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Abstract
Objective. Understanding the cognitive load of drivers is crucial for road safety. Brain sensing has
the potential to provide an objective measure of driver cognitive load. We aim to develop an
advanced machine learning framework for classifying driver cognitive load using functional
near-infrared spectroscopy (fNIRS). Approach. We conducted a study using fNIRS in a driving
simulator with the N-back task used as a secondary task to impart structured cognitive load on
drivers. To classify different driver cognitive load levels, we examined the application of
convolutional autoencoder (CAE) and Echo State Network (ESN) autoencoder for extracting
features from fNIRS.Main results. By using CAE, the accuracies for classifying two and four levels
of driver cognitive load with the 30 s window were 73.25% and 47.21%, respectively. The proposed
ESN autoencoder achieved state-of-art classification results for group-level models without
window selection, with accuracies of 80.61% and 52.45% for classifying two and four levels of
driver cognitive load. Significance. This work builds a foundation for using fNIRS to measure driver
cognitive load in real-world applications. Also, the results suggest that the proposed ESN
autoencoder can effectively extract temporal information from fNIRS data and can be useful for
other fNIRS data classification tasks.

1. Introduction

Road traffic accidents have claimed more than 1.35
million deaths each year around the world, with
around 50 million people injured [1]. Meanwhile,
according to a report from the National Highway
Traffic Safety Administration (NHTSA), 36 560 lives
were lost on United States roads in 2018, with around
400 000 people injured. This includes an estimated
2841 people killed by distracted drivers [2]. Distrac-
tions are often caused by a mix of auditory, vocal,
visual, manual, and cognitive demands (e.g. [3]). As
a complex and intensive activity, driving requires a
driver to focus on not only the car, but also factors
such as nearby vehicles, traffic signs, pedestrians,
and lights. At the same time, the increased number
of mobile devices and advanced in-car communica-
tion and infotainment systems are imposing differ-
ent levels of cognitive load on the driver [4]. Research
has shown both under-load and overload of driver’s
cognitive resources are related to road accidents [5].

When drivers are under-loaded, they can experience
fatigue or drowsiness, and this may lead to reduced
alertness and lowered attention. When drivers are
overloaded, drivers are under stress and this may lead
to insufficient attention and inadequate capacity and
time for information processing [6, 7]. As a result,
understanding the cognitive load of drivers has the
potential to contribute to avoiding future accidents
and hazards on the road [8].

Previous research has used several approaches to
assess drivers’ cognitive load, which can be divided
into three main categories: subjective measures,
performance measures, and physiological measures
[8, 9]. Each of these approaches has both advant-
ages and disadvantages [7]. Subjective measures can
provide strong periodic indicators of load but require
interrupting the task flow with probes or recalling
events post hoc. Continuous objectivemeasures, such
as those that are physiological-based, can provide
greater sensitivity to the time course changes in cog-
nitive load during driving [10]. As such, various
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types of physiological data have been collected for
driver cognitive load studies, e.g. electroencephalo-
gram (EEG) data [11, 12], heart rate [8, 10, 13], skin
conductance [8, 10, 14] and eye movements [15].

Functional near-infrared spectroscopy (fNIRS) is
a brain imaging technique, which has been shown
to be useful for evaluating human cognitive load
andworkingmemory demand under various circum-
stances [16–20]. fNIRS emits near-infrared light into
the brain. By measuring the light returned to the sur-
face, the amount of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) can be calcu-
lated, which can indicate hemodynamic activity asso-
ciated with brain activation in that area. As a portable
and non-invasive technique, it has the potential to be
used for driver cognitive load estimation [21, 22].

Most previous studies in this direction util-
ized traditional signal processing methods to analyze
fNIRS signals without using state-of-the-art machine
learning algorithms [21–23]. fNIRS data are high
dimensional and high volume time series data. How-
ever, these studies either used a small segment or
simple statistics to describe fNIRS data. The former
approach requires the selection of small windows
from the whole series and ignores global temporal
dynamics, while statistics-based features lose both
amplitude and temporal details.Motivated by this, we
aim to explore advanced feature extraction methods
for fNIRS data, to improve the classification accuracy
for differentiating different levels of driver cognitive
load using fNIRS.

Recent advances in deep learning allow task-
specific features to be deep learned from various
sources such as images, languages, and brain data
[24–26], which are usually more powerful than hand-
crafted ones. The main idea of this paper is to
learn high-level features using autoencoders, which
are trained to reconstruct the original data in an
unsupervised manner. In general, autoencoders can
be divided into two categories, autoencoders with
feed-forward neural networks and autoencoders with
recurrent neural networks (RNNs). Feed-forward
neural networks, such as the convolutional autoen-
coder (CAE), have shown powerful feature abstrac-
tion capability for extracting spatial and temporal
dependencies from brain data [20, 27, 28]. Autoen-
coders building on RNNs, such as Echo State Net-
works (ESN), have shown to be very effective in
extracting temporal patterns from multivariate time
series data [29–33]. Research to date has not explored
the application of RNN-based models for fNIRS fea-
ture extraction. In this work, we set out to employ
both feed-forward neural networks and RNNs-based
architectures for fNIRS feature extraction. Partic-
ularly, we employ the CAE and ESN autoencoder
and compare their results on classifying fNIRS as an
estimator of driver cognitive load.

In this paper, we report on a study that involved
the collection of fNIRS data in a simulated driving

environment. Drivers completed an n-back task to
impart additional structured cognitive load during
driving, as a proxy for real-world tasks that increase
cognitive load during driving. Because the collected
data are represented as multi-channel time-series sig-
nals, we propose to apply both CAE and ESN autoen-
coders to extract features for driver cognitive load
classification. Moreover, to fully capture the global
temporal information and to be trained on a lar-
ger dataset, we build group-level models across all
participants’ data without selecting particular win-
dows. The experimental results show that both CAE
and ESN autoencoder are suitable for fNIRS fea-
ture extraction, while the proposed ESN autoencoder
achieved greater classification accuracy than CAE for
differentiating different levels of driver cognitive load
using fNIRS signals.

