=1 j=0
) k
vZkZ( )uj(l—u)k_fP(X=k)
k=1 j=0

=(1-vuE[X]+VE[X],

where we used that, for j > 0,

-7

Solving v = (1 —v)uE[X]+ vE[X] and multiplying by W}, concludes the
proof. W

Note that the proposition also follows from the informal argument
that the expected number of mutant offspring of the ancestor is uE[X]
and the populations starting from the remaining (1 — u) E[X] offspring
produce on average v new mutations each. Hence v = uE[X] + (1 —
u)E[X]v, which also gives the result.

For example, with the parameters used in Figs. 2A and 2B (W, =
10%, r = 0.01, and u = 1075), the expected number of independent bene-
ficial mutations occurring during the course of evolution is E[K] =9.9;
the corresponding number for Figs. 2C and 2D (W, = 10*, r = 0.01, and
u=10"%) is E[K] = 98.0 (Proposition 4.2). These numbers of mutations
include mutations that occur in populations that ultimately go extinct
and mutations that occur in rescued populations but disappear and do
not contribute to the rescue.



R.B.R. Azevedo and P. Olofsson

By Eq. (5), a given mutation is successful in rescuing the popula-
tion with probability p,. With K¢ denoting the number of successful
mutations, we thus get

ppuE[X]
EKJ] =Wy —MMM—. 19
[Ks] 01— -wEX] as
Eq. (19) takes into account all populations, including those that go
extinct (Kg = 0). In Section 5.3 we derive the E[Kg] of rescued
populations.

4.2. Waiting time for a beneficial mutation

We next turn our attention to the time (generation) T of the first
appearance of a beneficial mutation, aiming for the probabilities P(T >
n), n = 0,1,2,..., in a population starting from wildtype individuals
only. From these probabilities we can obtain the distribution function

F(n)=1-P(T > n)
and the probability mass function
pn)=Fn)— F(n—-1).

Note that P(T = o) > 0, because the population may die out without
experiencing any mutations (specifically, P(T = o) = 1 -y, by
Proposition 4.1). Thus, it also follows that E[T] = co.

We will establish an expression for P(T > n). To that end, first recall
the pgf ¢(7) of the number of offspring X of a wildtype mother (Eq. (2)).
Next, define a sequence of functions Hy, H,, ... recursively through

Hy (1) = @t H (1), (20)

where Hy(r) = 1. Thus H,;(t) = ¢@), H,(t) = (o)), and so on.
Consider a population that starts from W, wildtype individuals and no
mutant individuals, B, = 0.

Proposition 4.3.

P(T > n) = (H,(1 —u)"" .

Proof. As P(T > n | Wy = w) = (P(T > n | W, = 1), we can
assume W, = 1. Recall W, and B,, the number of wildtype and mutant
individuals in generation n, respectively. Having T > n means that there
are no mutation events at or before the nth generation, that is

P(T >n)=P(B; =0,B,=0,...,B,=0).

For any i, j, k, let

pi.j) = PWyi1 + Bryy =j | Wy =i, B, =0)

and note that

P(Wiyy = J, By =0 Wy =i, B, = 0) = (1 =) p(i, j)

by Eq. (1), and note also that

)

3 ) = (o)’

j=0
by elementary properties of pgfs. Repeated use of the above identities
yields
P(T >n)=P®B, =0,B,=0,....B,=0)
= z PW, =k, B, =0, W, = ky,
Ky Kgsen sk
B,=0,...,W,=k,,B,=0)
= Z (I =k p(1, k) - (1 = uykn-2
Ky Kook
X plky_g. k) = plk,_y ., k,)

= Y =wfp(lky (1 —whe
kykys..ky_y
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X plky_p, Ky 1) (@(1 = w)"r!
_ Z (l—u)k‘p(l,]ﬂ)“'((l_u)w(l_“))k"_z

kyk,..ky—
= =H(-u. N

Recall that any given beneficial mutation is successful in rescuing
the population with probability p,, and let Ty be the time until such
a successful mutation. The probabilities P(T¢ > n) can be found
by applying Proposition 4.3 to the function H,, defined recursively
through Eq. (20) but instead using the pgf

@0 =@ ((1 —u+upyt +ugy) .

With B and By denoting the numbers of successful and failed mutants,
respectively, @ is the pgf of W + Bg (recall Lemma 2.1). The total
number of offspring is X = W + Bg + Bp, and conditioned on X,
the three types of offspring follow a multinomial distribution with
probabilities 1 — u,up,, and ug,. Thus, the conditional distribution of
Bg given W + Bg is binomial with success probability

~ upy

U= ——
1 —u+up,

and we get

Corollary 4.3.1.

