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A B S T R A C T

Evolutionary rescue is the process whereby a declining population may start growing again, thus avoiding
extinction, via an increase in the frequency of fitter genotypes. These genotypes may either already be present
in the population in small numbers, or arise by mutation as the population declines. We present a simple
two-type discrete-time branching process model and use it to obtain results such as the probability of rescue,
the shape of the population growth curve of a rescued population, and the time until the first rescuing mutation
occurs. Comparisons are made to existing results in the literature in cases where both the mutation rate and
the selective advantage of the beneficial mutations are small.
1. Introduction

A declining population may be saved from otherwise inevitable
extinction by the establishment of one or more beneficial mutations, a
phenomenon known as evolutionary rescue [1–4]. Such rescue may be
a desirable outcome, such as recovery of an endangered species, or an
undesirable one, such as cancer becoming resistant to chemotherapy. A
typical feature of evolutionary rescue is a U-shaped population growth
curve corresponding to initial decline, stabilization, and ultimate recov-
ery. This behavior has been established in mathematical models [3–5]
nd observed in experiments on real populations [6–8].
Orr and Unckless wrote two seminal papers on the mathemat-

cs of evolutionary rescue [5,9]. They considered a population that
as experienced sudden environmental deterioration such that it can
o longer sustain itself. They then analyzed the possibility that this
ndangered population is able to adapt sufficiently rapidly to avoid
xtinction. They took into account the contributions of both standing
enetic variation and new mutations to adaptation. Using methods from
he theory of branching processes in combination with Haldane’s [10]
lassic approximation of the probability of fixation, Orr and Unckless
btained, for the first time, several highly interesting formulas for,
mong other things, the probability that a population is rescued either
y standing genetic variation or by a new mutation, the expected size
f a rescued population at a given time, and the waiting time for the
irst rescuing mutation.
Crucially, Orr and Unckless assumed that selection is weak: the

hange in the environment reduces the mean absolute fitness of the
opulation slightly below 1, and beneficial mutations raise it slightly
bove 1; or, in branching process parlance, they assumed that the
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endangered population is just barely subcritical, and the rescued pop-
ulation is just barely supercritical. They further assumed that mutation
is weak relative to selection.

The results of Orr and Unckless [5,9] have been extended in mul-
tiple ways through studies of different kinds of models (e.g., birth–
death processes [11], time-inhomogeneous branching processes [12],
Feller diffusion processes [13], population genetic models [14,15]),
making a variety of assumptions (e.g., density-dependent population
regulation [11,12], population structure [12], rescue by multiple muta-
tions [13,16], variable mutational effects [13,14,16], epistasis [14,16],
recombination [15], environmental deterioration [11]).

In the present work, we return to the branching process model ana-
lyzed by Orr and Unckless but make no assumptions about the strengths
of selection or mutation. We establish general results that coincide with
those of Orr and Unckless when selection and mutation are weak, but
can differ significantly in other scenarios. We also derive new results on
the number of independent beneficial mutations contributing to rescue.
Strong selection is frequently observed in nature, specially as a result
of human activity [17], although the extent to which strong selection
contributes to evolutionary rescue is unclear. Furthermore, mutation
rates are widely variable among species [18] and can be increased by
both genetic and environmental stress [19,20]. Thus, our results are of
more than purely theoretical interest because endangered populations
do not necessarily meet the assumptions of weak selection and weak
mutation.
https://doi.org/10.1016/j.mbs.2021.108708
Received 29 April 2021; Received in revised form 5 September 2021; Accepted 13
Available online 22 September 2021
0025-5564/© 2021 The Authors. Published by Elsevier Inc. This is an open access
(http://creativecommons.org/licenses/by/4.0/).
September 2021

article under the CC BY license

https://doi.org/10.1016/j.mbs.2021.108708
http://www.elsevier.com/locate/mbs
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2021.108708&domain=pdf
mailto:peter.olofsson@ju.se
https://doi.org/10.1016/j.mbs.2021.108708
http://creativecommons.org/licenses/by/4.0/


R.B.R. Azevedo and P. Olofsson Mathematical Biosciences 341 (2021) 108708

𝐸

t

Table 1
Variables and parameters.
Symbol Description

𝑋 Total number of offspring of a wildtype individual
𝑊 Number of wildtype offspring of a wildtype individual
𝐵 Number of mutant offspring of a wildtype individual
𝜑(𝑡) Probability generating function (pgf) of 𝑋
𝐹 (𝑡) Joint pgf of the 𝑊 and 𝐵 offspring of a wildtype individual
𝐺(𝑡) Pgf of the 𝐵 offspring of a mutant individual
𝑟 Degree of maladaptation of a wildtype individual
𝑢 Beneficial mutation rate
𝑠 Beneficial effect of a mutation
 Event of extinction of the population
 Event of rescue of the population
𝑍𝑛 Total number of individuals in the population at generation 𝑛
𝑊𝑛 Number of wildtype individuals in the population at generation 𝑛
𝐵𝑛 Number of mutant individuals in the population at generation 𝑛
𝑞𝑤 Probability of extinction of a population starting from one wildtype individual
𝑞𝑏 Probability of extinction of a population starting from one beneficial individual
𝑝𝑤 Probability of rescue of a population starting from one wildtype individual
𝑝𝑏 Probability of rescue of a population starting from one beneficial individual
𝑃 () Probability of rescue
𝑃new() Probability of rescue from new mutations
𝑃sv() Probability of rescue from standing variation
𝑚𝑖𝑗 Number of type-𝑗 offspring of a mother of type 𝑖
𝑀 Mean reproduction matrix with elements 𝑚𝑖𝑗
𝐾 Total number of beneficial mutations arising in a population
𝐾𝑆 Total number of beneficial mutations successful in rescuing a population
𝑇 Waiting time of the first appearance of a beneficial mutation
𝑇𝑆 Waiting time of the first appearance of a beneficial mutation successful in

rescuing a population
𝐸

m

𝐹

2. Model and preliminaries

2.1. Branching process

The population is modeled by a discrete-time branching process
consisting of two types of individuals: wildtype individuals and indi-
viduals carrying a beneficial mutation. For simplicity, we refer to the
latter as mutants. All individuals reproduce asexually, independently
of each other, and therefore experience hard selection [21]. Wildtype
individuals can have offspring of both types, whereas mutants can only
have offspring of their own type. All mutations are beneficial; there are
no back mutations.

Denote by 𝑋 the total number of offspring of a wildtype mother,
where 𝑋 is a nonnegative integer-valued random variable with mean
[𝑋] = 1 − 𝑟, where 𝑟 is the degree of maladaptation of a wildtype

individual (see Table 1 for a complete list of variables and parameters).
The absolute fitness of a wildtype individual is, therefore, 1 − 𝑟. We
assume throughout that 0 < 1 − 𝑟 < 1, that is, 0 < 𝑟 < 1. Thus, a
population composed entirely of wildtype individuals is subcritical and
doomed to extinction in the absence of rescue1. The maladaptation is
assumed to arise from an abrupt change in the environment [3–5,9].

Each offspring of a wildtype individual may be mutant with proba-
bility 𝑢 (the beneficial mutation rate) or wildtype with probability 1−𝑢,
independently of other offspring. We denote the number of wildtype
and mutant offspring by 𝑊 and 𝐵, respectively, so that we have 𝑋 =
𝑊 + 𝐵. Conditioned on 𝑋, 𝑊 and 𝐵 have binomial distributions with
success probabilities 1 − 𝑢 and 𝑢, respectively:

𝑃 (𝑊 = 𝑖, 𝐵 = 𝑘 − 𝑖 ∣ 𝑋 = 𝑘) =
(

𝑘
𝑖

)

(1 − 𝑢)𝑖𝑢𝑘−𝑖 . (1)

Mutant individuals may exist in the population as standing genetic
variation or arise de novo through mutation. We assume a multiplicative
fitness model throughout, that is, mutants have absolute fitness (1 −
𝑟)(1 + 𝑠), where 𝑠 is the beneficial effect of the mutation they carry.
Mutant individuals cannot accumulate additional beneficial mutations.
We assume that 𝑠 is large enough to make (1 − 𝑟)(1 + 𝑠) > 1. Thus, the

1 Many of the results in the paper are valid also in the critical case 1−𝑟 = 1,
hat is, 𝑟 = 0.
2

process of mutant individuals is supercritical and has the potential to
rescue the population from extinction.

