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Abstract—The problem of sequentially detecting a change
in the correlation structure of multiple Gaussian information
sources is considered when it is possible to sample only two of
them at each time instance. It is assumed that all sources are ini-
tially independent and that at least two of them become positively
correlated after the change. The problem is to stop sampling as
quickly as possible after the change, while controlling the false
alarm rate and without assuming any prior information on the
number of sources that become correlated. A joint sampling and
change-detection rule is proposed and is shown to achieve the
smallest possible worst-case conditional expected detection delay
among all processes that satisfy the same constraints, to a first
order approximation as the false alarm rate goes to 0, for any
possible number of post-change correlated sources.

I. INTRODUCTION

In statistical decision-making, growth in the complexity,
dimension, and scale of the data, in turn, increases the data-
acquisition and computational costs, if not rendering them
prohibitive altogether. Enforcing proper data-acquisition (sam-
pling) constraints is a natural measure to contain such costs.
For example, when the data of interest become available
at multiple locations or sources, it may be practical and
economically efficient to take observations from only a small
fraction of these locations. There are many areas in science
and engineering where these type of scenarios arise, e.g.,
sensor networks, surveillance system, cyber security, power
grids etc. Such sampling constraints have been considered in
the sequential anomaly detection problem [1], [2], [3], [4],
where the processes of interest are assumed to be statistically
independent and the goal is to identify the anomalous ones.
Similar constraints are imposed in [5], [6], where only one
source is sampled at each time instance and observations from
different sources are assumed to exhibit temporal dependence.
Moreover, such sampling constraints can be embedded into
the more general framework of the sequential design of
experiments in sequential testing [7], [8].

A related problem to sequential testing is that of sequential
change detection, where the goal is to detect as quickly as
possible a change in the distribution of the underlying process
[9], [10]. Sequential change detection problem with multiple
sources of observations under sampling constraints have been
considered in [11], [12], [13]. In the first two references, the

sampled processes are statistically independent, whereas in
the latter the change can affect the dependence structure of
a subset of these processes. Some other relevant works in
sequential setup that involve the covariance structure of the
processes are [14], [15], [16].

In this paper we assume that there are multiple (Gaussian)
sources, which are initially independent, and at some unknown
time at least two of them become positively correlated, while
their marginal distributions remain unaltered. The problem is
to detect this change as quickly as possible, while controlling
the false alarm rate, when it is possible to sample only two
sources at each sampling instance, and without assuming
any prior information on the number of sources that become
correlated.

We propose a joint sampling and detection rule for this
problem and obtain an explicit, non-asymptotic upper bound
for its worst-case conditional expected detection delay, as
measured by Lorden’s criterion [17]. Most importantly, we
show that this upper bound agrees, to a first-order asymptotic
approximation as the false alarm rate goes to 0, with the best
performance that can be achieved by rules that satisfy the same
sampling and false alarm constraints, for any possible number
of sources that may become correlated. Finally, we present
the results of a simulation study that reveals that the upper
bound is quite sharp, especially for low false alarm rates, for
any number of the unknown post-change correlated sources.

The proposed sequential procedure is similar to the one
proposed in [12], however there are also some important
differences. To be more precise, in [12] it is assumed that
the observed processes are independent, that it is possible
to sample only one of them at each sampling instance, and
that the marginal distribution of only one of them changes.
Moreover, the proposed scheme in this work is shown to
achieve up to a constant term, as the false alarm rate goes
to 0, the worst-case detection delay that is achievable even
when all processes are observed at all times.

On the contrary, the observed processes in our work are
not independent, as the change affects their joint distribution.
Moreover, we assume complete ignorance regarding the num-
ber of sources that become correlated. As a result, in order to
establish the desired asymptotic optimality property for every

605978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

77
36



possible set of post-change correlated sources, we develop a
lower bound for the performance of any rule that satisfies the
same false alarm and sampling constraints, i.e., we do not
compare the performance of the proposed procedure with the
optimal performance in the full-sampling case.