W

P(Tg > n) = (ﬁn(l —ﬁ))
5. Rescued populations
5.1. Population size

For populations that survive, the mean population size (Eq. (17))
is a poor measure as it takes into account all the populations that go
extinct. For example, with an extinction probability of 99%, the 1% of
populations that survive will have sizes far above the mean population
size. Thus, we consider instead the mean population size conditioned
on rescue. The analysis hinges upon use of the elementary result that
for any integrable random variable Y, we have
E[Y] - E[Y | DIP(D)

P(R)
by the Law of Total Expectation.

By standard branching process results [23,24], a supercritical
branching process conditioned on extinction is a subcritical branching
process, whose reproduction law can be given explicitly. To that end,
recall the notation P(i,j) = P(W = i,B = j) for a wildtype mother
and P(j) = P(B = j) for a mutant mother, and the corresponding
pgfs F(v,t) and G(t) (Egs. (3) and (4)). Recall also the extinction
probabilities ¢,, and ¢,, starting from one wildtype and one mutant
individual, respectively. Following Jagers and Lagerés [24], the process
conditioned on extinction has reproduction law given by

E[Y |R]= 2D

PG.j) =45 ') PG.j) (22)
PG)=q,"'P().

with the corresponding pgfs

~ 1

F(v,1) = q—F(qu, q4p1)

w

G = L6
qp

By standard properties of pgfs, we can compute the entries of the mean
reproduction matrix M, in analogy with Eq. (15), as

Ay = F'(1,1) = F/(q,. 4)
~ -~ q,
R =F/(1,1) = q—”F,’(qw,qb)

w

iy, = G'(1) = G'(q).
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in the usual notation for partial derivatives. Hence

q
oo F!(qy» 45) q—bF,’(qw,qb)
w
0 G'(qp)

the nth power of which is

R oy % q)G’(qb)"—FU’(qw,qb)"
M"=| TR g, T G () ~ Fldna) |- @23
0 G'(ap)"

From Egs. (21) and (23), we can now compute the nth generation mean
population sizes conditioned on rescue, starting from W), wildtype and
B, mutants as

Wy By 37,
Mn — qwoquMn

E[(W,, B,) | R] = (W;, By) Wo Bo
l-q,"q,

The total population size is Z, = W, + B, and we get

E[Z,|R]=W,, By)

Wy By s
M"—q OqoMn
w Ap < 1) (24)

Wo B
1-q” 0 a, 0 1
5.2. Weak Selection/Weak Mutation Approximation

If we assume that u, r, and s are all small we can get approximations
of Eq. (24) for the cases where rescue occurs through either standing
variation or new mutations.

5.2.1. Standing variation

We first consider the standing variation case where rescue is due to
pre-existing mutant individuals and not to new mutations (u ~ 0). Let
the population start from (W}, B,) individuals where B, is small. We
then have

E[Z,|D] = Wy(1 - r)" + E[B, | D],
where, by Eq. (4)

E[B, | D] = ByG'(g,)" . (25)
As
E[B,]1= Bym,,,

Egs. (16), (21) and (25) yield
(=1 +5)" = q,°G'(q)"
Py(R)

If g, is close to 1 and B, small, we get the approximation

E[B, | R] = B,

Py(R)=1=(1-p)™ ~ p,By,
which yields
(1 =11 +5)" = 422G (gp)"

Py
With Haldane’s approximation (Eq. (9)) we get

E[B,| Rl =~

=1+ )" = (1= 2(s = )" G'(1 = 2(s — )"

2(s—r) ’
which is essentially Equation (10) in Orr and Unckless [5], noting that
they use the approximation (1—r)"(1+s)" ~ e~ and neglect the term
E[B, | DIP(D) in Eq. (21).

E[Z,| R~ Wy(1-r)"+

5.2.2. New mutations
For the new mutation case, the population is rescued by mutation
and not by pre-existing mutants. We thus let B, = 0 and start from W,
wildtype individuals. Again, neglect the term E[B, | D]P(D) in Eq. (21)
to obtain
E[B,]
PﬂCW(R) ’

E[Z,| Rl = Wy(1=r"(1—-u"+
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and Eq. (16) gives, for the second term,

E[B,] _ Wou(l —r)" S
Pnew(R) h (s+ M)Pnew(R) ((1 +5) (1 —u) ) R
where

PR =1-U0=p o xp W,.