Let 𝜑(𝑡) be the probability generating function (pgf) of 𝑋

𝜑(𝑡) = 𝐸
[

𝑡𝑋
]

=
∞
∑

𝑘=0
𝑡𝑘𝑃 (𝑋 = 𝑘) . (2)

A complete specification of the pgf in Eq. (2) requires that the
distribution of 𝑋 be known. To avoid uninteresting special cases, we
make the natural assumption that 𝜑(1) = 𝑃 (𝑋 < ∞) = 1. Also, as
[𝑋] < 1, we must have 𝜑(0) = 𝑃 (𝑋 = 0) > 0.
With 𝑊 and 𝐵 as above, let 𝑃 (𝑖, 𝑗) = 𝑃 (𝑊 = 𝑖, 𝐵 = 𝑗) and

𝑃 (𝑗) = 𝑃 (𝐵 = 𝑗) be the offspring distributions for a wildtype and a
utant mother, respectively, and define the pgfs

(𝑣, 𝑡) =
∑

𝑖,𝑗≥0
𝑣𝑖𝑡𝑗𝑃 (𝑊 = 𝑖, 𝐵 = 𝑗) (3)

and

𝐺(𝑡) =
∑

𝑗≥0
𝑡𝑗𝑃 (𝐵 = 𝑗) . (4)

Obviously 𝜑(𝑡) = 𝐹 (𝑡, 𝑡) and for computations, the following result
is of interest.

Lemma 2.1.

𝐹 (𝑣, 𝑡) = 𝜑
(

(1 − 𝑢)𝑣 + 𝑢𝑡
)

.

Proof.

𝐹 (𝑣, 𝑡) =
∑

𝑖,𝑗
𝑣𝑖𝑡𝑗𝑃 (𝑊 = 𝑖, 𝐵 = 𝑗)

=
∞
∑

𝑘=0

𝑘
∑

𝑖=0
𝑣𝑖𝑡𝑘−𝑖𝑃 (𝑊 = 𝑖, 𝐵 = 𝑗 ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=0

𝑘
∑

𝑖=0
𝑣𝑖𝑡𝑘−𝑖

(

𝑘
𝑖

)

(1 − 𝑢)𝑖𝑢𝑘−𝑖𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=0
((1 − 𝑢)𝑣 + 𝑢𝑡)𝑘𝑃 (𝑋 = 𝑘)

= 𝜑
(

(1 − 𝑢)𝑣 + 𝑢𝑡
)
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by the binomial theorem. ■

2.2. Extinction

Let 𝑊𝑛 and 𝐵𝑛 be the number of wildtype and mutant individuals,
respectively, in generation 𝑛. The total population size is 𝑍𝑛 = 𝑊𝑛+𝐵𝑛.
et further  denote the event of extinction (death) of the population,
hat is

=
∞
⋃

𝑛=0
{𝑍𝑛 = 0} .

Denote by 𝑞𝑤 and 𝑞𝑏 the probabilities of extinction of the population
hen starting from one wildtype individual and one mutant individual,
espectively:

𝑤 = 𝑃 ( ∣ 𝑊0 = 1, 𝐵0 = 0)

𝑞𝑏 = 𝑃 ( ∣ 𝑊0 = 0, 𝐵0 = 1) .

For convenience, we denote the corresponding rescue probabilities
y

𝑤 = 1 − 𝑞𝑤

𝑏 = 1 − 𝑞𝑏 . (5)

As the mutant type is supercritical we have 𝑞𝑏 < 1, and by standard
branching process theory, 𝑞𝑏 can be found as the smallest solution in
0, 1] to the equation 𝑡 = 𝐺(𝑡) (recalling that the process of mutant
ndividuals is a single-type process)
Next we must find the extinction probability 𝑞𝑤 of a population that

tarts from one wildtype individual. As there is a chance of a beneficial
utation and mutants have a chance of avoiding extinction, we realize
hat 𝑞𝑤 < 1. It can further be computed explicitly according to the
ollowing result.

roposition 2.2. Let 𝜓(𝑡) = 𝜑
(

(1 − 𝑢)𝑡 + 𝑢𝑞𝑏
)

. The extinction probability
𝑤 is the unique solution in [0, 1] to the equation 𝑡 = 𝜓(𝑡).

roof. If 𝑢 = 0, the equation reduces to 𝑡 = 𝜑(𝑡), the usual equation
for the extinction probability, and as 1 − 𝑟 < 1, the unique solution is
= 1. Assume 𝑢 > 0 and let  denote the event of extinction. Condition
n the total number of offspring 𝑋 and use the binomial theorem to
obtain

𝑞𝑤 =
∑

𝑘⩾0
𝑃 ( ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∑

𝑘⩾0

𝑘
∑

𝑗=0
𝑃 ( ∣ 𝑊 = 𝑖, 𝐵 = 𝑘 − 𝑖)𝑃 (𝑊 = 𝑖, 𝐵 = 𝑘 − 𝑖 ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∑

𝑘⩾0

𝑘
∑

𝑖=0
𝑞𝑖𝑤𝑞

𝑘−𝑖
𝑏

(

𝑘
𝑖

)

(1 − 𝑢)𝑖𝑢𝑘−𝑖𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=0
(𝑞𝑤(1 − 𝑢) + 𝑢𝑞𝑏)𝑘𝑃 (𝑋 = 𝑘)

= 𝜑
(

𝑞𝑤(1 − 𝑢) + 𝑢𝑞𝑏
)

.

Thus 𝑞𝑤 solves the equation 𝑡 = 𝜓(𝑡). We next demonstrate that there
is exactly one solution in [0, 1] so the equation does indeed uniquely
determine 𝑞𝑤. As 𝜑 is strictly increasing and convex, so is 𝜓 , and the
claim follows if we can show that 𝜓(0) > 0 and 𝜓(1) < 1; the graph of
𝑦 = 𝜓(𝑡) must then intersect the line 𝑦 = 𝑡 exactly once in [0, 1]. We
note that

𝜓(0) = 𝜑(𝑢𝑞𝑏) > 𝜑(0) > 0

and

𝜓(1) = 𝜑(1 − 𝑢 + 𝑢𝑞𝑏) < 𝜑(1) = 1 ,

and the proof is complete. ■
3

2.3. Rescue

In our model a population may only experience one of two fates:
extinction or rescue. Thus, if a population does not go extinct, we
consider it rescued, and define the event  = 𝑐 , so that the probability
of rescue is simply one minus the probability of extinction: 𝑃 () =
1−𝑃 (). Hence, a population starting from 𝑊0 wildtype and 𝐵0 mutant
individuals goes extinct if all the 𝑊0 + 𝐵0 independent subpopulations
go extinct, and the probability of rescue is

𝑃 () = 1 − 𝑞𝑊0
𝑤 𝑞𝐵0

𝑏 . (6)

If initially the population is composed entirely of wildtype indi-
viduals (𝐵0 = 0), rescue can only occur through new mutations. The
probability that this kind of rescue occurs is given by (see Eq. (6))

𝑃new() = 1 − 𝑞𝑊0
𝑤 . (7)

Alternatively, rescue can occur from the 𝐵0 mutant ancestors. This
scenario is modeled by ignoring the contribution of new mutations,
that is, 𝑢 ≈ 0. In this case, 𝑞𝑤 = 1 because the wildtype population
is subcritical, and Eq. (6) becomes

𝑃sv() = 1 − 𝑞𝐵0
𝑏 . (8)

The results from this section enable us to compute the probability of
rescue for any offspring distribution, any degree of wildtype maladapta-
tion (𝑟), any selective benefit of a mutation (𝑠), any beneficial mutation
rate (𝑢), and any initial composition (𝑊0, 𝐵0). Fig. 1 illustrates the effect
of some of these parameters on the probability of rescue from new
mutations: the 𝑃new increases with increasing 𝑠 (Fig. 1A), decreasing 𝑟
(Fig. 1B), and increasing 𝑢 (Fig. 1C and D). The results shown in Fig. 1
were obtained assuming a Poisson offspring distribution. The observed
effects can be expected to occur for other offspring distributions.