II. PROBLEM FORMULATION

Consider p information sources that generate a sequence of
independent, Gaussian, p-dimensional random vectors

X(t) := (X1(t), . . . , Xp(t)), t ∈ N := {1, 2, . . . }.

We assume that Xi(t) has mean zero and variance 1 for
every i ∈ [p] := {1, . . . , p} and every t ∈ N. All sources
are initially independent and at least two of them become
positively correlated at some unknown time ν. Specifically, if
Var[X(t)] represents the true covariance matrix of X(t), we
assume that

Var[X(t)] =

{
Ip if t ≤ ν
Σ if t > ν

. (1)

Here, Ip is the p×p identity matrix and Σ is a p×p covariance
matrix such that

|A(Σ)| ≥ 1 and Σij ∈ {0, ρ} for all (i, j) ∈ E , (2)

where ρ ∈ (0, 1), E is the family of all ordered pairs of
sources, and A(Σ) is the subfamily of correlated pairs under
Σ, i.e.,

E := {(i, j) : 1 ≤ i < j ≤ p},
and A(Σ) := {(i, j) ∈ E : Σij 6= 0}.

(3)

We assume that the post-change correlation, ρ, is specified
and we interpret it as the minimum correlation value whose
detection is of interest. On other hand, we do not make any
assumption about how many or which entries of Σ are non-
zero after the change. When the change happens at time ν ≥ 0
and the post-change covariance matrix is Σ, we denote the
underlying probability measure by PΣ

ν and the corresponding
expectation by EΣ

ν . Thus, under PΣ
0 , X(t), t ∈ N are i.i.d. ran-

dom vectors with covariance matrix Σ. Moreover, we denote
by P∞/E∞ the underlying probability measure/expectation
when there is no change, i.e., when X(t) has covariance matrix
Ip for every t ∈ N.

Note that the probability assigned by PΣ
0 to an event that

involves only two distinct sources is independent of Σ. In order
to emphasize this, we will denote the underlying probability
measure/expectation by P0/E0 when the two sources are
correlated and by P∞/E∞ when they are independent.

The problem we consider in this work is to detect the
change as quickly as possible when the data become available
sequentially and we are allowed to sample only two sources
at each time. Thus, our first task is to specify a sampling rule,
i.e., a sequence S ≡ (St, t ∈ N) such that St ∈ E represents
the two sources that we sample at time t and it is a function
of the collected observations up to the previous time instance.

More formally, let X(t; e) denote the data at time t from e ∈ E ,
i.e., if e = (k, l), then

X(t; e) := (Xk(t), X l(t)).

The observed filtration induced by a sampling rule S is defined
recursively as follows: given t ∈ N and S1, . . . , St, then

FSt = σ(Su,X(u;Su); 1 ≤ u ≤ t),

and, by assumption, St+1 has to be FSt -measurable. Our
second task is to specify a rule for declaring the change with
minimal delay after it occurs, while controlling the false alarm
rate. Specifically, given a sampling rule S, we have to specify
an {FSt }-stopping time, i.e., a random time T , such that

{T = t} ∈ FSt for every t ∈ N,

at which we declare that the change has already occurred. We
will refer to such a pair (S, T ) as a detection policy and focus
on the class of policies ∆(γ) such that E∞[T ] ≥ γ, where γ
is a user-specified level.

Following Lorden’s approach [17], for any policy (S, T )
we denote by DΣ(S, T ) the worst-case (with respect to the
change-point) conditional expected detection delay given the
worst-possible history of observations up to the change-point
when the post-change covariance matrix is Σ, i.e.,

DΣ(S, T ) := sup
ν≥0

esssup EΣ
ν

[
T − ν|FSν , T > ν

]
. (4)

One of the main results of this work is that there is a policy
(S̃, T̃ ) that achieves

inf
(S,T )∈∆(γ)

DΣ(S, T ), (5)

to a first order asymptotic approximation as γ →∞, for every
post-change covariance matrix Σ that satisfies (2).

III. NOTATIONS AND STATISTICS

For any pair of sources e ∈ E , we denote by λ(t; e) the log-
likelihood ratio of P0 versus P∞ based on the observations
from the sources in e at time t, i.e.,

λ(t; e) ≡ log
dP0

dP∞
(X(t; e)) .