Themain contributions of this paper can be sum-
marized as:

• We propose a machine learning framework for
driver cognitive load classification using fNIRS
data.

• We describe the application CAE and ESN autoen-
coder for unsupervised feature extraction from
fNIRS data.

• We show that the proposed ESN autoencoder
yields state-of-the-art classification accuracy for
group-level models without window selection for
fNIRS-based driver cognitive load classification.

2. Background

In this section, we first review previous work in
using secondary task and psychophysiological data
for driver cognitive load analysis, which motivates
our work in investigating fNIRS for driver cognitive
load classification.We then discuss previouswork and
challenges in extracting features from fNIRS data.

2.1. Driver cognitive load assessment
2.1.1. Secondary task paradigms during driving
As a driver’s cognitive demand often includes com-
petition between the driving task and non-driving
related activities, driver cognitive load studies often
utilize controlled and repeatable secondary task
paradigms. Recent studies have adopted many types
of secondary tasks and collected a variety of psycho-
physiological data for driver cognitive load analysis.
Tsunashima et al usedmental calculation tasks, which
consisted of a low-demand task (one digit addition),
a medium-demand task (one digit addition of three
numbers) and high-demand task (subtraction and
division with a decimal fraction), and evaluated the
effectiveness of fNIRS for measuring differences in
driver cognitive load [22]. In addition to steering and
maintaining a set speed in a driving simulator, during
secondary task periods designed to model increased
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cognitive load, Wu et al asked participants to press
one of the buttons on a panel when prompted by
a command on the display screen [34]. Zhang et al
employed a verbal task and a spatial-imagery task as
secondary tasks. The verbal task required drivers to
name words starting with a designated letter while
the spatial-imagery task asked them to respond let-
ters from A to Z under five rules that they predefined.
During the task, eye tracker and head tracker were
applied to obtain corresponding physiological data
[35]. Putze et al asked participants to perform a visual
search task and a mathematical cognitive task, while
multiple biosignal streams (skin conductance, pulse,
respiration, EEG) were collected [12].

Besides the aforementioned secondary tasks,
recent studies have frequently adopted a type of sec-
ondary task called an n-back. A version of the n-back
task was developed by the MIT AgeLab [9, 36] for
the context of driving and later incorporated into
ISO 14198 [37] as a standardized method to cal-
ibrate or otherwise characterize reference levels of
demand placed upon a driver. In the standardized
presentation of this form of the n-back, a series of
single-digit numbers are presented via audio. Parti-
cipants are asked to respond with the corresponding
number n positions before the current number. As
a result, the parameter n can easily adjust the level
of working memory load. For example, using the n-
back task as the secondary task, Solovey et al analyzed
heart rate and skin conductance data from parti-
cipants who were driving on the highway [8]. Li et al
collected fNIRS and heart rate data while implement-
ing an alternate n-back task in a simulated driving
experiment [21]. The latter is an example of a study
using a form of n-back task that presents a series of
single letters. As each letter appears, the participant
responds if the new letter matches a letter presented
n-places back in the sequence (see Owen et al [38]
for a review). This matching form is arguably more
difficult for a given value of n [36].

2.1.2. Driver cognitive load analysis
To analyze driver cognitive load using physiological
data, researchers have proposed various data analysis
methods. Tsunashima et al proposed a signal pro-
cessing method based on multi-resolution analysis
(MRA) using a discrete wavelet transform. The res-
ults on nine participants suggested that fNIRS data
were effective for driver cognitive load evaluation
[22]. However, they only conducted statistical ana-
lysis in this work, and did not apply machine learn-
ing. Wu et al proposed a queuing network based
on the theory of human performance and neuros-
cience, and explored the cognitive characteristics of
drivers’ cognitive load caused by their actionswith the
vehicle information system [34]. Kim et al extracted
EEGvariation rates in five different driving situations,
including left and right-turn, rapid-acceleration,
rapid-deceleration, and lane-change [11].

In recent years, due to its success in classifica-
tion tasks, machine learning has become a popular
tool for driver cognitive load classification. Yang et al
applied SVM and extreme learning machine (ELM)
as the classifiers for eye gaze data, and the results
show that the ELM-based method achieved better
performance, with an accuracy of 76.4% for classify-
ing high driver mental cognitive load from low driver
mental cognitive load [39]. Solovey et al evaluated
different machine learning classifiers for driver cog-
nitive load by using heart rate data. They achieved
a high accuracy of 89% for classifying consecutive
2-back elevated periods from normal driving, when
using logistic regression with window selection [8].
Fridman et al [40] considered classification using 3D
convolutional neural networks leveraging visual-only
attributes alone to achieve 86%accuracy over a 3-class
problem. Le et al trained and tested multiple classifi-
ers for classifying driver cognitive load using fNIRS.
They show that the decision trees achieved the best
results with an accuracy of 82% for classifying differ-
ent cognitive load elevated by the n-back task during
driving. However, it is unclear which tasks and time
window their classification was based on [23].

Results from previous work suggest that driv-
ing cognitive load is predictable by machine learn-
ing techniques using visual behavior and physiolo-
gical data. However, researchers also pointed out that
other factors rather than cognitive load, such as phys-
ical exertion and emotional state, can also influence
physiological signals, which could result in conflict-
ing or unreliable results [41]. fNIRSmeasures changes
in cerebral hemodynamic activity and can be used
to infer information on drivers’ underlying cognit-
ive activity directly. Moreover, it is safe, portable, easy
to use, and quick to set up—characteristics that show
promise for use in real-world settings. As such, fNIRS
could provide an alternative formeasuring driver cog-
nitive load levels objectively. However, an fNIRS-
based system using state-of-the-art using machine
learning techniques for driver cognitive load classific-
ation is not fully explored.

2.2. fNIRS feature extraction
In addition to being used for driver cognitive load
assessment, fNIRS data has been widely explored
for classifying cognitive load levels in other circum-
stances, often through employing a range of vari-
ations on the ISO standardized version of the n-back
task. Due to the high dimensionality and redundancy,
the raw signal of fNIRS data is not suitable for being
used as features for classification. Therefore, feature
extraction is an important process in fNIRS-based
classification.