In the next section we will consider the case of weak selection/weak
mutation, that is, when 𝑢, 𝑠, and 𝑟 are all small. The formulas given
by Orr and Unckless [5,9] arise as approximations in our general
framework.

2.4. Weak Selection/Weak Mutation Approximation

Assuming weak selection, that is, sufficiently small 𝑟 and 𝑠, we
can get approximations of Eqs. (7) and (8) that express the survival
probabilities in terms of 𝑢, 𝑟, 𝑠,𝑊0, and 𝐵0. We also assume that 𝑢
is small, by orders of magnitude, compared to 𝑟 and 𝑠 (i.e., weak
mutation).

2.4.1. Haldane approximation
Under weak selection, the expected number of offspring of a mutant

individual is (1−𝑟)(1+𝑠) ≈ 1+(𝑠−𝑟) and Haldane’s [10] approximation

𝑝𝑏 ≈ 2(𝑠 − 𝑟) (9)

holds. We note here that although Haldane assumed a Poisson
distribution, his approximation holds more generally by a first-order
Taylor expansion of log𝜑 (similar to what we do in Eq. (10)). For
distributions that, unlike the Poisson, have a variance unequal to its
mean, there is an improved second-order approximation of 𝑝𝑏 [22].
For the purpose of this paper, however, we use the classical Haldane
approximation.

2.4.2. Standing variation
In the standing variation case with 𝑢 ≈ 0, the probability of rescue

in Eq. (8) becomes

𝑃sv() ≈ 1 − (1 − 2(𝑠 − 𝑟))𝐵0

≈ 1 − exp(−2𝐵0(𝑠 − 𝑟)) ,
which is ‘‘𝑃𝑠𝑡𝑎𝑛𝑑 ’’ in Equation (2) in Orr and Unckless [5].
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Fig. 1. Effect of different parameters on the probability of rescue from new mutations, 𝑃new(). In all cases we assumed an initial population size of 𝑊0 = 104 wildtype individuals
(𝐵0 = 0 mutant individuals). (A) Selection coefficient of a beneficial mutation, 𝑠. Other parameters: 𝑟 = 0.01 and 𝑢 = 10−5. (B) Degree of maladaptation of wildtype individuals, 𝑟.
ther parameters: 𝑠 = 0.1 and 𝑢 = 10−5. (C–D) Beneficial mutation rate, 𝑢. Other parameters: (C) 𝑟 = 0.01 and 𝑠 = 0.02; (D) 𝑟 = 0.09 and 𝑠 = 0.1. Exact probabilities (red, continuous)
ere calculated using Eq. (7), assuming a Poisson offspring distribution; 𝑞𝑏 and 𝑞𝑤 were calculated by solving the equations 𝑡 = 𝐺(𝑡) and 𝑡 = 𝜓(𝑡) numerically in [0,1], respectively.
pproximate probabilities (blue, dashed) assuming weak selection/weak mutation were calculated using Eq. (14). Arrows of particular colors indicate identical combinations of
arameters.
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.4.3. New mutations
For the new mutation case, a standard first-order Taylor expansion

f the natural logarithm of 𝜑(𝑡) around 𝑡 = 1 gives

og𝜑(𝑡) ≈ log𝜑(1) +
𝜑′(1)
𝜑(1)

(𝑡 − 1)

= (1 − 𝑟)(𝑡 − 1) (10)

because 𝜑′(1) = 1 − 𝑟 and 𝜑(1) = 1. (Note that for the Poisson offspring
distribution, this Taylor approximation is exact.) Now recall

𝜓(𝑡) = 𝜑
(

(1 − 𝑢)𝑡 + 𝑢𝑞𝑏
)

from Proposition 2.2. By Eq. (10):

log𝜓(𝑡) ≈ (1 − 𝑟)
(

(1 − 𝑢)𝑡 + 𝑢𝑞𝑏 − 1
)

(11)

and the equation 𝑡 = 𝜓(𝑡) becomes

log 𝑡 ≈ (1 − 𝑟)
(

(1 − 𝑢)𝑡 + 𝑢𝑞𝑏 − 1
)

. (12)

Using 𝑞𝑏 ≈ 1 − 2(𝑠− 𝑟) and the first-order Taylor expansion log 𝑡 ≈ 𝑡− 1,
around 𝑡 = 1, Eq. (12) becomes

𝑡 − 1 ≈ (1 − 𝑟)
(

(1 − 𝑢)𝑡 + 𝑢(1 − 2(𝑠 − 𝑟)) − 1
)

the solution of which is

𝑞𝑤 ≈ 2𝑟2𝑢 + 2𝑠𝑢 − 𝑟𝑢 − 2𝑟𝑠𝑢 − 𝑢 − 𝑟
−𝑟 − 𝑢 + 𝑟𝑢

,

which gives

𝑝𝑤 = 1 − 𝑞𝑤

≈ 2𝑟𝑢 − 2𝑠𝑢 − 2𝑟2𝑢 − 2𝑟𝑠𝑢
−𝑟 − 𝑢 + 𝑟𝑢

≈
2𝑢(𝑠 − 𝑟)

𝑟
, (13)
4

here the last approximation neglects the third-order terms 2𝑟2𝑢 and
2𝑟𝑠𝑢 in the numerator, and 𝑢 and 𝑟𝑢 in the denominator. Eq. (7) becomes

𝑃new() ≈ 1 − exp(−𝑝𝑤𝑊0)

≈ 1 − exp
(

−
2𝑊0𝑢(𝑠 − 𝑟)

𝑟

)

, (14)

which is ‘‘𝑃𝑛𝑒𝑤’’ in Equation (3) in Orr and Unckless [9].
The weak selection/weak mutation approximation in Eq. (14) per-

forms well when the assumptions are met under a Poisson offspring
distribution (Fig. 1A, green arrow). However, it performs less well
when selection is relatively strong (Fig. 1A and 1B). In some scenarios,
the approximation breaks down completely, even when the mutation
rate is weak relative to selection (Fig. 1D, high 𝑢). The reason for
this discrepancy is that it relies on Haldane’s approximation (Eq. (9)),
hich ignores a 𝑟𝑠 term. For example, using the parameters of Fig. 1D
𝑟𝑠 = 0.009) and 𝑢 = 10−3 the probability of rescue according to Eq. (14)
is 𝑃new() = 0.8916, which is far from the exact value of 𝑃new() =
0.1812 from Eq. (7). But if we approximate the probability of fixation
as 𝑝𝑏 = 2(𝑠− 𝑟− 𝑟𝑠), replace it in Eq. (12), solve for 𝑞𝑤, and use the full
result without further approximations, we get 𝑃new() = 0.1814.

. Population size

We next turn to the question of how the mean population size
hanges over time. Let the vector (𝑊𝑛, 𝐵𝑛) be the number of wildtype
nd mutant individuals in generation 𝑛, and consider its expected value,
he vector (𝐸[𝑊𝑛], 𝐸[𝐵𝑛]). In standard branching process notation, let
𝑖𝑗 denote the number of type-𝑗 offspring of a mother of type 𝑖. For
implicity, let the types be denoted by 𝑤 and 𝑏, for wildtype and
utant, respectively. The mean reproduction matrix is

=
(

𝑚𝑤𝑤 𝑚𝑤𝑏
)

. (15)

0 𝑚𝑏𝑏
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In our specific model, recall 𝐸[𝑋] = 1− 𝑟, the total number of offspring
of a wildtype individual to get 𝑚𝑤𝑤 = (1 − 𝑟)(1 − 𝑢), 𝑚𝑤𝑏 = (1 − 𝑟)𝑢, and
𝑚𝑏𝑏 = (1 − 𝑟)(1 + 𝑠) so that

𝑀 = (1 − 𝑟)
(

1 − 𝑢 𝑢
0 1 + 𝑠

)

and it is readily seen by induction that its 𝑛th power is

𝑀𝑛 = (1 − 𝑟)𝑛
(

(1 − 𝑢)𝑛 𝑢
(1 + 𝑠)𝑛 − (1 − 𝑢)𝑛

𝑠 + 𝑢
0 (1 + 𝑠)𝑛

)

, (16)

which grows ∼ (1− 𝑟)𝑛(1+ 𝑠)𝑛 as 𝑛→ ∞, and the mutants ultimately
ominate the population. Specifically, as 𝑛→ ∞,

1
(1 − 𝑟)𝑛(1 + 𝑠)𝑛

𝑀𝑛 →

(

0 𝑢
𝑠 + 𝑢

0 1

)

.

