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Abstract

Multi-scale topology optimization (MTO) is exploited today in applications that require designs with large

surface-to-volume ratio. Further, with the advent of additive manufacturing, MTO has gained significant

prominence. However, a major drawback of MTO is that it is computationally expensive. As an alternate,

graded MTO has been proposed where the design features at the smaller scale are graded variations of a

single microstructure. This leads to significant reduction in computational cost, while retaining many of the

benefits of MTO.

Graded MTO fundamentally rests on interpolation of elasticity matrices. The direct method of interpo-

lation used today unfortunately does not guarantee positive-definiteness of the resulting matrices. Conse-

quently, during the graded MTO algorithm the strain energy may become negative and non-physical.

In this paper, we propose a simple but effective spectral decomposition-based approach which guarantees

positive-definite elasticity matrices. The proposed method relies on a spectral (eigen) decomposition of

instances of the elasticity matrices, followed by regression of eigenvalues and interpolation of eigenvector

orientations. The resulting elasticity matrix can then be used for stable optimization. The direct and

spectral decomposition methods are compared here for robustness, accuracy and speed, through several

numerical experiments.

Keywords: Spectral Decomposition, Elasticity Matrix, Lattice, Multi-scale Topology Optimization,

Asymptotic Homogenization

1. Introduction

Topology optimization is a strategy for distributing material within a design domain to optimize an

objective, such as compliance, under a set of constraints [1, 2]. Various methods of topology optimization have

been proposed; these include solid isotropic material with penalization (SIMP) [3], rational approximation

of material properties (RAMP) [4], homogenization [5, 6], level-set [7, 8], evolutionary scheme [9, 10],

morphable components [11], and topological sensitivity based methods [12, 13]. These methods typically
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lead to a single-scale design where the geometric features are all at a single length scale. For example, for

the L-Bracket problem posed in Fig. 1, single-scale optimization leads to the topology in Fig. 2a.

Figure 1: L-Bracket design problem.

In contrast, in multi-scale topology optimization (MTO) [14], geometric features are computed at two or

more length scales, separated by at least an order of magnitude [15]; Fig. 2b illustrates a two-scale MTO.

MTO designs exhibit unique characteristics such as large surface-to-volume ratio, excellent resilience, etc.

This has led to a wide range of applications [16, 17] including energy absorption [18], heat exchangers [19],

and biomedical applications [20]. MTO methods include clustering [21, 22], kriging [23], multi-material [24],

etc. The advent of additive manufacturing has further spurned research in MTO [16].

(a)
(b)

(c)

Figure 2: Various types of TO for an L-bracket: (a) single-scale TO using SIMP (b) multi-scale TO using density clustering

(reproduced from [22]), and (c) graded MTO using an X-shaped microstructure.

However, one of the challenges in MTO is the high computational cost since one must numerically

evaluate various microstructures (topologies at the smaller length scale) during each step of the optimization

process [14, 21, 22]. To address this challenge, researchers have proposed use of microstructures that are
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simple graded variations of a single microstructural topology [15, 25, 19]. This is referred as graded MTO

and illustrated in Fig. 2c, where, graded variations of an X-shaped microstructure is used everywhere. It

leads to a significant reduction in computational cost [26], while retaining many of the benefits of MTO.

Graded MTO methods fundamentally rely on the concept of elasticity-matrix-interpolation [27]. To illus-

trate, we consider a typical thickness based gradation illustrated in Fig. 3. Note that, to ensure smoothness

between neighboring cells, other types of gradation are also possible such as cosine functions for rectangular-

void microstructures [28], level-set contours [29, 30], optimized microstructures [31], etc. Since explicitly

computing the effective elasticity matrix for every instance of the microstructure is expensive, one typi-

cally pre-computes the elasticity matrix (six scalars in 2D) at a finite number of instances. Then, during

optimization, the matrix quantities are interpolated [32, 15, 33], using, for example, polynomial curve fit-

ting. This makes graded MTO highly efficiently. However, the interpolated matrices may lose their positive

definiteness [32], leading to non-physical negative strain-energy during the graded MTO algorithm [34].

. . .

Figure 3: Graded variations of an X-shaped microstructure.

In this paper, we propose a spectral decomposition (SD) based curve fitting of the elasticity matrices.

Specifically, the elasticity matrices are pre-computed for a finite number of instances (as before). Then, a

spectral (eigen) decomposition is carried out for all these instances [35]. Finally, during the optimization,

instead of directly fitting the matrices, we propose to interpolate the eigenvalues and orientation angles

corresponding to eigenvectors. We demonstrate that this not only ensures positive definiteness of the resulting

matrices, but also aids in identification of inherent symmetry of the microstructure.

2. Literature Review and Background

In this section, the graded MTO problem is posed, followed by a description of a typical graded MTO

algorithm.
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2.1. Problem formulation

The graded MTO problem can be mathematically posed as:

minimize
ρ (x)

J(ρ,u) (1a)

subject to K (C (ρ))u = f , (1b)

Cij (ρ) = pij(ρ;P ), (1c)

V (ρ) ≤ V ∗, (1d)

ρ ≤ ρ ≤ ρ (1e)

where the density design variable ρ (x) must be determined to minimize an objective function J , such as

compliance J = fTu, while satisfying one or more constraints, such as a volume constraint given by Eqn. 1d.

Eqn. 1e provides ρ and ρ as the lower and upper bounds for the design variables. The displacement vector

u is computed via the governing Eqn. 1b where K is the stiffness matrix and f is the force vector. A

critical aspect of graded MTO is Eqn. 1c where the interpolation functions pij(ρ;P ) (often polynomials) are

pre-computed based on a set of user-defined parameters P ; see discussion below. This is in contrast to classic

SIMP, where the polynomials are trivially defined via Cij (ρ) = C
0
ijρ

p where p is the penalty parameter.

2.2. Review of Graded MTO Algorithm

As mentioned earlier, the MTO problem is solved in two phases. In the first phase, the interpolation

functions pij(ρ;P ) are constructed. The user-defined parameters P include: (a) the microstructural topology

τ , (b) the number of samples (s+1) to be used for regression, and (c) the type and degree d of fitting functions.

In the second phase, the interpolation is used to carry out the actual optimization. Each of these steps is

described below. For simplicity, it is assumed that the base material is isotropic, i.e., the Young’s modulus

and Poisson’s ratio are assumed to be given.

(1) Choosing a Microstructural Topology: The first step is to choose a microstructural topology. Mi-

crostructures with straight members, such as the ones in Fig. 4, have been used extensively [36, 17, 37, 38].

A classification of these microstructures is discussed in [39]. Inclusion of curved members has shown to

increase energy absorption [40]. Optimized microstructural topologies have also been proposed [31, 41, 42].

