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A B S T R A C T   

Adequate rebar-concrete bonding is crucial to ensure the reliable performance of reinforced concrete (RC) 
structures. Many factors such as the concrete properties, concrete cover depth, transverse reinforcement, and the 
presence of corrosion will affect the bond behavior, and consequently, the structural performance. While many 
prior studies have focused on the influence of the aforementioned factors on the bond strength, the impact of 
these factors on the bond failure mode has not been thoroughly investigated. A probabilistic bond failure mode 
prediction model that considers various influencing factors including loading type and corrosion is developed in 
this study. This study uses the bond testing results of 132 beam-end specimens subjected to monotonic and cyclic 
loading and adopts classification methods to develop the prediction model, which is then used to evaluate the 
impact of bond behavior on the reliability of a RC beam with a lap splice.   

1. Introduction 

Reinforced concrete (RC) is a widely used construction material for 
civil structures like bridges [1,2], buildings [3], and dams [4]. As the 
bond between rebar and concrete (i.e., rebar–concrete interaction) is 
meant to ensure the transformation of force between the rebar and 
concrete, bond behavior directly impacts the structure load-carrying 
capacity and failure mode. This bond is known to be influenced by 
many factors such as the concrete properties, transverse reinforcement, 
the ratio of concrete cover to rebar size, loading type, and rebar corro
sion. Many researchers have studied how those influencing factors affect 
the bond strength, through which impact structural performance 
[5–13]. 

Another aspect of bond behavior that is also crucial for determining 
the performance of RC structures is the bond failure mode. Based on ACI 
[14], there are two distinguished bond failure mode: pull-out and 
splitting failure. Pull-out bond failure occurs when there is sufficient 
confinement and/or concrete cover to prevent concrete splitting and 
restrain crack growth, resulting in the shearing of concrete between ribs. 
Splitting failure occurs when confinement or cover is not provided 
adequately to achieve the complete pull-out strength. In splitting failure, 
the deformation-bearing forces cause splitting that spreads through the 
sides of the member and makes the concrete to lose its bonding and 
cover. 

In contrast to bond strength, the bond failure mode has not been well 

studied, especially in the presence of corrosion and/or under cyclic 
loading. Both ACI [14] criteria and CEB [15] use bar size, concrete 
cover, and confinement of transverse stirrups to determine the bond 
failure mode. Cucchiara et al. [16] and Zandi Hanjari et al. [17] 
examined the impact of the existence of the stirrups on the failure mode. 
Kivell [5] observed that specimens with high levels of corrosion (more 
than 12%) or under cyclic loading have more tendency to fail in pull-out. 
Soraghi and Huang [7] developed models for predicting the bond failure 
mode using logistic and lasso classification algorithms to consider 
various influence factors including the presence of transverse stirrups, 
cover to rebar diameter ratio, the level of corrosion, and the loading 
type. 

This study develops probabilistic prediction models of bond failure 
mode based on classification methods and examines the importance of 
bond failure mode prediction in the structure performance evaluation. 
The model development uses the results from a comprehensive experi
mental testing where various influencing factors are considered, 
including compressive strength of concrete, ratio of concrete cover to 
rebar diameter ratio, confinement of transverse stirrups, corrosion level, 
and loading type. 

In this paper, the bond tests conducted on a set of beam-end speci
mens are described first, next the probabilistic models based on various 
classification methods are developed, and then the prediction accuracy 
of the models is compared. Lastly, a case study is presented using the 
developed bond failure mode prediction model to examine how the 
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bond impacts the flexural performance of an RC beam with a lap splice 
under various corrosion levels based on the reliability analysis. 

2. Experimental program 

2.1. Specimen design and details 

A set of beam-end specimens are designed to investigate the intact 
and corroded rebar bond behavior under monotonic and cyclic loading. 
The design of the specimens are based on four parameters that found to 
be influencing bond behavior according to the findings of previous 
studies (e.g., [7,13,18,19]) and they are: concrete compressive strength 
(f′

c), cover size to rebar diameter ratio (c/d), corrosion level (Q), and 
transverse rebar confinement that can be quantified by an index value, 
Ktr [20], as shown below: 

Ktr =
fy,tr⋅Atr

4136.85⋅db⋅s
(1)  

where fy,tr is the yield strength of transverse reinforcement (kN/m2), Atr 
is the transverse reinforcement area (m2), db is the diameter of intact 
rebar (m), and s is the spacing of the transverse reinforcement (m). The 
detailed specification for each specimen is provided in Tables A1–A3 in 
Appendix A. Table 1 summarizes the ranges of the design parameters. 
The specimens are classified into three groups (as shown in Table 1) 
based on the three designated concrete compressive strength levels: 25 
MPa, 35 MPa, and 45 MPa (corresponding to measured averages of 27 
MPa, 36 MPa, and 43 MPa, respectively, obtained in the cylinder tests). 
Each of the three groups consists of 44 beam-end specimens; thus, 132 
specimens are tested. The level of corrosion, Q, is the percentage of mass 
reduction of the reinforcement in the bonded region. Group 1 consists of 
22 corroded specimens with the designed Q ranging from 5% to 20% 
(corresponding to measured Q of 3.2% to 15.6% after load testing was 
completed) and 12 intact specimens (Q = 0%). Group 2 consists of 38 
corroded specimens with the designed Q ranging from 5% to 15% 
(corresponding to measured Q of 4.93% to 19.08% after testing was 
completed) and 6 intact specimens. Group 3 also consists of 38 corroded 
specimens with designed Q ranging from 5% to 15% (corresponding to 

measured Q of 3.74% to 16.85% after load testing was completed) and 6 
intact specimens. 

Specimens in each group use three sizes of reinforcement bars: #5 
bars (db = 15.875 mm), #6 bars (db = 19.05 mm), and #8 bars (db =

25.4 mm). Among the 44 specimens in Group 1, 22 have transverse 
stirrups with Ktr values ranging from 3.68 to 5.89, and the remaining 22 
specimens have no transverse stirrups (i.e., Ktr = 0). All specimens in 
Groups 2 and 3 have transverse stirrups to increase the chance of pull- 
out failure, with Ktr values ranging from 7.3 to 11.7. For loading type, 
in Group 1, 18 of the specimens are tested under monotonic loading, 
while 26 specimens are tested under cyclic loading; in groups 2 and 3, 22 
specimens in each group have monotonic loading and the other 22 
specimens have cyclic loading. 

Dimensions and reinforcement detailing for the designed beam-end 
specimens are shown in Fig. 1(a), and Fig. 1(b) shows an actual casted 
beam-end specimen. All specimens are 508 mm × 381 mm × 190.5 mm. 
All transverse, parallel, and longitudinal reinforcements are #3 rebar 
with a diameter of 76.2 mm. All the reinforcements are coated with 
epoxy to prevent corrosion except for the test bar. The test bar is covered 
by PVC pipes at the two ends within the concrete. The middle bonded 
region of the test bar that is not covered by PVC pipe has a bonded 
length, lb, as shown in Fig. 1(a), and lb = 88.9 mm, 114.3 mm, and 152.4 
mm are adopted for the specimens with rebar sizes of #5, #6, and #8, 
respectively. These bonded lengths are chosen to prevent rebar tensile 
yielding prior to bond failure, to ensure a relatively uniform distribution 
of bond stress [13], and prevent conical failure of the specimens [21]. 
The yield strength, Fy, and ultimate strength, Fu, of rebar are 420 MPa 
and 600 MPa, respectively, regardless of the rebar size. 

To accelerate corrosion on the test bar, sodium chloride (NaCl) was 
added to the concrete before it was poured into the specimen molds. The 
amount of salt (NaCl) in the concrete is calculated based on 3.75% 
weight of cement as is suggested by previous researchers [22,23] to 
achieve accelerated corrosion. 

2.2. Corrosion process 

Accelerated corrosion is achieved by applying current to the test bar. 

Fig. 1. Beam-end specimens: (a) schematic design and (b) as-casted beam-end specimen.  

Table 1 
Summary of design parameters of testing specimens.  