Starting from the vector (𝑊0, 𝐵0) where 𝑊0 and 𝐵0 are fixed, we
ave

[(𝑊𝑛, 𝐵𝑛)] = (𝑊0, 𝐵0)𝑀𝑛 .

he total population size is 𝑍𝑛 = 𝑊𝑛 + 𝐵𝑛. Thus, the expected total
opulation size, 𝐸[𝑍𝑛] = 𝐸[𝑊𝑛 + 𝐵𝑛], starting from (𝑊0, 𝐵0) ancestors
s

[𝑍𝑛] = 𝑊0 (1−𝑟)𝑛
( 𝑢
𝑠 + 𝑢

(1 + 𝑠)𝑛 + 𝑠
𝑠 + 𝑢

(1 − 𝑢)𝑛
)

+𝐵0 (1−𝑟)𝑛(1+𝑠)𝑛 (17)

and asymptotically

𝐸[𝑍𝑛] ∼ (1 − 𝑟)𝑛(1 + 𝑠)𝑛
(

𝑊0
𝑢

𝑠 + 𝑢
+ 𝐵0

)

.

Eq. (17) takes into account all populations, including those that go
xtinct. In Section 5.1 we derive the expected population size of rescued
opulations.

. Beneficial mutations

.1. Number of beneficial mutations

Let  be the event that at least one beneficial mutation has arisen
n a population started from one wildtype individual, and let 𝜂 = 𝑃 ().
s above, let 𝜑 be the pgf of the number of offspring 𝑋 (Eq. (2)).

roposition 4.1. The probability 𝜂 is the unique solution to the equation

= 1 − 𝜑
(

(1 − 𝑡)(1 − 𝑢)
)

.

roof. The right-hand side function is increasing in 𝑡. By putting in
= 0 and 𝑡 = 1, respectively, we get the endpoint values 1 − 𝜑(1 − 𝑢)
nd 1 − 𝜑(0), both of which are in (0, 1), and hence the right-hand side
unction intersects the line 𝑦 = 𝑡 exactly once in [0, 1]. Next, condition
n the number of offspring 𝑋 of the ancestor, and the number 𝐵 of
hose offspring that are mutants:

= 𝑃 () =
∞
∑

𝑘=1
𝑃 ( ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=1

𝑘
∑

𝑗=0
𝑃 ( ∣ 𝑋 = 𝑘, 𝐵 = 𝑗)𝑃 (𝐵 = 𝑗 ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=1

𝑘
∑

𝑗=0
𝑃 ( ∣ 𝑋 = 𝑘, 𝐵 = 𝑗)

(

𝑘
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑘−𝑗𝑃 (𝑋 = 𝑘) , (18)

he sum starting at 𝑘 = 1 because 𝑃 ( ∣ 𝑋 = 0) = 0. Next, note that we
ave 𝑃 ( ∣ 𝑋 = 𝑘, 𝐵 = 𝑗) = 1 for 𝑗 ⩾ 1, and for 𝑗 = 0:

( ∣ 𝑋 = 𝑘, 𝐵 = 0) = 1 − (1 − 𝜂)𝑘 .

he term in Eq. (18) with 𝑗 = 0 equals
∞
∑

(

1 − (1 − 𝜂)𝑘
)

(1 − 𝑢)𝑘𝑃 (𝑋 = 𝑘)

=1

5

nd the rest of the sum is
∞
∑

=1

𝑘
∑

𝑗=1

(

𝑘
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑘−𝑗𝑃 (𝑋 = 𝑘) =
∞
∑

𝑘=1

(

1 − (1 − 𝑢)𝑘
)

𝑃 (𝑋 = 𝑘) .

dd these together to get 1 − 𝜑
(

(1 − 𝜂)(1 − 𝑢)
)

and the proof is
omplete. ■

Note that, as there has to be at least one beneficial mutation for
here to be rescue, we obviously have 𝜂 > 𝑝𝑤. Also note that with
= 1 − 𝑡, the proposition may be rewritten as 𝑣 = 𝜑(𝑣(1 − 𝑢)) where,
y Lemma 2.1, the right-hand side equals the pgf of 𝑊 integrated over
he event that 𝐵 = 0:

(𝑣(1 − 𝑢)) = 𝐹 (𝑣, 0)

=
∞
∑

𝑖=0
𝑣𝑖𝑃 (𝑊 = 𝑖, 𝐵 = 0)

= 𝐸
[

𝑣𝑊 ;𝐵 = 0
]

.

ext let 𝐾 be the total number of beneficial mutations ever arising in
population. Its expected value is given by

roposition 4.2.

[𝐾] = 𝑊0
𝑢𝐸[𝑋]

1 − (1 − 𝑢)𝐸[𝑋]
.

Proof. First let𝑊0 = 1 and let 𝜈 = 𝐸[𝐾]. We first rule out the possibility
hat 𝜈 = ∞. To this end, let 𝑊 be the total number of individuals ever
born in a branching process with mean 𝐸[𝑋] = 1 − 𝑟 < 1. Then

𝜈 < 𝐸[𝑊 ] = 𝐸

[ ∞
∑

𝑛=0
𝑊𝑛

]

=
∞
∑

𝑛=0
(1 − 𝑟)𝑛 = 1

𝑟
<∞ .

Next, condition on the number 𝑋 of offspring of the ancestor, and the
number 𝐵 of those that are mutants. Noting that 𝐸[𝐾 ∣ 𝑋 = 0] = 0 we
get

𝜈 = 𝐸[𝐾] =
∞
∑

𝑘=1

𝑘
∑

𝑗=0
𝐸[𝐾 ∣ 𝑋 = 𝑘, 𝐵 = 𝑗]𝑃 (𝐵 = 𝑗 ∣ 𝑋 = 𝑘)𝑃 (𝑋 = 𝑘)

=
∞
∑

𝑘=1

𝑘
∑

𝑗=0
(𝑗 + (𝑘 − 𝑗)𝜈)

(

𝑘
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑘−𝑗𝑃 (𝑋 = 𝑘)

= (1 − 𝜈)
∞
∑

𝑘=1

𝑘
∑

𝑗=0
𝑗
(

𝑘
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑘−𝑗𝑃 (𝑋 = 𝑘)

+ 𝜈
∞
∑

𝑘=1
𝑘

𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑘−𝑗𝑃 (𝑋 = 𝑘)

= (1 − 𝜈)𝑢𝐸[𝑋] + 𝜈𝐸[𝑋] ,

where we used that, for 𝑗 ⩾ 0,

𝑗
(

𝑘
𝑗

)

= 𝑘
(

𝑘 − 1
𝑗 − 1

)

.

Solving 𝜈 = (1− 𝜈)𝑢𝐸[𝑋] + 𝜈𝐸[𝑋] and multiplying by 𝑊0 concludes the
proof. ■

Note that the proposition also follows from the informal argument
that the expected number of mutant offspring of the ancestor is 𝑢𝐸[𝑋]
and the populations starting from the remaining (1 − 𝑢)𝐸[𝑋] offspring
produce on average 𝜈 new mutations each. Hence 𝜈 = 𝑢𝐸[𝑋] + (1 −
𝑢)𝐸[𝑋]𝜈, which also gives the result.