The remainder of this paper is independent of the chosen topology. The only assumption made here is that,

for each value of 0 ≤ ρ ≤ 1, one can assign a thickness to the topology (see Fig. 3) such that the volume

fraction of the resulting structure is ρ.

(2) Sampling and Homogenization: Once the topology is chosen, the next step is to generate a finite

number of microstructure instances, typically eight to ten such instances [43], [44], each corresponding to a

unique value of ρk; typical samples based on an X-shaped topology are illustrated in Fig. 3. Then, for each of

these samples, the effective elasticity matrix for each is computed using homogenization techniques. In this

paper, we shall rely on asymptotic homogenization (AH) [43] for computing the effective elasticity matrices.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4: Various types of two-dimensional microstructures; red box highlights a repeating unit cell.

The characteristics of AH [43] include: (1) it has no topology limitation and is valid for values of ρk, (2) it

supports stress computation, (3) it agrees well with experimental results, but (4) it may be inaccurate if the

assumption of periodicity breaks down, e.g. near the boundaries. AH is performed numerically using finite

element analysis [45] to compute the elasticity matrices C(ρk).

(3) Curve fitting: The next step is to choose a curve fitting strategy; this must satisfy two requirements:

1. Fit the data ‘well enough’, with a high R2 value [46].

2. The interpolated matrices C(ρ) ∀ ρ ∈ (0,1] must be positive definite.

Various fitting functions have been proposed that meet the first requirement. Jansen et al. [47] and Watts et

al. [48] describe a piece-wise linear interpolation for square and cubic microstructures. A cubic polynomial has

been used in Wu et al. [49]. Quartic polynomials have been demonstrated in [44]. Fourth order polynomials

without the cubic term have been used by [50, 51], and a degree-5 polynomial in [52]. A combination of

linear interpolation and polynomial fit is demonstrated in Wang et al. [15]. Non-polynomial curve fittings

have also been employed as; for example, an exponential fit in [53], and a cubic spline interpolation scheme

in [54]. However, these schemes do not guarantee that the interpolated matrices are positive definite (see

discussion below).

(4) Optimization: Once the fitting function has been defined, graded MTO is performed along the lines

of classic SIMP [1, 2]. The design domain, boundary conditions and a finite element mesh are defined. The

density variable ρ defined over each finite element is also initialized. The effective elasticity matrix for all

elements is computed via the fitting function. This is followed by finite element analysis and sensitivity

computation. The element densities are updated and the process is repeated until convergence.
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2.3. Numerical Challenges with Curve Fitting

The two main challenges with the current MTO methods are: (1) possible loss of positive definiteness of

C matrix and (2) non-monotonicity of fitting functions. Positive-definiteness is required to ensure that the

strain energy remains positive [5], while monotonicity ensures stability of the algorithm [55]. The fitting

strategies discussed above do not guarantee that the interpolated matrices will be positive-definite [56] or

monotonic. For example, consider Fig. 5 where a quartic polynomial [57] is used to fit various components

of the C matrix. Although the sampled components are all positive, the interpolated component C12 is

negative at ρ = 0.0302 as illustrated (and the curve is non-monotonic). Note that, even with positive

diagonal components of C, the positive-definiteness is not guaranteed.

These challenges can be handled in two ways: (1) as special cases, by omitting an order of the fitting

function [57], [50], or by using a linear scheme at lower density regions [15], or (2) enforcing constraints

that ensure positive definiteness. The first strategy of omitting an order term (such as the third order

term in a fourth order polynomial fitting function) does not generalize well to all types of microstructure,

and such an omission impacts the R2 value of the fit. Using a linear scheme at lower density regions

works well for isotropic and orthogonal-isotropic microstructures. However, it is observed that for generally

anisotropic microstructures such as the Z type, instabilities arise at densities as high as ρ = 0.4. Therefore,

the linear scheme would need to be extended to higher density regions, thereby significantly compromising

the fit. Further, it has been observed that additional constraints will result in a loss in accuracy of the

fit [58]. Additionally, ensuring positive-definiteness for an anisotropic microstructure involves interpolating

six independent terms of the matrix, and ensuring positive-definiteness at all values of ρ; this is non-trivial

when imposed directly via the matrix components due to the strong coupling between the components of

the elasticity matrix.

To address these shortcomings, we propose a curve fitting strategy based on spectral decomposition of

the elasticity matrix that guarantees positive-definiteness of the elasticity matrix ∀ ρ ∈ (0,1].

3. Proposed Strategy

In this section, we propose a method of curve fitting based on the spectral decomposition or eigende-

composition, of the sampled elasticity matrices to ensure positive definiteness of the interpolated elasticity

matrices, leading to a modification of Eqn. 1c, as explained below.

3.1. Backrground

Spectral decomposition of the elasticity matrix was first discussed by Lord Kelvin [59] in 1856. Later,

in the last decade of 20th century, the algebraic representation of the elasticity matrix in spectral form was

applied to anisotropic elasticity by Mehrabadi and Cowin [60], Sutcliffe [61], Theocaris and Philippidis [62,

63]. Theocaris and Sokolis [64, 65, 66] studied in detail the spectral decomposition for various symmetries

such as monoclinic, tetragonal, hexagonal media and anisotropic plates, emphasizing the importance of
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Figure 5: Polynomial interpolation of elasticity matrix components can lead to non-monotonicity; adapted from Cheng et

al. [57].

eigenangles [63]. More recently, spectral decomposition of elasticity matrix has been applied in topology

optimization. For instance, Jantos et al. [67, 68] applied spectral decomposition to describe local orientation

of the base anisotropic material in the context of continuous fiber angle optimization. Spectral decomposition

has been used in free material design [69] in which the spatial distribution of elasticity matrix in the spectral

form is optimized [70, 71]. Liu and Shapiro [35] applied it to determine the material orientation in the

synthesis of a 2-scale structure. However, to the best of our knowledge, spectral decomposition has not been

employed to enforce the positive definiteness of the interpolated elasticity matrices.

3.2. Spectral decomposition of effective elasticity matrices

To describe the underlying concept, consider a 2-D anisotropic graded-microstructure without symmetry,

whose effective elasticity matrix C can be computed numerically. Using Voigt notation, C can be represented

as a symmetric 3 × 3 positive definite matrix. Further, let Ck be an instance of C at ρk. Let λ
(i)
k and v

(i)
k ,

i = 1,2,3 be the eigenvalues and eigenvectors of Ck, i.e., Ckv
(i)
k = λ

(i)
k v

(i)
k . Let Λk be the diagonal matrix

of eigenvalues λ
(i)
k and V k be a matrix with the eigenvectors as its columns. Then, by definition,

Ck =
3

∑
i=1

λ
(i)
k v

(i)
k ⊗ v

(i)
k = V kΛkV

T
k . (2)

where ⊗ represents the dyadic or the outer product.