For each time t ∈ N, X(t; e) is a bivariate Gaussian random
vector with zero mean. Its covariance matrix is equal to

Σ1 :=

(
1 ρ
ρ 1

)
,

under P0 and equal to the identity matrix I2 under P∞. As a
result, for each t ∈ N, we have

λ(t; e) = −1

2
log(1− ρ2)− 1

2
(X(t; e))

T (
Σ−1

1 − I2
)
X(t; e).

These log-likelihood ratios are identically distributed under
P0, and as a result their corresponding means and variances
do not depend on e ∈ E and t ∈ N:

I := E0 [λ(t; e)] = −1

2
log(1− ρ2),

V := E0

[
(λ(t; e)− I)

2
]

= ρ2.
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For each e ∈ E and A > 0 we also define the following
stopping times

δe− := inf

{
t ≥ 1 :

t∑
u=1

λ(u; e) < 0

}
,

δe+ := inf

{
t ≥ 1 :

t∑
u=1

λ(u; e) > 0

}
,

δeA := inf

{
t ≥ 1 :

t∑
u=1

λ(u; e) > A

}
,

whose distributions under P0 or P∞ do not depend on e. Thus,
the following probabilities will also be independent of e:

p+ := P∞(δe+ =∞), p− := P0(δe− =∞).

IV. UNIVERSAL ASYMPTOTIC LOWER BOUND

In this section we establish a first-order asymptotic lower
bound on (5) as γ → ∞ that is universal in Σ. The proof is
based on the approach developed in [18].

Theorem 4.1: For any Σ that satisfies (2) we have

inf
(S,T )∈∆(γ)

DΣ(S, T ) ≥ log γ

I
(1 + o(1)),

where o(1) is a term that goes to 0 as γ →∞.

Proof: Fix any Σ that satisfies (2) and (S, T ) ∈ ∆(γ).
Let Zt denote the log-likelihood ratio of PΣ

0 versus P∞ based
on the observed data up to time t, i.e.,

Zt := log
dPΣ

0

dP∞
(FSt ), t ∈ N,

which takes the following form:

Zt =
t∑

u=1

λ(u;Su) 1{Su ∈ A(Σ)}, t ∈ N.

Furthermore, define

At := I
t∑

u=1

1{Su ∈ A(Σ)}, t ∈ N.

Note that, under PΣ
0 , the process {Zt −At : t ∈ N} is a zero

mean martingale and At ≤ tI for any t ∈ N. For 0 < ε < 1,
let

Nγ,ε :=
log γ

I
(1− ε).

For any ν ≥ 0, applying Markov’s inequality in (4) we get

DΣ(S, T ) ≥ EΣ
ν [T − ν|T > ν]

≥ Nγ,ε PΣ
ν (T − ν > Nγ,ε|T > ν) . (6)

Let also ηγ > 0 be defined as follows:

log ηγ := (1− ε2) log γ = (1 + ε)Nγ,εI, (7)

and observe that

PΣ
ν (T − ν ≤ Nγ,ε|T > ν) ≤ p(ν, T ) + q(ν, T ),

where

p(ν, T ) := PΣ
ν

(
T − ν ≤ Nγ,ε, eZT−Zν > ηγ |T > ν

)
q(ν, T ) := PΣ

ν

(
T − ν ≤ Nγ,ε, eZT−Zν ≤ ηγ |T > ν

)
.

Now,

p(ν, T ) = PΣ
ν

(
T ≤ ν +Nγ,ε, e

ZT−Zν > ηγ |T > ν
)

≤ PΣ
ν

(
max

ν≤k≤ν+Nγ,ε
Zk − Zν > log ηγ |T > ν

)
= PΣ

ν

(
max

ν≤k≤ν+Nγ,ε
Zk − Zν > log ηγ

)
= PΣ

0

(
max

1≤k≤Nγ,ε
Zk > log ηγ

)
(7)
= PΣ

0

(
max

1≤k≤Nγ,ε
(Zk −Ak) +Ak > Nγ,ε(1 + ε)I

)
= PΣ

0

(
max

1≤k≤Nγ,ε
(Zk −Ak) +Ak > Nγ,εI + εNγ,εI

)
≤ PΣ

0

(
max

1≤k≤Nγ,ε
(Zk −Ak) > εNγ,εI

)
≤ V
ε2Nγ,εI2

≡ ξε(γ).