For example, with the parameters used in Figs. 2A and 2B (𝑊0 =
104, 𝑟 = 0.01, and 𝑢 = 10−5), the expected number of independent bene-
ficial mutations occurring during the course of evolution is 𝐸[𝐾] = 9.9;
the corresponding number for Figs. 2C and 2D (𝑊0 = 104, 𝑟 = 0.01, and
𝑢 = 10−4) is 𝐸[𝐾] = 98.0 (Proposition 4.2). These numbers of mutations
include mutations that occur in populations that ultimately go extinct
and mutations that occur in rescued populations but disappear and do
not contribute to the rescue.
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By Eq. (5), a given mutation is successful in rescuing the popula-
ion with probability 𝑝𝑏. With 𝐾𝑆 denoting the number of successful
utations, we thus get

[𝐾𝑆 ] = 𝑊0
𝑝𝑏𝑢𝐸[𝑋]

1 − (1 − 𝑢)𝐸[𝑋]
. (19)

q. (19) takes into account all populations, including those that go
xtinct (𝐾𝑆 = 0). In Section 5.3 we derive the 𝐸[𝐾𝑆 ] of rescued
opulations.

.2. Waiting time for a beneficial mutation

We next turn our attention to the time (generation) 𝑇 of the first
ppearance of a beneficial mutation, aiming for the probabilities 𝑃 (𝑇 >
), 𝑛 = 0, 1, 2,…, in a population starting from wildtype individuals
nly. From these probabilities we can obtain the distribution function

(𝑛) = 1 − 𝑃 (𝑇 > 𝑛)

nd the probability mass function

(𝑛) = 𝐹 (𝑛) − 𝐹 (𝑛 − 1) .

ote that 𝑃 (𝑇 = ∞) > 0, because the population may die out without
xperiencing any mutations (specifically, 𝑃 (𝑇 = ∞) = 1 − 𝜂, by
roposition 4.1). Thus, it also follows that 𝐸[𝑇 ] = ∞.
We will establish an expression for 𝑃 (𝑇 > 𝑛). To that end, first recall

he pgf 𝜑(𝑡) of the number of offspring 𝑋 of a wildtype mother (Eq. (2)).
ext, define a sequence of functions 𝐻0,𝐻1,… recursively through

𝑘+1(𝑡) = 𝜑(𝑡𝐻𝑘(𝑡)) , (20)

here 𝐻0(𝑡) ≡ 1. Thus 𝐻1(𝑡) = 𝜑(𝑡),𝐻2(𝑡) = 𝜑(𝑡 𝜑(𝑡)), and so on.
onsider a population that starts from 𝑊0 wildtype individuals and no
utant individuals, 𝐵0 = 0.

roposition 4.3.

(𝑇 > 𝑛) =
(

𝐻𝑛(1 − 𝑢)
)𝑊0 .

roof. As 𝑃 (𝑇 > 𝑛 ∣ 𝑊0 = 𝑤) = (𝑃 (𝑇 > 𝑛 ∣ 𝑊0 = 1))𝑤, we can
assume 𝑊0 = 1. Recall 𝑊𝑛 and 𝐵𝑛, the number of wildtype and mutant
ndividuals in generation 𝑛, respectively. Having 𝑇 > 𝑛means that there
re no mutation events at or before the 𝑛th generation, that is

(𝑇 > 𝑛) = 𝑃 (𝐵1 = 0, 𝐵2 = 0,… , 𝐵𝑛 = 0) .

For any 𝑖, 𝑗, 𝑘, let

𝑝(𝑖, 𝑗) = 𝑃 (𝑊𝑘+1 + 𝐵𝑘+1 = 𝑗 ∣ 𝑊𝑘 = 𝑖, 𝐵𝑘 = 0)

nd note that

(𝑊𝑘+1 = 𝑗, 𝐵𝑘+1 = 0 ∣ 𝑊𝑘 = 𝑖, 𝐵𝑘 = 0) = (1 − 𝑢)𝑗𝑝(𝑖, 𝑗)

by Eq. (1), and note also that
∞
∑

𝑗=0
𝑡𝑗𝑝(𝑖, 𝑗) =

(

𝜑(𝑡)
)𝑖

by elementary properties of pgfs. Repeated use of the above identities
yields

𝑃 (𝑇 > 𝑛) = 𝑃 (𝐵1 = 0, 𝐵2 = 0,… , 𝐵𝑛 = 0)

=
∑

𝑘1 ,𝑘2 ,…,𝑘𝑛

𝑃 (𝑊1 = 𝑘1, 𝐵1 = 0,𝑊2 = 𝑘2,

𝐵2 = 0,… ,𝑊𝑛 = 𝑘𝑛, 𝐵𝑛 = 0)

=
∑

𝑘1 ,𝑘2 ,…,𝑘𝑛

(1 − 𝑢)𝑘1𝑝(1, 𝑘1)⋯ (1 − 𝑢)𝑘𝑛−2

× 𝑝(𝑘𝑛−2, 𝑘𝑛−1)(1 − 𝑢)𝑘𝑛𝑝(𝑘𝑛−1, 𝑘𝑛)

=
∑

(1 − 𝑢)𝑘1𝑝(1, 𝑘1)⋯ (1 − 𝑢)𝑘𝑛−1

𝑘1 ,𝑘2 ,…,𝑘𝑛−1

6

× 𝑝(𝑘𝑛−2, 𝑘𝑛−1)
(

𝜑(1 − 𝑢)
)𝑘𝑛−1

=
∑

𝑘1 ,𝑘2 ,…,𝑘𝑛−2

(1 − 𝑢)𝑘1𝑝(1, 𝑘1)⋯
(

(1 − 𝑢)𝜑(1 − 𝑢)
)𝑘𝑛−2

= ⋯ = 𝐻𝑛(1 − 𝑢) . ■

Recall that any given beneficial mutation is successful in rescuing
the population with probability 𝑝𝑏, and let 𝑇𝑆 be the time until such
a successful mutation. The probabilities 𝑃 (𝑇𝑆 > 𝑛) can be found
by applying Proposition 4.3 to the function 𝐻̃𝑛, defined recursively
through Eq. (20) but instead using the pgf

̃(𝑡) = 𝜑
(

(1 − 𝑢 + 𝑢𝑝𝑏)𝑡 + 𝑢𝑞𝑏
)

.

With 𝐵𝑆 and 𝐵𝐹 denoting the numbers of successful and failed mutants,
respectively, 𝜑̃ is the pgf of 𝑊 + 𝐵𝑆 (recall Lemma 2.1). The total
number of offspring is 𝑋 = 𝑊 + 𝐵𝑆 + 𝐵𝐹 , and conditioned on 𝑋,
the three types of offspring follow a multinomial distribution with
probabilities 1 − 𝑢, 𝑢𝑝𝑏, and 𝑢𝑞𝑏. Thus, the conditional distribution of
𝐵𝑆 given 𝑊 + 𝐵𝑆 is binomial with success probability

𝑢 =
𝑢𝑝𝑏

1 − 𝑢 + 𝑢𝑝𝑏
and we get

Corollary 4.3.1.

𝑃 (𝑇𝑆 > 𝑛) =
(

𝐻̃𝑛(1 − 𝑢̃)
)𝑊0

.

5. Rescued populations

5.1. Population size

For populations that survive, the mean population size (Eq. (17))
is a poor measure as it takes into account all the populations that go
extinct. For example, with an extinction probability of 99%, the 1% of
populations that survive will have sizes far above the mean population
size. Thus, we consider instead the mean population size conditioned
on rescue. The analysis hinges upon use of the elementary result that
for any integrable random variable 𝑌 , we have

𝐸[𝑌 ∣ ] =
𝐸[𝑌 ] − 𝐸[𝑌 ∣ ]𝑃 ()

𝑃 ()
(21)

by the Law of Total Expectation.
By standard branching process results [23,24], a supercritical

branching process conditioned on extinction is a subcritical branching
process, whose reproduction law can be given explicitly. To that end,
recall the notation 𝑃 (𝑖, 𝑗) = 𝑃 (𝑊 = 𝑖, 𝐵 = 𝑗) for a wildtype mother
and 𝑃 (𝑗) = 𝑃 (𝐵 = 𝑗) for a mutant mother, and the corresponding
pgfs 𝐹 (𝑣, 𝑡) and 𝐺(𝑡) (Eqs. (3) and (4)). Recall also the extinction
probabilities 𝑞𝑤 and 𝑞𝑏, starting from one wildtype and one mutant
individual, respectively. Following Jagers and Lagerås [24], the process
conditioned on extinction has reproduction law given by