Since Ck is symmetric positive definite, the eigenvalues λ
(i)
k are real and positive, and the eigenvectors are

orthonormal [72]. The objective now is to develop a scheme to fit functions using eigenvalues and eigenvectors

of the sampled matrices.
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3.3. Curve fitting for effective elasticity matrices

Given the sampled eigenvalues λ
(i)
k , each of the three distinct eigenvalues can be interpolated as:

λ(i)(ρ) = q(i)(ρ;P ); i = 1,2,3 (3)

where P are the user-defined parameters discussed earlier. One can also express this as:

Λii(ρ) = q
(i)

(ρ;P ); i = 1,2,3 (4)

The fitting functions q(i) should be such that the eigenvalues are positive ∀ρ ∈ (0,1] . This is achieved by

imposing non-negativity constraint on the coefficients of q(i). Note that the fitting functions are independent,

and therefore imposition of these constraints is trivial.

In order to interpolate the eigenvectors, we describe every instance Vk about a reference basis BR using

three angles (αk, βk, γk), as follows:

V k =R(αk, βk, γk)BR. (5)

where

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosαk cosβk cosαk sinβk sinγk − sinαk cosγk cosαk sinβk sinγk + sinαk sinγk

sinαk cosβk sinαk sinβk sinγk + cosαk cosγk sinαk sinβk cosγk − cosαk sinγk

− sinβk cosβk sinγk cosβk cosγk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

Typically, the first eigenvector matrix V 1 corresponding to the lowest density is taken as the reference BR;

please see subsection 4.2. A method to compute the three angles, given Vk and BR using Givens matrices [73],

is described later. Finally, given finite number of instances αk, βk and γk, we construct interpolating splines

r(ρ;P ), s(ρ;P ) and t(ρ;P ) for these three angles respectively. A spline interpolation is preferred over

polynomial regression for an improved accuracy of fitting function over non-monotonic orientation angle

data as explained in section 4.3. This results in an interpolated eigenvector matrix:

V (ρ) =R (r(ρ;P ), s(ρ;P ), t(ρ;P ))BR. (7)

Finally, one can construct the interpolated elasticity matrix:

C(ρ) = V (ρ)Λ(ρ)V T
(ρ). (8)

In summary, in the proposed strategy, Eqn. 1c is replaced by Eqn. 8. It will be shown that both the

requirements of the interpolation strategy – (a) high R2 value for the fitting functions, and (b) positive-

definiteness of the interpolated elasticity matrix C(ρ) ∀ ρ ∈ (0,1] – are seamlessly satisfied with the proposed

strategy based on spectral decomposition. For conciseness, we will drop the term P representing user-defined

parameters from hereon.
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4. Implementation

The implementation details on sampling, spectral decomposition and curve fitting are explained in this

section. Other essential concepts including finite element discretization, sensitivity analysis, filtering [74] to

avoid checkerboard patterns [75], use of optimality criteria [76], etc. are discussed, for example, in [1, 76].

4.1. Sampling and Asymptotic Homogenization

Given the line topology of a microstructure (see Fig. 6a), one can assign a thickness t to construct the

microstructure. Further, there is direct correspondence between the thickness t, and the effective density

(fill-ratio) ρ. Thus, there are two strategies for sampling microstructures at different densities: (1) create

microstructures with sampled thicknesses tk and compute the resulting densities ρk, or (2) select a uniformly

sampled set of densities ρk and back-calculate (via a simple binary search) the thicknesses tk. In this paper,

we adopt the latter as illustrated in Fig. 6b since it guarantees a more uniform density distribution. Further,

without a loss of generality, we will assume 10 samples of ρk between ρ1 = ρmin and ρ10 = 1.0 (inclusive). The

value of ρmin is chosen to ensure that the corresponding thickness is at least two times the finite element

size.

(a) Line topology

Desired ρk
ÐÐÐÐÐ→

(b) Obtain tk for desired ρk

Compute γelk
ÐÐÐÐÐÐ→

(c) γel
k on 100 × 100 mesh

Re-compute ρk
ÐÐÐÐÐÐÐÐÐ→

Compute Ck

Figure 6: For a given microstructure topology, (1) a thickness tk is calculated for a desired ρk, (2) γelk is then determined for

each element, and (3) a corrected ρk is computed along with Ck.

Once the thickness has been computed, i.e., the microstructure has been constructed, we discretize the

domain using bilinear quadrilateral elements. Specifically, a microstructure of aspect ratio η (i.e., size η × 1)

is discretized using 100η × 100 quadrilateral elements. The next step is to compute the (fill) density γelk of

each micro-element. Note that the symbol γ is used to refer to densities at the micro-scale, while ρ is used

to refer to densities at the macro-scale. Thus, here, the superscript ‘el’ refers to the finite elements at the

micro-scale. To find γelk , the signed distance of each node from the microstructure boundary is computed.

Then, the elements are classified as completely inside (γelk = 1), partially inside (0 < γelk < 1), or completely

outside (γelk = 0), depending on the sign of the distance function at the four associated nodes. Further, for

elements that are partially inside, the four signed distance values can be used to compute γelk via a local

contour extraction; see Fig. 6c. Given γelk , the elastic modulus of each micro-element is determined via

Eel
k = E0γ

el
k (9)
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where E0 = 1. Then, asymptotic homogenization (AH) [45] is carried out to obtain the effective elasticity

matrix Ck of the microstructure at that sample. Finally, to correct for numerical errors, we also re-compute

ρk (see Fig. 6c) for the microstructure via:

ρk =
∑el γ

el
k

∑el 1
(10)

4.2. Spectral Decomposition

For each instance Ck, the eigenvalue matrix Λk and eigenvector matrix V k are computed. The first

eigenvector matrix V 1 corresponding to ρ1 = ρmin is taken as the reference BR, referred to earlier in Eqn. 5.

Thus, the rotation matrix for any instances obtained via:

R(αk, βk, γk) = V kV
−1
1 (11)

The rotation matrix is then decomposed into three right-handed rotation matrices about the three coordinate

axes as

R(αk, βk, γk) =Rz(αk)Ry(βk)Rx(γk) (12)

where the three rotation matrices are

Rz(αk) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosαk − sinαk 0

sinαk cosαk 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ry(βk) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosβk 0 sinβk

0 1 0

− sinβk 0 cosβk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Rx(γk) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cosγk − sinγk

0 sinγk cosγk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The three angles αk, βk, γk are obtained using Givens rotation as described in Algorithm 1 [77]. The above

process is repeated for all samples ρk.