The second equality follows from the facts that {T > ν} ∈
Fν−1 and the observations are independent over time. The
second inequality holds because Ak ≤ kI ≤ Nγ,εI for any
1 ≤ k ≤ Nγ,ε, and the last one follows from the Doob’s
maximal inequality for martingales. Now for any given ε > 0,
Nγ,ε →∞ as γ →∞. Therefore, ξε(γ)→ 0 as γ →∞.

Furthermore,

q(ν, T ) = PΣ
ν

(
T ≤ ν +Nγ,ε, e

ZT−Zν ≤ ηγ |T > ν
)

=
PΣ
ν

(
ν < T ≤ ν +Nγ,ε, e

ZT−Zν ≤ ηγ
)

P∞(T > ν)

=
E∞[eZT−Zν1{ν < T ≤ ν +Nγ,ε, e

ZT−Zν ≤ ηγ}]
P∞(T > ν)

≤ ηγ P∞ (ν < T ≤ ν +Nγ,ε)

P∞(T > ν)

= ηγ P∞ (T ≤ ν +Nγ,ε|T > ν)

≤ ηγ
Nγ,ε
γ

= γ−ε
2

(1− ε) log γ

I
≡ ξ′ε(γ).

The last inequality follows from Theorem 1 in [18]. Now, it
is not difficult to observe that ξ′ε(γ) → 0 as γ → ∞ for any
given ε > 0.

Finally from (6), we have

DΣ(S, T ) ≥ Nγ,εPΣ
ν (T − ν > Nγ,ε|T > ν)

≥ log γ

I
(1− ε) (1− ξε(γ)− ξ′ε(γ)).

Now let γ →∞ and ε→ 0, and the proof is complete.
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V. PROPOSED PROCEDURE

In this section, we introduce a policy, (S̃, T̃ ), that achieves
the universal asymptotic lower bound of the previous section
for every covariance matrix Σ that satisfies (2). In order to
do so, we fix an arbitrary permutation, (e1, . . . , eK), of the
elements of E , defined in (3), where K is the size of E , i.e.,

K := |E| =
(
p

2

)
.

Furthermore, we fix a threshold A > 0 that will be selected
so that the false alarm constraint be satisfied. The proposed
sampling rule follows a similar pattern as in [12]. It starts by
sampling the first pair of sources in the above permutation,
i.e., S̃1 = e1, and then at each time t ∈ N:
• it computes the following statistic:

Yt = max {Yt−1, 0}+ λ(t;St), Y0 ≡ 0,

• if Yt ∈ (0, A), it keeps sampling the same pair, i.e.,

S̃t+1 = S̃t,

• if Yt /∈ (0, A), it moves to the next one, i.e.,

S̃t+1 =

{
ed+1 if S̃t = ed and d < K

e1 if S̃t = eK
.

The alarm is raised the first time t that Yt is equal or larger
than A, i.e., the proposed stopping time is:

T̃ := inf {t ≥ 1 : Yt ≥ A} .

Theorem 5.1: If A = log γ, then (S̃, T̃ ) ∈ ∆(γ) for every
γ > 0, and for every covariance matrix Σ that satisfies (2) we
have

DΣ(S̃, T̃ ) ≤ log γ

I
+

(
I +
V
I

)
+

K − |A(Σ)|

p+

(
1− (1− p−)

|A(Σ)|
) .

