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ARTICLE INFO ABSTRACT

Keywords: Adequate rebar-concrete bonding is crucial to ensure the reliable performance of reinforced concrete (RC)

Reinforced concrete structures. Many factors such as the concrete properties, concrete cover depth, transverse reinforcement, and the

2"“‘1 . presence of corrosion will affect the bond behavior, and consequently, the structural performance. While many
0orrosion

prior studies have focused on the influence of the aforementioned factors on the bond strength, the impact of
these factors on the bond failure mode has not been thoroughly investigated. A probabilistic bond failure mode
prediction model that considers various influencing factors including loading type and corrosion is developed in
this study. This study uses the bond testing results of 132 beam-end specimens subjected to monotonic and cyclic
loading and adopts classification methods to develop the prediction model, which is then used to evaluate the

Probabilistic models
Failure mode
Classification methods
Reliability

impact of bond behavior on the reliability of a RC beam with a lap splice.

1. Introduction

Reinforced concrete (RC) is a widely used construction material for
civil structures like bridges [1,2], buildings [3], and dams [4]. As the
bond between rebar and concrete (i.e., rebar—concrete interaction) is
meant to ensure the transformation of force between the rebar and
concrete, bond behavior directly impacts the structure load-carrying
capacity and failure mode. This bond is known to be influenced by
many factors such as the concrete properties, transverse reinforcement,
the ratio of concrete cover to rebar size, loading type, and rebar corro-
sion. Many researchers have studied how those influencing factors affect
the bond strength, through which impact structural performance
[5-13].

Another aspect of bond behavior that is also crucial for determining
the performance of RC structures is the bond failure mode. Based on ACI
[14], there are two distinguished bond failure mode: pull-out and
splitting failure. Pull-out bond failure occurs when there is sufficient
confinement and/or concrete cover to prevent concrete splitting and
restrain crack growth, resulting in the shearing of concrete between ribs.
Splitting failure occurs when confinement or cover is not provided
adequately to achieve the complete pull-out strength. In splitting failure,
the deformation-bearing forces cause splitting that spreads through the
sides of the member and makes the concrete to lose its bonding and
cover.

In contrast to bond strength, the bond failure mode has not been well
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studied, especially in the presence of corrosion and/or under cyclic
loading. Both ACI [14] criteria and CEB [15] use bar size, concrete
cover, and confinement of transverse stirrups to determine the bond
failure mode. Cucchiara et al. [16] and Zandi Hanjari et al. [17]
examined the impact of the existence of the stirrups on the failure mode.
Kivell [5] observed that specimens with high levels of corrosion (more
than 12%) or under cyclic loading have more tendency to fail in pull-out.
Soraghi and Huang [7] developed models for predicting the bond failure
mode using logistic and lasso classification algorithms to consider
various influence factors including the presence of transverse stirrups,
cover to rebar diameter ratio, the level of corrosion, and the loading
type.

This study develops probabilistic prediction models of bond failure
mode based on classification methods and examines the importance of
bond failure mode prediction in the structure performance evaluation.
The model development uses the results from a comprehensive experi-
mental testing where various influencing factors are considered,
including compressive strength of concrete, ratio of concrete cover to
rebar diameter ratio, confinement of transverse stirrups, corrosion level,
and loading type.

In this paper, the bond tests conducted on a set of beam-end speci-
mens are described first, next the probabilistic models based on various
classification methods are developed, and then the prediction accuracy
of the models is compared. Lastly, a case study is presented using the
developed bond failure mode prediction model to examine how the
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Table 1
Summary of design parameters of testing specimens.
Group  f.(MPa) No. of specimens (Imperial rebar No. of specimens No. of intact specimens  Corroded specimens w/ c/d Ky
size) (Loading type*) corrosion, Q (%)
Target  Actual Target  Actual
1 25 27 16 (#5) 16 (#6) 12 (#8) 18 (M) 26 (O) 12 5-20 3.2-15.6 1.3-4.8 0 or 3.6-5.8
2 35 36 16 (#5) 16 (#6) 12 (#8) 22 (M) 22 (O) 5-15 4.93-19.0 7.3-11.7
3 45 43 16 (#5) 16 (#6) 12 (#8) 22 (M) 22 (C) 6 5-15 3.74-16.8 7.3-11.7

) Monotonic, and (C) cyclic.
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Fig. 1. Beam-end specimens: (a) schematic design and (b) as-casted beam-end specimen.

bond impacts the flexural performance of an RC beam with a lap splice
under various corrosion levels based on the reliability analysis.

2. Experimental program
2.1. Specimen design and details

A set of beam-end specimens are designed to investigate the intact
and corroded rebar bond behavior under monotonic and cyclic loading.
The design of the specimens are based on four parameters that found to
be influencing bond behavior according to the findings of previous
studies (e.g., [7,13,18,19]) and they are: concrete compressive strength
(fc), cover size to rebar diameter ratio (c/d), corrosion level (Q), and
transverse rebar confinement that can be quantified by an index value,
Ky [20], as shown below:

f;\tr'Arr

K, =—22rr 1
" 4136.85-dy-s M

where f,, i is the yield strength of transverse reinforcement (kN/m?), A,
is the transverse reinforcement area (mz), dp is the diameter of intact
rebar (m), and s is the spacing of the transverse reinforcement (m). The
detailed specification for each specimen is provided in Tables A1-A3 in
Appendix A. Table 1 summarizes the ranges of the design parameters.
The specimens are classified into three groups (as shown in Table 1)
based on the three designated concrete compressive strength levels: 25
MPa, 35 MPa, and 45 MPa (corresponding to measured averages of 27
MPa, 36 MPa, and 43 MPa, respectively, obtained in the cylinder tests).
Each of the three groups consists of 44 beam-end specimens; thus, 132
specimens are tested. The level of corrosion, Q, is the percentage of mass
reduction of the reinforcement in the bonded region. Group 1 consists of
22 corroded specimens with the designed Q ranging from 5% to 20%
(corresponding to measured Q of 3.2% to 15.6% after load testing was
completed) and 12 intact specimens (Q = 0%). Group 2 consists of 38
corroded specimens with the designed Q ranging from 5% to 15%
(corresponding to measured Q of 4.93% to 19.08% after testing was
completed) and 6 intact specimens. Group 3 also consists of 38 corroded
specimens with designed Q ranging from 5% to 15% (corresponding to

measured Q of 3.74% to 16.85% after load testing was completed) and 6
intact specimens.

Specimens in each group use three sizes of reinforcement bars: #5
bars (dp = 15.875 mm), #6 bars (d, = 19.05 mm), and #8 bars (d, =
25.4 mm). Among the 44 specimens in Group 1, 22 have transverse
stirrups with K values ranging from 3.68 to 5.89, and the remaining 22
specimens have no transverse stirrups (i.e., K, = 0). All specimens in
Groups 2 and 3 have transverse stirrups to increase the chance of pull-
out failure, with K, values ranging from 7.3 to 11.7. For loading type,
in Group 1, 18 of the specimens are tested under monotonic loading,
while 26 specimens are tested under cyclic loading; in groups 2 and 3, 22
specimens in each group have monotonic loading and the other 22
specimens have cyclic loading.

Dimensions and reinforcement detailing for the designed beam-end
specimens are shown in Fig. 1(a), and Fig. 1(b) shows an actual casted
beam-end specimen. All specimens are 508 mm x 381 mm x 190.5 mm.
All transverse, parallel, and longitudinal reinforcements are #3 rebar
with a diameter of 76.2 mm. All the reinforcements are coated with
epoxy to prevent corrosion except for the test bar. The test bar is covered
by PVC pipes at the two ends within the concrete. The middle bonded
region of the test bar that is not covered by PVC pipe has a bonded
length, Iy, as shown in Fig. 1(a), and I, = 88.9 mm, 114.3 mm, and 152.4
mm are adopted for the specimens with rebar sizes of #5, #6, and #8,
respectively. These bonded lengths are chosen to prevent rebar tensile
yielding prior to bond failure, to ensure a relatively uniform distribution
of bond stress [13], and prevent conical failure of the specimens [21].
The yield strength, Fy, and ultimate strength, F,, of rebar are 420 MPa
and 600 MPa, respectively, regardless of the rebar size.