Algorithm 1 Orientation angle computation using Givens rotation

1: Set R =R(αk, βk, γk)

2: αk = arctan(R21/R11)

3: S =Rz(αk)
TR

4: βk = arctan(−S31/S11)

5: T =Ry(βk)
TS

6: γk = arctan(T32/T22)

4.3. Curve Fitting

Next, we consider fitting the sampled eigenvalues and rotation angles. Special care must be taken in

handling crossing-over of eigenvalues. For example, observe in Fig. 7a that the first and second eigenvalue

cross-over at ρk = 0.8 due to incorrect labeling. To avoid this, the dot-product of consecutive eigenvectors is

used to ensure proper labeling, as illustrated in Fig. 7b.
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Figure 7: Ordering eigenvalues of an X-shaped microstructure by (a) numerically sorting the eigenvalues, and (b) by using the

direction of eigenvectors.

For regression of the three eigenvalues, homogeneous polynomials, i.e., polynomials with the constant

term being zero, of degree of d are used here:

q(i)(ρ) =
d

∑
j=1

q
(i)
j ρj i = 1,2,3 (13)

The degree d is varied between 1 and 10 in the numerical experiments. Further, to ensure positive-

definiteness, non-negativity is enforced on all the coefficients q
(i)
j . Here, MATLAB’s linear least square

solver lsqlin is used for regression. Since the derivative(s) of the fitting functions q(i)(ρ) are polynomials

with positive coefficients, we have the following three properties:

Positivity: q(i)(ρ) > 0 ∀ρ ∈ (0,1] (14a)

Monotonicity:
dq(i)(ρ)

dρ
> 0 ∀ρ ∈ (0,1] (14b)

Convexity:
d2q(i)(ρ)

dρ2
≥ 0 ∀ρ ∈ (0,1] (14c)

For interpolating the orientation angles given in Eqn. 7, we employ here a C2 continuous cubic spline

over each interval [ρk, ρk+1], rather than polynomials since the orientation angles are non-monotonic. For

example, the orientation angle r(ρ) at any density ρ between two instances ρi and ρi+1 is interpolated as

follows:

r(ρ) = ai(ρ − ρi)
3
+ bi(ρ − ρi)

2
+ ci(ρ − ρi) + di ∀ ρ ∈ [ρi, ρi+1] (15)

where the four coefficients ai, bi, ci and di are determined using standard cubic-spline fitting procedures.
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5. Consistency in Fitting

Although, in the most generic case, we will need a total of 6 interpolating functions, if the microstruc-

ture exhibits symmetry (example, isotropic), fewer fitting functions are needed. Here, we highlight the

consistency between the number of independent fitting functions needed for a given microstructure, and

the number of independent components in the corresponding elasticity matrix. In particular we consider

four microstructures, each representing a particular symmetry group: (1) isotropic Kagome microstructure,

(2) orthogonal-isotropic cross-shaped microstructure, (3) orthotropic mixed-triangular microstructure, and

(4) anisotropic Z-shaped microstructure. It is well known that the number of independent components in

the elasticity matrix for each of these microstructures is 2, 3, 4 and 6 respectively. For each of these mi-

crostructures, the eigenvalue and orientation angle fitting functions are generated, and observations are made

below.

5.1. Isotropic Kagome microstructure

First, we consider the isotropic Kagome microstructure. The spectral decomposition method generates

three eigenvalues and three orientation angles. Fig. 8 illustrates the fitting functions for these eigenvalues

and orientation angles. Although, three distinct eigenvalue curves are shown, one can show that the third

eigenvalue is half of the second eigenvalue; see Appendix B. Further, the eigenvectors for isotropic mi-

crostructures are always constant (see Appendix A and Appendix B), i,e., interpolation of the orientation

angles is not required. In summary, the total number of linearly independent fitting functions is two. This

is consistent with the number of independent elastic constants for isotropic microstructures.
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Figure 8: Fitting curves for (a) eigenvalues, and (b) orientation angle of eigenvectors, for a Kagome microstructure.

5.2. Orthogonal-isotropic cross-shaped microstructure

For the orthogonal-isotropic cross-shaped microstructure, three independent eigenvalue fitting functions

are needed, while the orientation angles remain unchanged as established in Appendix A; see Fig. 9. This

12



is consistent with the 3 independent constants in the corresponding C matrix.
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Figure 9: Fitting curves for (a) eigenvalues, and (b) orientation angle of eigenvectors, for a Cross microstructure.

5.3. Orthotropic mixed-triangular microstructure

For the orthotropic mixed-triangular microstructure, three distinct eigenvalue fitting functions, and one

angle fitting function are needed as observed from Fig. 10. This is consistent with the 4 independent constants

in the corresponding C matrix.
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Figure 10: Fitting curves for (a) eigenvalues, and (b) orientation angle of eigenvectors, for a mixed-triangular microstructure.

5.4. General anisotropic Z-shaped microstructure

Finally, for the general anisotropic Z-shaped microstructure, six fitting functions are required to interpo-

late the effective elasticity matrix as in Fig. 11. This is consistent with the 6 independent constants in the

corresponding C matrix.
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Figure 11: Fitting curves for (a) eigenvalues, and (b) orientation angle of eigenvectors, for a Z microstructure.

5.5. Summary for 2D microstructures

The above observations are summarized in the Table 1.

14



Table 1: Curve fitting based on spectral decomposition for various 2D symmetry types (groups).

(a) (b) (c) (d)

Topology

Symmetry type Isotropic
Orthogonal-

isotropic
Orthotropic

General

anisotropic

Elasticity matrix

constants

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∎ ⧫ 0

∎ 0

(∎ − ⧫)/2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∎ ⧫ 0

∎ 0

 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∎ ⧫ 0

▲ 0

 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∎ ⧫ ☀

▲ ▼

 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Number of

distinct

eigenvalues

2 3 3 3

Number of

orientation

angles

0 0 1 3

Number of

independent

fitting functions

2 3 4 6

Number of different symbols in ‘Elasticity matrix constants’ row represent independent terms.

5.6. Extension to 3D

While the focus of this work is on 2D microstructures, the spectral decomposition method can be extended

to 3D. Similar to 2D classification, 3D microstructures can be categorized based on material symmetry, such

as cubic, transversely isotropic, orthotropic, monoclinic and triclinic [78]. For example, consider the cubic

microstructure in Fig. 12a. It has three mutually orthogonal planes of reflection symmetry, and 90○ rotation

symmetry with respect to those planes. Hence, the number of independent constants required to describe

this microstructure is three. Through spectral decomposition of the [6 × 6] elasticity matrix, we obtain three

unique eigenvalues, whose regression is illustrated in Fig. 12b.The eigenvector matrix remains constant, and

does not require interpolation.
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Figure 12: (a) A 3D cubic microstructure, and (b) its fitting curves for eigenvalues.