Group f′
c (MPa) No. of specimens (Imperial rebar 

size) 
No. of specimens 
(Loading type*) 

No. of intact specimens Corroded specimens w/ 
corrosion, Q (%) 

c/d Ktr 

Target Actual Target Actual 

1 25 27 16 (#5) 16 (#6) 12 (#8) 18 (M) 26 (C) 12 5–20 3.2–15.6 1.3–4.8 0 or 3.6–5.8 
2 35 36 16 (#5) 16 (#6) 12 (#8) 22 (M) 22 (C) 6 5–15 4.93–19.0 7.3–11.7 
3 45 43 16 (#5) 16 (#6) 12 (#8) 22 (M) 22 (C) 6 5–15 3.74–16.8 7.3–11.7  

* (M) Monotonic, and (C) cyclic. 
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The designed corrosion level can be calculated as: 

Q =
ΔM

γ⋅lb⋅Ab0
× 100% (2)  

where ΔM (grams) is the change in mass of the rebar due to corrosion; γ 
= 7.86 gr/cm3 is the density of iron, lb is the corroded length (or bond 
length), and Ab0 refers to the intact cross-sectional area of rebar. With a 
desired level of Q, ΔM can be estimated based on Eq. (2). Then the 
accelerated corrosion time, T, during which the current needs to be 
applied can be calculated to achieve the desired corrosion level based on 
Faraday’s law [24]: 

T =
ΔM⋅Z⋅F

A⋅I
(3)  

where A = 56 g referring to the atomic weight of iron; I is current (Amp); 
Z = 2 is the valency number of ions of the substance, Fe, and F = 96500 
(Amp⋅sec), which is referred to as Faraday’s constant. 

After casting, the specimens are cured with sufficient humidity [25]. 
In this study, all specimens are kept in the designed humidity tents 
(schematically shown in Fig. 2(a)) for curing as well as corroding. The 
corrosion setup (schematically shown in Fig. 2(b)) is designed to allow 
power supplies to be connected to the specimens to supply the required 
current for accelerating corrosion while keeping the specimens in the 
humidity tents. The corrosion setup uses a parallel circuit system where 
the rebar serves as the anode, while a stainless steel plate that was 
located underneath the specimen (mostly underneath the bonded re
gion) acts as the cathode [26]. The parallel system allows specimen(s) to 
be removed without stopping the current that runs through the other 
specimens, and such a setup is necessary, as each specimen is designed 
for different corrosion levels and requires a different corrosion time. In 

addition, the parallel system allows the use of power supplies with lower 
voltage compared to a setup using a series circuit system. 

2.3. Test setup 

Monotonic and cyclic testing are performed to study the corrosion 
impact on bond behavior. Utilizing the testing frame that is securely 
mounted on a rigid floor in the testing lab, a vertical test setup is 
designed for this study based on ASTM A944-10 and a previous study by 
Bandelt and Billington [27] where the applied loading on beam-end 
specimens is in a vertical direction as well. Fig. 3(a) and 3(b) are a 
schematic of the setup that shows the boundary conditions and a 3D- 
rendering view of the setup, respectively. It should be noted that the 
roller/pin supports were provided at six locations, where three supports 
react (shown in solid arrows) when the rebar is under tension and the 
other three supports react (shown in dashed arrows) when the rebar is 
under compression, as shown in Fig. 3(a). Fig. 3(c) and (d) show the 
testing frame and the laboratory test setup, respectively. 

A 245-kN actuator is secured to the testing frame in a vertical posi
tion; a threaded rod is welded to the test bar and the specimen connects 
to the actuator through a special connection designed particularly for 
this test. Rebar slippage is measured according to ASTM standard A944- 
10 [28] using linear variable differential transducers (LVDTs) at the 
free-end of the specimen. The LVDTs are mounted on the bottom of the 
concrete as shown in Fig. 3(a) such that the slippage of the rebar relative 
to the bottom of the concrete could be measured. 

To accomplish the testing, it is necessary to first determine the 
loading procedure and loading rate. ASTM standard 944-10 [28] spec
ifies that a loading rate between 10% and 33% of the predicted rupture 
force be reached within one minute. However, this rate is too fast to 

(d)(c)(b)(a)

Free-end 

Force-end Actuator

Specimen 

Fig. 3. (a) Boundary conditions of testing specimen; (b) 3D rendering view of test setup; (c) testing frame, (d) laboratory test setup.  

Fig. 2. Schematic view of (a) humidity tents and (b) corrosion setup.  
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allow recording the critical points during the failure process, particu
larly the point at which the rupture force occurs (i.e., the bond strength 
is achieved). Thus, the loading rate is recalculated in such a way that the 
rupture force will not occur in less than three minutes. Accordingly, all 
monotonic specimens are tested in displacement-control with a rate 
equal to 0.005 mm/sec (that is, 1.3 mm per 3 min). Fig. 4(a) shows an 
actuator force-displacement diagram under monotonic loading, where 
Fr is the rupture force and Δr is the displacement of the actuator at 
rupture. 

As ASTM standard 944-10 does not specify the cyclic loading pro
cedure for bond testing, the procedure used in Kivell [5] is adopted in 
this study. Fig. 4(b) shows the adopted cyclic loading protocol consists of 
three sets of cycles, where Fr and Δr are extracted from the corre
sponding monotonic curve (Fig. 4(a)). 

In the cyclic loading, the first set of cycles are force-controlled with a 
maximum force of 0.5Fr; the other two sets of cycles are displacement- 
controlled with maximum displacements of 1.0Δr and 1.5Δr, respec
tively. The first set is mainly used for weakening the bond, while the 
second and third sets of cycles are designed to break the bond and 
capture the behavior after exceeding the bond strength. For the force- 
controlled cycles, the loading rate is 10%Fr ~ 33%Fr per minute; for 
the displacement-controlled cycles, the displacement rate is 10%Δr ~ 
33%Δr per minute. 

2.4. Experimental results and discussion 

After testing is complete, the monotonic and cyclic bond behaviors of 
all specimens are obtained. The work presented in this paper focuses on 
the prediction of the failure modes; the study on the other bond char
acteristics (e.g., bond strength) will be presented in future papers. Two 
distinct failure modes, pull-out and splitting failure are observed, and 
the failure modes for each specimen are summarized in Table A1-A3 in 
Appendix A, where failure mode “P” refers to the pull-out failure and “S” 
is the splitting failure. However, there were 12 specimens whose failure 
modes were not distinguishable due to various reasons (e.g., the actuator 
reached its force capacity before the bond failure occurred); these 
specimens are marked as “NA” in failure mode. Fig. 5 shows the typical 
actuator force-displacement diagrams under monotonic or cyclic 
loading with splitting or pull-out failure modes. A common feature of 
splitting failure under either monotonic or cyclic loading is the sudden 
drop in force when the specimen reaches its rupture force, followed by 
observing large surface and/or sides cracks on the specimen. 

In addition, different crack patterns are observed for the two failure 
modes. Fig. 6 shows typical crack patterns for pull-out and splitting 
failure modes, and Fig. 7 presents a schematic view of crack patterns for 
each mode of failure. Generally, with splitting failure, not only the 
surface of the specimen is crushed, but at least one crack is initiated from 
the testing rebar as shown in Fig. 7(a). This is because such surface 
cracks are propagated from the radial splitting of the concrete due to the 
wedge action of the test bar ribs when the bond fails in splitting. How
ever, with pull-out failure, the cracks do not initiate from the testing 
rebar (as shown in Fig. 7(b)), as there is sufficient confinement to 
restrain the concrete surrounding the rebar from splitting. Darwin and 
Graham [21] also found that splitting failure (which was the only failure 
mode observed in their specimens) have some crack patterns based on 
the presence of transverse stirrups as well as on the cover size, which is 
consistent with the splitting mode cracking patterns observed in this 
study. Thus, identifying the cracking pattern could help to determine the 
failure mode. 

3. Probabilistic prediction model for bond failure mode 

In this section, existing deterministic models for bond failure mode 
and various classification algorithms are reviewed. The logistic and lasso 
classification algorithms used in the model development are described, 
and the performances of the various prediction models are compared 

Fig. 4. (a) Actuator force and displacement diagram under monotonic loading 
and (b) cyclic loading protocol. 

Fig. 5. Typical actuator force-displacement (a) under monotonic loading with pull-out failure, (b) under monotonic loading with splitting failure, (c) under cyclic 
loading with pull-out failure, and (d) under cyclic loading with splitting failure. 
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based on the experimental data. 

3.1. Existing deterministic models 

In the literature, very few models are available for predicting RC 
bond failure modes. If let Y = 1 and Y = 0 represent pull-out and splitting 
bond failure, respectively, the prediction by CEB criteria can be written 
as [15]: 

Y =

{
1 c⩾5db
0 cmax

/
cmin = 2.0 & cmin = db & db⩽20 mm & Ktr,CEB = 2% (4a)  

where cmax = max{cx,csi} and cmin = min{cx,cy,csi}, in which cx and cy are 
the concrete cover toward the horizontal and vertical edges, respec
tively, and csi is the half of the center-to-center test bar spacing (if more 
than one test bar is implemented); Ktr,CEB = Atr/(nb⋅db⋅s), in which nb is 

the number of anchored test bars. However, it is obvious that conditions 
for splitting failure (i.e., cmax/cmin = 2.0, cmin = db and Ktr,CEB = 2%) are 
very strict, which makes these CEB criteria almost inapplicable. Thus, 
instead of using the CEB criteria literally, the “equal” sign in the ex
pressions may be interpreted to be “no larger than”, and the logical 
operator between the expressions be interpreted to be “or”, rather than 
“and”. Also, for the cases that do not satisfy both pull-out and splitting 
conditions of the CEB criteria, the prediction can be treated as “un
known”. Thus, the CEB criteria is interpreted as follows in this study: 

Y =

⎧
⎨

⎩

1
0
unknown

c⩾5db
cmax/cmin⩽2.0 or cmin⩽db or db⩽20mm or Ktr,CEB⩽2%
otherwise

(4b) 

Meanwhile, ACI [29] uses the following criteria for the bond failure 
mode prediction: 

Fig. 6. A typical cracking pattern for (a) splitting failure mode and (b) pull-out failure mode.  