Proof: We start by defining the following sequence of
random times and indicators

δn+1 := inf{t ∈ N : S̃t+δn+1 6= S̃δn+1}, n ≥ 0

zn = 1{Yδn ≥ A}, n ≥ 1.

where δ0 ≡ 0. Thus, δn represents the duration of the nth

“stage” of the proposed sampling procedure and zn is equal
to 1 if the process is terminated at the end of the nth stage
and 0 otherwise. Let also M denote the stage in which the
process is terminated, i.e.,

M := inf{n ∈ N : zn = 1}.

Then, we have the following representation:

T̃ =
M∑
n=1

δn,

It is not difficult to observe that, under P∞, (δn) are i.i.d. with
the common expectation E∞[δ], and δ being defined as

δ := min{δ−, δA},

where (δ−, δA) is an arbitrary term from the set {(δe−, δeA) :
e ∈ E}. Moreover, under P∞, M is a Geometric random
variable with parameter P∞(z = 1), where z is an arbitrary
term from the sequence (zn). Thus, by Wald’s identity,

E∞[T̃ ] =
E∞[δ]

P∞(z = 1)
.

The right-hand side is equal to the expected time to false
alarm of a CUSUM test (see [19]) for detecting whether the
correlation of a two-dimensional Gaussian random vector has
changed from 0 to ρ. In particular, E∞[T̃ ] ≥ eA (see [10]),
which proves that setting A = log γ guarantees the desired
error control.

To obtain an upper bound on the worst case detection delay,
we start by observing that the worst case scenario occurs when
Yν ≤ 0, where ν is the time of the change. Thus, it suffices
to upper bound the expectation of T̃ under PΣ

0 . In order to do
so, first of all observe that T̃ = T1 + T2, where

T1 :=
M∑
n=1

δn1{wn = 1}, T2 :=
M∑
n=1

δn1{wn = 0},

and wn is equal to 1 if the sources sampled at stage n are
actually correlated under Σ and 0 otherwise. Note that (wn)
are deterministic quantities. We will bound the expectation of
each of these two terms separately.

We start with T1. Let (δ′n, z
′
n) denote the subsequence of

(δn, zn) that corresponds to stages where correlated sources
are sampled and denote by (δ′, z′) an arbitrary term of this
subsequence. Both (δ′n) and (z′n) are i.i.d. under any PΣ

0 , with
expectations that do not depend on Σ, E0[δ′] and P0(z′ = 1),
respectively. Let also M ′ denote the number of stages at which
correlated sources are sampled until the process is terminated
at a stage where correlated sources are sampled, i.e.,

M ′ := inf{n ∈ N : z′n = 1}.

Since the actual process may also be terminated at a stage
where an uncorrelated pair is being sampled, we have

T1 ≤
M ′∑
n=1

δ′n.

Then, M ′ is a Geometric random variable with parameter
P0(z′ = 1), which is a stopping time with respect to the
filtration generated by (δ′n, z

′
n). Thus, by Wald’s identity we

have

EΣ
0 [T1] ≤ E0[δ′]

P0(z′ = 1)

The right-hand side is equal to the expected detection delay,
when the change occurs at 0, of a CUSUM test that detects
a change in the correlation of a two-dimensional Gaussian
random vector from 0 to ρ. Thus, it is equal to A/I +O(1),
where O(1) is a term that does not depend on γ. This O(1)
can be upper bounded by (see [20])

E0[λ(1; e)+]2

I
≤ E0[|λ(1; e)|]2

I
≤ E0[|λ(1; e)|2]

I
=
V + I2

I
.
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In order to bound the expectation of T2 under PΣ
0 , it will

be convenient to introduce some additional terminology and
notation. We refer to the stages from m+ 1 to m+K as the
mth “cycle” of the sampling process and denote by σm the
total duration of only those stages in the mth cycle in which
uncorrelated sources are sampled, i.e.,

σm =
K∑
n=1

δK(m−1)+n1{wn = 0}, m ∈ N.