2.2.1. Hand-crafted features vs. deep learned features
Before CNN-based methods became the superior
approach for feature extraction, the hand-crafted fea-
ture approach was used in most previous work. As
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fNIRS data are time-series data, statistics obtained
by specific time windows were often calculated as
features. Aghajani et al classified different cognitive
load levels elevated by the n-back task (n from 0
to 3), using the calculated slope, standard deviation,
skewness, and kurtosis of each HbO and HbR sig-
nal, and the zero lagged correlation between HbO
and HbR as features. These features were then selec-
ted based on their sensitivity to the changes in cog-
nitive load. By using SVM and the moving window
method, they achieved a mean accuracy of 74.8% for
binary classification [42]. Similarly, Liu et al extrac-
ted the average HbO and HbR amplitude changes
as features for classifying cognitive load elevated by
the n-back task (n = 0, 2, 3). By using LDA, they
achieved a mean accuracy of 53.9% for three-class
classification [43].

Besides using statistical features, regression tech-
niques were also employed to extract features from
fNIRS data. In the work of Herff et al, features were
extracted by fitting the slope of a straight line to the
data in a specific window using linear regression dur-
ing the n-back task. Their results show that classi-
fying 3-back, 2-back, 1-back against a relaxed state
achieved an accuracy of 81%, 80%, and 72%, respect-
ively, while the accuracy for four-class classification is
45% [18].

With the advances in deep learning, more recent
work has investigated using deep learningmethods to
automatically extract features from fNIRS data. For
example, Trakoolwilaiwan et al, utilized four different
CNNs to extract fNIRS features. The results show that
CNNs achieved higher accuracy than the combina-
tion of SVM/ANN and hand-crafted features (mean,
variance, kurtosis, skewness, peak, slope from HbO
and HbR) [28]. Similarly, combined with the moving
window method, Saadati et al showed that the CNN
approach can improve the accuracy for cognitive load
classification using fNIRS data, with an average accur-
acy of 82% [44].

These studies have demonstrated the advantages
of advanced machine learning methods for auto-
matic fNIRS feature extraction. However, challenges
remain, including the fact that brain datasets are usu-
ally small due to the costly and time-consuming data
collection process. At the same time, deep learning
techniques require a large number of training data
to achieve satisfactory results [45]. Also, since fNIRS
data are time-series data, researchers need to take the
spatial and temporal dynamics of fNIRS data into
consideration when applying these models. In the
next section, we outline these considerations and pos-
sible approaches.

2.2.2. Considerations
There are two important considerations when apply-
ing machine learning techniques on fNIRS data: (a)
the selection of sample windows and (b) the choice
between individual models and group models.

2.2.2.1. Sample window selection
In previous work using hand-crafted features as well
as CNN-based methods for fNIRS-based cognitive
load classification, window selection methods were
utilized to carefully pick a small segment of a fixed size
from the original data as the input.While thismethod
might yield better classification results, it ignores
the global temporal information and could result in
overly optimistic classification results for real-world
applications. Moreover, research has shown that due
to the latency of the underlying physiological pro-
cesses, fNIRS cognitive load classificationmay require
aminimumwindow length of 10 s [18, 46]. Some pre-
vious work has not met this requirement which could
lead to unreliable results. For example, Saadati et al
used fNIRS data from a 3 s window to build CNN
models [44]. Even though they achieved an accuracy
of 89% for classifying cognitive load tasks, continu-
ous time-windows from a single trial were used to
form multiple samples in their work. This violates a
key assumption behind machine leaning techniques
that samples are independent and make their results
unreliable.

In this work, we will regard each complete trial
(30 s without window selection) as one sample
for classification.

2.2.2.2. Individual vs. group models
Most previous work builds individual models for
fNIRS-based cognitive load classification. However,
research has shown that due to the small dataset of
an individual participant and the high feature space
of brain data, building individual models could lead
to overfitting and achieving overly-optimistic res-
ults [47]. Therefore, researchers have shown the need
for building group models (across participants) for
fNIRS data classification [48, 49], which can enable
researchers to get a larger dataset for model training
and achieve more reliable results, as well as reduce
the time for collecting brain data from a particu-
lar individual. However, due to inter-subject variab-
ility in hemodynamic responses, it is difficult to build
robust models across participants based on fNIRS
data [50–53].

There are only a few studies that have investig-
ated building group models for fNIRS-based cognit-
ive load classification. Putze et al implemented the
n-back task in a virtual environment, and extrac-
ted the signal mean for all HbO and HbR chan-
nels, as well as the resulting slope and coefficient of
each channel through linear regression as features.
By pooling the data of all participants together and
using shrinkage LDA as the classifier, they achieved
a mean accuracy of 66% for classifying the 3-back
period from the 1-back period, a mean accuracy of
64% for classifying the 2-back period from the 1-back
period, and a mean accuracy of 42% for three-classes
classification (1-, 2-, or 3-back) [46]. Liu et al also
investigated fNIRS-based cognitive load classification
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Figure 1. Driving simulation environment (left). The participants sit in the car and are instrumented with fNIRS (right). The
screen in the front presents the simulated driving environment.

accuracy by learning from the data of other parti-
cipants. They extracted the average HbO and HbR
amplitude change between different windows from n-
back tasks, and achieved amean accuracy of 53.9% for
three classes classification (0-, 2-, or 3-back) [43].

From these studies, we can see that while it is
beneficial to build group-level models using fNIRS
data from a complete trial without window selec-
tion, it is difficult to achieve high accuracy for cog-
nitive load classification. Thus, it would be valuable
to research more advanced machine learning meth-
ods to extract temporal dynamics from fNIRS data
without window selection and enable higher per-
formance for group-level models. Considering the
relatively small sample sizes of most fNIRS datasets, it
could be difficult for the CNN-based method to fully
extract temporal information from the data without
overfitting [28]. Therefore, in thiswork, in addition to
CNN-based methods (convolutional autoencoder),
we also investigate the application of ESN autoen-
coder for extracting temporal patterns from fNIRS
data.