To accelerate corrosion on the test bar, sodium chloride (NaCl) was
added to the concrete before it was poured into the specimen molds. The
amount of salt (NaCl) in the concrete is calculated based on 3.75%
weight of cement as is suggested by previous researchers [22,23] to
achieve accelerated corrosion.

2.2. Corrosion process

Accelerated corrosion is achieved by applying current to the test bar.
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Fig. 2. Schematic view of (a) humidity tents and (b) corrosion setup.
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Fig. 3. (a) Boundary conditions of testing specimen; (b) 3D rendering view of test setup; (c) testing frame, (d) laboratory test setup.

The designed corrosion level can be calculated as:

_AM

= x 100%
7:ly-Apo ‘

(2)

where AM (grams) is the change in mass of the rebar due to corrosion; y
= 7.86 gr/cm® is the density of iron, I is the corroded length (or bond
length), and Apg refers to the intact cross-sectional area of rebar. With a
desired level of Q, AM can be estimated based on Eq. (2). Then the
accelerated corrosion time, T, during which the current needs to be
applied can be calculated to achieve the desired corrosion level based on
Faraday’s law [24]:

_AM-ZF

== 3)

where A = 56 g referring to the atomic weight of iron; I is current (Amp);
Z = 2 is the valency number of ions of the substance, Fe, and F = 96500
(Amp-sec), which is referred to as Faraday’s constant.

After casting, the specimens are cured with sufficient humidity [25].
In this study, all specimens are kept in the designed humidity tents
(schematically shown in Fig. 2(a)) for curing as well as corroding. The
corrosion setup (schematically shown in Fig. 2(b)) is designed to allow
power supplies to be connected to the specimens to supply the required
current for accelerating corrosion while keeping the specimens in the
humidity tents. The corrosion setup uses a parallel circuit system where
the rebar serves as the anode, while a stainless steel plate that was
located underneath the specimen (mostly underneath the bonded re-
gion) acts as the cathode [26]. The parallel system allows specimen(s) to
be removed without stopping the current that runs through the other
specimens, and such a setup is necessary, as each specimen is designed
for different corrosion levels and requires a different corrosion time. In

addition, the parallel system allows the use of power supplies with lower
voltage compared to a setup using a series circuit system.

2.3. Test setup

Monotonic and cyclic testing are performed to study the corrosion
impact on bond behavior. Utilizing the testing frame that is securely
mounted on a rigid floor in the testing lab, a vertical test setup is
designed for this study based on ASTM A944-10 and a previous study by
Bandelt and Billington [27] where the applied loading on beam-end
specimens is in a vertical direction as well. Fig. 3(a) and 3(b) are a
schematic of the setup that shows the boundary conditions and a 3D-
rendering view of the setup, respectively. It should be noted that the
roller/pin supports were provided at six locations, where three supports
react (shown in solid arrows) when the rebar is under tension and the
other three supports react (shown in dashed arrows) when the rebar is
under compression, as shown in Fig. 3(a). Fig. 3(c) and (d) show the
testing frame and the laboratory test setup, respectively.

A 245-kN actuator is secured to the testing frame in a vertical posi-
tion; a threaded rod is welded to the test bar and the specimen connects
to the actuator through a special connection designed particularly for
this test. Rebar slippage is measured according to ASTM standard A944-
10 [28] using linear variable differential transducers (LVDTs) at the
free-end of the specimen. The LVDTs are mounted on the bottom of the
concrete as shown in Fig. 3(a) such that the slippage of the rebar relative
to the bottom of the concrete could be measured.

To accomplish the testing, it is necessary to first determine the
loading procedure and loading rate. ASTM standard 944-10 [28] spec-
ifies that a loading rate between 10% and 33% of the predicted rupture
force be reached within one minute. However, this rate is too fast to
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Fig. 4. (a) Actuator force and displacement diagram under monotonic loading
and (b) cyclic loading protocol.

allow recording the critical points during the failure process, particu-
larly the point at which the rupture force occurs (i.e., the bond strength
is achieved). Thus, the loading rate is recalculated in such a way that the
rupture force will not occur in less than three minutes. Accordingly, all
monotonic specimens are tested in displacement-control with a rate
equal to 0.005 mm/sec (that is, 1.3 mm per 3 min). Fig. 4(a) shows an
actuator force-displacement diagram under monotonic loading, where
F, is the rupture force and A, is the displacement of the actuator at
rupture.

As ASTM standard 944-10 does not specify the cyclic loading pro-
cedure for bond testing, the procedure used in Kivell [5] is adopted in
this study. Fig. 4(b) shows the adopted cyclic loading protocol consists of
three sets of cycles, where F, and A, are extracted from the corre-
sponding monotonic curve (Fig. 4(a)).

90
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In the cyclic loading, the first set of cycles are force-controlled with a
maximum force of 0.5F;; the other two sets of cycles are displacement-
controlled with maximum displacements of 1.0A, and 1.5A,, respec-
tively. The first set is mainly used for weakening the bond, while the
second and third sets of cycles are designed to break the bond and
capture the behavior after exceeding the bond strength. For the force-
controlled cycles, the loading rate is 10%F, ~ 33%F; per minute; for
the displacement-controlled cycles, the displacement rate is 10%A, ~
33%A, per minute.

2.4. Experimental results and discussion

After testing is complete, the monotonic and cyclic bond behaviors of
all specimens are obtained. The work presented in this paper focuses on
the prediction of the failure modes; the study on the other bond char-
acteristics (e.g., bond strength) will be presented in future papers. Two
distinct failure modes, pull-out and splitting failure are observed, and
the failure modes for each specimen are summarized in Table A1-A3 in
Appendix A, where failure mode “P” refers to the pull-out failure and “S”
is the splitting failure. However, there were 12 specimens whose failure
modes were not distinguishable due to various reasons (e.g., the actuator
reached its force capacity before the bond failure occurred); these
specimens are marked as “NA” in failure mode. Fig. 5 shows the typical
actuator force-displacement diagrams under monotonic or cyclic
loading with splitting or pull-out failure modes. A common feature of
splitting failure under either monotonic or cyclic loading is the sudden
drop in force when the specimen reaches its rupture force, followed by
observing large surface and/or sides cracks on the specimen.

In addition, different crack patterns are observed for the two failure
modes. Fig. 6 shows typical crack patterns for pull-out and splitting
failure modes, and Fig. 7 presents a schematic view of crack patterns for
each mode of failure. Generally, with splitting failure, not only the
surface of the specimen is crushed, but at least one crack is initiated from
the testing rebar as shown in Fig. 7(a). This is because such surface
cracks are propagated from the radial splitting of the concrete due to the
wedge action of the test bar ribs when the bond fails in splitting. How-
ever, with pull-out failure, the cracks do not initiate from the testing
rebar (as shown in Fig. 7(b)), as there is sufficient confinement to
restrain the concrete surrounding the rebar from splitting. Darwin and
Graham [21] also found that splitting failure (which was the only failure
mode observed in their specimens) have some crack patterns based on
the presence of transverse stirrups as well as on the cover size, which is
consistent with the splitting mode cracking patterns observed in this
study. Thus, identifying the cracking pattern could help to determine the
failure mode.

3. Probabilistic prediction model for bond failure mode

In this section, existing deterministic models for bond failure mode
and various classification algorithms are reviewed. The logistic and lasso
classification algorithms used in the model development are described,
and the performances of the various prediction models are compared

Force (KN)
Force (KN)

-6 -4 -2 0 2 4 6 -25 125 0 125 25
Displacement (mm) Displacement (mm)

(© (d)

Fig. 5. Typical actuator force-displacement (a) under monotonic loading with pull-out failure, (b) under monotonic loading with splitting failure, (c) under cyclic

loading with pull-out failure, and (d) under cyclic loading with splitting failure.
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Fig. 6. A typical cracking pattern for (a) splitting failure mode and (b) pull-out failure mode.

(@)

O O
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Fig. 7. Schematic view of crack patterns formed on the test specimens after failure: (a) splitting failure mode and (b) pull-out failure mode.

based on the experimental data.