Fig. 7. Schematic view of crack patterns formed on the test specimens after failure: (a) splitting failure mode and (b) pull-out failure mode.  
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Y =

{
1

(
c + Ktr,ACI/db

)
⩾2.5

0
(
c + Ktr,ACI/db

)
< 2.5 (5)  

where Ktr,ACI = Atr⋅fy,tr/(1500⋅s⋅nb). 
The two prediction models shown above are deterministic based; 

thus, uncertainty is not considered. More importantly, these two models 
do not holistically consider all the parameters that might influence the 
bond failure mode, such as corrosion and loading types. 

3.2. Classification algorithms 

Supervised machine learning techniques (i.e. regression and classi
fication) are extensively implemented in engineering purposes for 
response estimation. Whilst the regression algorithm is appropriate for 
continuous response prediction, the classification algorithm is suitable 
for categorical responses such as failure modes [30]. In this study, 
classification methods are used to develop probabilistic models based on 
all the influencing parameters. In the following, a brief description of the 
classification algorithms of logistic and lasso classification is described, 
and other classification algorithms adopted in this research is provided 
in Appendix B. 

3.2.1. Logistic classification 
The logistic classification algorithm evaluates the relationship be

tween independent variables and dependent variables (i.e., categorical 
response) using a logistic function. The binary response, Y, refers to the 
bond failure mode and is defined as the same as before: Y = 1 for pull-out 
and Y = 0 for splitting. The formulation for logistic classification to 
estimate the probability of pull-out failure is shown as: 

Pr(Y = 1|x) =
exp(z)

1 + exp(z)
=

exp
(
β0 +

∑m
i=1βixi

)

1 + exp
(
β0 +

∑m
i=1βixi

) (6)  

where x = {xi}, in which xi are the independent variables selected, m is 
the number of independent variables used, and β0 and {βi} are the co
efficients for logistic classification that can be obtained using the 
maximum likelihood technique [31] through a likelihood function as: 

l(β) =
∑N

j=1

(
yjβTx̃j − log

[
1 + exp

(
x̃jβ

) ] )
(7)  

where the subscript j refers to the jth observation data, xj = {1 x}T, and β 
= {β0 β1 β2 … βm}T. As Y is a binary variable, then P(Y = 0|x) = 1 − P (Y 
= 1|x). It should be noted that the deviance of the fitted model is pro
portional to −log[l(β)]; accordingly, by maximizing l(β) for the β eval
uation, the deviance will be minimized. 

3.2.2. Lasso classification 
While the lasso classification uses the same formulation (shown in 

Eq. (6)) as the logistic algorithm, the way to evaluate the model pa
rameters is different. Lasso classification requires a constraint on the 
coefficients in the maximum likelihood evaluation, which can be 
expressed as: 

l(β) =
∑N

j=1

(

yjβTxj − ln
[
1 + exp

(
xjβ

) ]
− λ

∑p

i=0
|βi|

)

(8)  

where λ is a penalty factor also known as the constraint. Lasso classifi
cation stabilizes a system by applying a cost of the sum of absolute 
values of the coefficients. This is called sparse regularization to constrain 
over-fitting and is conducted using the lassoglm function in MATLAB by 
which the deviance will be minimized in order to estimate the model 
parameters in Eq. (8). Lasso classification is a more desirable technique 
when working with a relatively small size of data, or when there is a 
correlation between independent variables [32], and lasso’s strength is 
to reduce the fitted model deviance without substantially increasing the 
prediction bias. 

3.3. Model development 

From an engineering perspective, logistic and lasso classification are 
capable of providing explicit formulations. For this reason, both 
methods are used in developing the probabilistic model. Other methods, 
including the two deterministic models and other classification algo
rithms (i.e., decision tree, discriminant analysis, K-nearest neighbors, 
Naïve-Bayes, random forest, and support vector machine) that are 
described in Appendix B, will be assessed in terms of their model pre
diction accuracy. 

3.3.1. Independent variables selected for the models 
To develop the failure mode prediction models based on Eq. (6), a 

preliminary analysis needs to be performed first to select the potential 
variable xi [33]. Next, a model selection procedure is used to delete the 
independent variables that are not contributing significantly to the 
model prediction. 

In this study, the variables showing the potential impacts on the 
failure mode (Y) are: f′

c, c/d, Ktr, Q, and MC, where MC is a dummy 
variable defined as: 

MC =

{
1
2

monotonic loading
cyclic loading (9) 

In addition, the linear interactions among these five variables are 
also examined via scatter plots. As an example, Fig. 8(a) and 8(b) show 
the scatter plots of Ktr and c/d versus the actual response y, respectively; 
and Fig. 8(c) shows the interaction term, Ktr⋅c/d, versus y with a fitted 
logistic curve. These three plots in Fig. 8 show that although the indi
vidual variables might not contribute to the failure mode prediction, 

Fig. 8. Example of a scatter plot of failure mode for terms (a) c/d, (b) Ktr, and (c) logistic curve for their interaction term (Ktr⋅c/d).  
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their interaction might. Table 2 lists all the potential variables, xi, used 
in Eq. (6) for the model development using logistic and lasso 
classification. 

3.3.2. Model prediction accuracy 
Different quantities are adopted to measure the performance of the 

developed models, such as the mean absolute error of prediction, MAE: 

MAE =

∑n
i=1|yi − ŷi|

n
=

∑n
i=1|ei|

n
(10)  

where ̂yi is the prediction, yi is the true value, and n is the number of data 
points. Another way to measure prediction accuracy is the hit-or-miss 
approach. Using the prediction probability formula from Eq. (6) and 
opting a threshold level of α (that is set to be 50% in this study), then P 
(Y = 1|x) ≥ α indicates a pull-out failure and P(Y = 1|x) < α indicates a 
splitting failure. Accordingly, based on the correct or wrong prediction 
of the failure mode, there are four possible outcomes as shown in 
Table 3: true positive (TP) and true negative (TN) as the correct de
tections, and false positive (FP) and false negative (FN) as the false de
tections. Then the probability of correct detection, PCD, as a measure of 
model prediction accuracy, can be calculated using the number of TP 
tests (nTP), the number of TN tests (nTN), and the total number of tests 
(ntotal): 

PCD =
nTP + nTN

ntotal
(11) 

Similar measurements can be used for pull-out and splitting failure 
mode, separately, as follows: 

PCD,pull−out =
nTP

nTP + nFP
=

nTP

npull−out
(12)  

and 

PCD,splitting =
nTN

nTN + nFN
=

nTN

nsplitting
(13)  

3.3.3. Model selection 
When using all the 31 variables (listed in Table 2) in Eq. (6), the 

model is considered as a full model with a model size of 31. For logistic 
classification, a model selection is performed to the full model to remove 
the variables with insignificant contributions to the model prediction. In 
particular, the all possible subset approach [34] is adopted in which all 
potential combinations of xi are first formulated for every reduced model 
size (ranging from 1 to 30), which will result in more than two billion 
possible models. To keep the model practical, the maximum model size 
is capped at four (i.e., four variables in a model), which also greatly 
reduces the computational time. Accordingly, all subsets with model size 
of five and above are excluded. 

In addition, the models with any model parameters having p-values 
greater than 10% and variance inflation factors (VIFs) greater than 10 
are treated as invalid and are eliminated. Statistical measurements such 
as R-squared (R-sq), adjusted R-squared (Adj-R-sq), and Akaike infor
mation criterion (AIC) are then used for each model size to evaluate the 
performance of models. 

Models with the highest R-sq and Adj-R-sq or the lowest AIC are the 
most favorable model for a specific model size. The most favorable 
models from each subset are then compared to determine the final 
model. It is noted that different statistical measurements (Adj-R-sq, R-sq, 
and AIC) may result in a different best model. 

The most desirable models for various model sizes are shown in 
Table 4. MAE and PCD are also calculated to compare the performance of 
those models. It can be observed that the model with a model size of 4 
has improved accuracy regarding R-sq and Adj-R-sq; the model with a 
model size of 3 has the same accuracy in terms of MAE and slightly 
improved accuracy regarding PCD. Thus, the smaller model size is 
preferred, and z in Eq. (6) for logistic regression is written as: 

z = β0 + β1(c/d⋅Q) + β2
(
f ′

c ⋅c/d
)

+ β3
(
Q⋅MC⋅f ′

c

)
(14) 

The statistics of the model coefficients in Eq. (14) are summarized in 
Table 5. 