𝑃 (𝑖, 𝑗) = 𝑞𝑖−1𝑤 𝑞𝑗𝑏𝑃 (𝑖, 𝑗) (22)

𝑃 (𝑗) = 𝑞𝑗−1𝑏 𝑃 (𝑗) ,

with the corresponding pgfs

𝐹 (𝑣, 𝑡) = 1
𝑞𝑤
𝐹 (𝑞𝑤𝑣, 𝑞𝑏𝑡)

𝐺(𝑡) = 1
𝑞𝑏
𝐺(𝑞𝑏𝑡) .

y standard properties of pgfs, we can compute the entries of the mean
eproduction matrix 𝑀 , in analogy with Eq. (15), as

𝑚̂𝑤𝑤 = 𝐹 ′
𝑣(1, 1) = 𝐹 ′

𝑣(𝑞𝑤, 𝑞𝑏)

𝑚̂𝑤𝑏 = 𝐹 ′
𝑡 (1, 1) =

𝑞𝑏
𝑞𝑤
𝐹 ′
𝑡 (𝑞𝑤, 𝑞𝑏)

𝑚̂𝑏𝑏 = 𝐺′(1) = 𝐺′(𝑞𝑏) ,
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in the usual notation for partial derivatives. Hence

𝑀 =
⎛

⎜

⎜

⎝

𝐹 ′
𝑣(𝑞𝑤, 𝑞𝑏)

𝑞𝑏
𝑞𝑤
𝐹 ′
𝑡 (𝑞𝑤, 𝑞𝑏)

0 𝐺′(𝑞𝑏)

⎞

⎟

⎟

⎠

,

he 𝑛th power of which is

̂𝑛 =
⎛

⎜

⎜

⎝

𝐹 ′
𝑣(𝑞𝑤, 𝑞𝑏)

𝑛 𝑞𝑏
𝑞𝑤
𝐹 ′
𝑡 (𝑞𝑤, 𝑞𝑏)

𝐺′(𝑞𝑏)𝑛 − 𝐹 ′
𝑣(𝑞𝑤, 𝑞𝑏)

𝑛

𝐺′(𝑞𝑏) − 𝐹 ′
𝑣(𝑞𝑤, 𝑞𝑏)

0 𝐺′(𝑞𝑏)𝑛

⎞

⎟

⎟

⎠

. (23)

rom Eqs. (21) and (23), we can now compute the 𝑛th generation mean
opulation sizes conditioned on rescue, starting from 𝑊0 wildtype and
0 mutants as

[(𝑊𝑛, 𝐵𝑛) |] = (𝑊0, 𝐵0)
𝑀𝑛 − 𝑞𝑊0

𝑤 𝑞𝐵0
𝑏 𝑀𝑛

1 − 𝑞𝑊0
𝑤 𝑞𝐵0

𝑏

.

he total population size is 𝑍𝑛 = 𝑊𝑛 + 𝐵𝑛 and we get

𝐸[𝑍𝑛 |] = (𝑊0, 𝐵0)
𝑀𝑛 − 𝑞𝑊0

𝑤 𝑞𝐵0
𝑏 𝑀𝑛

1 − 𝑞𝑊0
𝑤 𝑞𝐵0

𝑏

(

1
1

)

. (24)

.2. Weak Selection/Weak Mutation Approximation

If we assume that 𝑢, 𝑟, and 𝑠 are all small we can get approximations
f Eq. (24) for the cases where rescue occurs through either standing
ariation or new mutations.

.2.1. Standing variation
We first consider the standing variation case where rescue is due to

re-existing mutant individuals and not to new mutations (𝑢 ≈ 0). Let
he population start from (𝑊0, 𝐵0) individuals where 𝐵0 is small. We
hen have

[𝑍𝑛|] = 𝑊0(1 − 𝑟)𝑛 + 𝐸[𝐵𝑛 ∣ ] ,

here, by Eq. (4)

[𝐵𝑛 ∣ ] = 𝐵0𝐺
′(𝑞𝑏)𝑛 . (25)

s

[𝐵𝑛] = 𝐵0𝑚
𝑛
𝑏𝑏 ,

qs. (16), (21) and (25) yield

[𝐵𝑛 ∣ ] = 𝐵0
(1 − 𝑟)𝑛(1 + 𝑠)𝑛 − 𝑞𝐵0

𝑏 𝐺′(𝑞𝑏)𝑛

𝑃sv()
.

If 𝑞𝑏 is close to 1 and 𝐵0 small, we get the approximation

𝑃sv() = 1 − (1 − 𝑝𝑏)𝐵0 ≈ 𝑝𝑏𝐵0 ,

which yields

𝐸[𝐵𝑛 ∣ ] ≈
(1 − 𝑟)𝑛(1 + 𝑠)𝑛 − 𝑞𝐵0

𝑏 𝐺′(𝑞𝑏)𝑛

𝑝𝑏
.

ith Haldane’s approximation (Eq. (9)) we get

[𝑍𝑛 ∣ ] ≈ 𝑊0(1 − 𝑟)𝑛 +
(1 − 𝑟)𝑛(1 + 𝑠)𝑛 − (1 − 2(𝑠 − 𝑟))𝐵0 𝐺′(1 − 2(𝑠 − 𝑟))𝑛

2(𝑠 − 𝑟)
,

hich is essentially Equation (10) in Orr and Unckless [5], noting that
hey use the approximation (1−𝑟)𝑛(1+𝑠)𝑛 ≈ 𝑒(𝑠−𝑟)𝑛, and neglect the term
[𝐵𝑛 ∣ ]𝑃 () in Eq. (21).

.2.2. New mutations
For the new mutation case, the population is rescued by mutation

nd not by pre-existing mutants. We thus let 𝐵0 = 0 and start from 𝑊0
ildtype individuals. Again, neglect the term 𝐸[𝐵𝑛 ∣ ]𝑃 () in Eq. (21)
o obtain

[𝑍𝑛 ∣ ] ≈ 𝑊0(1 − 𝑟)𝑛(1 − 𝑢)𝑛 +
𝐸[𝐵𝑛] ,

𝑃new()

7

and Eq. (16) gives, for the second term,
𝐸[𝐵𝑛]
𝑃new()

=
𝑊0𝑢(1 − 𝑟)𝑛

(𝑠 + 𝑢)𝑃new()
(

(1 + 𝑠)𝑛 − (1 − 𝑢)𝑛
)

,

where

𝑃new() = 1 − (1 − 𝑝𝑤)𝑊0 ≈ 𝑝𝑤𝑊0 .

Neglecting the term (1 − 𝑢)𝑛 and using Eq. (13) to approximate 𝑝𝑤, we
now get
𝐸[𝐵𝑛]
𝑃new()

≈
𝑟𝑊0𝑢(1 − 𝑟)𝑛(1 + 𝑠)𝑛

(𝑠 + 𝑢)2𝑢(𝑠 − 𝑟)𝑊0

≈ 𝑟
𝑠
(1 − 𝑟)𝑛(1 + 𝑠)𝑛

2(𝑠 − 𝑟)
.

nd, therefore,

[𝑍𝑛 ∣ ] ≈ 𝑊0(1 − 𝑟)𝑛(1 − 𝑢)𝑛 +
𝑟
𝑠
(1 − 𝑟)𝑛(1 + 𝑠)𝑛

2(𝑠 − 𝑟)
, (26)

n agreement with Equation (19) in Orr and Unckless [5].
Fig. 2 compares Eqs. (24) and (26) to individual-based stochastic

imulations of the branching process under different strengths of selec-
ion and mutation. The weak selection/weak mutation approximation
an perform reasonably well when selection is strong (Fig. 2B), but
an break down even when the mutation rate is weak relative to
election (Fig. 2D). The weak selection/weak mutation approximation
ends to underestimate population size (Fig. 2) while overestimating
he probability of rescue (Fig. 1). This is because Eq. (26) depends on
∕𝑃new(), which leads to an underestimate of 𝐸[𝑍𝑛 ∣ ] if 𝑃new() is
verestimated.