3. Data collection

The goal of our study is to build a dataset of
fNIRS data associated with different levels of working
memory demands that come from secondary tasks
during driving. While there is a wide range of tasks
that a driver may perform, we use a variant of the
n-back task as the secondary task, which has estab-
lished capacity for eliciting scaled levels of working
memory demand [8]. This task serves as a stand-
ardized [37] structured proxy for cognitively loading
auditory-verbal working memory tasks that a driver
may perform. The study was approved by the relev-
ant institutional review board and informed consent
was obtained for all participants.

3.1. Driving simulator
Our study was conducted in a driving simu-
lator equipped with fNIRS. The driving simulator

consisted of a fixed-base, full-cab Volkswagen New
Beetle in front of an 8× 8 ft projection screen
(figure 1) with established validity for assessing
changes in cognitive demand using the n-back [14]
and visual manual based tasks [54]. Participants had
an approximately 40-degree view of a virtual environ-
ment at a resolution of 1024× 768 pixels. Graphical
updates to the virtual world were computed by using
Systems Technology Inc. STISIM Drive and STISIM
Open Module based upon a driver’s interaction with
thewheel, brake, and accelerator. Additional feedback
to the driver was provided through the wheel’s force
feedback system and auditory cues. The time-based
triggering of visual and auditory stimuli was sup-
ported by custom data acquisition software and used
to present prerecorded instructions for the cognitive
task.

3.2. fNIRS recording
The fNIRS data were acquired using was a mul-
tichannel frequency domain Imagent from ISS Inc.
Two probes were placed on the forehead to measure
the two hemispheres of the anterior prefrontal cor-
tex (figure 1). Each source emitted two near-infrared
wavelengths (690 nm and 830 nm) to detect and
differentiate between oxygenated and deoxygenated
hemoglobin. Each source corresponds to four detect-
ors, with the source-detector distances being 1.5, 2,
2.5, and 3 cm. The sampling rate was 11.8 Hz. The
sensors were kept in place using headbands, which
can also reduce light interference.

3.3. Driving task and secondary task
Participants sat in a stationary car and drove a
divided, multi-lane interstate highway consisting
largely of straight roadway with occasional gradual
curves in the simulated environment.

While driving, an auditory presentation—verbal
response n-back task was employed to impose addi-
tional cognitive load while driving [36, 37]. In each
30-second task block, a series of single digits (0–9)
were presented in random order (one at a time) at
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Figure 2. Example task block of auditory stimuli and the appropriate verbal responses for a 0-back task, a 1-back task, and a
2-back task.

2.25 s second intervals. As each new digit was presen-
ted, participants were to say out loud the digit n items
back in the current sequence—the difficulty of the
task increases as n increases. Three levels of difficulty
were employed to present drivers with a low, mod-
erate, and high level of secondary cognitive load. At
the lowest cognitive load level (0-back), participants
simply repeat each number as it is presented. At the
moderate level (1-back), participants were required
to respond with the number one item back in the
sequence. In the most difficult level (2-back), parti-
cipants responded with the number two item back in
the sequence. Figure 2 describes an example set for the
0-back, 1-back and 2-back task.

3.4. Participants
Thirty individuals driving more than three times a
week and having a valid driver’s license for at least
three years were recruited. Participants had to report
a driving record free of accidents for the past year.
Due to recording issues, only 18 of the participants
(between the ages of 20 and 33) had reliable fNIRS
signal recording.

3.5. Design and procedure
Participants were given instructions on how to com-
plete the n-back task and practiced the task follow-
ing training standards detailed in appendix A of [36]
prior to entering the simulator. During the experi-
ment, blocks were formed with a random ordering
of each with three load levels (0-back, 1-back and
2-back), a 30-second period in which participants
were asked to ‘just drive,’ (which we refer to as the
single-task driving task) and a blank-back [55] where
digits of the n-back were played with participants
instructed to listen but not to respond. The blank-
back condition is not considered in this analysis. Par-
ticipants completed three blocks separated by a 90 s
cool down.

4. Dataset curation

Based on the fNIRS data collected during the study,
we built the dataset for investigating feature extrac-
tion and classification for different levels of cognitive
load.

4.1. Behavioral data
Weanalyzed the participants’ performance during the
n-back conditions. Participants performed well on
the secondary task, with an average accuracy of 100%
on the 0-back task, 98.72% on the 1-back task, and
96.44% on the 2-back task. A one-way ANOVA shows
significant differences between the three n-back levels
in the number of errors (F= 6.85;p < 0.001). Fur-
thermore, Tukey’s post hoc tests showed that parti-
cipants made significantly more errors during the 2-
back task than the 0-back task (p < 0.005).

4.2. General dataset description
The dataset consists of fNIRS data of 8 channels, from
18 participants. Each sample consists of data in a 30 s
period. There are a total of 54 samples for each class
(single-task driving, 0-back, 1-back, 2-back).

4.3. Dataset Preprocessing
Since signalsmeasured by fNIRSmay suffer from bio-
logical and technical artifacts, pre-processing is usu-
ally employed to enhance signal quality [56]. Follow-
ing typical preprocessing techniques [57], we used a
band-pass filter with a high pass value of 0.02 Hz and
a low pass value of 0.5 Hz to remove the physiological
noise (e.g. heart rate, respiration) and the instru-
mental noise. Raw light intensity data was then con-
verted to HbO and HbR values using the Modi-
fied Beer–Lambert Law. Then, the correlation-based
signal improvement (CBSI) is introduced to reduce
motion artifacts. It has been shown that the CBSI
method can effectively remove large spikes brought
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Figure 3. Variation of the changes in HbO and HbR concentration for different conditions. The figures show the mean (averaged
across all channels and all individuals) and standard error over each condition. Shaded areas represent the standard error of the
mean for each condition.

by head movements as well as enhance signal qual-
ity and spatial specificity [58]. All preprocessing was
completed in MATLAB using HomER [59].