The method of cross-validation is used to train and validate the lasso 
model. Cross-validation method divides train set into m folds (10 folds is 
used in this research), then the model parameters are evaluated through 
a subsequence manner for various penalty factor values (λ), meaning 
that in the sparse regularization the independent variables having a 
corresponding coefficient of zero are eliminated for a given penalty 
factor value. Hence there will be a subsequence of models having 
different model sizes associated with the continuance of the penalty 
factor value. The model with the minimum average deviance plus one 
standard deviation is suggested to be the final model [32], since this 
model will balance the prediction that is measured by deviance as 

Table 4 
Statistics summary for the top three logistic classification models for each model size.  

Model size Independent variables R-sq (%) Adj-R-sq (%) AIC MAE PCD (%) 

1 c/d⋅MC⋅f′
c 21 20 13.4 0.48 66 

2 c/d⋅f′
c MC⋅f′

c   30 27 124.8 0.42 75 
3 c/d⋅Q c/d⋅f′ Q⋅MC⋅f′

c  32 30 123.3 0.33 79 
4 MC c/d⋅fc′ Ktr⋅Q⋅MC Q⋅MC⋅fc′ 35.2 32 122.5 0.33 78  

Table 2 
Potential variables used for model development.  

Term types xi 

Single 
variable 

f′
c c/d Ktr Q MC 

Interaction of 
2 variables 

Ktr⋅c/d Ktr⋅Q Ktr⋅f′
c Ktr⋅MC c/d⋅Q 

c/d⋅MC c/d⋅f′
c Q⋅MC Q⋅f′

c MC⋅f′
c 

Interaction of 
3 variables 

Ktr⋅c/d⋅Q Ktr⋅Q⋅MC Ktr⋅c/ 
d⋅MC 

Ktr⋅c/d⋅f′
c Ktr⋅Q⋅f′

c 

Ktr⋅MC⋅f′
c c/ 

d⋅Q⋅MC 
c/d⋅Q⋅f′

c c/d⋅MC⋅f′
c Q⋅MC⋅f′

c 

Interaction of 
4 variables 

Ktr⋅c/ 
d⋅Q⋅MC 

Ktr⋅c/ 
d⋅Q⋅f′

c 

Ktr⋅c/ 
d⋅MC⋅f′

c 

Ktr⋅Q⋅MC⋅f′
c c/ 

d⋅Q⋅MC⋅f′
c 

Interaction of 
5 variables 

Ktr⋅c/d⋅Q⋅MC⋅f′
c  

Table 3 
Four possible prediction outcomes.  

Failure mode Predicted to be pull-out Predicted to be splitting 

Pull-out 
(Y = 1) 

True positive 
(TP) 

False negative 
(FN) 

Splitting 
(Y = 0) 

False positive 
(FP) 

True negative 
(TN)  

Table 5 
Logistic model coefficients.  

Model coefficients β0 

(Intercept) 
β1 

(c/d⋅Q) 
β2 

(c/d⋅fc′) 
β3 

(Q⋅MC⋅f′
c) 

Mean −3.46 −4.00 +0.031 0.65 
Standard deviation 0.81 1.62 0.008 0.14 
Coefficient of variation −0.23 −0.40 0.25 0.21  
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opposed to false discovery. 
Since the method of cross-validation randomly divides data, there is 

a possibility that each analysis leads to a different result. Thus, the an
alyses are performed multiple times on the total dataset (100 times in 
this study). The variables selected at the end of each analysis that appear 
most frequently among all the repetition is the one selected as the final 
term. As the result of the multiple analyses conducted in this study, four 
terms appear most frequently: three terms (i.e., c/d⋅f′

c, MC⋅f′
c, Q⋅MC⋅f′

c) 
appear in all analyses, and one term (i.e., Ktr⋅c/d⋅f′

c) appear in half of the 
analyses. However, when using all these four terms, the accuracy of the 
resulting model was found to be lower than that for a model using only 
three terms (i.e., c/d⋅f′

c, MC⋅f′
c, Q⋅MC⋅f′

c); thus, Ktr⋅c/d⋅f′
c, is excluded. 

Accordingly, based on lasso classification, z in Eq. (6) can be written as: 

z = β0 + β1
(
c/d⋅f ′

c

)
+ β2

(
MC⋅f ′

c

)
+ β3

(
Q⋅MC⋅f ′

c

)
(15) 

The estimated model coefficients in Eq. (15) are provided in Table 6. 

3.4. Model comparison 

Using either logistic or lasso classification, both Eq. (14) and Eq. (15) 
suggest that four independent variables contribute to the failure mode 
prediction: f′

c, c/d, Q, and MC. It is worthy to understand how these four 
variables contribute to the bond failure mode. Recall that splitting bond 
failure involves the radial splitting of the concrete cover by the wedge 
action of the bar ribs, while pull-out bond failure mainly involves the 
shearing of the bar against the surrounding concrete. As concrete 
compressive strength, f′

c, is directly correlated to concrete tensile 
splitting resistance and shearing cracking resistance, it is not surprising 
that f′

c is selected in the proposed formulation. Cover to rebar diameter 
ratio, c/d, was found in many previous literature as an important factor 
to affect failure mode [35–38], as it measures the confinement around 
the test bars that could help effectively prevent the splitting cracking in 
concrete. 

The impact of corrosion of rebar, Q, on the bond failure mode, on the 
other hand, changes the failure mode by changing the interactive effect 
of ribs and concrete. The produced layer of rust (i.e., steel oxidizes) 
within the gap between rebar and concrete could act as a lubricant and 
thus alter the failure mode, mostly from splitting to pull-out [5,6]. 
Lastly, the loading type of the specimen, monotonic and cyclic, MC, was 
also found to be a contributing factor in the response of the bond 
behavior. This is because the cycles in cyclic loading can weaken the 
bond on each cycle before rupture without causing extensive splitting 
cracks in concrete [35], which leads to the bond failing in a pull-out 

(a) (b)

Logistic Lasso

Fig. 10. Prediction plot for (a) pull-out failure and (b) splitting failure.  

(c)(b)(a)

Logistic Lasso

Fig. 9. Sensitivity comparison between logistic and lasso logistic models for (a) corrosion level, (b) concrete compressive strength, and (c) ratio of cover to 
rebar diameter. 

Table 6 
Lasso model coefficients.  

Model coefficients β0 

(Intercept) 
β1 

(MC⋅f′
c) 

β2 

(c/d⋅f′
c) 

β3 

(Q⋅MC⋅f′
c) 

Mean −4.5 0.049 0.014 0.0194 
Standard deviation 0.26 0.003 0.001 0.019 
Coefficient of variation −0.06 0.06 0.08 0.97  
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fashion. 
In addition, when comparing the selected terms in the logistic and 

lasso model formulations, it was found that they both include two terms 
(c/d⋅f′

c and Q⋅MC⋅f′
c) and have a negative intercept β0. Note that both 

models do not select any terms that include Ktr. This finding shows that 
within the ranges of Ktr considered in this study, the transverse stirrup 
does not influence the failure mode prediction. This is consistent with 
the findings from Lin et al. [39]. In addition, Soraghi and Huang [7] also 
found that the presence of a higher amount of transverse stirrups will not 
necessarily lead to pull-out failure. 

Fig. 9 shows the comparison for the sensitivity of the two models to 
three parameters: Q, f′

c, and c/d under monotonic or cyclic loading. For 
all three parameters, both models show the same trend: the model 
prediction for the model under cyclic loading is more sensitive to the x- 
axis quantity than the one under monotonic loading, which is in 
agreement with the finding of Kivell et al. [5]. In addition, Fig. 9 in
dicates that with an increase in Q, f′

c, or c/d, the probability of the failure 
being pull-out increases; the result regarding corrosion is also consistent 
with the previous finding from Kivell et al. [5]. However, under cyclic 
loading, the lasso model is found to be more sensitive than the logistic 
model with respect to Q (Fig. 9(a)) and f′

c (Fig. 9(b)). Under monotonic 
loading, the logistic model is found to be more sensitive than the lasso 
model with respect to f′

c (Fig. 9(b)) and c/d loading (Fig. 9(c)). 
Fig. 10 shows a comparison for the predicted probabilities for the 

specimens based on the developed logistic model (denoted as ‘o’) and 
the lasso model (denoted as ‘*’). For probability prediction, if pull-out 
failure and splitting failure (shown in Fig. 10(a) and 10(b), respec
tively), the probability value of the y-axis is closer to one, yielding a 
better prediction. Overall, for most cases, the predictions from both 
models are fairly close, and both models provide better predictions for 
the splitting failure specimens. At lower corrosion levels (less than 10%), 
the prediction discrepancy between the predictions from the two models 
seems to be smaller, especially for the splitting failure mode. 