.3. Number of rescuing mutations

In Eq. (19), we established an expression for the expected number
f successful mutations, 𝐸[𝐾𝑆 ], in a population. By noting that

[𝐾𝑆 ] = 𝐸[𝐾𝑆 ∣ ]𝑃 () + 𝐸[𝐾𝑆 ∣ ]𝑃 () ,

here, obviously, 𝐸[𝐾𝑆 ∣ ] = 0, we get the following expression for
he expected number of rescuing mutations in a rescued population
tarting from 𝑊0 wildtype individuals:

[𝐾𝑆 ∣ ] =
𝑊0𝑝𝑏𝑢𝐸[𝑋]

(1 − (1 − 𝑢)𝐸[𝑋])
(

1 − 𝑞𝑊0
𝑤

) . (27)

As there must be at least one rescuing beneficial mutation in a rescued
population, we realize that 𝐸[𝐾𝑆 ∣ ] > 1.

For example, with the parameters used in Fig. 2A (𝑊0 = 104,
𝑟 = 0.01, 𝑠 = 0.02, and 𝑢 = 10−5), the expected number of independent
rescuing mutations occurring during the course of evolution is 𝐸[𝐾𝑆 ∣
] = 1.1 (Eq. (27)). The corresponding numbers for the other parts of
Fig. 2 are: 2.0 (B), 2.2 (C), and 15.6 (D).

5.4. Waiting time for a rescuing mutation

We next turn our attention to the times 𝑇 and 𝑇𝑆 of the first appear-
ances of a beneficial mutation and a successful mutation, respectively,
in a rescued population. Proposition 4.3 and Corollary 4.3.1 give the
unconditional probabilities 𝑃 (𝑇 > 𝑛) and 𝑃 (𝑇𝑆 > 𝑛), and the Law of
Total Probability gives

𝑃 (𝑇 > 𝑛 ∣ ) =
𝑃 (𝑇 > 𝑛) − 𝑃 (𝑇 > 𝑛 ∣ 𝐷)𝑃 ()

𝑃 ()
,

with a similar expression for 𝑇𝑆 . Note that conditioning on rescue
implies that there is at least one mutation event in finite time, that
is, we have 𝑃 (𝑇 = ∞ ∣ ) = 0. In contrast, both 𝑃 (𝑇 = ∞ ∣ ) > 0
nd 𝑃 (𝑇 = ∞) > 0, because the population may die out without
xperiencing any mutations. Therefore, 𝐸[𝑇 ] = ∞ and 𝐸[𝑇 ∣ ] = ∞,
hereas 𝐸[𝑇 ∣ ] may still be finite (which also means that we cannot

apply Eq. (21) to find 𝐸[𝑇 ∣ ]).
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Fig. 2. Total population size of rescued populations. We considered evolutionary rescue based on new mutations. In all cases we assumed an initial population size of 𝑊0 = 104

wildtype individuals (𝐵0 = 0 mutants), a degree of wildtype maladaptation of 𝑟 = 0.01, and a Poisson offspring distribution. (A) Weak selection/weak mutation: 𝑠 = 0.02 and 𝑢 = 10−5

(green arrow, Fig. 1A). (B) Stronger selection: 𝑠 = 0.1 and 𝑢 = 10−5 (purple arrow, Fig. 1A). (C) Stronger mutation: 𝑠 = 0.02 and 𝑢 = 10−4 (far right, Fig. 1C). (D) Stronger selection
and stronger mutation: 𝑠 = 0.1 and 𝑢 = 10−4. Gray lines show total sizes (𝑍𝑛) of individual simulated populations experiencing rescue (defined as reaching 𝑍𝑛 > 2×104). A sample of
00 individual trajectories is shown for each parameter combination. Exact population sizes (red, continuous) were calculated using Eq. (24). Approximate population sizes (blue,
ashed) assuming weak selection/weak mutation were calculated using Eq. (26). The code for the simulations was written in Python 3.7 with NumPy version 1.21.0 [25] and is
vailable at https://github.com/rbazev/rescue.
Proposition 4.3 shows how to compute the probability 𝑃 (𝑇 > 𝑛). To
et to 𝑃 (𝑇 > 𝑛 ∣ ) we need to compute 𝑃 (𝑇 > 𝑛 ∣ ) by use of the
onditional offspring law 𝑃 of Eq. (22), but alas, there is no immediate
nalog of Proposition 4.3. This proposition relies upon the conditional
istribution of mutants being binomial when conditioned on the total
umber of offspring; this property does not transfer to 𝑃 (which can be
ealized by simple examples, for example binary splitting). However,
he case of a Poisson offspring law does lend itself to such analysis,
hich we address in the next section.

Things are easier when it comes to 𝑇𝑆 , which is also the more
nteresting variable, answering the question when the (first) rescu-
ng mutation arises. As extinction obviously means that there are no
uccessful mutations, we have 𝑃 (𝑇𝑆 > 𝑛 ∣ ) ≡ 1 and hence

(𝑇𝑆 > 𝑛 ∣ ) =
𝑃 (𝑇𝑆 > 𝑛) − 𝑃 ()

𝑃 ()

nd by Corollary 4.3.1 we get

Corollary 5.0.2.

𝑃 (𝑇𝑆 > 𝑛 ∣ ) =

(

𝐻̃𝑛(1 − 𝑢̃)
)𝑊0

− 𝑞𝑊0
𝑤

1 − 𝑞𝑊0
𝑤

.

We can now obtain the probability mass function

(𝑇𝑆 = 𝑛 ∣ ) = 𝑃 (𝑇𝑆 > 𝑛 − 1 ∣ ) − 𝑃 (𝑇𝑆 > 𝑛 ∣ ), 𝑛 = 1, 2,…

and the expected value

𝐸[𝑇𝑆 ∣ ] =
∞
∑

𝑃 (𝑇𝑆 > 𝑛 ∣ ) .

𝑛=0

8

Orr and Unckless [5] provided the following weak selection/weak
mutation approximation (their Supporting Information Text S2):

𝑃 (𝑇𝑆 = 𝑛 ∣ ) ≈ 𝑟𝑒−𝑟𝑛 𝐶𝑒
−𝐶(1−𝑒−𝑟𝑛)

1 − 𝑒−𝐶
, (28)

where 𝐶 = 2𝑊0𝑢(𝑠 − 𝑟)∕𝑟. Fig. 3 shows that this approximation works
well, even in conditions where the approximation for population size
breaks down (compare Figs. 2D and 3D).

5.5. The Poisson distribution

As the Poisson distribution is frequently used as offspring distribu-
tion (as in our simulations), we finish with a section about its properties
in the context of evolutionary rescue. By standard properties of the
Poisson distribution, the numbers of wildtype and mutant offspring, 𝑊
and 𝐵, are independent with𝑊 ∼ Poi((1−𝑟)(1−𝑢)) and 𝐵 ∼ Poi((1−𝑟) 𝑢).
As it turns out, both the Poisson distribution and the independence still
hold when conditioning on the population going extinct. By Eq. (22)
and independence, the reproduction law conditioned on extinction is

𝑃 (𝑖, 𝑗) = 𝑞𝑖−1𝑤 𝑞𝑗𝑏𝑃 (𝑖, 𝑗)

= 𝑞𝑖−1𝑤 𝑞𝑗𝑏𝑃𝑊 (𝑖)𝑃𝐵(𝑗)

= 𝑃𝑊 (𝑗)𝑃𝐵(𝑘) .