3.1. Existing deterministic models

In the literature, very few models are available for predicting RC
bond failure modes. Iflet Y =1 and Y = 0 represent pull-out and splitting
bond failure, respectively, the prediction by CEB criteria can be written
as [15]:

Y — { 1 C?Sd}, ( 4a)
0 Couar/Cnin = 2.0 & iy = dy & dp<20 mm & Kyrcpn = 2%

where cipax = max{cy,Csi} and cpin = min{cy,cy,csi}, in which ¢, and ¢y are
the concrete cover toward the horizontal and vertical edges, respec-
tively, and cy; is the half of the center-to-center test bar spacing (if more
than one test bar is implemented); Ky cgg = Ay/(np-dp-s), in which nb is

the number of anchored test bars. However, it is obvious that conditions
for splitting failure (i.e., cmax/Cmin = 2.0, ¢min = dp and Ky, cgg = 2%) are
very strict, which makes these CEB criteria almost inapplicable. Thus,
instead of using the CEB criteria literally, the “equal” sign in the ex-
pressions may be interpreted to be “no larger than”, and the logical
operator between the expressions be interpreted to be “or”, rather than
“and”. Also, for the cases that do not satisfy both pull-out and splitting
conditions of the CEB criteria, the prediction can be treated as “un-
known”. Thus, the CEB criteria is interpreted as follows in this study:

1 c=5d,
0 Comax [ Cnin<2.0 OF Cpin<dp, o1 dp<20mm or K, cpp <2%
unknown otherwise

Y= (4b)

Meanwhile, ACI [29] uses the following criteria for the bond failure
mode prediction:
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0(c+Kiaci/dy) <25 (5)

|

where Ky ac1 = Ag-fy,o/(1500-5-1).

The two prediction models shown above are deterministic based;
thus, uncertainty is not considered. More importantly, these two models
do not holistically consider all the parameters that might influence the
bond failure mode, such as corrosion and loading types.

3.2. Classification algorithms

Supervised machine learning techniques (i.e. regression and classi-
fication) are extensively implemented in engineering purposes for
response estimation. Whilst the regression algorithm is appropriate for
continuous response prediction, the classification algorithm is suitable
for categorical responses such as failure modes [30]. In this study,
classification methods are used to develop probabilistic models based on
all the influencing parameters. In the following, a brief description of the
classification algorithms of logistic and lasso classification is described,
and other classification algorithms adopted in this research is provided
in Appendix B.

3.2.1. Logistic classification

The logistic classification algorithm evaluates the relationship be-
tween independent variables and dependent variables (i.e., categorical
response) using a logistic function. The binary response, Y, refers to the
bond failure mode and is defined as the same as before: Y = 1 for pull-out
and Y = O for splitting. The formulation for logistic classification to
estimate the probability of pull-out failure is shown as:

1) = _@PE) _ewlfot+ 30 Sx)
I+exp(z) 1+ep(By+ i Bxi)

Pr(Y = ©)

where x = {x;}, in which x; are the independent variables selected, m is
the number of independent variables used, and fy and {f;} are the co-
efficients for logistic classification that can be obtained using the
maximum likelihood technique [31] through a likelihood function as:

1B) =D (B"S; — log[1 +exp () ]) @

J=1

where the subscript j refers to the jth observation data, x; = {1 x}T, and B
={pop1 P2 ... ﬂm}T. As Y is a binary variable, then P(Y =0|x) =1 - P (Y
= 1|x). It should be noted that the deviance of the fitted model is pro-
portional to —log[l(f)]; accordingly, by maximizing () for the f eval-
uation, the deviance will be minimized.

3.2.2. Lasso classification
While the lasso classification uses the same formulation (shown in

Eq. (6)) as the logistic algorithm, the way to evaluate the model pa-
rameters is different. Lasso classification requires a constraint on the
coefficients in the maximum likelihood evaluation, which can be
expressed as:

<le3ij —in[l+exp(xB)] =2 18] )
=0

N

18) =

=

(8

where 1 is a penalty factor also known as the constraint. Lasso classifi-
cation stabilizes a system by applying a cost of the sum of absolute
values of the coefficients. This is called sparse regularization to constrain
over-fitting and is conducted using the lassoglm function in MATLAB by
which the deviance will be minimized in order to estimate the model
parameters in Eq. (8). Lasso classification is a more desirable technique
when working with a relatively small size of data, or when there is a
correlation between independent variables [32], and lasso’s strength is
to reduce the fitted model deviance without substantially increasing the
prediction bias.

3.3. Model development

From an engineering perspective, logistic and lasso classification are
capable of providing explicit formulations. For this reason, both
methods are used in developing the probabilistic model. Other methods,
including the two deterministic models and other classification algo-
rithms (i.e., decision tree, discriminant analysis, K-nearest neighbors,
Naive-Bayes, random forest, and support vector machine) that are
described in Appendix B, will be assessed in terms of their model pre-
diction accuracy.

3.3.1. Independent variables selected for the models

To develop the failure mode prediction models based on Eq. (6), a
preliminary analysis needs to be performed first to select the potential
variable x; [33]. Next, a model selection procedure is used to delete the
independent variables that are not contributing significantly to the
model prediction.

In this study, the variables showing the potential impacts on the
failure mode (Y) are: f, c/d, Ky, Q, and MC, where MC is a dummy
variable defined as:

we—{

In addition, the linear interactions among these five variables are
also examined via scatter plots. As an example, Fig. 8(a) and 8(b) show
the scatter plots of K and c/d versus the actual response y, respectively;
and Fig. 8(c) shows the interaction term, Ky-c/d, versus y with a fitted
logistic curve. These three plots in Fig. 8 show that although the indi-
vidual variables might not contribute to the failure mode prediction,

1 monotonic loading

2 cyclic loading ©®
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Table 2
Potential variables used for model development.
Term types Xi
Single fe c/d K Q MC
variable
Interaction of Ky-c/d Ke+Q Kef ¢ K,MC c¢/d-Q
2 variables c¢/d-MC c/df . Q-MC Qf. MCf.
Interaction of Ky-c/d-Q K., Q-MC Kyc/ Ky-c/df . Ko Qf ¢
3 variables d-MC
KyMCf . c/ c/d-Qf ¢ ¢/d-MC-f . QMCf .
d-Q-MC
Interaction of Kgy-c/ K¢/ Kgc/ Ky-Q-MCf ¢ c/
4 variables d-Q-MC d-Qf. d-MCf. d-Q-MCf.
Interaction of Kyc/d-Q-MCf .

5 variables

Table 3
Four possible prediction outcomes.

Failure mode Predicted to be pull-out Predicted to be splitting

Pull-out True positive False negative
Y=1 (TP) (FN)

Splitting False positive True negative
(Y=0) (FP) (TN)

their interaction might. Table 2 lists all the potential variables, x;, used
in Eq. (6) for the model development using logistic and lasso
classification.

3.3.2. Model prediction accuracy
Different quantities are adopted to measure the performance of the
developed models, such as the mean absolute error of prediction, MAE:

MAE:Zi:J‘ZA'*)'il:Z,:nlM‘ 10)

where y, is the prediction, y; is the true value, and n is the number of data
points. Another way to measure prediction accuracy is the hit-or-miss
approach. Using the prediction probability formula from Eq. (6) and
opting a threshold level of a (that is set to be 50% in this study), then P
(Y = 1|x) > «a indicates a pull-out failure and P(Y = 1|x) < a indicates a
splitting failure. Accordingly, based on the correct or wrong prediction
of the failure mode, there are four possible outcomes as shown in
Table 3: true positive (TP) and true negative (TN) as the correct de-
tections, and false positive (FP) and false negative (FN) as the false de-
tections. Then the probability of correct detection, P¢p, as a measure of
model prediction accuracy, can be calculated using the number of TP
tests (np), the number of TN tests (nry), and the total number of tests
(NsotaD):

Pep = nrp F My an
Noral
Similar measurements can be used for pull-out and splitting failure

mode, separately, as follows:

Table 5

Logistic model coefficients.
Model coefficients o £ o P

(Intercept) (c/d-Q) (crd-f) (QMC-f.)
Mean —3.46 —4.00 +0.031 0.65
Standard deviation 0.81 1.62 0.008 0.14
Coefficient of variation -0.23 —0.40 0.25 0.21
niN nry
PCD.sphllmg = = (13)

ngy +NEN Aplireing

3.3.3. Model selection

When using all the 31 variables (listed in Table 2) in Eq. (6), the
model is considered as a full model with a model size of 31. For logistic
classification, a model selection is performed to the full model to remove
the variables with insignificant contributions to the model prediction. In
particular, the all possible subset approach [34] is adopted in which all
potential combinations of x; are first formulated for every reduced model
size (ranging from 1 to 30), which will result in more than two billion
possible models. To keep the model practical, the maximum model size
is capped at four (i.e., four variables in a model), which also greatly
reduces the computational time. Accordingly, all subsets with model size
of five and above are excluded.