Neglecting the term (1 — )" and using Eq. (13) to approximate p,,, we
now get
E[B,] . rWou(l —r)"(1 + s)"
Pew(R) - (s +u)2u(s — W,
rd=n"+s)
Y5 26—

And, therefore,

n n

E[Z, | R] ~ Wy(l —r)"(1 — )" + 2% ,
in agreement with Equation (19) in Orr and Unckless [5].

Fig. 2 compares Egs. (24) and (26) to individual-based stochastic
simulations of the branching process under different strengths of selec-
tion and mutation. The weak selection/weak mutation approximation
can perform reasonably well when selection is strong (Fig. 2B), but
can break down even when the mutation rate is weak relative to
selection (Fig. 2D). The weak selection/weak mutation approximation
tends to underestimate population size (Fig. 2) while overestimating
the probability of rescue (Fig. 1). This is because Eq. (26) depends on
1/ P, (R), which leads to an underestimate of E[Z, | R] if P, (R) is
overestimated.

(26)

5.3. Number of rescuing mutations

In Eq. (19), we established an expression for the expected number
of successful mutations, E[K], in a population. By noting that

E[Ks] = E[Kg | RIP(R) + E[Ks | DIP(D),

where, obviously, E[Kg | D] = 0, we get the following expression for
the expected number of rescuing mutations in a rescued population
starting from W), wildtype individuals:

WopstELX]

. @7
(1= -wEXD (1-q1°)

E[Ks | R]=

As there must be at least one rescuing beneficial mutation in a rescued
population, we realize that E[Kg | R] > 1.

For example, with the parameters used in Fig. 2A (W, = 10%,
r=0.01, s = 0.02, and u = 107°), the expected number of independent
rescuing mutations occurring during the course of evolution is E[Ky |
R] = 1.1 (Eq. (27)). The corresponding numbers for the other parts of
Fig. 2 are: 2.0 (B), 2.2 (C), and 15.6 (D).

5.4. Waiting time for a rescuing mutation

We next turn our attention to the times 7' and T of the first appear-
ances of a beneficial mutation and a successful mutation, respectively,
in a rescued population. Proposition 4.3 and Corollary 4.3.1 give the
unconditional probabilities P(T > n) and P(Ty > n), and the Law of
Total Probability gives
P(T > n)— P(T > n| D)P(D)

P(R) ’

with a similar expression for T. Note that conditioning on rescue
implies that there is at least one mutation event in finite time, that
is, we have P(T = oo | R) = 0. In contrast, both P(T = oo | D) > 0
and P(T = ) > 0, because the population may die out without
experiencing any mutations. Therefore, E[T] = o0 and E[T | D] = oo,
whereas E[T | R] may still be finite (which also means that we cannot
apply Eq. (21) to find E[T | R]).

PT>n|R)=
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Fig. 2. Total population size of rescued populations. We considered evolutionary rescue based on new mutations. In all cases we assumed an initial population size of W, = 10*
wildtype individuals (B, = 0 mutants), a degree of wildtype maladaptation of r = 0.01, and a Poisson offspring distribution. (A) Weak selection/weak mutation: s = 0.02 and u = 1073
(green arrow, Fig. 1A). (B) Stronger selection: s = 0.1 and u = 10~> (purple arrow, Fig. 1A). (C) Stronger mutation: s = 0.02 and u = 10~ (far right, Fig. 1C). (D) Stronger selection
and stronger mutation: s = 0.1 and u = 10~*. Gray lines show total sizes (Z,) of individual simulated populations experiencing rescue (defined as reaching Z, > 2x10*). A sample of
100 individual trajectories is shown for each parameter combination. Exact population sizes (red, continuous) were calculated using Eq. (24). Approximate population sizes (blue,
dashed) assuming weak selection/weak mutation were calculated using Eq. (26). The code for the simulations was written in Python 3.7 with NumPy version 1.21.0 [25] and is

available at https://github.com/rbazev/rescue.

Proposition 4.3 shows how to compute the probability P(T > n). To
get to P(T > n | R) we need to compute P(T > n | D) by use of the
conditional offspring law P of Eq. (22), but alas, there is no immediate
analog of Proposition 4.3. This proposition relies upon the conditional
distribution of mutants being binomial when conditioned on the total
number of offspring; this property does not transfer to £ (which can be
realized by simple examples, for example binary splitting). However,
the case of a Poisson offspring law does lend itself to such analysis,
which we address in the next section.