4.4. Dataset overview
For an overview of the dataset, we calculated the
folded average of HbO and HbR change across all
participants for each condition. Specifically, we cal-
culated the changes in HbO and HbR by subtract-
ing the corresponding value of the starting point
for each trial. Figure 3 shows the block averages of
changes in HbO (red) and HbR (blue) for all par-
ticipants across all channels and all n-back condi-
tions. From figure 3(a), we can see that for all condi-
tions, at the beginning of each trial, following neural
activation, there is an increase in HbO, which is fol-
lowed by a decrease in HbO due to the metabolic
consumption of oxygen. Moreover, it is clear that
the peak value of HbO increases as the difficulty of
the task increase. The peak value of HbO is higher
in the 1-back condition than 0-back condition and
driving only, with the highest value during the 2-
back condition. From figure 3(b), similarly, we can
see that there is a decrease in HbR at the begin-
ning of each trial, and followed by an increase. Also,
The value of HbR is lower in the 1-back condition
than 0-back condition and driving only, with the
lowest value during the 2-back condition. Moreover,
we tested the effect of n-back condition and chan-
nels using two-way repeated measures ANOVA and
determined the main effects using Tukey’s post hoc
tests. we calculated the mean values for the driving
only condition and three n-back conditions (0-back,
1-back, 2-back). The mean HbO and HbR values
were then analyzed by a 4(condition)× 8(channel)
repeated measures ANOVAs. Both the n-back con-
dition and channels showed a significant effect on
HbO and HbR (p < 0.001), while the interaction
effect was not statistically significant. Furthermore,
post hoc analyses showed that the 2-back task elicited
higher HbO increases than the 0-back and the driving

only condition (p < 0.01). our results are consistent
with prior research and suggest heterogeneous activ-
ation at the prefrontal area as the difficulty of the task
increase [18, 21, 42, 60]. Furthermore, this lays the
foundation for our feature extraction and classifica-
tion techniques.

5. Feature extractionmethods

We investigate the application of convolutional
autoencoders (CAE) and ESN autoencoder for learn-
ing useful representations from fNIRS data. The
learned features can then be used as the input for
classifiers.

5.1. Input
For each sample, the HbO and HbR from eight chan-
nels in the 30 s period are used as the input for all fea-
ture extraction methods. Since the sampling rate was
11.8 Hz, the length of the data is 354. Data from each
channel is normalized using the Min–Max normaliz-
ation technique. In addition, considering that the cor-
rected HbO andHbR signals using the CBSI methods
are highly correlated, we evaluate the effect of using
only HbO, using only HbR, and using the combina-
tion of HbO and HbR as input on model perform-
ance when comparing different feature extraction
methods.

5.2. Convolutional autoencoders (CAE)
An autoencoder neural network is an unsuper-
vised learning algorithm that aims to minimize
reconstruction error between the input data and the
output data, and is often used for pre-training neural
networks [61]. Autoencoders consist of three main
parts: the encoder, the bottleneck, and the decoder.
The encoder learns how to compress the input data
into a low-dimensional representation. The bottle-
neck is the layer containing the compressed repres-
entation of the data. The decoder part learns how to
reconstruct the compressed data to be as close to the

7
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Figure 4. The architecture of convolutional autoencoders, which include the encoder, the bottleneck, and the decoder. After
unspervised training, the bottleneck layer becomes the learned features for the input.

original input as possible. By minimizing the recon-
struction loss through backpropagation, the com-
pressed representation of the input becomes learned
features that contain meaningful information of the
input and are useful for future tasks. CAE uses con-
volutional layers in the encoder and decoder, which
inherit the powerful feature abstraction ability of
traditional CNNs and have been widely applied for
extracting spatial and temporal dependencies from
data. Particularly, it can preserve spatial locality by
receptive field and parameter sharing. Additionally,
convolutional layers can be followed by pooling layers
for downsampling in the encoder part, while convolu-
tional layers in the decoder are followed by unpooling
layers for upsampling. Figure 4 shows the overview of
applying CAE for feature extraction.

Specifically, in this work, to fully capture the spa-
tial information contained by fNIRS signals collected
by different channels and the time-series behavior of
fNIRS data, fNIRS data was constructed as a set of 2D
images, with the length of the image equal to the num-
ber of samples in the time window, and the width of
image equal to the number of channels. For a given
multi-channel fNIRS data input matrix X, and a set

of n convolutional filters {F(1)1 , . . . ,F(1)N }, the encoder
computes:

em = σ(X ∗ F(1)m + b(1)m ), (1)

where σ denotes activation function, ∗ represents 2D
convolution. Fm ismth 2D convolutional filter, and bm
denotes encoder bias. Then, the reconstruction can be
obtained using of feature maps E= {em=1,...,n} and
convolutional filters F(2) in the decoder:

X̃= σ(E ∗ F(2)m + b(2)m ). (2)

Themean square error between the original input
data of and the reconstructed data can be used as the
cost function:

Lε(X, X̃) =
1
2 ||X− X̃||2. (3)

During training, the reconstruction error is min-
imized through optimizing the network weights, and
the bottleneck layer becomes the learned representa-
tion for the input and can be used for classification.

Considering that the architecture of CAE can
affect the resulting performance, we determine the
best architecture of CAE for classifying driver cognit-
ive load using fNIRS by investigating the effect of filter
sizes, as well as depth and width on the classification
accuracy.

5.3. Echo state network (ESN) autoencoder
The Echo StateNetwork (ESN) is a family of recurrent
neural network models with a strong architectural
simplification. The connectivity and weights of hid-
den neurons in the recurrent neural network (called
‘reservoir’) are kept fixed and randomly assigned.
Only output weights are learned during training
so that the network can produce specific temporal
patterns. As such, ESN has an unrivaled training
speed compared to other recurrent neural networks.
Previous work has shown that ESNs can achieve
excellent performance in many fields, and are an effi-
cient solution for multivariate time-series classifica-
tion [62–65].

To improve classification accuracy by learning
more powerful representations from the sequence of
reservoir states, Chen et al proposed a ‘model space’
feature extraction approach by training a model for
one-step-ahead prediction of the inputs, and then
using the model parameters as features for classifica-
tion. This approach has been successfully applied for
multivariate time series classification and unsuper-
vised EEG feature extraction [29, 31, 32]. Moreover,
Bianchi et al proposed a ‘reservoir model space’ fea-
ture extraction approach, which consists of paramet-
ers from a model trained for one-step-ahead pre-
diction of the future reservoir state, instead of the
input. Their results show this approach can achieve
superior classification accuracy onmanymultivariate
time series datasets when comparing to state-of-the-
art recurrent networks and time series kernels [66].
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Figure 5. The overview of using Echo State Network autoencoder for fNIRS feature extraction in the reservoir model space. After
unsupervised training, the learned parameters θh become the learned features for the input.