In addition, the models with any model parameters having p-values
greater than 10% and variance inflation factors (VIFs) greater than 10
are treated as invalid and are eliminated. Statistical measurements such
as R-squared (R-sq), adjusted R-squared (Adj-R-sq), and Akaike infor-
mation criterion (AIC) are then used for each model size to evaluate the
performance of models.

Models with the highest R-sq and Adj-R-sq or the lowest AIC are the
most favorable model for a specific model size. The most favorable
models from each subset are then compared to determine the final
model. It is noted that different statistical measurements (Adj-R-sq, R-sq,
and AIC) may result in a different best model.

The most desirable models for various model sizes are shown in
Table 4. MAE and Pcp are also calculated to compare the performance of
those models. It can be observed that the model with a model size of 4
has improved accuracy regarding R-sq and Adj-R-sq; the model with a
model size of 3 has the same accuracy in terms of MAE and slightly
improved accuracy regarding Pcp. Thus, the smaller model size is
preferred, and z in Eq. (6) for logistic regression is written as:

2= Py+pi(c/d-Q)+ B, (f.-c/d) + By (Q-MC.) 14

The statistics of the model coefficients in Eq. (14) are summarized in
Table 5.

The method of cross-validation is used to train and validate the lasso
model. Cross-validation method divides train set into m folds (10 folds is
used in this research), then the model parameters are evaluated through
a subsequence manner for various penalty factor values (1), meaning
that in the sparse regularization the independent variables having a
corresponding coefficient of zero are eliminated for a given penalty
factor value. Hence there will be a subsequence of models having

Pepomito — ngp  Ngp (12) different model sizes associated with the continuance of the penalty
°D.pull—out — —  __—  — . . .
” nrp +npp Npyii—ow factor value. The model with the minimum average deviance plus one
standard deviation is suggested to be the final model [32], since this

and model will balance the prediction that is measured by deviance as
Table 4
Statistics summary for the top three logistic classification models for each model size.

Model size Independent variables R-sq (%) Adj-R-sq (%) AIC MAE Pcp (%)

1 c/d-MCSf. 21 20 13.4 0.48 66

2 c/df . MCf. 30 27 124.8 0.42 75

3 c/d-Q c/d-f QMCf. 32 30 123.3 0.33 79

4 MC c/df! K Q-MC QMcCf/ 35.2 32 122.5 0.33 78
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Table 6
Lasso model coefficients.
Model coefficients Po $1 o B3
(Intercept) MCfo) (c/df D) (QMCf.)
Mean —-4.5 0.049 0.014 0.0194
Standard deviation 0.26 0.003 0.001 0.019
Coefficient of variation —0.06 0.06 0.08 0.97

opposed to false discovery.

Since the method of cross-validation randomly divides data, there is
a possibility that each analysis leads to a different result. Thus, the an-
alyses are performed multiple times on the total dataset (100 times in
this study). The variables selected at the end of each analysis that appear
most frequently among all the repetition is the one selected as the final
term. As the result of the multiple analyses conducted in this study, four
terms appear most frequently: three terms (i.e., ¢/d-f ., MC-f ., Q-MC-f )
appear in all analyses, and one term (i.e., K-c/d-f ¢) appear in half of the
analyses. However, when using all these four terms, the accuracy of the
resulting model was found to be lower than that for a model using only
three terms (i.e., ¢/d-f ¢, MC-f ¢, Q- MC-f); thus, Ki-c/d-f ., is excluded.
Accordingly, based on lasso classification, z in Eq. (6) can be written as:

z=py+5h (C/dﬂ) +ﬁ2(MCﬂ) +ﬁ3(Q~MC-f;)

The estimated model coefficients in Eq. (15) are provided in Table 6.

(15)
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3.4. Model comparison

Using either logistic or lasso classification, both Eq. (14) and Eq. (15)
suggest that four independent variables contribute to the failure mode
prediction: f, ¢/d, Q, and MC. It is worthy to understand how these four
variables contribute to the bond failure mode. Recall that splitting bond
failure involves the radial splitting of the concrete cover by the wedge
action of the bar ribs, while pull-out bond failure mainly involves the
shearing of the bar against the surrounding concrete. As concrete
compressive strength, f, is directly correlated to concrete tensile
splitting resistance and shearing cracking resistance, it is not surprising
that f, is selected in the proposed formulation. Cover to rebar diameter
ratio, ¢/d, was found in many previous literature as an important factor
to affect failure mode [35-38], as it measures the confinement around
the test bars that could help effectively prevent the splitting cracking in
concrete.

The impact of corrosion of rebar, Q, on the bond failure mode, on the
other hand, changes the failure mode by changing the interactive effect
of ribs and concrete. The produced layer of rust (i.e., steel oxidizes)
within the gap between rebar and concrete could act as a lubricant and
thus alter the failure mode, mostly from splitting to pull-out [5,6].
Lastly, the loading type of the specimen, monotonic and cyclic, MC, was
also found to be a contributing factor in the response of the bond
behavior. This is because the cycles in cyclic loading can weaken the
bond on each cycle before rupture without causing extensive splitting
cracks in concrete [35], which leads to the bond failing in a pull-out
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Table 7
Predictive accuracy of various prediction methods.
Prediction Pcp puit- Pcp,splitting Pcp MAE
method out (%) (%) (%)
Deterministic CEB [15] 35 59 47 0.72
methods ACI-318 [44] 41 58 49 0.75
Classification Logistic 69 84 78 0.34
methods Lasso 65 90 80 0.31
Decision Tree 81 90 85 0.35
Discriminant 69 88 79 0.36
k-nearest 56 91 63 0.4
Naive Bayes 77 76 76 0.38
Random forest 94 75 80 0.33
Support vector 86 74 78 0.4
machine
fashion.

In addition, when comparing the selected terms in the logistic and
lasso model formulations, it was found that they both include two terms
(c/d-f. and Q-MC-f ) and have a negative intercept . Note that both
models do not select any terms that include K. This finding shows that
within the ranges of K considered in this study, the transverse stirrup
does not influence the failure mode prediction. This is consistent with
the findings from Lin et al. [39]. In addition, Soraghi and Huang [7] also
found that the presence of a higher amount of transverse stirrups will not
necessarily lead to pull-out failure.

Fig. 9 shows the comparison for the sensitivity of the two models to
three parameters: Q, f, and ¢/d under monotonic or cyclic loading. For
all three parameters, both models show the same trend: the model
prediction for the model under cyclic loading is more sensitive to the x-
axis quantity than the one under monotonic loading, which is in
agreement with the finding of Kivell et al. [5]. In addition, Fig. 9 in-
dicates that with an increase in Q, f', or ¢/d, the probability of the failure
being pull-out increases; the result regarding corrosion is also consistent
with the previous finding from Kivell et al. [5]. However, under cyclic
loading, the lasso model is found to be more sensitive than the logistic
model with respect to Q (Fig. 9(a)) and f. (Fig. 9(b)). Under monotonic
loading, the logistic model is found to be more sensitive than the lasso
model with respect to f. (Fig. 9(b)) and c¢/d loading (Fig. 9(c)).