Things are easier when it comes to T, which is also the more
interesting variable, answering the question when the (first) rescu-
ing mutation arises. As extinction obviously means that there are no
successful mutations, we have P(T¢ > n | D) = 1 and hence

P(Tg > n) — P(D)

PTs>n|R)= PR

and by Corollary 4.3.1 we get

Corollary 5.0.2.

~ ) Wi
(f,0-2)" - qu
P(Tg>n|R)= 7 )
1- qwo
We can now obtain the probability mass function

PTg=n|R)=PTs>n—1|R)=P(Ts>n|R), n=12,...

and the expected value

E[TS|R]:ZP(TS>n|R).
n=0

Orr and Unckless [5] provided the following weak selection/weak
mutation approximation (their Supporting Information Text S2):

)

rn Ce—C(l—e’

1—eC
where C = 2Wyu(s — r)/r. Fig. 3 shows that this approximation works
well, even in conditions where the approximation for population size
breaks down (compare Figs. 2D and 3D).

P(Tg=n|R)~re R (28)

5.5. The Poisson distribution

As the Poisson distribution is frequently used as offspring distribu-
tion (as in our simulations), we finish with a section about its properties
in the context of evolutionary rescue. By standard properties of the
Poisson distribution, the numbers of wildtype and mutant offspring, W
and B, are independent with W ~ Poi((1-r)(1—u)) and B ~ Poi((1—r) u).
As it turns out, both the Poisson distribution and the independence still
hold when conditioning on the population going extinct. By Eq. (22)
and independence, the reproduction law conditioned on extinction is

PGi.j) =45 q) PG j)

=g/ q) Py (i) Pp(j)

= By () By(h).
The last equality folloxvs from the multiplicative separation of i and j
in the expression for P(i, j); by this, the marginal distributions are in-

dependent. Hence f’W(i) =c qf;'PW(i) where the normalizing constant
c is obtained by summing over i:

(e}

o
X d Py () = —op(a,)
& 9

L (a-nt-w(g,-1)

= —e

dw
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Fig. 3. Waiting time for the first rescuing mutation. We considered evolutionary rescue based on new mutations. The parameter combinations in each part as the same as in
Fig. 2. In all cases we assumed an initial population size of W, = 10* wildtype individuals (B, = 0 mutants), a degree of wildtype maladaptation of r = 0.01, and a Poisson
offspring distribution. (A) Weak selection/weak mutation: s = 0.02 and u = 107 (green arrow, Fig. 1A). (B) Stronger selection: s = 0.1 and u = 10~ (purple arrow, Fig. 1A). (C)
Stronger mutation: s = 0.02 and « = 10~* (far right, Fig. 1C). (D) Stronger selection and stronger mutation: s = 0.1 and u = 10~*. Histograms of waiting times are based on 10*
stochastic simulations. The histograms are truncated for clarity, which leads to the exclusion of < 3% of values in each case. Rescue was defined as reaching Z, > 1.5 x 10*. Exact
probabilities (red, continuous) were calculated using Corollary 5.0.2. Approximate probabilities (blue, dashed) assuming weak mutation were calculated using Eq. (28). The code
for the simulations was written in Python 3.7 with NumPy version 1.21.0 [25] and is available at https://github.com/rbazev/rescue.

yielding A similar calculation yields

c= qwe’“”)(l"‘)(qw’l) B ~ Poi ((1 — r)uqb) .

and thus Put together, these also give the total number of offspring
By (i) = e 1-N0=0G@=Dgi P (i) X =W + B ~Poi (1 - N((1 = u)g,, + ugy)) -

A mutant has a number of (necessarily mutant) offspring B which is
= o~ (1=D=0gu=1) g1 p=(1=n1=0) (A =r —uw) Poi((1 — r)(1 + s5)). Conditioned on extinction, more similar calculations
w i! give
. B ~Poi ((1 = (1 + 5)g)
= o~-ni-ug, (= ’)(1' ~ 4w’

i! ’ for a mutant mother. By standard properties of the Poisson distribution,
we also get the conditional distributions of W and B given X as

which we recognize as a Poisson distribution with mean (1 —r)(1 —u)q,, N o1
binomial (X, 1 — @) and (X, %), respectively, where

and may write as
7 ~ Poi PO S
W~P01((1—r)(1—u)qw) . “= ug, + (1 —uq,
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As q,, > g,, we have @ < u which makes sense.
The standard Poisson properties do not, however, carry over to the
population conditioned on rescue. By the Law of Total Probability:
- — Gy,
P@i,jIR)= ——— Py (DP(J).,
1- qy

showing that, conditioned on rescue, W and B are neither Poisson nor
independent.