Next, the prediction performance of the probabilistic models based 
on logistic and lasso classification is compared with other methods of 
classification and the two deterministic models in terms of MAE, PCD, 
PCD,pull-out, and PCD,splitting. Note that to calculate PCD for the deterministic 
criteria of CEB (Eq. (4)), Eq. (11) does not consider the cases if the 
criteria indicate unknown. Thus, to calculate PCD, a 50% of correct 
detection (i.e. reflecting a random guess) is assigned for the unknown 
cases. The prediction accuracy comparison is summarized in Table 7. It 
can be seen that the deterministic models (i.e., CEB and ACI-318) have 
much lower PCD values and higher MAE values compared to the classi
fication methods, indicating a poor prediction capability. On the other 
hand, the performance of all the classification methods is reasonably 
close. While the accuracies of the logistic and lasso models are not 
among the highest in terms of PCD,pull-out, they both perform fairly well in 
terms of PCD,splitting, and PCD. In addition, the lasso classification performs 
best in terms of MAE. 

As mentioned earlier, classification techniques other than logistic 
and lasso classification do not result in an explicit formulation. Thus, the 
logistic and lasso models are still preferred, considering their compa
rable performance to other classification techniques. In addition, as the 
lasso model shows better accuracy than the logistic model in terms of 
MAE and PCD, the model based on lasso classification is suggested to be 
used for the failure mode prediction. 

4. Case study 

Corrosion of steel reinforcement is one of the main deterioration 
mechanisms in RC structure performance, as it changes the material 
properties and weakens the bonding between rebar and concrete. Such 
deterioration can lead to insufficient rebar development length and, 
thus, can alter the performance and failure mode of the structure 
[6,40–42]. Since the investigation has shown that corrosion of rebar 
may change the bond failure mode as shown in the developed proba
bilistic models, it is worth attempting to evaluate the impact of corrosion 
on the structural performance. 

In the literature, four-point testing is typically adopted by re
searchers to study rebar-concrete bond behavior. In this study, an RC 
beam with a lap splice studied by Abdel-Kareem et al. [43] is adopted to 
investigate how corrosion might impact the reliability of the beam 
flexural performance under a four-point lording through its impact on 
the bond failure mode. The geometry and reinforcement detailing of this 
beam are shown in Fig. 11. The support-to-support length of the beam is 
3000 mm. Transverse stirrups with 100 mm spacing and a diameter of 8 
mm are provided along the beam to avoid shear failure. As shown in 
Fig. 11, the lap-spliced rebar is distributed along with the constant 
moment region. The lap splice ls is calculated using ACI 318 [44], 
resulting in ls = 542 mm. The related equations for calculating ls are 
provided in Appendix C. In addition, the concrete compressive strength, 

Fig. 11. Cross-section and longitudinal detailing of the beam (dimensions are in mm) [43].  

Table 7 
Predictive accuracy of various prediction methods.   

Prediction 
method 

PCD,pull- 

out (%) 
PCD,splitting 

(%) 
PCD 

(%) 
MAE 

Deterministic 
methods 

CEB [15] 35 59 47 0.72 
ACI-318 [44] 41 58 49 0.75  

Classification 
methods 

Logistic 69 84 78 0.34 
Lasso 65 90 80 0.31 
Decision Tree 81 90 85 0.35 
Discriminant 69 88 79 0.36 
k-nearest 56 91 63 0.4 
Naïve Bayes 77 76 76 0.38 
Random forest 94 75 80 0.33 
Support vector 
machine 

86 74 78 0.4  
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f′
c, is assumed to be 40 MPa. 

In order to incorporate the stress-slip bond behavior, the nonlinear 
load-deflection behavior of the RC beams is obtained through an 
analytical procedure proposed by Sajedi and Huang [45]. This analytical 
procedure can be applied to lap-spliced beams or beams without lap 
splice, taking into account the effects of corrosion on the diameter of the 
reinforcements, the yield strength of bars, and the stress-slip bond 
behavior at the rebar-concrete interface. This procedure utilizes the 
extension of steel reinforcement between flexural cracks that considers 
the bond-slip behavior at the rebar-concrete interface to estimate the 
nonlinear force-displacement of RC beams. The detailed information 
about this procedure is summarized in Appendix D. Next, the analytical 
procedure is embedded in the first-order reliability analysis (FORM) to 
obtain the probability of failure. 

The bond behavior under pull-out or splitting failure used in the 
analytical procedure is based upon the stress-slip curve in the CEB code 
[15], where bond stress, τ, between rebar and concrete is determined as 
a function of relative slippage, s, as illustrated in Fig. 12, where τm is the 
maximum bond stress (i.e., bond strength) and s1 is the slippage when τ 
= τm. It is worth to note that the prediction performance of the CEB 
criteria for bond failure mode is not very good at all as shown in Table 9, 
but the CEB bond stress-slip model formula has been widely accepted 
and validated by many previous literature [46–52], and this stress-slip 
formula shown in Fig. 12 is consequently adopted in this research. 

To consider the effect of corrosion, the bond strength is calculated 
using a model previously developed by Sajedi and Huang [13], as shown 
in Eq. (D.2) in Appendix D. Since Eq. (D.2) is developed based on the 
specimens that failed in splitting failure modes, it can be used for 
assessing bond strength under splitting failure, τm,s, not for bond 
strength under pull-out failure, τm,p. By utilizing the ratio of the bond 
strength for pull-out failure (i.e., 8.0(f′

c/20)0.25) to the bond strength for 
splitting failure (i.e., 2.5f′

c
0.5) as suggested by CEB [15], η = 8.0(f′

c/ 
20)0.25/(2.5f′

c
0.5), one can set τm,p = η⋅τm,s. 

4.1. Flexural behavior 

Four levels of corrosion are studied and compared: 0% (intact beam), 
5%, 10%, and 15%. First, the flexural behaviors for the intact and 
corroded RC beams under four-point loading are compared through 
deterministic analyses that consider the bond pull-out behavior and 
splitting behavior separately. Three criteria are used to stop the analysis 
as a flexural failure: the first criterion is when the ultimate bond stress, 
τu, becomes larger than the bond strength, τm (τu > τm); the second cri
terion is when the concrete reaches its allowable strain (i.e., εconcrete >

0.0038), at which point the concrete is considered to fail by crushing; 
and the third criterion is when the rebar stress reaches its ultimate 
tensile strength (fs > fu). Notice that the third failure criterion never 

occurred in the case study. Also, note that these failure scenarios (e.g., 
bond failure and concrete crushing) could occur before or after rebar 
yielding, and rebar yielding itself does not indicate a beam failure in this 
study. 

Fig. 13 shows the force-displacement curves for the RC beams and 
Table 8 summarizes the characteristics of the flexural behavior: modulus 
before yielding (E), yielding force (Fy), yielding displacement (Δy), 
rupture force (Fu), ultimate displacement (Δu), ductility (Δu/Δy), and 
hardening ratio (Fu/Fy). The results from both Fig. 13 and Table 8 show 

Fig. 12. Adopted bond-slip curve based on CEB for (a) pull-out failure mode and (b) splitting failure mode [15].  

Fig. 13. Comparison of pull-out and splitting failure for different levels 
of corrosion. 

Table 8 
Beam flexural behavior comparison for different scenarios.  

Corrosion 
level, Q 

Bond 
behavior 

E Fy Δy Fu Δu µ =
Δu/ 
Δy 

Fu/ 
Fy 

Intact beam Pull-out 5.3 71 13.2 92 46.9 3.5 1.3 
Splitting 4.4 71 15.1 92 60.8 4.0 1.3 

Q = 5% Pull-out 4.9 67 13.5 88 49.1 3.6 1.3 
Splitting 3.8 67 17.6 73 25.7 1.5 1.1 

Q = 10% Pull-out 4.6 64 13.7 84 51.1 3.7 1.3 
Splitting 3.6 – 17.4 64 – <1 – 

Q = 15% Pull-out 5 60 13.4 81 55.5 4.1 1.35 
Splitting 3.78 – 17.7 60 – <1 –  
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that the structure performs differently when bond behaviors are in pull- 
out mode or splitting mode. Such a difference becomes more apparent 
when the corrosion level is increased. 