Fig. 10 shows a comparison for the predicted probabilities for the
specimens based on the developed logistic model (denoted as ‘0’) and
the lasso model (denoted as “*”). For probability prediction, if pull-out
failure and splitting failure (shown in Fig. 10(a) and 10(b), respec-
tively), the probability value of the y-axis is closer to one, yielding a
better prediction. Overall, for most cases, the predictions from both
models are fairly close, and both models provide better predictions for
the splitting failure specimens. At lower corrosion levels (less than 10%),
the prediction discrepancy between the predictions from the two models
seems to be smaller, especially for the splitting failure mode.
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Next, the prediction performance of the probabilistic models based
on logistic and lasso classification is compared with other methods of
classification and the two deterministic models in terms of MAE, Pcp,
Pcp pult-our, and Pcp spiirring: Note that to calculate Pcp for the deterministic
criteria of CEB (Eq. (4)), Eq. (11) does not consider the cases if the
criteria indicate unknown. Thus, to calculate Pcp, a 50% of correct
detection (i.e. reflecting a random guess) is assigned for the unknown
cases. The prediction accuracy comparison is summarized in Table 7. It
can be seen that the deterministic models (i.e., CEB and ACI-318) have
much lower P¢p values and higher MAE values compared to the classi-
fication methods, indicating a poor prediction capability. On the other
hand, the performance of all the classification methods is reasonably
close. While the accuracies of the logistic and lasso models are not
among the highest in terms of Pcp puii.ous, they both perform fairly well in
terms of Pcp,spiitting. and Pcp. In addition, the lasso classification performs
best in terms of MAE.

As mentioned earlier, classification techniques other than logistic
and lasso classification do not result in an explicit formulation. Thus, the
logistic and lasso models are still preferred, considering their compa-
rable performance to other classification techniques. In addition, as the
lasso model shows better accuracy than the logistic model in terms of
MAE and Pcp, the model based on lasso classification is suggested to be
used for the failure mode prediction.

4. Case study

Corrosion of steel reinforcement is one of the main deterioration
mechanisms in RC structure performance, as it changes the material
properties and weakens the bonding between rebar and concrete. Such
deterioration can lead to insufficient rebar development length and,
thus, can alter the performance and failure mode of the structure
[6,40-42]. Since the investigation has shown that corrosion of rebar
may change the bond failure mode as shown in the developed proba-
bilistic models, it is worth attempting to evaluate the impact of corrosion
on the structural performance.

In the literature, four-point testing is typically adopted by re-
searchers to study rebar-concrete bond behavior. In this study, an RC
beam with a lap splice studied by Abdel-Kareem et al. [43] is adopted to
investigate how corrosion might impact the reliability of the beam
flexural performance under a four-point lording through its impact on
the bond failure mode. The geometry and reinforcement detailing of this
beam are shown in Fig. 11. The support-to-support length of the beam is
3000 mm. Transverse stirrups with 100 mm spacing and a diameter of 8
mm are provided along the beam to avoid shear failure. As shown in
Fig. 11, the lap-spliced rebar is distributed along with the constant
moment region. The lap splice [ is calculated using ACI 318 [44],
resulting in i = 542 mm. The related equations for calculating [; are
provided in Appendix C. In addition, the concrete compressive strength,
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Fig. 11. Cross-section and longitudinal detailing of the beam (dimensions are in mm) [43].
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Fig. 12. Adopted bond-slip curve based on CEB for (a) pull-out failure mode and (b) splitting failure mode [15].

f¢, is assumed to be 40 MPa.

In order to incorporate the stress-slip bond behavior, the nonlinear
load-deflection behavior of the RC beams is obtained through an
analytical procedure proposed by Sajedi and Huang [45]. This analytical
procedure can be applied to lap-spliced beams or beams without lap
splice, taking into account the effects of corrosion on the diameter of the
reinforcements, the yield strength of bars, and the stress-slip bond
behavior at the rebar-concrete interface. This procedure utilizes the
extension of steel reinforcement between flexural cracks that considers
the bond-slip behavior at the rebar-concrete interface to estimate the
nonlinear force-displacement of RC beams. The detailed information
about this procedure is summarized in Appendix D. Next, the analytical
procedure is embedded in the first-order reliability analysis (FORM) to
obtain the probability of failure.

The bond behavior under pull-out or splitting failure used in the
analytical procedure is based upon the stress-slip curve in the CEB code
[15], where bond stress, 7, between rebar and concrete is determined as
a function of relative slippage, s, as illustrated in Fig. 12, where 7, is the
maximum bond stress (i.e., bond strength) and s; is the slippage when ¢
= 7. It is worth to note that the prediction performance of the CEB
criteria for bond failure mode is not very good at all as shown in Table 9,
but the CEB bond stress-slip model formula has been widely accepted
and validated by many previous literature [46-52], and this stress-slip
formula shown in Fig. 12 is consequently adopted in this research.

To consider the effect of corrosion, the bond strength is calculated
using a model previously developed by Sajedi and Huang [13], as shown
in Eq. (D.2) in Appendix D. Since Eq. (D.2) is developed based on the
specimens that failed in splitting failure modes, it can be used for
assessing bond strength under splitting failure, 7,5 not for bond
strength under pull-out failure, 7. By utilizing the ratio of the bond
strength for pull-out failure (i.e., 8.0(f./20)%2%) to the bond strength for
splitting failure (i.e., 2.57>°) as suggested by CEB [15], 5 = 8.0(f/
20)0'25/(2.5)"2'5), one can set Tpp = 1-Tm,s.

4.1. Flexural behavior

Four levels of corrosion are studied and compared: 0% (intact beam),
5%, 10%, and 15%. First, the flexural behaviors for the intact and
corroded RC beams under four-point loading are compared through
deterministic analyses that consider the bond pull-out behavior and
splitting behavior separately. Three criteria are used to stop the analysis
as a flexural failure: the first criterion is when the ultimate bond stress,
7,, becomes larger than the bond strength, 7, (7, > 7,,); the second cri-
terion is when the concrete reaches its allowable strain (i.e., €concrete >
0.0038), at which point the concrete is considered to fail by crushing;
and the third criterion is when the rebar stress reaches its ultimate
tensile strength (f; > f,). Notice that the third failure criterion never

10

100 T T

T T T
0=0%
SOF -
'2 60 F .
<
=
=
= 40} 1
° Concrete crush
* Bond failure
20 1
Pull-out behavior
- — =Splitting behavior
0 A A ' A '
0 10 20 30 40 50 60
Mid-span deflection (mm)
Fig. 13. Comparison of pull-out and splitting failure for different levels
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Table 8
Beam flexural behavior comparison for different scenarios.
Corrosion Bond E F, Ay F, Ay u= F./
level, Q behavior Ay/ F,
A}’
Intact beam Pull-out 5.3 71 132 92 469 35 1.3
Splitting 4.4 71 15.1 92 60.8 4.0 1.3
Q=5% Pull-out 4.9 67 13.5 88 49.1 3.6 1.3
Splitting 3.8 67 17.6 73 25.7 1.5 1.1
Q=10% Pull-out 4.6 64 13.7 84 51.1 3.7 1.3
Splitting 36 - 174 64 - <1 -
Q=15% Pull-out 5 60 13.4 81 55.5 4.1 1.35
Splitting 3.78 - 17.7 60 - <1 -

occurred in the case study. Also, note that these failure scenarios (e.g.,
bond failure and concrete crushing) could occur before or after rebar
yielding, and rebar yielding itself does not indicate a beam failure in this
study.

Fig. 13 shows the force-displacement curves for the RC beams and
Table 8 summarizes the characteristics of the flexural behavior: modulus
before yielding (E), yielding force (F,), yielding displacement (A,),
rupture force (F,), ultimate displacement (4,), ductility (A,/A,), and
hardening ratio (F,/Fy). The results from both Fig. 13 and Table 8 show
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that the structure performs differently when bond behaviors are in pull-
out mode or splitting mode. Such a difference becomes more apparent
when the corrosion level is increased.

For the beams with the same level of Q except for Q = 15%, F, is
about the same regardless of the bond behavior. A beam with pull-out
bond behavior will have a higher modulus, a higher ductility, and a
higher hardening ratio as shown in Table 8. As expected, the perfor-
mance of the beam with pull-out bond behavior is more desirable. In the
flexural curves shown in Fig. 13, the stiffness of the beam initially
changes when the load reaches around 11 kN, and this change at the
beginning of the curve is due to the creation of initial cracks in the
concrete considered in the analytical formulation. Furthermore, when
the beam is under pull-out bond behavior, the flexural failure ends with
concrete crushing; however, when the beam is under splitting bond
behavior, the beam fails in bond except for the intact case. More
importantly, for the beams with corrosion levels of 10% and 15% under
splitting bond behavior, the bond failure occurs prior to yielding, which
is a brittle failure, not a desirable type of failure.