On the other hand, consider a triclinic microstructure [78]. These have no symmetry planes, and are

fully anisotropic: the number of independent coefficients required to construct the elasticity matrix is 21.

Consequently, we must interpolate 6 eigenvalues and 15 orientation angles, i.e., 21 fitting functions will be

needed. The implementation of 3D spectral decomposition will be pursued in the future.

6. Template Stiffness Matrices

Observe that, in the current framework, every macro-element has a corresponding elasticity matrix CEL,

depending on its density ρEL, at that instance. This entails computing the stiffness matrix KE for every

CEL i.e. KE
(CEL) via numerical integration, for each iteration of the optimization process. This can be

computationally expensive. We propose here to use the concept of template stiffness matrices [79, 22] for

computational efficiency.

The key concept is to construct, prior to optimization, unit elasticity matrices, C(i) using the three

dimensional unit vectors ei as follows:

C(i)
= ei ⊗ ei i = 1,2,3 (no summation over i) (16)

C(i+j+1)
= ei ⊗ ej + ej ⊗ ei i = 1,2; i < j ≤ 3 (17)

where the first three indices correspond to the three diagonal components of elasticity matrix and last three

correspond to off-diagonal components. Then, the corresponding unit stiffness matrices are computed (again,

prior to optimization) via

K(i)
=KE

(C(i)
) i = 1,2, . . . ,6 (18)
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Then, during optimization, given any matrix CEL, the element stiffness matrix can be easily computed via

KE
(CEL) = C11(ρ)K

(1)
+C22(ρ)K

(2)
+C33(ρ)K

(3)
+C12(ρ)K

(4)
+C13(ρ)K

(5)
+C23(ρ)K

(6) (19)

where Cij(ρ) is the (i, j) component of CEL at ρ = ρEL. This reduces the computation significantly as

the numerical experiments indicate. Further improvements can be made based on the observation made

regarding elasticity matrix symmetry group in the previous section.

For isotropic and orthogonal-isotropic elasticity matrices, the eigenvectors do not vary with the density.

For these microstructures, the elasticity matrix for an element EL is dependent only on the relative density

through the three eigenvalues:

CEL =
3

∑
i=1

q(i)(ρEL) (v(i) ⊗ v(i)) (20)

where v(1,2,3) are the three constant eigenvectors given in Appendix A and q(i)(ρEL) is the value of ith

eigenvalue polynomial regression function evaluated at ρEL. Thus, the number of templates can be reduced

from six to three. These templates are computed as:

K
(i)
red =KE

(v(i) ⊗ v(i)) i = 1,2,3 (21)

Then, the element stiffness matrix for any element EL is computed as

KE
(CEL) =

3

∑
i=1

q(i)(ρEL)K
(i)
red (22)

Further, as shown in Appendix B, the third eigenvalue is always half of either of the other two. Therefore for

isotropic microstructures, the third eigenvalue fitting function q(3) can be expressed as the linear combination

of the other two using scalars a1 and a2:

q(3)(ρ) = a1q
(1)

(ρ) + a2q
(2)

(ρ) (23)

Ô⇒ KE
(CEL) =

2

∑
i=1

q(i)(ρEL) (K
(i)
red + aiK

(3)
red)

Ô⇒ KE
(CEL) =

2

∑
i=1

q(i)(ρEL)K
(i)
iso (24)

where

K
(i)
iso =K

(i)
red + aiK

(3)
red i = 1,2 (25)

are the two element stiffness matrix templates required for isotropic microstructures. Note that the scalars

{a1, a2} are either {0.5,0} or {0,0.5}. The computational benefits of these templates are discussed under

numerical experiments.

7. Sensitivity analysis

Here, we consider sensitivity analysis that is essential during optimization. Recall that the compliance is

defined as

J = ∑
EL

uT
ELK

E
(CEL)uEL (26)
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The sensitivity of the compliance with respect to the design variables is computed as

∂J

∂ρEL
= −uT

ELK
E
(
∂CEL

∂ρEL
)uEL (27)

where using Eqn. 8

∂CEL

∂ρEL
= (

∂V (ρ)

∂ρ
Λ(ρ)V T

(ρ) +V (ρ)
∂Λ(ρ)

∂ρ
V T

(ρ) +V (ρ)Λ(ρ)
∂V T

(ρ)

∂ρ
)
ρ=ρEL

(28)

Exploiting Eqn. 7
∂V (ρ)

∂ρ
∣
ρ=ρEL

=
∂R (r(ρ), s(ρ), t(ρ))

∂ρ
∣
ρ=ρEL

BR (29)

and Eqn. 4

∂Λii(ρ)

∂ρ
∣
ρ=ρEL

=
dq(i)(ρ)

dρ
∣
ρ=ρEL

i = 1,2,3 (30)

Again, using Eqn. 7

∂R (r(ρ), s(ρ), t(ρ))

∂ρ
∣
ρ=ρEL

= (
∂Rz (r(ρ))

∂ρ
Ry(s(ρ))Rx(t(ρ))

+Rz(r(ρ))
∂Ry (s(ρ))

∂ρ
Rx(t(ρ))

+ Rz(r(ρ))Ry(s(ρ))
∂Rx (t(ρ))

∂ρ
)∣
ρ=ρEL

(31)

and using Eqn. 13

dq(i)(ρ)

dρ
∣
ρ=ρEL

=
d

∑
j=1

jq
(i)
j ρj−1 i = 1,2,3 (32)

The derivatives in Eqn. 31 can be derived using the expressions for rotation matrix and eqn. 15.

In Eqn. 28, even though the second term is positive definite, the first and third terms together are

symmetric but not necessarily positive definite. This implies that the derivative of interpolated effective

elasticity matrix in Eqn. 28 may not be positive definite even when the interpolated effective elasticity

matrix itself is positive definite. Thus, the sensitivity of objective function in Eqn. 27 might change sign.

However, the sensitivity terms can be offset by the highest positive value to ensure all sensitivity terms

are non-positive during the design update using optimality criteria [80, 81]. In the special case of constant

eigenvectors, i.e., when the orientation angles do not vary with relative density, the first and third term in

Eqn. 28 vanish, and this problem does not arise.

8. Algorithm

In summary, the proposed graded multi-scale optimization procedure is captured in Algorithm 2; the

design variables are the density values ρEL over each macro-element.