For the beams with the same level of Q except for Q = 15%, Fy is 
about the same regardless of the bond behavior. A beam with pull-out 
bond behavior will have a higher modulus, a higher ductility, and a 
higher hardening ratio as shown in Table 8. As expected, the perfor
mance of the beam with pull-out bond behavior is more desirable. In the 
flexural curves shown in Fig. 13, the stiffness of the beam initially 
changes when the load reaches around 11 kN, and this change at the 
beginning of the curve is due to the creation of initial cracks in the 
concrete considered in the analytical formulation. Furthermore, when 
the beam is under pull-out bond behavior, the flexural failure ends with 
concrete crushing; however, when the beam is under splitting bond 
behavior, the beam fails in bond except for the intact case. More 
importantly, for the beams with corrosion levels of 10% and 15% under 
splitting bond behavior, the bond failure occurs prior to yielding, which 
is a brittle failure, not a desirable type of failure. 

To avoid such brittle failure, one could increase the splice length as 
the value suggested by ACI 318 does not appear to be sufficient when 
corrosion is present [53] or design the beam so that the bond will exhibit 
in a pull-out behavior. To ensure pull-out bond behavior, one could 
utilize the proposed model shown in Eq. (15) that is determined by four 
variables f′

c, c/d, Q, and MC. In particular, one could determine the 
values of the two design parameters, f′

c, and c/d, in order to ensure the 
desired probability level of achieving pull-out bond, with the consider
ation of the corrosion and loading scenarios that could happen in the 
service life. 

4.2. Reliability analysis 

To evaluate the reliability of the beam flexural performance, the 
probability of failure is calculated as: 

Pf = P
(

⋃

k
gk⩽0

)

(16)  

where gk is the limit-state function corresponding to the failure mode k 
and the subscript k denotes the failure mode of the beam (1 for bond 
being pull-out and 2 for bond being splitting). The limit state function is 
defined by: 

gk = Ck(xr) − D (17)  

where Ck(⋅) refers to the capacity of the beam; xr is a random variable 
vector that includes all basic random variables such as material prop
erties and geometric dimensions, and D is the force demand applied to 
the structure. Since bond behavior being pull-out or splitting are two 
mutually exclusive events, Eq. (16) can be written as: 

Pf = P[(C1(xr)−D⩽0|Y = 1) ]⋅P(Y = 1)

+P[C2(xr)−D⩽0|Y = 0]⋅P(Y = 0)
(18)  

where P(Y = 1) and P(Y = 0) = 1 − P(Y = 1) refer to the probability of 
the bond being a pull-out behavior or a splitting behavior, respectively, 
which can be calculated based on the developed model shown in Eq. (6) 
and Eq. (14). The capacity C(xr), which is the maximum force the beam 
can resist before flexural failure is obtained from the analytical pro
cedure in Appendix D. Note that when the failure occurs, it does not 
necessarily indicate bond failure. In practice, the reliability index, β, is 
typically used as the performance measure, and its relationship with Pf is 
as follows: 

Pf = Φ( − β) (19) 

The basic random variables, xr, are adopted based on the literature 
[53,54] and their probability information is provided in Table 9. Note 
that the model error, σε, in Table 9 refers to the model error in the bond 

strength model adopted from the literature [13] that is elaborated in 
Appendix D. 

The contribution of each random variable to the variability of the 
limit state function (Eq. (17)) is also investigated based on the important 
measures of the random variables when considering 5% corrosion and a 
demand of 60 kN, and the results are shown in Table 9. A larger absolute 
value of importance measure indicates a greater contribution of the 
corresponding random variable on the variability of the limit state 
function. The detailed information of importance measures in reliability 
analysis can be found in related literature [55]. Table 9 shows that for 
both cases (bond behaves in splitting and in pull-out), three variables, 
model error in bond strength, fy, and f′

c (namely bond, concrete, and 
steel properties) dominates the contribution to the variability of the 
limit state function. 

Fig. 14 shows the fragility curves conditioned on demand values with 
corrosion levels of 0% (intact beam), 5%, 10%, and 15%. For a given 
level of corrosion, the fragility curves show the differences in the 
structural performance due to different bond 

behaves in pull-out, splitting, or unknown (that is determined by the 
developed bond failure prediction model), and these differences become 
more apparent with the increase in corrosion. 

For the bond failure modes at each considered probability, the 
fragility curve for unknown bond failure mode (shown as a dotted line) 
is between the fragility curves for the bond in pull-out behavior (shown 
as a solid line) and the bond in splitting behavior (shown as a dashed 
line), as expected. In particular, the fragility curve with the unknown 
bond is closer to the curve for splitting bond behavior when the corro
sion level Q is low, but it moves closer to the curve with pull-out bond 
behavior when Q increases. This is understandable, as the probability of 
being pull-out increases with the level of corrosion (as shown in Fig. 14). 

While compares the four plots in Fig. 14, the fragility curves with a 
given bond behavior shift to the left as Q increases. This shows the 
corrosion increases the probability of failure as expected. In particular, 
the fragility curves for splitting bond behavior are more distant from 
each other with the increase of Q. For example, at the lowest level of 
corrosion (Q = 5%) shown in Fig. 14(b), the fragility curve for splitting 
failure is significantly distant from the curve for the intact beam shown 
in Fig. 14(a). However, the fragility curves for pull-out bond behavior do 
not change dramatically with the change of Q. This indicates that 
corrosion has more impact on the performance of a structure with a 
splitting bond than the structure with a pull-out bond. It can also be seen 
that with the increase of the corrosion level, the fragility curves became 
steeper, indicating that the probability of failure becomes more sensitive 
to demand with more corrosion. 

Fig. 15 (a) and (b) show the reliability index curves with respect to 
the level of corrosion Q by setting the demand D as a deterministic value 
of 60 kN and as a random variable with mean µD = 60 kN and COV =

Table 9 
Probability information of the basic random variables.  

Type Random 
variable 

Distribution (Mean*, 
std.) 

Importance measure 
(Q = 5%, D = 60 kN) 

Pull- 
out 

Splitting 

Geometrical db (mm) Normal (16, 0.32) [54] 0.078 0.031  
h (mm) Normal (250, 2.5) [54] −0.061 0.078  
b (mm) Normal (160, 0.32) [54] 0 0  
Cx (mm) Normal (16, 1.92) [53] 0 0  
Ct (mm) Normal (16, 1.92) [53] 0 0  
Cb (mm) Normal (16, 1.92) [53] 0 0  
dst (mm) Normal (8, 0.16) [54] 0 0  

Mechanical fy (MPa) Normal (440, 22) [53] 0.121 0.156  
fc (MPa) Normal (40, 7.2) [53] −0.729 −0.470  
fy,st (MPa) Normal (280, 14) [53] 0 0  

Model error σε Normal (0, 0.169) [53] −0.668 −0.861  
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0.15, respectively. The purpose of Fig. 15 is to examine how the bond 
behavior impacts the structural performance with a progressing deteri
oration; thus, the demand used in Fig. 15 can be arbitrary. Moreover, the 
reliability index curve with the unknown bond failure mode is between 
the other two curves. The reliability index curve with splitting bond 
behavior is much lower than the one with pull-out bond behavior, and 
its rate of decrease is much greater. From Q = 0% to Q = 5%, β decreases 
from 3.3 to 1.8 in Fig. 15(a) and decreases from 3.1 to 2.1 in Fig. 15(b). 
Consistent with the previous observations in Figs. 13 and 14, the result 
from both Fig. 15(a) and (b) indicates that the bond behavior plays a 
critical role in the time-dependent performance evolution, particularly 
when the specimen is exposed to a high level of corrosion. In addition, 
the prediction of the bond failure behavior is important, as it determines 
the actual structural performance. 

5. Summary and conclusions 

Sufficient bonding of rebar to concrete is crucial to ensure the reli
able performance of RC structures, particularly in the corroded struc
tures. Whilst much research has investigated the bond strength, 

estimation of the bond failure mode (i.e. pull-out or splitting) consid
ering corrosion has been given little attention. In this study, by taking 
advantage of machine learning classifications, a probabilistic model was 
developed to estimate the bond failure mode. specifically, logistic and 
lasso classification techniques are found to be suitable for engineering 
practice, as they provide explicit formulations. The developed model is 
based on the results of bond tests for 132 beam-end specimens with 
various influencing parameters such as concrete compressive strength, 
rebar diameter size, cover size, corrosion level, and loading type (i.e., 
monotonic or cyclic). To evaluate if the bond behavior under corrosion 
affects the performance of a structure, the flexural performance of an RC 
beam with a lap splice under various levels of corrosion is evaluated by 
conducting a reliability analysis. The main findings of this study are 
summarized as follows:  

• Machine learning approaches such as logistic and lasso classification 
techniques provide probabilistic predictions of categorical variables 
such as the bond failure mode, and they provide explicit and easy-to- 
implement formulations for engineering practice. 

Fig. 14. Fragility curves under different corrosion levels: (a) Q = 0% (intact beam), (b) Q = 5%, (c) Q = 10%, and (d) Q = 15%.  
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• Both logistic and lasso classification methods have similar prediction 
performances: much better than the deterministic approaches and 
not worse than most of the other classification methods; however, 
lasso classification is found to be more accurate.  