Therefore, in this work, we investigate the ‘reser-
voir model space’ approaches for fNIRS data fea-
ture extraction. Figure 5 shows the overview of using
this approach for feature extraction. Specifically, we
consider classification of fNIRS data consisting of M
channels and observed for T time steps. The obser-
vation at time t is denoted as x(t) ∈ RM. We repres-
ent the multi-channel fNIRS data as a T×M mat-
rix: X= [x(1),…, x(T)]T . For a echo state network
with inputweightsWin and recurrent connectionsWr

(randomly generated and left untrained), the state-
update equation is:

h(t) = f(Winx(t)+Wrh(t− 1)), (4)

where h(t) is the reservoir state at time t. f (.) is a non-
linear activation function.

Then, the ESN is trained to perform one step-
ahead prediction of each reservoir state:

h(t+ 1) = Vhh(t)+ vh. (5)

The parameters θh = {Vh,vh} are learned by minim-
izing a ridge regression loss function. These paramet-
ers then becomes the representations for the input
and used for classification. Also, since dimensional-
ity reduction applied on top of h(t) can enhance the
representations’ generalization capability, we applied
principle component analysis (PCA) on h(t) [66].

The performance of ESN can be influenced by
the number of hidden neurons and the internal con-
nectivity of the reservoir [32]. Therefore, in this
work, we determine the optimal parameters for ESN
for classifying driver cognitive load using fNIRS by
investigating the effect of the number of hidden neur-
ons and the internal connectivity of the reservoir on
the classification accuracy.

6. Classificationmethods

After extracting features from fNIRS data, a classifier
is needed to map the features to classes.

6.1. Convolutional neural networks (CNNs)
For features extracted using the CAE, research has
shown that learned weights of the encoder can be

used to initialize CNNs’ convolution layers, which
can yield a better classification performance [67].
Therefore, in this work, we chose to use a CNN with
unsupervised pre-training as the classifier for fea-
tures extracted using CAE. CNNs can be construc-
ted by removing the decoder part and adding fully
connected layers. Specifically, we add two fully con-
nected layers and output neurons with the rectified
linear unit (ReLU) activation function. Each layer
has 200 units, and 100 units, respectively. We imple-
mented an optimizer using RMSprop with a learning
rate of 0.001. The parameters of the CNNs including
the pre-trained weights are then fine-tuned through
optimizing.

6.2. Multilayer perceptron (MLP)
For features extracted using the ESN autoencoder and
the Conv-ESN autoencoder, we choose Multilayer
Perceptron (MLP) as the classifier. MLPs have been
widely used in previous work and have shown high
performance for fNIRS data classification. MLP is
a feed-forward neural network with multiple fully-
connected layers. Similarly, we use anMLP consisting
of two hidden layers with the ReLU activation func-
tion. Each hidden layer has 200 units, and 100 units,
respectively.We also implemented an optimizer using
RMSprop with a learning rate of 0.01.

7. Classification results

We report the classification results achieved using
features extracted with CAE and the ESN autoen-
coder. Moreover, to evaluate the effectiveness of these
approaches, we also extract commonly-used hand-
crafted features from fNIRS data and compare their
results. The average values of HbR and HbO and
the slope over the whole window of all channels are
used as hand-crafted features. Specifically, the classi-
fication results of using features extracted with CAE
was achieved by fine-tuning the CNN. The classi-
fication results of using features extracted with ESN
autoencoder and hand-crafted features was achieved
by training the MLP. In addition, we compare the
classification results achieved when using only HbO,
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Table 1. Parameter optimization table for CAE.

Single-task
driving

Single-task
driving

Single-task
driving Four-classes

Depth Filter sizes Width vs. 2-back vs. 1-back vs. 0-back classification

2 7× 2, 5× 2 32, 16 71.61± 1.22 67.23± 2.03 65.80± 1.43 44.64± 1.82
2 7× 3, 5× 3 32, 16 70.25± 2.23 67.42± 1.45 63.23± 1.23 43.75± 2.06
3 7× 2, 5× 2,

3× 2
16, 16, 8 73.25± 1.59 68.75± 1.04 65.71± 1.87 47.21± 3.52

3 7× 3, 5× 3,
3× 3

16, 16, 8 71.92± 1.76 67.73± 1.66 64.67± 1.73 45.33± 2.47

4 7× 2, 5× 2,
5× 2, 3× 2

16, 16, 8, 8 70.20± 1.34 67.19± 1.59 63.08± 1.32 43.46± 2.28

4 7× 3, 5× 3,
5× 3, 3× 3

16, 16, 8, 8 68.35± 1.46 66.13± 1.86 62.33± 1.67 42.78± 2.05

Figure 6. The mean squared error loss for training and validation sets of the CAE network with the optimal architecture, when
classifying 2-back against single-task driving.

using only HbR, and using the combination of HbO
and HbR as input with different feature extraction
methods.

We use 10-fold cross-validation to evaluate
the classifiers’ performance. Moreover, for features
extracted using the ESN autoencoder, since the reser-
voir networks are randomly created, we take the
impact of reservoir’ randomness into account by
implementing each ESN 10 times according to spe-
cified parameters and comparing the results. We also
implement each CAE 10 times.