To avoid such brittle failure, one could increase the splice length as
the value suggested by ACI 318 does not appear to be sufficient when
corrosion is present [53] or design the beam so that the bond will exhibit
in a pull-out behavior. To ensure pull-out bond behavior, one could
utilize the proposed model shown in Eq. (15) that is determined by four
variables f, ¢/d, Q, and MC. In particular, one could determine the
values of the two design parameters, f. and c/d, in order to ensure the
desired probability level of achieving pull-out bond, with the consider-
ation of the corrosion and loading scenarios that could happen in the
service life.

4.2. Reliability analysis

To evaluate the reliability of the beam flexural performance, the
probability of failure is calculated as:

k

where gi is the limit-state function corresponding to the failure mode k
and the subscript k denotes the failure mode of the beam (1 for bond
being pull-out and 2 for bond being splitting). The limit state function is
defined by:

(16)

g =Ci(x,)—D 17
where Ci(-) refers to the capacity of the beam; x, is a random variable
vector that includes all basic random variables such as material prop-
erties and geometric dimensions, and D is the force demand applied to
the structure. Since bond behavior being pull-out or splitting are two
mutually exclusive events, Eq. (16) can be written as:

P = P[(C\(x,)—-D<0]Y = 1)]-P(Y = 1) 18)
+P[C>(x,)—D<0|Y = 0]-P(Y = 0)

where P(Y = 1) and P(Y = 0) = 1 — P(Y = 1) refer to the probability of
the bond being a pull-out behavior or a splitting behavior, respectively,
which can be calculated based on the developed model shown in Eq. (6)
and Eq. (14). The capacity C(x,), which is the maximum force the beam
can resist before flexural failure is obtained from the analytical pro-
cedure in Appendix D. Note that when the failure occurs, it does not
necessarily indicate bond failure. In practice, the reliability index, f, is
typically used as the performance measure, and its relationship with Pris
as follows:

Py =0(—p) 19)

The basic random variables, x,, are adopted based on the literature
[53,54] and their probability information is provided in Table 9. Note
that the model error, ¢, in Table 9 refers to the model error in the bond

11
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Table 9
Probability information of the basic random variables.

Type Random Distribution (Mean*, Importance measure
variable std.) (Q=5%, D =60kN)
Pull- Splitting
out
Geometrical  d, (mm) Normal (16, 0.32) [54] 0.078 0.031
h (mm) Normal (250, 2.5) [54] —0.061 0.078
b (mm) Normal (160, 0.32) [54] 0 0
Cy (mm) Normal (16, 1.92) [53] 0 0
C; (mm) Normal (16, 1.92) [53] 0 0
Cp (mm) Normal (16, 1.92) [53] 0 0
d; (mm) Normal (8, 0.16) [54] 0 0
Mechanical fy (MPa) Normal (440, 22) [53] 0.121 0.156
fc (MPa) Normal (40, 7.2) [53] —-0.729 —-0.470
fy,st (MPa) Normal (280, 14) [53] 0 0
Model error o€ Normal (0, 0.169) [53] —0.668 —0.861

strength model adopted from the literature [13] that is elaborated in
Appendix D.

The contribution of each random variable to the variability of the
limit state function (Eq. (17)) is also investigated based on the important
measures of the random variables when considering 5% corrosion and a
demand of 60 kN, and the results are shown in Table 9. A larger absolute
value of importance measure indicates a greater contribution of the
corresponding random variable on the variability of the limit state
function. The detailed information of importance measures in reliability
analysis can be found in related literature [55]. Table 9 shows that for
both cases (bond behaves in splitting and in pull-out), three variables,
model error in bond strength, f,, and f. (namely bond, concrete, and
steel properties) dominates the contribution to the variability of the
limit state function.

Fig. 14 shows the fragility curves conditioned on demand values with
corrosion levels of 0% (intact beam), 5%, 10%, and 15%. For a given
level of corrosion, the fragility curves show the differences in the
structural performance due to different bond

behaves in pull-out, splitting, or unknown (that is determined by the
developed bond failure prediction model), and these differences become
more apparent with the increase in corrosion.

For the bond failure modes at each considered probability, the
fragility curve for unknown bond failure mode (shown as a dotted line)
is between the fragility curves for the bond in pull-out behavior (shown
as a solid line) and the bond in splitting behavior (shown as a dashed
line), as expected. In particular, the fragility curve with the unknown
bond is closer to the curve for splitting bond behavior when the corro-
sion level Q is low, but it moves closer to the curve with pull-out bond
behavior when Q increases. This is understandable, as the probability of
being pull-out increases with the level of corrosion (as shown in Fig. 14).

While compares the four plots in Fig. 14, the fragility curves with a
given bond behavior shift to the left as Q increases. This shows the
corrosion increases the probability of failure as expected. In particular,
the fragility curves for splitting bond behavior are more distant from
each other with the increase of Q. For example, at the lowest level of
corrosion (Q = 5%) shown in Fig. 14(b), the fragility curve for splitting
failure is significantly distant from the curve for the intact beam shown
in Fig. 14(a). However, the fragility curves for pull-out bond behavior do
not change dramatically with the change of Q. This indicates that
corrosion has more impact on the performance of a structure with a
splitting bond than the structure with a pull-out bond. It can also be seen
that with the increase of the corrosion level, the fragility curves became
steeper, indicating that the probability of failure becomes more sensitive
to demand with more corrosion.

Fig. 15 (a) and (b) show the reliability index curves with respect to
the level of corrosion Q by setting the demand D as a deterministic value
of 60 kN and as a random variable with mean up = 60 kN and COV =
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Fig. 14. Fragility curves under different corrosion levels: (a) Q = 0% (intact beam), (b) Q = 5%, (¢) Q = 10%, and (d) Q = 15%.

0.15, respectively. The purpose of Fig. 15 is to examine how the bond
behavior impacts the structural performance with a progressing deteri-
oration; thus, the demand used in Fig. 15 can be arbitrary. Moreover, the
reliability index curve with the unknown bond failure mode is between
the other two curves. The reliability index curve with splitting bond
behavior is much lower than the one with pull-out bond behavior, and
its rate of decrease is much greater. From Q = 0% to Q = 5%, j decreases
from 3.3 to 1.8 in Fig. 15(a) and decreases from 3.1 to 2.1 in Fig. 15(b).
Consistent with the previous observations in Figs. 13 and 14, the result
from both Fig. 15(a) and (b) indicates that the bond behavior plays a
critical role in the time-dependent performance evolution, particularly
when the specimen is exposed to a high level of corrosion. In addition,
the prediction of the bond failure behavior is important, as it determines
the actual structural performance.

5. Summary and conclusions
Sufficient bonding of rebar to concrete is crucial to ensure the reli-

able performance of RC structures, particularly in the corroded struc-
tures. Whilst much research has investigated the bond strength,
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estimation of the bond failure mode (i.e. pull-out or splitting) consid-
ering corrosion has been given little attention. In this study, by taking
advantage of machine learning classifications, a probabilistic model was
developed to estimate the bond failure mode. specifically, logistic and
lasso classification techniques are found to be suitable for engineering
practice, as they provide explicit formulations. The developed model is
based on the results of bond tests for 132 beam-end specimens with
various influencing parameters such as concrete compressive strength,
rebar diameter size, cover size, corrosion level, and loading type (i.e.,
monotonic or cyclic). To evaluate if the bond behavior under corrosion
affects the performance of a structure, the flexural performance of an RC
beam with a lap splice under various levels of corrosion is evaluated by
conducting a reliability analysis. The main findings of this study are
summarized as follows:

e Machine learning approaches such as logistic and lasso classification
techniques provide probabilistic predictions of categorical variables
such as the bond failure mode, and they provide explicit and easy-to-
implement formulations for engineering practice.
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Fig. 15. Reliability index curves under various corrosion levels conditioned on different bond behaviors under (a) D = 60 kN and (b) up = 60 kN and COV = 0.15.