6. Discussion

We use a two-type branching process to model evolutionary rescue
introduced by Orr and Unckless [5,9]. The types are wildtype individu-
als and individuals carrying beneficial mutations. The parameters are:
the degree of maladaptation of wildtype individuals (r), the selective
benefit of a mutation (s), the beneficial mutation rate (u), and the
initial size and composition of the population (W}, Bj). Our model
is simple, but provides a basis for an understanding of the interplay
between fundamental parameters in evolutionary rescue. Our formulas
for probability of rescue, the expected size of a rescued population, and
the waiting time for the first rescuing mutation boil down to those of
Orr and Unckless [5,9] in cases of weak selection/weak mutation, but
the discrepancy can be large when selection is strong (Figs. 1D and 2D).
We derive new expressions for the number of independent beneficial
mutations contributing to the rescue of a population.

Strong selection is frequently observed in nature, notably when hu-
mans are involved [17]. Examples include global climate change [26]
and the use of antibiotics [27] and pesticides [28]. Strong levels of mal-
adaptation (i.e., high r) are common. For example, shifting a population
of the cowpea seed beetle, Callosobruchus maculatus, adapted to mung
bean to lentil, caused approximately 99% mortality [29]. This extreme
maladaptation caused multiple experimental populations to go extinct,
but one population adapted quickly and reached 69% survival in 5
generations. High mutation rates are also common [18]. Furthermore,
mutation rates have been shown to increase under precisely the kinds
of stressful conditions that may put populations at risk and, therefore,
in need of rescue [19,20]. Thus, our results are of more than purely
theoretical interest.

Application of our model to real populations is not straightforward
because the mutational parameters (s and u) are difficult to estimate.
The baseline values we adopted in our numerical exploration of the
model (s = 0.02 and u = 107; e.g., green arrow in Fig. 1A) are consis-
tent with estimates obtained in three independent experimental studies
on populations of the bacterium Escherichia coli [30-32]. Stronger
mutational effects and a lower mutation rate (s ~ 0.1 and u ~ 1077)
were observed in a different study on the same species [33]; weaker
mutational effects and a higher beneficial mutation rate (s ~ 0.01 and
10~*) were observed in the yeast Saccharomyces cerevisiae [34].
Thus, the scenarios in the numerical illustrations in Figs. 1-3 involve
plausible values of the mutational parameters.

Our model makes the simplifying assumption that all beneficial
mutations have the same effect. Studies in both S. cerevisiae [34] and
the bacterium Pseudomonas fluorescens [35] found evidence that the
beneficial effects of mutations are approximately exponentially dis-
tributed. A study in two different bacteriophages (ID11 and ¢6) found
support, instead, for a uniform distribution of mutational effects [36].
Our model could be extended to consider more than one type of mutant
individual [13,14].

Another central assumption of our model is that an individual can
acquire at most one beneficial mutation. This assumption precludes
rescue involving multiple mutations in our model. There is experi-
mental evidence that evolutionary rescue through individuals carrying
multiple mutations does occur in real populations. For example, pop-
ulations of S. cerevisiae “rescued” from high copper concentrations
often acquired multiple beneficial mutations [37]. Osmond et al. [16]
showed that if beneficial mutations of small effect are more common

u =

10
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than those of large effect then rescue by multiple mutations can be
more likely than rescue by single mutations.

Most models of evolutionary rescue [3,5,9], including ours, ignore
deleterious mutations. This modeling decision is questionable because
deleterious mutations are expected to be orders of magnitude more
likely to occur than beneficial ones. The accumulation of deleterious
mutations is predicted to accelerate the decline in population size in a
process known as mutational meltdown [38]. Thus, the probability of
rescue from new mutations predicted in a model like ours is likely to
be overly optimistic.

Our model makes several additional simplifying assumptions includ-
ing, but not restricted to, a constant environment, asexual reproduction,
and density-independence. The influence of these assumptions on the
probability, tempo, and mode of evolutionary rescue is an active area
of research. Different studies have incorporated, for example, a deteri-
orating environment [11], recombination [15], and density-dependent
population regulation [11,12].
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