The last equality follows from the multiplicative separation of 𝑖 and 𝑗
in the expression for 𝑃 (𝑖, 𝑗); by this, the marginal distributions are in-
dependent. Hence 𝑃𝑊 (𝑖) = 𝑐 𝑞𝑖−1𝑤 𝑃𝑊 (𝑖) where the normalizing constant
𝑐 is obtained by summing over 𝑖:
∞
∑

𝑖=0
𝑞𝑖−1𝑤 𝑃𝑊 (𝑖) = 1

𝑞𝑤
𝜑𝑊 (𝑞𝑤)

= 1
𝑞𝑤
𝑒(1−𝑟)(1−𝑢)(𝑞𝑤−1) ,

https://github.com/rbazev/rescue
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Fig. 3. Waiting time for the first rescuing mutation. We considered evolutionary rescue based on new mutations. The parameter combinations in each part as the same as in
Fig. 2. In all cases we assumed an initial population size of 𝑊0 = 104 wildtype individuals (𝐵0 = 0 mutants), a degree of wildtype maladaptation of 𝑟 = 0.01, and a Poisson
offspring distribution. (A) Weak selection/weak mutation: 𝑠 = 0.02 and 𝑢 = 10−5 (green arrow, Fig. 1A). (B) Stronger selection: 𝑠 = 0.1 and 𝑢 = 10−5 (purple arrow, Fig. 1A). (C)
Stronger mutation: 𝑠 = 0.02 and 𝑢 = 10−4 (far right, Fig. 1C). (D) Stronger selection and stronger mutation: 𝑠 = 0.1 and 𝑢 = 10−4. Histograms of waiting times are based on 104

tochastic simulations. The histograms are truncated for clarity, which leads to the exclusion of < 3% of values in each case. Rescue was defined as reaching 𝑍𝑛 > 1.5 × 104. Exact
robabilities (red, continuous) were calculated using Corollary 5.0.2. Approximate probabilities (blue, dashed) assuming weak mutation were calculated using Eq. (28). The code
or the simulations was written in Python 3.7 with NumPy version 1.21.0 [25] and is available at https://github.com/rbazev/rescue.
𝑢̂

ielding

= 𝑞𝑤𝑒
−(1−𝑟)(1−𝑢)(𝑞𝑤−1)

nd thus

𝑊̂ (𝑖) = 𝑒−(1−𝑟)(1−𝑢)(𝑞𝑤−1)𝑞𝑖𝑤𝑃𝑊 (𝑖)

= 𝑒−(1−𝑟)(1−𝑢)(𝑞𝑤−1)𝑞𝑖𝑤𝑒
−(1−𝑟)(1−𝑢) ((1 − 𝑟)(1 − 𝑢))𝑖

𝑖!

= 𝑒−(1−𝑟)(1−𝑢)𝑞𝑤
((1 − 𝑟)(1 − 𝑢)𝑞𝑤)𝑖

𝑖!
,

which we recognize as a Poisson distribution with mean (1− 𝑟)(1− 𝑢)𝑞𝑤
and may write as

𝑊 ∼ Poi
(

(1 − 𝑟)(1 − 𝑢)𝑞
)

.
𝑤
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A similar calculation yields

𝐵 ∼ Poi
(

(1 − 𝑟)𝑢𝑞𝑏
)

.

Put together, these also give the total number of offspring

𝑋 = 𝑊 + 𝐵 ∼ Poi
(

(1 − 𝑟)((1 − 𝑢)𝑞𝑤 + 𝑢𝑞𝑏)
)

.

A mutant has a number of (necessarily mutant) offspring 𝐵 which is
Poi((1 − 𝑟)(1 + 𝑠)). Conditioned on extinction, more similar calculations
give

𝐵 ∼ Poi
(

(1 − 𝑟)(1 + 𝑠)𝑞𝑏
)

for a mutant mother. By standard properties of the Poisson distribution,
we also get the conditional distributions of 𝑊 and 𝐵 given 𝑋 as
binomial (𝑋, 1 − 𝑢̂) and (𝑋, 𝑢̂), respectively, where

=
𝑢𝑞𝑏 .
𝑢𝑞𝑏 + (1 − 𝑢)𝑞𝑤

https://github.com/rbazev/rescue
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As 𝑞𝑤 > 𝑞𝑏, we have 𝑢̂ < 𝑢 which makes sense.
The standard Poisson properties do not, however, carry over to the

population conditioned on rescue. By the Law of Total Probability:

𝑃 (𝑖, 𝑗 ∣ ) =
1 − 𝑞𝑖𝑤𝑞

𝑗
𝑏

1 − 𝑞𝑤
𝑃𝑊 (𝑖)𝑃𝐵(𝑗) ,

howing that, conditioned on rescue, 𝑊 and 𝐵 are neither Poisson nor
ndependent.

. Discussion

We use a two-type branching process to model evolutionary rescue
ntroduced by Orr and Unckless [5,9]. The types are wildtype individu-
ls and individuals carrying beneficial mutations. The parameters are:
he degree of maladaptation of wildtype individuals (𝑟), the selective
enefit of a mutation (𝑠), the beneficial mutation rate (𝑢), and the
initial size and composition of the population (𝑊0, 𝐵0). Our model
is simple, but provides a basis for an understanding of the interplay
between fundamental parameters in evolutionary rescue. Our formulas
for probability of rescue, the expected size of a rescued population, and
the waiting time for the first rescuing mutation boil down to those of
Orr and Unckless [5,9] in cases of weak selection/weak mutation, but
the discrepancy can be large when selection is strong (Figs. 1D and 2D).
e derive new expressions for the number of independent beneficial
utations contributing to the rescue of a population.
Strong selection is frequently observed in nature, notably when hu-
ans are involved [17]. Examples include global climate change [26]
nd the use of antibiotics [27] and pesticides [28]. Strong levels of mal-
daptation (i.e., high 𝑟) are common. For example, shifting a population
f the cowpea seed beetle, Callosobruchus maculatus, adapted to mung
ean to lentil, caused approximately 99% mortality [29]. This extreme
aladaptation caused multiple experimental populations to go extinct,
ut one population adapted quickly and reached 69% survival in 5
enerations. High mutation rates are also common [18]. Furthermore,
utation rates have been shown to increase under precisely the kinds
f stressful conditions that may put populations at risk and, therefore,
n need of rescue [19,20]. Thus, our results are of more than purely
heoretical interest.
Application of our model to real populations is not straightforward

ecause the mutational parameters (𝑠 and 𝑢) are difficult to estimate.
he baseline values we adopted in our numerical exploration of the
odel (𝑠 = 0.02 and 𝑢 = 10−5; e.g., green arrow in Fig. 1A) are consis-
ent with estimates obtained in three independent experimental studies
n populations of the bacterium Escherichia coli [30–32]. Stronger
utational effects and a lower mutation rate (𝑠 ≈ 0.1 and 𝑢 ≈ 10−7)
ere observed in a different study on the same species [33]; weaker
utational effects and a higher beneficial mutation rate (𝑠 ≈ 0.01 and
≈ 10−4) were observed in the yeast Saccharomyces cerevisiae [34].
hus, the scenarios in the numerical illustrations in Figs. 1–3 involve
lausible values of the mutational parameters.
Our model makes the simplifying assumption that all beneficial
utations have the same effect. Studies in both S. cerevisiae [34] and
he bacterium Pseudomonas fluorescens [35] found evidence that the
eneficial effects of mutations are approximately exponentially dis-
ributed. A study in two different bacteriophages (ID11 and 𝜙6) found
upport, instead, for a uniform distribution of mutational effects [36].
ur model could be extended to consider more than one type of mutant
ndividual [13,14].
Another central assumption of our model is that an individual can

cquire at most one beneficial mutation. This assumption precludes
escue involving multiple mutations in our model. There is experi-
ental evidence that evolutionary rescue through individuals carrying
ultiple mutations does occur in real populations. For example, pop-
lations of S. cerevisiae ‘‘rescued’’ from high copper concentrations
ften acquired multiple beneficial mutations [37]. Osmond et al. [16]
howed that if beneficial mutations of small effect are more common
10
than those of large effect then rescue by multiple mutations can be
more likely than rescue by single mutations.

Most models of evolutionary rescue [3,5,9], including ours, ignore
deleterious mutations. This modeling decision is questionable because
deleterious mutations are expected to be orders of magnitude more
likely to occur than beneficial ones. The accumulation of deleterious
mutations is predicted to accelerate the decline in population size in a
process known as mutational meltdown [38]. Thus, the probability of
rescue from new mutations predicted in a model like ours is likely to
be overly optimistic.

Our model makes several additional simplifying assumptions includ-
ing, but not restricted to, a constant environment, asexual reproduction,
and density-independence. The influence of these assumptions on the
probability, tempo, and mode of evolutionary rescue is an active area
of research. Different studies have incorporated, for example, a deteri-
orating environment [11], recombination [15], and density-dependent
population regulation [11,12].
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