• The parameters that influence the bond failure mode prediction are 
concrete compressive strength, cover to the rebar diameter ratio, 
corrosion level, and loading type (cyclic or monotonic).  

• Based on the developed probabilistic prediction models, the amount 
of transverse stirrup does not influence the bond failure mode.  

• At the structural level, the flexural performance of the beam in the 
case study shows the dependence on the bond behavior, and more so 
at higher levels of corrosion. In addition, for high levels of corrosion 
where the beams exhibit splitting bond behavior, the beam fails 
brittlely (that is failure occurs prior to rebar yielding), which is not a 
desirable type of structural failure.  

• The case study also shows that bond behavior has a great impact on 
the structural reliability index curves, and more so as the level of 
corrosion increases. Thus, the prediction of the bond failure mode is 
critical for time-dependent reliability-based analysis. 
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Table A1 
Specimen specifications (group 1).  

Group No. Rebar diameter, db 

[mm] 
Loading type* f′

c 

[MPa] 
Bond length, lb 

[mm] 
Cover, c 
[mm] 

c/d Ktr Qtarget 

(%) 
Qactual 

(%) 
Failure Mode** 

Group 1 1 15.875 M 43 88.9 50.8 3.20 0.00 0% 0.0% S 
2 63.5 4.00 0.00 10% 4.9% P 
3 76.2 4.80 0.00 20% 7.6% S 
4 50.8 3.20 5.89 0% 0.0% P 
5 63.5 4.00 5.89 10% 5.3% P 
6 76.2 4.80 5.89 20% 9.9% P 
7 C 50.8 3.20 0.00 0% 0.0% S 
8 25.4 1.60 0.00 5% 10.3% P 
9 63.5 4.00 0.00 10% 11.0% P 
10 38.1 2.40 0.00 15% 10.1% P 
11 76.2 4.80 0.00 20% 12.0% P 
12 50.8 3.20 5.89 0% 0.0% P 
13 25.4 1.60 5.89 5% 7.9% NA 
14 63.5 4.00 5.89 10% 4.3% P 
15 38.1 2.40 5.89 15% 8.2% S 
16 76.2 4.80 5.89 20% 11.3% P 
17 19.05 M 114.3 38.1 2.00 0.00 0% 0.0% S 
18 25.4 1.33 0.00 10% 3.6% S 
19 50.8 2.67 0.00 20% 15.6% P 
20 38.1 2.00 4.91 0% 0.0% P 
21 25.4 1.33 4.91 10% 3.2% S 
22 50.8 2.67 4.91 20% 7.1% S 
23 C 38.1 2.00 0.00 0% 0.0% S 
24 63.5 3.33 0.00 5% 8.5% NA 
25 25.4 1.33 0.00 10% 7.6% P 
26 76.2 4.00 0.00 15% 9.9% S 
27 50.8 2.67 0.00 20% 13.4% P 
28 38.1 2.00 4.91 0% 0.0% P 
29 63.5 3.33 4.91 5% 8.6% P 
30 25.4 1.33 4.91 10% 6.9% S 
31 76.2 4.00 4.91 15% 7.7% P 
32 50.8 2.67 4.91 20% 11.0% P 
33 25.4 M 203.2 63.5 2.50 0.00 0% 0.0% S 
34 50.8 2.00 0.00 10% 4.3% S 
35 38.1 1.50 0.00 20% 10.2% S 
36 63.5 2.50 3.68 0% 0.0% S 
37 50.8 2.00 3.68 10% 7.7% S 
38 38.1 1.50 3.68 20% 11.9% P 
39 C 63.5 2.50 3.68 0% 0.0% S 
40 50.8 2.00 0.00 10% 5.2% NA 
41 38.1 1.50 0.00 20% 13.1% NA 
42 63.5 2.50 3.68 0% 0.0% NA 
43 50.8 2.00 3.68 10% 5.7% P 
44 38.1 1.50 3.68 20% 13.7% P 

* M (monotonic), and C (cyclic). 
** P (pull-out), S (splitting), and NA (not assigned). 
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Table A2 
Specimen specifications (group 2).  

Group No. Rebar diameter, db 

[mm] 
Loading type* f′

c 

[MPa] 
Bond length, lb 

[mm] 
Cover, c 
[mm] 

c/d Ktr Qtarget 

(%) 
Qactual 

(%) 
Failure Mode** 

Group 2 1 15.875 M 36 88.9 25.4 1.60 11.73 5% 13.1% P 
2 38.1 2.40 11.73 0% 0.0% P 
3 38.1 2.40 11.73 10% 16.3% S 
4 50.8 3.20 11.73 10% 14.9% P 
5 50.8 3.20 11.73 15% 18.4% S 
6 63.5 4.00 11.73 5% 13.0% S 
7 63.5 4.00 11.73 15% 15.9% S 
8 76.2 4.80 11.73 15% 18.8% P 
9 C 25.4 1.60 11.73 5% 16.3% P 
10 38.1 2.40 11.73 0% 0.0% S 
11 38.1 2.40 11.73 10% 15.7% S 
12 50.8 3.20 11.73 10% 15.4% S 
13 50.8 3.20 11.73 15% 17.2% P 
14 63.5 4.00 11.73 5% 19.1% P 
15 63.5 4.00 11.73 15% 16.5% S 
16 76.2 4.80 11.73 15% 15.6% S 
17 19.05 M 114.3 25.4 1.33 9.78 5% 6.3% P 
18 38.1 2.00 9.78 0% 0.0% P 
19 38.1 2.00 9.78 10% 11.2% P 
20 50.8 2.67 9.78 10% 12.6% P 
21 50.8 2.67 9.78 15% 25.8% S 
22 63.5 3.33 9.78 5% 7.1% P 
23 63.5 3.33 9.78 15% 10.5% S 
24 76.2 4.00 9.78 15% 10.8% P 
25 C 25.4 1.33 9.78 5% 6.5% S 
26 38.1 2.00 9.78 0% 0.0% S 
27 38.1 2.00 9.78 10% 13.3% S 
28 50.8 2.67 9.78 10% 12.8% S 
29 50.8 2.67 9.78 15% 10.3% S 
30 63.5 3.33 9.78 5% 5.4% S 
31 63.5 3.33 9.78 15% 12.1% S 
32 76.2 4.00 9.78 15% 11.4% S 
33 25.4 M 152.4 76.2 3.00 7.33 5% 6.0% P 
34 76.2 3.00 7.33 0% 0.0% P 
35 88.9 3.50 7.33 5% 10.7% P 
36 88.9 3.50 7.33 10% 7.4% S 
37 101.6 4.00 7.33 5% 4.9% P 
38 101.6 4.00 7.33 10% 7.7% S 
39 C 76.2 3.00 7.33 5% 5.7% S 
40 76.2 3.00 7.33 0% 0.0% NA 
41 88.9 3.50 7.33 5% 5.1% S 
42 88.9 3.50 7.33 10% 7.5% NA 
43 101.6 4.00 7.33 5% 5.4% NA 
44 101.6 4.00 7.33 10% 8.1% S  
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Table A3 
Specimen specifications (group 3).  

Group No. Rebar diameter, db 

[mm] 
Loading type* f′

c 

[MPa] 
Bond length, lb 

[mm] 
Cover, c 
[mm] 

c/d Ktr Qtarget 

(%) 
Qactual 

(%) 
Failure Mode** 

Group 3 1 15.875 M 27 88.9 25.4 1.60 11.73 5% 7.9% P 
2 38.1 2.40 11.73 0% 0.0% P 
3 38.1 2.40 11.73 10% 10.3% S 
4 50.8 3.20 11.73 10% 11.2% S 
5 50.8 3.20 11.73 15% 6.5% P 
6 63.5 4.00 11.73 5% 4.8% S 
7 63.5 4.00 11.73 15% 4.0% P 
8 76.2 4.80 11.73 15% 7.8% S 
9 C 25.4 1.60 11.73 5% 6.2% P 
10 38.1 2.40 11.73 0% 0.0% P 
11 38.1 2.40 11.73 10% 7.7% P 
12 50.8 3.20 11.73 10% 9.8% NA 
13 50.8 3.20 11.73 15% 9.1% P 
14 63.5 4.00 11.73 5% 3.4% P 
15 63.5 4.00 11.73 15% 11.9% NA 
16 76.2 4.80 11.73 15% 16.9% P 
17 19.05 M 114.3 25.4 1.33 9.78 5% 5.2% P 
18 38.1 2.00 9.78 0% 0.0% P 
19 38.1 2.00 9.78 10% 6.2% S 
20 50.8 2.67 9.78 10% 7.1% NA 
21 50.8 2.67 9.78 15% 9.0% P 
22 63.5 3.33 9.78 5% 5.4% P 
23 63.5 3.33 9.78 15% 9.5% P 
24 76.2 4.00 9.78 15% 7.2% P 
25 25.4 1.33 9.78 5% 6.1% S 
26 C 38.1 2.00 9.78 0% 0.0% NA 
27 38.1 2.00 9.78 10% 6.8% P 
28 50.8 2.67 9.78 10% 6.6% S 
29 50.8 2.67 9.78 15% 5.8% P 
30 63.5 3.33 9.78 5% 8.0% S 
31 63.5 3.33 9.78 15% 8.2% S 
32 76.2 4.00 9.78 15% 8.3% S 
33 25.4 M 152.4 76.2 3.00 7.33 5% 5.0% S 
34 76.2 3.00 7.33 0% 0.0% P 
35 88.9 3.50 7.33 5% 3.7% S 
36 88.9 3.50 7.33 10% 7.4% S 
37 101.6 4.00 7.33 5% 4.7% P 
38 101.6 4.00 7.33 10% 6.7% S 
39 C 76.2 3.00 7.33 5% 4.7% P 
40 76.2 3.00 7.33 0% 0.0% P 
41 88.9 3.50 7.33 5% 4.6% P 
42 88.9 3.50 7.33 10% 5.9% P 
43 101.6 4.00 7.33 5% 5.6% P 
44 101.6 4.00 7.33 10% 5.8% P  
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Appendix A. Designed specimen specifications 