For comparison, the (classic) direct method is captured in Algorithm 3. Observe that the main differences

between the two algorithms is in step 4: computing CEL, and step 5: computing KEL.
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Algorithm 2 Graded MTO: Proposed Spectral Decomposition (SD) Method

1: Initialize

a: Set analysis and optimization parameters

b: Initialize design variables ρEL for all macro-elements EL

c: Precompute template stiffness matrices ▷ using Eqn. 18,21, or 25

2: while Not Converged do

3: for each ρEL do

4: Compute CEL

a: Find the 3 eigenvalues and 3 orientation angles ▷ using Eqn. 13 and 15

b: Compute the elasticity matrix CEL ▷ using eqn. 8

5: Compute element stiffness matrices KE
(CEL) ▷ using eq 19, 22, or 24

6: end for

7: Solve and update design variables

a: Assemble stiffness matrix and solve eq. (1b) or use matrix-free techniques [82, 83]

b: Compute sensitivity of objective and constraint ▷ see section 7

c: Update the design variables ρEL using optimality criteria method

8: end while

Algorithm 3 Graded MTO: Direct Method

1: Same as algorithm 2 ▷ using Eqn. 18

2: while Not Converged do

3: for each ρEL do

4: Compute independent CEL components via direct regression

5: Compute element stiffness matrices KE
(CEL) ▷ using eq 19

6: end for

7: Same as algorithm 2 ▷ using Eqn. 27

8: end while

9. Numerical Experiments

In this section, we will conduct several numerical experiments, addressing the following topics.

� Robustness: We compare the robustness of the direct and proposed method of interpolation, by

comparing the strain energies for a sample problem at various density values.

� Accuracy: Next, we compare the interpolation accuracy of the two methods,

� Graded MTO: We then focus on graded multi-scale optimization, and explore the following topics:

1. Sensitivity to microstructure type: Here we consider the impact of the microstructure on

the computed topology.
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2. Sensitivity to degree of regression: Next, the impact of degree of regression on the computed

topology is considered via the proposed method.

3. Designs at low volume fractions: Here, we explore designs at low volume fractions, and

provide interpretations to the topologies.

4. Computation time: Finally, we compare the computational times of the two methods.

The default values for the simulation parameters are as follows:

� Base material is isotropic with Poisson’s ratio of 0.3 and unit Young’s modulus.

� The degree of eigenvalue polynomial regression is four (unless stated otherwise). Cubic spline interpo-

lation is used for orientation angles.

� In the asymptotic homogenization implementation, the 2-D microstructure domain is discretized into

10000η bilinear quadrilateral micro-elements, where η is the aspect ratio of the microstructure domain.

Note that the Kagome and mixed-triangular microstructure are of aspect ration
√

3 ∶ 1 whereas the

cross and Z-shaped microstructures have an aspect ratio of 1:1.

� The target volume fraction is 50%, unless otherwise stated.

� A sensitivity filter of radius 1.2Öthe mean size of an element is used.

� An optimality criteria update with an exact Lagrange multiplier computation [84] is used.

� The implementation is in MATLAB R2020a, on a standard Windows 10 desktop with Intel(R) Core(TM)

i7-4790 CPU running at 3.6 GHz with 32 GB memory.

� The optimization terminates when (1) the maximum change among the design variables is below 0.001,

or (2) the relative change in objective function drops below 1 × 10−6 for two consecutive iterations, or

(3) the number of iterations reaches a maximum value of 800.

9.1. Robustness

Recall from Section 2 that the direct method may lead to non-positive definite elasticity matrices, which

translates into a negative strain energy estimate. To illustrate this, we consider the mid-edge loaded cantilever

illustrated in Fig. 13. The domain is discretized into 100 × 50 elements. Then, for various density values

ranging from ρmin to 1, the cross-shaped microstructure is constructed (see Fig. 6) over all elements. Then

the corresponding element stiffness matrices are computed using (a) the direct method, and (b) the proposed

spectral decomposition method. Then, the two resulting finite element problems are solved, and the strain

energies computed.
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Figure 13: Cantilever design domain subject to graded MTO.

Fig. 14 illustrates the strain energy computed using the direct method as a function of the density, for

various degrees of interpolation. Observe that, for degree-5 and degree-6, the strain energy becomes negative

(discontinuity in the logarithmic scale) for certain intermediate density values. Further, for degree-4, and

for this particular choice of microstructure and design domain, the strain energy remains positive. The main

conclusion is that one cannot guarantee the positive definiteness in the direct method.
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Figure 14: Strain energy computed using the direct method.

On the other hand, Fig. 15 illustrates the strain energy computed via the proposed spectral decomposition

methods. The strain energy remains positive for all values of ρ, as expected.
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Figure 15: Strain energy computed using the spectral decomposition method.

9.2. Accuracy

Next we compare the accuracy of the two methods. Since the eigenvalue polynomials are required to

be positive in the proposed method (i.e., an additional constraint), we expect it to be less accurate than

the direct method. The accuracy of the two methods are compared for the four different microstructures

discussed earlier, using the popular R2 metric. We consider 50 instances of the densities at which we first

compute the ‘exact’ elasticity matrix CAH, using AH. Then, for the same density values, the elasticity

matrices are computed using the direct and proposed spectral decomposition (SD) method of interpolation,

using 10 samples in each case for interpolation (see Algorithm 2 and Algorithm 3). Then the R2 metric is

computed as for each component as follows:

R2
ij = 1 −

∑
50
l=1 (CAH

ij (ρl) −Cij(ρl))
2

∑
50
l=1 (CAH

ij (ρl) −C
AH

ij )
2

(33)

where C
AH

ij is the mean CAH
ij over 50 instances. Note that closer the value of R2 to unity, the better is the

fit.

For the four microstructure, the R2 values are illustrated in Fig. 16 by solid and dashed curves for the

proposed and direct methods, respectively. Only a few components are illustrated for clarity; all other

components exhibit similar behavior.
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Figure 16: R2 of proposed method and direct polynomial regression of some elasticity matrix components for (a) Kagome, (b)

Cross, (c) Mixed-triangular, and (d) Z-shaped graded-microstructures.

The key observation from these plots is that the direct method is slightly more accurate (but not always)

than the SD method. However, the possible increase in accuracy of the direct method is overshadowed by

its lack of robustness, as discussed in the previous experiment.

9.3. Graded MTO

We now illustrate the proposed SD method for graded multi-scale topology optimization.

9.3.1. Impact of Microstructure Type

In this first experiment of graded MTO, the cantilever domain illustrated in Fig. 13 is optimized using

the four microstructures described earlier. The design domain is discretized using congruent elements of

aspect ratio η, corresponding to that of the microstructure, resulting in mesh of sizes 100Ö50 for the cross

and Z-shaped microstructures, and 76 Ö66, for the Kagome and mixed-triangular microstructures.