Both logistic and lasso classification methods have similar prediction
performances: much better than the deterministic approaches and
not worse than most of the other classification methods; however,
lasso classification is found to be more accurate.

The parameters that influence the bond failure mode prediction are
concrete compressive strength, cover to the rebar diameter ratio,
corrosion level, and loading type (cyclic or monotonic).

Based on the developed probabilistic prediction models, the amount
of transverse stirrup does not influence the bond failure mode.

At the structural level, the flexural performance of the beam in the
case study shows the dependence on the bond behavior, and more so
at higher levels of corrosion. In addition, for high levels of corrosion
where the beams exhibit splitting bond behavior, the beam fails
brittlely (that is failure occurs prior to rebar yielding), which is not a
desirable type of structural failure.

The case study also shows that bond behavior has a great impact on
the structural reliability index curves, and more so as the level of
corrosion increases. Thus, the prediction of the bond failure mode is
critical for time-dependent reliability-based analysis.
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Table Al

Specimen specifications (group 1).

Group No. Rebar diameter, dj Loading type* fe Bond length, I Cover, ¢ c/d K Quarget Quctual Failure Mode**
[mm] [MPa] [mm] [mm] (%) (%)

Group 1 1 15.875 M 43 88.9 50.8 3.20 0.00 0% 0.0% S
2 63.5 4.00 0.00 10% 4.9% P
3 76.2 4.80 0.00 20% 7.6% S
4 50.8 3.20 5.89 0% 0.0% P
5 63.5 4.00 5.89 10% 5.3% P
6 76.2 4.80 5.89 20% 9.9% P
7 C 50.8 3.20 0.00 0% 0.0% S
8 25.4 1.60 0.00 5% 10.3% P
9 63.5 4.00 0.00 10% 11.0% P
10 38.1 2.40 0.00 15% 10.1% P
11 76.2 4.80 0.00 20% 12.0% P
12 50.8 3.20 5.89 0% 0.0% P
13 25.4 1.60 5.89 5% 7.9% NA
14 63.5 4.00 5.89 10% 4.3% P
15 38.1 2.40 5.89 15% 8.2% S
16 76.2 4.80 5.89 20% 11.3% P
17 19.05 M 114.3 38.1 2.00 0.00 0% 0.0% S
18 25.4 1.33 0.00 10% 3.6% S
19 50.8 2.67 0.00 20% 15.6% P
20 38.1 2.00 491 0% 0.0% P
21 25.4 1.33 4.91 10% 3.2% S
22 50.8 2.67 4.91 20% 7.1% S
23 C 38.1 2.00 0.00 0% 0.0% S
24 63.5 3.33 0.00 5% 8.5% NA
25 25.4 1.33 0.00 10% 7.6% P
26 76.2 4.00 0.00 15% 9.9% S
27 50.8 2.67 0.00 20% 13.4% P
28 38.1 2.00 4.91 0% 0.0% P
29 63.5 3.33 491 5% 8.6% P
30 25.4 1.33 4.91 10% 6.9% S
31 76.2 4.00 4.91 15% 7.7% P
32 50.8 2.67 4.91 20% 11.0% P
33 25.4 M 203.2 63.5 2.50 0.00 0% 0.0% S
34 50.8 2.00 0.00 10% 4.3% S
35 38.1 1.50 0.00 20% 10.2% S
36 63.5 2.50 3.68 0% 0.0% S
37 50.8 2.00 3.68 10% 7.7% S
38 38.1 1.50 3.68 20% 11.9% P
39 C 63.5 2.50 3.68 0% 0.0% S
40 50.8 2.00 0.00 10% 5.2% NA
41 38.1 1.50 0.00 20% 13.1% NA
42 63.5 2.50 3.68 0% 0.0% NA
43 50.8 2.00 3.68 10% 5.7% P
44 38.1 1.50 3.68 20% 13.7% P

* M (monotonic), and C (cyclic).

** P (pull-out), S (splitting), and NA (not assigned).
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Table A2

Specimen specifications (group 2).

Group No. Rebar diameter, d, Loading type* fe Bond length, I, Cover, ¢ c/d Ky Qtarget Qactual Failure Mode**
[mm] [MPa] [mm] [mm] (%) (%)

Group 2 1 15.875 M 36 88.9 25.4 1.60 11.73 5% 13.1% P
2 38.1 2.40 11.73 0% 0.0% P
3 38.1 2.40 11.73 10% 16.3% S
4 50.8 3.20 11.73 10% 14.9% P
5 50.8 3.20 11.73 15% 18.4% S
6 63.5 4.00 11.73 5% 13.0% S
7 63.5 4.00 11.73 15% 15.9% S
8 76.2 4.80 11.73 15% 18.8% P
9 C 25.4 1.60 11.73 5% 16.3% P
10 38.1 2.40 11.73 0% 0.0% S
11 38.1 2.40 11.73 10% 15.7% S
12 50.8 3.20 11.73 10% 15.4% S
13 50.8 3.20 11.73 15% 17.2% P
14 63.5 4.00 11.73 5% 19.1% P
15 63.5 4.00 11.73 15% 16.5% S
16 76.2 4.80 11.73 15% 15.6% S
17 19.05 M 114.3 25.4 1.33 9.78 5% 6.3% P
18 38.1 2.00 9.78 0% 0.0% P
19 38.1 2.00 9.78 10% 11.2% P
20 50.8 2.67 9.78 10% 12.6% P
21 50.8 2.67 9.78 15% 25.8% S
22 63.5 3.33 9.78 5% 7.1% P
23 63.5 3.33 9.78 15% 10.5% S
24 76.2 4.00 9.78 15% 10.8% P
25 C 25.4 1.33 9.78 5% 6.5% S
26 38.1 2.00 9.78 0% 0.0% S
27 38.1 2.00 9.78 10% 13.3% S
28 50.8 2.67 9.78 10% 12.8% S
29 50.8 2.67 9.78 15% 10.3% S
30 63.5 3.33 9.78 5% 5.4% S
31 63.5 3.33 9.78 15% 12.1% S
32 76.2 4.00 9.78 15% 11.4% S
33 25.4 M 152.4 76.2 3.00 7.33 5% 6.0% P
34 76.2 3.00 7.33 0% 0.0% P
35 88.9 3.50 7.33 5% 10.7% P
36 88.9 3.50 7.33 10% 7.4% S
37 101.6 4.00 7.33 5% 4.9% P
38 101.6 4.00 7.33 10% 7.7% S
39 C 76.2 3.00 7.33 5% 5.7% S
40 76.2 3.00 7.33 0% 0.0% NA
41 88.9 3.50 7.33 5% 5.1% S
42 88.9 3.50 7.33 10% 7.5% NA
43 101.6 4.00 7.33 5% 5.4% NA
44 101.6 4.00 7.33 10% 8.1% S
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Table A3

Specimen specifications (group 3).

Group No. Rebar diameter, d, Loading type* fe Bond length, I, Cover, ¢ c/d Ky Qtarget Qactual Failure Mode**
[mm] [MPa] [mm] [mm] (%) (%)