7.1. Convolutional autoencoder results
Table 1 shows the classification accuracy for differ-
entiating different cognitive load levels from fNIRS
datawith the fine-tunedCNNwith unsupervised pre-
training using the CAE. To determine the optimal
architecture for the CAE, table 1 compares the clas-
sification accuracy achieved with CAEs consisting of
different filter sizes and widths (all convolutional lay-
ers are followed by a max-pooling layer with filters of
size 2× 2). The accuracies are the mean accuracies of
10× 10 cross-validation.We can see that the architec-
ture of the CAEs can slightly affect the classification

accuracy. Specifically, when the depth is 3, and the
filter sizes are 7× 2, 5× 2, 3× 2 with a width of 16,
16, 8, we achieved the highest classification accuracy
for differentiating different cognitive load with fNIRS
data. As expected, classifying 2-back against single-
task driving achieved the best results of 73.25% accur-
acy (precision= 74.16%, recall= 68.53%, F1-score=
71.14%), while classifying 1-back and 0-back against
single-task driving achieved an accuracy of 68.75%
(precision = 70.75%, recall = 62.90%, F1-score =
66.56%) and 65.71% (precision = 69.39%, recall =
59.26%, F1-score = 63.92%), respectively. For the
four-class classification task (single-task driving vs.
zero-back vs. one-back vs. two-back), we achieved an
accuracy of 47.21% (chance accuracy 25%).

Furthermore, figure 6 shows the training loss and
validation loss for the CAE with the optimal archi-
tecture across 100 epochs for the task of classify-
ing 2-back against single-task driving. It is clear that
the validation loss and training loss were converged
at around the 80th epoch. More importantly, they
almost dropped simultaneously, indicating that the
proposed training approach allows themodel to learn
good generalization capability without overfitting.

10



J. Neural Eng. 18 (2021) 036002 R Liu et al

Figure 7. fNIRS data classification accuracy for 2-back vs. single-task driving when using ESN autoendoers for feature extraction,
with different reservoir internal connectivity. The accuracy reported represents the mean accuracy of the 10-fold cross-validation
with 10 repetitions.

7.2. Echo state network autoencoder results
Figure 7 shows the comparison results of fNIRS data
classification accuracy when using ESN autoencoders
for feature extraction, with different reservoir internal
connectivity. For simplicity, we only show the classi-
fication accuracy for differentiating 2-back vs. single-
task driving here. The accuracy reported is the mean
accuracy of 10-fold cross-validation with 10 repe-
titions, and the standard deviation of each point
reflects the variation of the accuracy caused by the
reservoir’s randomness.We can see that the reservoir’s
internal connectivity only slightly changes the clas-
sification results, with the best classification accur-
acy achieved when the connectivity is around 0.3.
Moreover, we can see that the variance of accur-
acy due to the randomness of echo state network
randomness is small (around 3.0%), which is con-
sistent with prior work [32]. As such, we can con-
clude that fNIRS data classification results based on
ESN autoencoder are robust against the reservoir’s
randomness.

Figure 8 shows the impact of the number of hid-
den neurons in ESN autoencoders on fNIRS data clas-
sification accuracies, when the internal connectivity
is set to 0.3. We can see that the classification accur-
acy first increases as the number of hidden neurons
in the ESN autoencoder increase, and then decreases.
The best classification results are achieved when the
number of hidden neurons is 200. Specifically, clas-
sifying 2-back against single-task driving achieved a
mean accuracy of 80.61% (precision= 79.08%, recall
= 81.80%, F1-score = 80.38%), while classifying 1-
back and 0-back against single-task driving achieved a
mean accuracy of 73.86% (precision= 74.16%, recall
= 72.70%, F1-score = 73.26%) and 71.28% (preci-
sion= 72.54%, recall= 67.26%, F1-score= 69.60%),

respectively. For the four-class classification task, we
achieved an accuracy of 52.45%.

7.3. Comparison results with different inputs
Table 2 shows the classification accuracy, precision,
recall, and F1-score for classifying different levels of
driver cognitive load when using hand-crafted fea-
tures, CAE, the proposed ESN autoencoder, while
using only HbO, using only HbR, and using the com-
bination ofHbO andHbR as the input. The classifica-
tion results of CAE and ESN autoencoder are the best
results achieved by these approaches through para-
meter optimization (see sections 7.1 and 7.2, respect-
ively). From table 2, we can see that, in general,
when using the CAE and the proposed ESN autoen-
coder, using the combination of HbO and HbR as
the input achieved slightly better classification results
than using only HbO or only HbR. However, when
using hand-crafted features, for classifying 2-back
against single-task driving and 0-back against single-
task driving, using only HbO as the input achieved
slightly better classification results than using only
HbR or using the combination of HbO and HbR;
while for classifying 1-back against single-task driving
and four-classes classification, using the combination
of HbO and HbR as the input achieved slightly bet-
ter classification results than using only HbO or only
HbR. These results suggest that both CAE and ESN
autoencoder can effectively extract useful informa-
tion from the combination of HbO and HbR, while
the hand-crafted features from HbO and HbR could
contain redundant information and reduce themodel
performance.

Moreover, we can see the proposed ESN autoen-
coder achieved superior classification results for
fNIRS-based driver cognitive load classification.
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Figure 8. The impact of number of hidden neurons in ESN autoencoders on fNIRS data classification accuracies, when the
internal connectivity is set to 0.3. The accuracies represent the mean accuracy of 10-fold cross-validation with 10 times repetition.

Table 2. Comparison of classification accuracy, precision, recall, and F1 score achieved by using different feature extraction methods,
while using only HbO, using only HbR, and using the combination of HbO and HbR. SD refers to the single-task driving condition.

Hand-crafted features CAE ESN autoencoder

HbO HbR HbO+HbR HbO HbR HbO+HbR HbO HbR HbO+HbR

Accuracy 64.85 63.89 62.94 71.30 69.48 73.25 78.70 77.80 80.612-back v.s SD
Precision 66.66 66.04 65.45 74.17 73.08 74.16 77.72 76.36 79.08
Recall 56.72 57.45 58.18 67.26 63.63 68.53 81.81 81.58 81.67
F1-score 61.26 61.36 61.45 70.40 67.96 71.14 79.68 78.97 80.38
Accuracy 58.31 57.40 60.21 66.57 65.75 68.75 72.21 71.30 73.86
Precision 58.99 58.24 60.45 68.40 66.80 70.75 74.70 74.16 74.82
Recall 59.93 58.18 63.63 62.18 58.54 62.90 69.07 67.26 72.70