The resulting topologies along with the compliance values are illustrated in Fig. 17. Observe the asym-

metry in the design for the asymmetric Z microstructure. The Z-shaped microstructure takes the longest to

converge.
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(a) 62.89 (b) 65.65

(c) 63.78 (d) 70.00

Figure 17: Graded MTO designs for microstructures: (a) Kagome, (b) Cross, (c) Mixed-triangular, and (d) Z-shaped.
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Figure 18: Convergence history for the four microstructure types, for a cantilever design domain.

9.3.2. Impact of Degree of Fit

Next, the impact of degree of eigenvalue fitting function on graded MTO design is studied on a half

MBB beam in Fig. 19. (The angle interpolation via cubic splines remains unchanged in all the experiments.)

As in the previous experiment, the domain is discretized with 100Ö50 elements for the cross and Z-shaped

microstructures, and 76 Ö66 elements, for the Kagome and mixed-triangular microstructures.
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Figure 19: MBB beam design domain for graded MTO.

The topologies for degree 4, 5 and 6, using the four microstructures are illustrated in Fig. 20, together with

the final compliance values. The important conclusions are: (1) the compliance is almost a constant for the

first two microstructures since the improvement in R2 metric from degree to 4 to degree 6 is small (1×10−4),

whereas the compliance decreases for the other two microstructures since the R2 metric improvement is

significant (1 × 10−2), and (2) for the same reason, the change in topology is minimal for Kagome, Cross,

and mixed-triangular, whereas for the Z-shaped microstructure, the change in topology is significant.
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(a) 77.21 (b) 76.92 (c) 77.08

(d) 79.58 (e) 79.91 (f) 79.86

(g) 78.19 (h) 76.88 (i) 76.43

(j) 88.30 (k) 85.26 (l) 84.21

Figure 20: Graded MTO designs using eigenvalue fitting functions of degree 4, 5, and 6 (from left to right) for Kagome, Cross,

Mixed-triangular, and Z-shaped (from top to bottom) microstructures

9.3.3. Designs of Low Volume Fractions

Next, an L-bracket with unit point load illustrated earlier in Fig. 1 is considered for this experiment. An

orthogonal-isotropic X-shaped microstructure is used here, and the domain is discretized into 6400 elements.

Graded MTO designs at multiple volume fractions are generated using degree-4 eigenvalue fitting functions.

The designs and their compliances are illustrated in Fig. 21. Observe that all designs exhibit large areas

of partial fills. This is a unique characteristic of the X-shaped microstructure for reasons explained below.
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(a) 1130.66 (b) 283.97 (c) 179.61

Figure 21: Graded MTO designs using SD method with degree-4 fitting functions for volume constraint of 10%, 30%, and 50%

(from left to right) for X-shaped microstructure. Inset shows graded-microstructure at the same region of design domain.

Observe in Fig. 22 that all components of the elasticity matrix vary almost linearly with density, when

density is below 0.25. In other words, there is no penalization for low density values. This is similar to SIMP

with p = 1 where the Young’s modulus is linearly dependent on the density, resulting in large partial density

regions.
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Figure 22: Elasticity matrix fitting functions obtained for degree 4 eigenvalue curves for X-shaped microstructures. Curves for

C11 and C22 coincide.

9.3.4. Computational Costs

Finally, we compare the computational times for the two methods (direct vs. proposed), with and without

the use of templates (see section 6). The cantilever beam in Fig. 13 is again chosen for this experiment. As

delineated in Algorithms 2 and 3, the two methods only differ in steps 4 and 5, i.e., in the computation of

CEL and KE
(CEL). The computational times for these two steps are summarized in Table 2 and Table 3,
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respectively.

The main conclusions from Table 2 are that: (1) templates have no impact on the direct method for

computing CEL, but they significantly accelerate the SD method for the isotropic and orthogonal-isotropic

structures, and (2) the direct method is faster than the proposed method for the orthotropic and anisotropic

structures. The reason for these observations is that the SD method for orthotropic and anisotropic structures

requires expensive matrix multiplications associated with Eqn. 8. Direct method, in contrast to SD, requires

few polynomial function evaluations without the expensive matrix multiplications. With maximum six

function evaluations, direct method thus takes lesser time compared to SD method for these structures.

On the other hand, for the structures of isotropic and orthogonal-isotropic type, both the methods require

polynomial evaluations without matrix multiplications. Moreover, fewer templates and function evaluations

are required for SD method compared to direct method. Use of templates reduces the number of computations

for SD method, thus reducing the computation time for CEL.

Table 2: Computation time (in seconds) for elasticity matrix CEL during the first 100 iterations

Method
Kagome

(isotropic)

Cross

(orthogonal-isotropic)

Mixed-Triangular

(orthotropic)

Z

(anisotropic)

Without

Template

Direct Regression 0.04 0.04 0.04 0.10

Proposed SD 0.24 0.36 0.93 0.90

With

Template

Direct Regression 0.04 0.04 0.04 0.10

Proposed SD 0.02 0.02 0.89 0.88

On the other hand, the main conclusions from Table 3 are: (1) templates have a major impact on both

methods for computing KE
(CEL), (2) the SD method is marginally superior in cost for the first two types

of microstructures, while both methods are comparable in cost for the other two microstructures.

Table 3: Computation time (in seconds) for element stiffness matrix KE(CEL) during the first 100 iterations

Method
Kagome

(isotropic)

Cross

(orthogonal-isotropic)

Mixed-Triangular

(orthotropic)

Z

(anisotropic)

Without

Template

Direct Regression 9.65 9.79 9.71 9.66

Proposed SD 9.63 9.67 9.72 9.69

With

Template

Direct Regression 0.42 0.42 0.42 0.56

Proposed SD 0.27 0.35 0.39 0.53

Thus, in summary, (1) the use of templates is highly recommended, independent of the method used,
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and (2) the direct method is computationally superior to the SD method for orthotropic and anisotropic

microstructures.

9.3.5. Graded MTO: Direct versus SD

The importance of positive-definiteness during MTO is illustrated in this subsection. We consider the

cantilever design domain in Fig. 13 with the Z-shaped graded microstructure. Fig. 23 illustrates the compo-

nents of the C matrix obtained by the direct method, and the SD method. The blue bar on top indicates

the densities for which the C matrix remains positive-definite. For the SD method, the C matrix is always

positive definite. Note that C13 and C23 become negative in the SD method when the density is close to 1,

yet C remains positive definite. On the other hand, for the direct method, for densities less then 0.1 and

around 0.4, positive-definiteness is lost. The strain energy of the corresponding elements becomes negative,

translating into an erroneous drop/fluctuation in compliance as can be observed in Fig. 24. These fluctua-

tions affect the stability of the optimization algorithm. The total strain energy can also become negative if

large number of elements lose positive definiteness. Finally, the resulting topologies are illustrated in Fig. 25,

where one can observe that the direct method has failed to converge to a well-defined topology.
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Figure 23: Components of the C matrix for a Z-shaped graded microstructure using (a) direct and (b) SD methods. Blue bars

(on top) show the region of positive definite C.
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Figure 25: Graded MTO designs using Z-shaped graded microstructure. (a) Direct method and (b) SD method

10. Conclusions

In this paper, we demonstrated spectral decomposition (SD) method for generating positive-definite elas-

ticity matrices of graded-microstructures. This is achieved by constraining the polynomial-based regression

of eigenvalues to be positive.