See Tables A1-A3. 

Appendix B. Classification algorithms 

Decision tree 

A decision tree is a decision support, non-parametric method that uses a tree-like model constructed from the training data and includes a sequence 
of yes/no questions to classify all observations. Hence, the response is predicted using the tree graph. The decision tree consists of nodes and branches 
in which the nodes belong to the test condition and the branches represent the outcome of the test. By following the nodes and branches of the tree, a 
decision can be made [56]. 

Discriminant analysis 

In discriminant classification, different classes are assumed to generate data following various Gaussian distributions [57]. Linear discriminant 
analysis (LDA) and quadratic discriminant analysis (QDA) are two types of discriminant analysis. In LDA Bayes theorem is used to predict the 
probabilities of the output category, k, into the kth category given the input vector of x that can be written as: 

Pr(Y = k|x) =
πkfk(x)

∑
l=1πlfl(x)

(B1)  

where πk is the prior probability (in this study πk = 0.5) and fk(x) refers to the density function of x. In this study, fk(x) is considered to have a joint 
normal or Gaussian distribution, and πk is the prior probability of an observation belonging to the kth class. QDA is similar to LDA in that it assigns 
inputs to the kth category, but QDA considers each category as having a unique covariance matrix. Accordingly, classes in LDA have a linear boundary 
and quadratic boundary in QDA. This study adopts QDA for the class boundary due to its better prediction accuracy [58]. 

K-nearest neighbors classification 

K-nearest neighbors (KNN) classification is a non-parametric classification method [59]. Having a test observation of y0 and K as a positive integer, 
the KNN determines K observations in the training data nearest to y0 that are denoted as N0. It then predicts the conditional probability for class k as 
the fraction of data points in N0 as follows: 

Pr(Y = k|x) =
1
K

∑

i∈N0

I(yi = k) (B2)  

where I(⋅) refers to the indicator variable. The main drawback of using the KNN method is that the chosen value of K is sensitive to the prediction 

Fig. D1. (a) Typical cracked beam under flexural loading [19], and (b) typical crack element [61].  
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performance. To deal with this issue, the approach of cross-validation is adopted in this study for different values of K, and the best model is selected. 
Naïve Bayes classification 

Naïve Bayes classification uses the Bayes theorem for classifying data by assigning an observation to a class when the probability belongs to that 
observation is larger than 50%. By assuming that the input vector x is independent for a given class, k, the probability of an observation pertains to that 
class can be formulated as [59]: 

Pr(Y = k|x) =
Pr(Y = k)Pr(x|Y = k)

Pr(x)
=

Pr(Y = k)
∏N

i=1Pr(x|Y = k)

Pr(x)
(B3)  

Random forest 

A random forest includes a group of decision trees in a way that each tree predictor produces a response based on a set of input variables [60]. A 
random forest creates many learning models (i.e., decision trees) that increase the classification accuracy. This process, also known as bagging, works 
by averaging noisy and unbiased models to create a model with low variance. The prediction of each observation is obtained from average of all 
decision trees and can be formulated using the following equation: 

Pr(Y = k|x) =
1
B

∑B

b=1
fb(x) (B4)  

where B is the number of decision trees and fb is the decision tree prediction. 

Support vector machine 

A support vector machine (SVM) is a simple classifier generalization known as a maximal margin classifier for categorization [59]. This model 
builds a hyper-plane (e.g. a linear or polynomial equation of x) that has the maximum distance from the nearest point of each category based on the 
training data. SVM is a non-probabilistic classification that constructs a classifier as follows: 

Pr(Y = k|x) = sign

[
∑N

i=1
αiyiΨ(x, xi) + b

]

(B5)  

in which N is the number of training data, αi is a positive real factor, and b is a real constant. The parameter Ψ(⋅) is a defined function: for a linear SVM, 
Ψ(x,xi) = xi

Tx and for a polynomial SVM, Ψ(x,xi) = (xi
Tx + 1)d, in which d is an a priori value specified by the user. This study adopted a polynomial 

SVM to achieve the best accuracy. 

Appendix C. Lap splice length 

The designed lap splice length for the adopted beam from Abdel-Kareem [43] is from ACI 318-11 design code provisions [44], in which ld can be 
calculated as: 

ld =
0.9fymin(ψtψe, 1.7)ψsλ̅̅̅̅

f ′

c

√

min(c+ktr
d , 2.5)

db (C1)  

where Ψ t, Ψ e, and Ψ s are modification coefficients to consider the location of reinforcement effects, coating, and size of reinforcement, respectively; λ is 
an aggregate concrete factor, and c is the smaller of the distance from the half of center-to-center spacing of the developed bars and the distance from 
the nearest concrete surface to the center of the rebar (units are based on SI units). Ktr is the calculated based on: 

Ktr =
Atr⋅fyt

10.34s⋅n
(C2)  

where n is the number of rebars developed within the splitting plane. For the calculation of ld in Eq. (C.1), the values for the modification factors are Ψ t 
= Ψ e = Ψ s = λ = 1.0. Note that to obtain the minimum splice length, ld can be replaced with ls [45]. 

Appendix D. Analytical procedure 

As mentioned in Eq. (18), it is necessary to calculate the capacity of the structure. The following procedure is used to obtain the capacity, C(xr). In 
this process, the beam is modeled as a series of elements having the length of crack sizes. The RC beam is assumed to be purely under a constant 
bending moment. The beam is assumed to have a single crack at its midpoint and, as the bending moments increase, the crack expands toward the 
supports. The rebar-concrete bonding transfers some portion of the tensile forces created by the bending moment and, thus, reduces the steel elon
gation and strain within each element, allowing the deflection and rotation be lowered. The midspan deflection, Δ, can be calculated as [61]: 

Δ =
∑i=n

i=1

ei

d − cc
xi (D1) 
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where n is the number of cracks, ei is the elongation of each individual crack, d is the height of the center of the tensile rebar to the top of the concrete 
section, and c is the difference between the height of the top of the section and the top of the crack in a crack element, as shown in Fig. D1. 

This procedure uses compatibility and equilibrium requirements, and interested readers could refer to the authors’ other publications [45,61] for 
further details. The probabilistic model developed by Sajedi & Huang [13] is implemented to estimate the average bond strength, τm, that is a function 
of corrosion for intact and corroded specimens as: 

ln

(
τm

̅̅̅̅

f
′

c

√

)

= θ0 + θ1⋅exp(θ̃1⋅Q)⋅
c

db0
⋅

μ + Rr

1 − μRr
⋅γ

+θ2⋅exp(θ̃2⋅Q)⋅
be

db0
⋅

μ + Rr

1 − μRr
⋅γ + θ3⋅

1̅
̅̅̅

f
′

c

√ ⋅
Astfy,st

sdb0
+ σε

(D2)  

where the predicted coefficients are: θ0 = −0.90, θ1 = 0.48, θ2 = 0.12, θ3 = 0.024, θ1 = −0.08, and θ2 = −0.148; µ = 0.45 [62] is the rebar friction 
coefficient; Rr = 0.1 [63] is the relative lug area of the intact bar; be is the effective beam width (mm) (3c ≤ be ≤ 9c); γ = [8⋅db0/(ld or ls)]0.5 (≤1) is a 
reduction factor to long development length (ld) or splice length (ls); Ast is the area of two legs of the transverse reinforcement in the cross-section 
(mm2); s = transverse reinforcement spacing (mm); and σε is the model error where σ = 0.169 and ε = standard normal random variable [13]. 
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