1-back v.s SD

F1-score 59.38 58.11 61.97 65.16 62.52 66.56 71.62 70.40 73.26
Accuracy 59.26 56.49 55.58 65.08 64.84 65.71 69.48 68.52 71.28
Precision 59.22 57.48 56.72 68.71 66.36 69.39 73.08 70.74 72.54
Recall 59.99 56.36 54.54 57.44 56.72 59.26 63.63 62.90 67.26

0-back v.s SD

F1-score 59.43 56.85 55.58 62.60 61.20 63.92 67.96 66.59 69.60
Four-classes Accuracy 37.32 36.67 37.94 44.57 45.67 47.21 50.12 49.78 52.45

Specifically, compared to the highest classification
accuracy achieved using hand-crafted features, ESN
autoencoder improved the classification accuracy
by 15.76%, 12.85% and 11.17% for classifying 2-
back against single-task driving, 1-back against single-
task driving, and 0-back against single-task driving,
respectively; while the classification accuracy for
four-classes classification was improved by 14.51%.
When compare to using CAE for feature extraction,
the ESN autoencoder improved the classification
accuracy by 7.36%, 5.11% and 5.55% for classify-
ing 2-back against single-task driving, 1-back against
single-task driving, and 0-back against single-task driv-
ing, respectively; while the classification accuracy for
four-classes classification was improved by 5.24%.
Furthermore, statistical tests results on the best clas-
sification accuracy achieved by different methods
show that the ESN autoencoder outperformed CAE
for classifying 2-back against single-task driving and

1-back against single-task driving (p < 0.05, 10× 10
cross-validation with a corrected paired Student t-
test [68]), while there are no significant differences
between the classification accuracy for classifying
0-back against single-task driving and four-classes
classification. When compared to using hand-crafted
features, both CAE and ESN autoencoder achieved
significantly higher accuracy for all classification tasks
(p < 0.01, 10× 10 cross-validation with a correc-
ted paired Student t-test [68]). These results suggest
that the proposed ESN autoencoder can effectively
extract useful temporal information for fNIRS data
classification.

8. Discussion

Physiological data has shown to be useful for
measuring driver cognitive load non-intrusively and
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continuously. However, physiological data are not
always entirely reliable [7, 41].

To improve robustness, brain sensing can provide
an additional objective measure of driver cognitive
load level. In this work, we describe an advanced
machine learning framework for driver cognitive load
classification using fNIRS data. To collect an fNIRS
data set with different driver cognitive load levels,
we conducted a study in a driving simulator where
participants were asked to perform an auditory-
vocal working memory secondary-task (n-back). We
then investigate advanced machine learning meth-
ods to extract useful features from fNIRS data for
classification.

Previous research has shown the superiority of
CNNs-based approach for automatically extracting
features from fNIRS data comparing to hand-crafted
features. However, a moving window method was
often used in previous work to carefully pick a small
segment from the original data as the input. While
using themovingwindowmethod could result in bet-
ter classification accuracy, this approach ignores the
global temporal information and makes the results
over-optimistic for deploying in real-world applica-
tions. Particularly, a small segment of the fNIRS data
has limited capability to represent the cognitive pro-
cess for measuring driver cognitive load. Therefore,
we set out to investigate feature extraction methods
from a long period of fNIRS data without window
selection. Nevertheless, due to overfitting, the small
sample sizes of fNIRS datasets make it challenging
for the CNN-based method to fully extract temporal
information from a long time series data [28].

As such, in this work, we investigate the applic-
ation of both CNN-based autoencoder and RNN-
based autoencoder for extracting patterns from fNIRS
data. Specifically, we compare the classification res-
ults achieved using CAE and ESN autoencoder. CAE
learns a compressed representation of the input by
reconstructing the original input and has been widely
used inmanymachine learning problems. After unsu-
pervised training, CAE can then be used for fine-
tuning CNN in classification tasks. On the other
hand, ESN has been proven an efficient solution
for many multivariate time series data classification
problems, but it has not been explored for applying
on fNIRS data. To the best of our knowledge, this
is the first work to explore the application of ESN
autoencoder for extracting temporal patterns from
fNIRS data. Specifically, the ESN autoencoder aims
to perform one step-ahead prediction for each reser-
voir state, and learned output weights become the
features. Our results show that both CAE and ESN
autoencoder are suitable for fNIRS feature extraction,
while ESN autoencoder achieved higher classification
accuracy than CAE for fNIRS-based driver cognitive
load classification. Furthermore, since ESN autoen-
coder is an unsupervised feature extractionmethod, it

can be used in various fNIRS-basedmachine learning
problems. Apart from the higher performance, com-
pared to other RNNs, ESN is computationally effi-
cient and has a fast training speed, whichmakes it use-
ful for real-time fNIRS data classification. For future
work, we will explore the application of ESN autoen-
coder in other fNIRS data classification tasks.

Our findings have important implications for
building driver support systems that can automat-
ically measure drivers’ cognitive load. For real-time
applications, a classifier would be trained first with
features extracted from the ESN autoencoder using
labeled fNIRS data. Then, real-time fNIRS data from
the driver would be processed and fed into the ESN
autoencoder for feature extraction, which can then be
used to predict the label of real-time data by the clas-
sifier. Furthermore, the predicted driver’s cognitive
load level can enable appropriate adaptive behavior
of the in-vehicle technology and autonomy mechan-
isms, as well as adaptive user experiences. Moreover,
our proposed approach can be used together with
other non-invasive brain and body sensing techniques
to improve the accuracy of assessing drivers’ cognit-
ive load. For example, we see promise for integrat-
ing fNIRS signals and EEG signals for a more accur-
ate estimation of drivers’ cognitive load, by building a
deep ESN autoencoder that can extract both hemody-
namic features from fNIRS signals and neuronal fea-
tures from EEG signals.

9. Conclusion

In this paper, we investigated feature extraction
methods for classifying driver cognitive load using
fNIRS. The proposed ESN autoencoder can effect-
ively extract temporal patterns from fNIRS data,
and enables more accurate classification of driver
cognitive load. This work builds a foundation for
using fNIRS to measure driver cognitive load in real-
world applications. Furthermore, the proposed ESN
autoencoder method can be useful for other fNIRS-
based machine learning tasks.
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