The SD method is shown to be robust and sufficiently accurate for all symmetry types including isotropic,

orthogonal-isotropic, orthotropic and anisotropic graded-microstructures. Several numerical experiments are

conducted to characterize the proposed method and its application to MTO. The most important conclusion

from the first experiment is that, unlike the SD method, one cannot always rely on the direct method to

converge. For the SD method, it was also observed that the degree of polynomial regression for eigenvalues

increases the accuracy. This can alter the topology, and in some cases significantly improve the compliance.

The computational cost of the SD method is lower than the direct method for isotropic and orthogonal-

isotropic microstructures. The use of matrix templates was shown to reduce computational cost for both

direct and SD methods. The SD method ensures positive definiteness and monotonicity of C matrix compo-

nents for isotropic and orthogonal-isotropic graded-microstructures. However, for orthotropic and anisotropic

microstructures, while positive-definiteness is ensured by the SD method, the monotonicity is influenced by
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the instances selected for AH and the subsequent use of spline-interpolation.

The limitations of the SD method are: (1) the computational cost is higher for orthotropic and anisotropic

microstructures, (2) the derivative of the interpolated elasticity matrix may not be positive definite, and (3)

due to the non-monotonic behavior of the orientation angles, spline interpolation, rather than the simpler

polynomial interpolation must be used.

There are several related topics that need to be explored. Extension of the SD method to 3-D and curved

microstructure can be explored. Further, we assumed in this paper that the orientation of the microstructures

does not vary spatially. A coupled orientation and density optimization may lead to better designs [22, 79].

The robustness of SD method enables a continuation or a gradual change on the degree of fitting function

during the optimization, similar to the continuation scheme popular for SIMP interpolation [85]. This needs

further exploration. Feature size control for manufacturability is a topic of practical interest.

Replication of Results

The MATLAB code used in this paper is available at www.ersl.wisc.edu/software/gMTO.zip.
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Appendix A. Spectral decomposition of orthogonal-isotropic microstructures

For an orthogonal microstructure aligned along its axes of symmetry, the elasticity matrix components

C13 and C23 are zero. Therefore, the third eigenvector v(3) of orthogonal microstructure is always {0,0,1}T

with the corresponding eigenvalue λ(3) = C33. Thus, the SD of elasticity matrix can be expressed as

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 0

C12 C22 0

0 0 C33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

V s 0

0T 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Λs 0

0T C33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

V s 0

0T 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Cs =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12

C12 C22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= V sΛsV
T
s (A.1)

where sub-matrices Cs, V s and Λs are the order 2 leading principal minors of elasticity matrix C, eigenvector

matrix V , and diagonal eigenvalue matrix Λ, respectively.

To ensure that eigenvectors are orthonormal, without loss of generality V s can be expressed using two

scalars a and b = ±
√

1 − a2 as

V s =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a −b

b a

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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using Eqn. A.1,

Cs =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12

C12 C22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a2λ(1) + b2λ(2) ab (λ(1) − λ(2))

ab (λ(1) − λ(2)) a2λ(2) + b2λ(1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.2)

For orthogonal-isotropic microstructures, elasticity matrix components C11 and C22 are equal and therefore

a2λ(1) + b2λ(2) = a2λ(2) + b2λ(1)

Ô⇒ (a2 − b2) (λ(1) − λ(2)) = 0

using b = ±
√

1 − a2,

a = ±b = ±
1

√
2

or λ(1) = λ(2) (A.3)

Ô⇒ Cs = 0.5

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ(1) + λ(2) ∓(λ(1) − λ(2))

±(λ(1) − λ(2)) λ(1) + λ(2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

or Cs = λ
(1)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)

The matrix on the right side corresponds to a zero Poisson’s ratio microstructure and is a special case of

matrix on the left side when the first and second eigenvalues are identical. Therefore, the elasticity matrix

obtained by the left side matrix i.e.

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 (λ(1) + λ(2)) ∓0.5 (λ(1) − λ(2)) 0

±0.5 (λ(1) − λ(2)) 0.5 (λ(1) + λ(2)) 0

0 0 C33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.5)

represents the general elasticity matrix for orthogonal-isotropic microstructures with {1/
√

2,±1/
√

2,0}T,

{∓1/
√

2,1/
√

2,0}T, and {0,0,1}T as the eigenvectors.

Appendix B. Spectral decomposition of isotropic microstructures

An isotropic microstructure is a special case of orthogonal-isotropic microstructure for which the elasticity

matrix remains invariant under rotational transformation. Therefore, we derive the condition for elasticity

matrix given in Eqn. A.5 to be invariant under application of a rotation matrix given by

Q(θ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos2(θ) sin2
(θ) sin(2θ)

sin2
(θ) cos2(θ) − sin(2θ)

− sin(2θ)/2 sin(2θ)/2 cos(2θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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where θ is the angle of rotation of the microstructure. The rotated elasticity matrix is given by

C̃ =Q(θ)CQT
(θ) (B.1)

=Q(θ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 (λ(1) + λ(2)) ∓0.5 (λ(1) − λ(2)) 0

±0.5 (λ(1) − λ(2)) 0.5 (λ(1) + λ(2)) 0

0 0 C33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

QT
(θ) (B.2)

= C + (C33 −
1

4
((λ(1) + λ(2)) ∓ (λ(1) − λ(2))))

⎛
⎜
⎜
⎜
⎜
⎝

sin(2θ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin(2θ) − sin(2θ) cos(2θ)

− sin(2θ) sin(2θ) − cos(2θ)

cos(2θ) − cos(2θ) − sin(2θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

(B.3)

For C̃ to be independent of rotation terms

C33 =
1

4
((λ(1) + λ(2)) ∓ (λ(1) − λ(2))) (B.4)

Ô⇒ C33 =
λ(1)

2
or C33 =

λ(2)

2
(B.5)

Therefore, for elasticity matrix of isotropic microstructure the third eigenvalue λ(3) = C33 is always half

of either the first or the second eigenvalue. Eigenvectors are same as that for the orthogonal-isotropic

microstructures.
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