Let (δ′′n, z
′′
n) denote the subsequence of (δn, zn) that corre-

sponds to stages where uncorrelated sources are sampled and
denote by (δ′′, z′′) an arbitrary term of this subsequence.
Both (δ′′n) and (z′′n) are i.i.d. under any PΣ

0 , with expectations
that do not depend on Σ, E∞[δ′′] and P∞(z′′ = 1), respec-
tively. Then, (σn) are also i.i.d. under PΣ

0 with expectation
(K − |A(Σ)|)E∞[δ′′]. Furthermore, we have

E∞[δ′′] ≤ E∞[δ−] =
1

P∞(δ+ =∞)
=

1

p+
, (8)

where the first equality follows from Corollary 8.39 in [21].
Let also N denote the cycle at which the sampling process is
terminated. Then:

T2 ≤
N∑
m=1

σm.

Under PΣ
0 , N is a Geometric random variable with parameter

PΣ
0 (zi = 1 for some 1 ≤ i ≤ n)

≥ PΣ
0 (zi = 1 for some 1 ≤ i ≤ n with wi = 1)

= 1− PΣ
0 (zi = 0 for every 1 ≤ i ≤ n with wi = 1)

= 1−
∏

1≤i≤n:wi=1

P0(z′ = 0) = 1− P0(z′ = 0)|A(Σ)|

= 1− (1− P0(z′ = 1))|A(Σ)| ≥ 1− (1− p−)|A(Σ)|, (9)

where the last inequality follows from the fact that

P0(z′ = 1) ≥ P0(δ− > δA) ≥ P0(δ− =∞) = p−.

Finally, by Wald’s identity, using (8) and (9) we have

EΣ
0 [T2] = EΣ

0 [σ1] EΣ
0 [N ] ≤ K − |A(Σ)|

p+

(
1− (1− p−)

|A(Σ)|
) ,

and the proof is complete.

VI. SIMULATION STUDY

In this section we present a simulation study in which
we explore how the worst-case conditional expected detection
delay of the proposed procedure, DΣ(S̃, T̃ ), varies with the
true number of post-change correlated pairs, |A(Σ)|, when
p = 10, ρ = 0.7, and γ ∈ {102, 105}. For the implementation
of the proposed procedure, we fix the value of γ and select
threshold A according to Theorem 5.1, i.e., A = log γ.
Moreover, we fix the following permutation of E :(

(1, 2), (1, 3), . . . , (1, p), (2, 3), . . . , (2, p), . . . , (p− 1, p)
)
,

i.e., we set e1 = (1, 2), e2 = (1, 3), . . . , eK = (p− 1, p).
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Figure 1. Expected detection delay DΣ(S̃, T̃ ) with change in true number
of correlated pairs |A(Σ)|, under different values of γ.

For the post-change regime, we assume that the sources
in {p − s + 1, p − s + 2, . . . , p} become correlated to each
other at time ν = 0 with correlation ρ, where s is an integer
such that 2 ≤ s ≤ p. We consider different values for s
in the set {2, . . . , p}, and in this way the true number of
correlated pairs, |A(Σ)| varies in

{(
s
2

)
: 2 ≤ s ≤ p

}
. In view

of the adopted permutation of E , we need to perform all stages
corresponding to the uncorrelated pairs prior to the correlated
ones. Therefore, for any true subset of correlated sources,
the above setup corresponds to the worst-case scenario for
the proposed rule. Moreover, in addition to the true value of
the expected detection delay when ν = 0, which is obtained
via Monte Carlo simulation, we also plot in Figure 1 the
corresponding upper bound from Theorem 5.1, after estimating
the probabilities p+ and p− again via Monte Carlo simulation.

From Figure 1, we observe that the upper bound of Theorem
5.1 is very close to DΣ(S̃, T̃ ), especially for the larger value
of γ. Moreover, we can see that when |A(Σ)|, is large
enough, DΣ(S̃, T̃ ) decreases linearly with |A(Σ)|. This can
be predicted by the upper bound of Theorem 5.1. Indeed, the
denominator in the third term of this upper bound changes very
slowly and behaves like a constant as |A(Σ)| increases to K,
hence this upper bound exhibits an almost linear trend with
negative slope. Finally, we observe that the performance of
the proposed rule essentially agrees with the asymptotic lower
bound in both cases for γ when |A(Σ)| = K, i.e., when all
processes become correlated after the change.
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