Group 3 1 15.875 M 27 88.9 25.4 1.60 11.73 5% 7.9% P
2 38.1 2.40 11.73 0% 0.0% P
3 38.1 2.40 11.73 10% 10.3% S
4 50.8 3.20 11.73 10% 11.2% S
5 50.8 3.20 11.73 15% 6.5% P
6 63.5 4.00 11.73 5% 4.8% S
7 63.5 4.00 11.73 15% 4.0% P
8 76.2 4.80 11.73 15% 7.8% S
9 C 25.4 1.60 11.73 5% 6.2% P
10 38.1 2.40 11.73 0% 0.0% P
11 38.1 2.40 11.73 10% 7.7% P
12 50.8 3.20 11.73 10% 9.8% NA
13 50.8 3.20 11.73 15% 9.1% P
14 63.5 4.00 11.73 5% 3.4% P
15 63.5 4.00 11.73 15% 11.9% NA
16 76.2 4.80 11.73 15% 16.9% P
17 19.05 M 114.3 25.4 1.33 9.78 5% 5.2% P
18 38.1 2.00 9.78 0% 0.0% P
19 38.1 2.00 9.78 10% 6.2% S
20 50.8 2.67 9.78 10% 7.1% NA
21 50.8 2.67 9.78 15% 9.0% P
22 63.5 3.33 9.78 5% 5.4% P
23 63.5 3.33 9.78 15% 9.5% P
24 76.2 4.00 9.78 15% 7.2% P
25 25.4 1.33 9.78 5% 6.1% S
26 C 38.1 2.00 9.78 0% 0.0% NA
27 38.1 2.00 9.78 10% 6.8% P
28 50.8 2.67 9.78 10% 6.6% S
29 50.8 2.67 9.78 15% 5.8% P
30 63.5 3.33 9.78 5% 8.0% S
31 63.5 3.33 9.78 15% 8.2% S
32 76.2 4.00 9.78 15% 8.3% S
33 25.4 M 152.4 76.2 3.00 7.33 5% 5.0% S
34 76.2 3.00 7.33 0% 0.0% P
35 88.9 3.50 7.33 5% 3.7% S
36 88.9 3.50 7.33 10% 7.4% S
37 101.6 4.00 7.33 5% 4.7% P
38 101.6 4.00 7.33 10% 6.7% S
39 C 76.2 3.00 7.33 5% 4.7% P
40 76.2 3.00 7.33 0% 0.0% P
41 88.9 3.50 7.33 5% 4.6% P
42 88.9 3.50 7.33 10% 5.9% P
43 101.6 4.00 7.33 5% 5.6% P
44 101.6 4.00 7.33 10% 5.8% P
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Fig. D1. (a) Typical cracked beam under flexural loading [19], and (b) typical crack element [61].
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Appendix A. Designed specimen specifications

See Tables A1-A3.

Appendix B. Classification algorithms
Decision tree

A decision tree is a decision support, non-parametric method that uses a tree-like model constructed from the training data and includes a sequence
of yes/no questions to classify all observations. Hence, the response is predicted using the tree graph. The decision tree consists of nodes and branches
in which the nodes belong to the test condition and the branches represent the outcome of the test. By following the nodes and branches of the tree, a
decision can be made [56].

Discriminant analysis

In discriminant classification, different classes are assumed to generate data following various Gaussian distributions [57]. Linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) are two types of discriminant analysis. In LDA Bayes theorem is used to predict the
probabilities of the output category, k, into the kth category given the input vector of x that can be written as:

Pr(Y = klx) = ) (B1)

> mfi(x)

where 7 is the prior probability (in this study zx = 0.5) and fx(x) refers to the density function of x. In this study, fx(x) is considered to have a joint
normal or Gaussian distribution, and 7 is the prior probability of an observation belonging to the kth class. QDA is similar to LDA in that it assigns
inputs to the kth category, but QDA considers each category as having a unique covariance matrix. Accordingly, classes in LDA have a linear boundary
and quadratic boundary in QDA. This study adopts QDA for the class boundary due to its better prediction accuracy [58].

K-nearest neighbors classification
K-nearest neighbors (KNN) classification is a non-parametric classification method [59]. Having a test observation of y, and K as a positive integer,

the KNN determines K observations in the training data nearest to y, that are denoted as No. It then predicts the conditional probability for class k as
the fraction of data points in Ny as follows:

Pr(Y = ki) = ¢ 10 = K B2)

i€Np

where I(-) refers to the indicator variable. The main drawback of using the KNN method is that the chosen value of K is sensitive to the prediction
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performance. To deal with this issue, the approach of cross-validation is adopted in this study for different values of K, and the best model is selected.
Naive Bayes classification

Naive Bayes classification uses the Bayes theorem for classifying data by assigning an observation to a class when the probability belongs to that
observation is larger than 50%. By assuming that the input vector x is independent for a given class, k, the probability of an observation pertains to that
class can be formulated as [59]:

r(Y = k)Pr(x|Y = k) _ Pr(Y = ]I} Pr(x|Y = k)
Pr(x) B Pr(x)

Pr(Y = kfx) = & (B3)

Random forest
A random forest includes a group of decision trees in a way that each tree predictor produces a response based on a set of input variables [60]. A
random forest creates many learning models (i.e., decision trees) that increase the classification accuracy. This process, also known as bagging, works

by averaging noisy and unbiased models to create a model with low variance. The prediction of each observation is obtained from average of all
decision trees and can be formulated using the following equation:

B
PrY = k) =5 D (%) ®4)
b=1

where B is the number of decision trees and f} is the decision tree prediction.
Support vector machine

A support vector machine (SVM) is a simple classifier generalization known as a maximal margin classifier for categorization [59]. This model
builds a hyper-plane (e.g. a linear or polynomial equation of x) that has the maximum distance from the nearest point of each category based on the
training data. SVM is a non-probabilistic classification that constructs a classifier as follows:

N
Pr(Y = k|x) = sign [Z ay¥(x,x;) + b (B5)

i=1

in which N is the number of training data, ; is a positive real factor, and b is a real constant. The parameter ¥(-) is a defined function: for a linear SVM,
Y(x,x;) = x/x and for a polynomial SVM, ¥(x,x;) = (x/x + 1)% in which dis an a priori value specified by the user. This study adopted a polynomial
SVM to achieve the best accuracy.

Appendix C. Lap splice length

The designed lap splice length for the adopted beam from Abdel-Kareem [43] is from ACI 318-11 design code provisions [44], in which [ can be
calculated as:

_ 0.9fmin(y ., 1.7)y,A

\/me(%‘h 2.5)

where ¥, V., and ¥, are modification coefficients to consider the location of reinforcement effects, coating, and size of reinforcement, respectively; 1 is
an aggregate concrete factor, and c is the smaller of the distance from the half of center-to-center spacing of the developed bars and the distance from
the nearest concrete surface to the center of the rebar (units are based on SI units). Ky is the calculated based on:

Afy

K =10345m 2

la dy, (C1H)

where n is the number of rebars developed within the splitting plane. For the calculation of l; in Eq. (C.1), the values for the modification factors are ¥
=¥, =¥, = 1= 1.0. Note that to obtain the minimum splice length, [; can be replaced with [ [45].

Appendix D. Analytical procedure

As mentioned in Eq. (18), it is necessary to calculate the capacity of the structure. The following procedure is used to obtain the capacity, C(x,). In
this process, the beam is modeled as a series of elements having the length of crack sizes. The RC beam is assumed to be purely under a constant
bending moment. The beam is assumed to have a single crack at its midpoint and, as the bending moments increase, the crack expands toward the
supports. The rebar-concrete bonding transfers some portion of the tensile forces created by the bending moment and, thus, reduces the steel elon-
gation and strain within each element, allowing the deflection and rotation be lowered. The midspan deflection, A, can be calculated as [61]:

€i
A= Zd - C[x,- (b1

=1
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where n is the number of cracks, e; is the elongation of each individual crack, d is the height of the center of the tensile rebar to the top of the concrete
section, and c is the difference between the height of the top of the section and the top of the crack in a crack element, as shown in Fig. D1.

This procedure uses compatibility and equilibrium requirements, and interested readers could refer to the authors’ other publications [45,61] for
further details. The probabilistic model developed by Sajedi & Huang [13] is implemented to estimate the average bond strength, 7, that is a function
of corrosion for intact and corroded specimens as:

Tm 7 [ +Rr
I = 0, 0,- 0,-0)——— .
" \/f-, o+ lexp(]Q)dbolfﬂRyy
¢ (D2)
) be H +Rr 1 Axtf..yt
6,- 6, [ z
+2€XP(2Q)db017”Rr7+ 3 f’ sy +o¢

where the predicted coefficients are: 8y = —0.90, 6; = 0.48, 62 = 0.12, 63 = 0.024, 6; = —0.08, and 03 = —0.148; u = 0.45 [62] is the rebar friction
coefficient; R, = 0.1 [63] is the relative lug area of the intact bar; b, is the effective beam width (mm) (3¢ < b, < 9¢); v = [8-dpo/(l3 or ls)]o'5 (£1isa
reduction factor to long development length (l;) or splice length (L); Ay is the area of two legs of the transverse reinforcement in the cross-section
(mmz); s = transverse reinforcement spacing (mm); and o¢ is the model error where ¢ = 0.169 and ¢ = standard normal random variable [13].
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